Assessing GFDL‐ESM4.1 Climate Responses to a Stratospheric Aerosol Injection Strategy Intended to Avoid Overshoot 2.0°C Warming

In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 23
Main Authors Zhang, Shipeng, Naik, Vaishali, Paynter, David, Tilmes, Simone, John, Jasmin
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.12.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. Plain Language Summary Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies. Key Points The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1 The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1 Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1
AbstractList In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. Plain Language Summary Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies. Key Points The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1 The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1 Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1
Abstract In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies.
In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies.
In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020 ). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies. The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1 The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1 Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1
Author Naik, Vaishali
Tilmes, Simone
John, Jasmin
Paynter, David
Zhang, Shipeng
Author_xml – sequence: 1
  givenname: Shipeng
  orcidid: 0000-0003-4818-3275
  surname: Zhang
  fullname: Zhang, Shipeng
  email: shipeng.zhang@princeton.edu
  organization: Princeton University
– sequence: 2
  givenname: Vaishali
  orcidid: 0000-0002-2254-1700
  surname: Naik
  fullname: Naik, Vaishali
  organization: NOAA Geophysical Fluid Dynamics Laboratory
– sequence: 3
  givenname: David
  orcidid: 0000-0002-7092-241X
  surname: Paynter
  fullname: Paynter, David
  organization: NOAA Geophysical Fluid Dynamics Laboratory
– sequence: 4
  givenname: Simone
  orcidid: 0000-0002-6557-3569
  surname: Tilmes
  fullname: Tilmes, Simone
  organization: National Center for Atmospheric Research
– sequence: 5
  givenname: Jasmin
  orcidid: 0000-0003-2696-277X
  surname: John
  fullname: John, Jasmin
  organization: NOAA Atlantic Oceanographic and Meteorological Laboratory
BookMark eNp9kc1u00AQx1eoSKSFGw-wElcSZr-9xyi0IZKrSi2I48pej1NHrjfsuq1yQzwBj8Iz8Cg8STcYIU6cZjTzm_98nZKTIQxIyGsGCwbcvuPA5bpkTCjBn5EZs1LOCwBzQmYANvvc6BfkNKUdAAgQbEa-LVPClLphS9cX78tfX7-f31zKBaOrvrurRqTXmPZhyAwdA63ozRirMaT9LcbO0yXGkEJPN8MO_diFYcrj9pBDIw4NNsey5UPoGnr1gDHdhjBSvoCfP1b0cxXvcuOX5Hlb9Qlf_bFn5NPF-cfVh3l5td6sluXcC22KOfe-NW1dK8lr7w0Wwhe2ZtKgb1rOCg2ybT2CqBlrmNHKaw9cSStF0RgtxBnZTLpNqHZuH_N-8eBC1bnfgRC3ropj53t0SjNVWWC6NUoaz2tlWw_CCKugaazJWm8mrX0MX-4xjW4X7uOQx3eCSa4M0-xIvZ0on8-UIrZ_uzJwx4-5fz-WcT7hj12Ph_-ybn1d6kKpQjwB9syYlg
Cites_doi 10.1029/2005GL023209
10.1175/1520‐0485(1990)020<0722:TROAGO>2.0.CO;2
10.1016/j.aosl.2021.100043
10.1002/jgrd.50646
10.1029/2023MS003922
10.5281/zenodo.3836405
10.1007/s00382‐019‐04991‐y
10.5194/gmd‐8‐3379‐2015
10.5194/gmd‐9‐3461‐2016
10.5194/esd‐11‐579‐2020
10.5194/acp‐21‐10039‐2021
10.1029/2022JD036675
10.5194/esd‐15‐191‐2024
10.1175/jcli‐d‐18‐0616.1
10.5194/acp‐23‐163‐2023
10.1175/JCLI‐D‐14‐00545.1
10.5194/acp‐23‐13369‐2023
10.1038/nature01092
10.5194/gmd‐9‐1937‐2016
10.1007/s10712‐012‐9213‐z
10.1029/2023GL103381
10.1029/2020EF001616
10.1029/2021GL095778
10.1098/rstb.2021.0394
10.5194/gmd‐17‐2583‐2024
10.1038/s41586‐018‐0007‐4
10.1029/2019MS002043
10.1175/2007JCLI2110.1
10.5194/acp‐21‐10179‐2021
10.1038/s41558‐020‐00955‐x
10.1038/s41558‐023‐01678‐5
10.1029/2019GL085782
10.1007/s00382‐009‐0583‐y
10.1029/2023GL105492
10.1029/2019MS002015
10.1175/JCLI3990.1
10.1073/pnas.1921854118
10.1029/2011GL046713
10.26024/t49k‐1016
10.1007/s10712‐011‐9159‐6
10.1038/s41558‐021‐01218‐z
10.1002/2017JD026868
10.1029/2020GL090241
10.1029/2019MS001726
10.1029/2022MS003579
10.1002/2017JD026874
10.5194/gmd‐15‐8221‐2022
10.1111/nyas.14337
10.1126/science.abn7950
10.5194/acp‐22‐2999‐2022
10.5194/esd‐12‐253‐2021
10.1002/jgrd.50868
10.1088/1748‐9326/9/6/064024
10.1038/s41598‐017‐08467‐z
10.5194/acp‐20‐9591‐2020
10.5281/zenodo.11051447
10.1029/2019MS002032
10.1175/1520‐0442(2002)015<2103:TRTATI>2.0.CO;2
10.1029/2019MS001916
10.5194/acp‐21‐4231‐2021
10.1175/JCLI‐D‐12‐00283.1
10.5194/gmd‐9‐2701‐2016
10.1175/JCLI‐D‐19‐1011.1
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL113532
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList

Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5615a9016f7547c2b59fc0373950dd97
10_1029_2024GL113532
GRL68558
Genre article
GeographicLocations Northern Hemisphere
Southern Hemisphere
GeographicLocations_xml – name: Southern Hemisphere
– name: Northern Hemisphere
GrantInformation_xml – fundername: Climate Program Office
– fundername: National Oceanic and Atmospheric Administration
  funderid: NA23OAR4320198
– fundername: Princeton University
– fundername: Simons Foundation
  funderid: MPS‐SRM‐00006584
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3678-2ccf7fbb542bcc7e83c89b147ecdf218604ffce03b11d1765c6c02549438d7633
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:26:05 EDT 2025
Fri Jul 25 12:20:46 EDT 2025
Tue Aug 05 11:58:10 EDT 2025
Wed Jan 22 17:12:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3678-2ccf7fbb542bcc7e83c89b147ecdf218604ffce03b11d1765c6c02549438d7633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7092-241X
0000-0003-4818-3275
0000-0002-2254-1700
0000-0003-2696-277X
0000-0002-6557-3569
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113532
PQID 3142571617
PQPubID 54723
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5615a9016f7547c2b59fc0373950dd97
proquest_journals_3142571617
crossref_primary_10_1029_2024GL113532
wiley_primary_10_1029_2024GL113532_GRL68558
PublicationCentury 2000
PublicationDate 16 December 2024
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 16 December 2024
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2002; 15
2021; 21
2013; 26
2020; 20
2019; 11
2020; 12
2020; 11
2020; 54
2022; 22
2024
2022; 377
2020; 8
2020; 1472
2023; 23
2013; 118
2021; 118
2005; 32
2020; 47
2008; 21
2017; 122
2014; 9
2022; 127
2021; 48
2023; 13
2010; 35
2023; 15
2019; 32
2006; 19
2002; 419
2020; 33
2011; 38
2024; 15
2015; 8
2024; 16
2012; 33
2024; 17
2021; 14
1990; 20
2015; 28
2021; 12
2021; 11
2018; 556
2021
2020
2014; 35
2022; 15
2023; 50
2016; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Forster P. M. (e_1_2_7_22_1) 2021
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
Lee J.‐Y. (e_1_2_7_35_1) 2021
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 50
  issue: 14
  year: 2023
  article-title: Overturning pathways control AMOC weakening in CMIP6 models
  publication-title: Geophysical Research Letters
– volume: 419
  start-page: 228
  issue: 6903
  year: 2002
  end-page: 232
  article-title: Constraints on future changes in climate and the hydrologic cycle
  publication-title: Nature
– volume: 26
  start-page: 2482
  issue: 8
  year: 2013
  end-page: 2501
  article-title: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation
  publication-title: Journal of Climate
– volume: 12
  issue: 10
  year: 2020
  article-title: Ocean biogeochemistry in GFDL’s Earth system model 4.1 and its response to increasing atmospheric CO
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 32
  start-page: 5567
  issue: 17
  year: 2019
  end-page: 5582
  article-title: Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations
  publication-title: Journal of Climate
– volume: 12
  start-page: 253
  issue: 1
  year: 2021
  end-page: 293
  article-title: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
  publication-title: Earth System Dynamics
– year: 2024
– volume: 54
  start-page: 129
  issue: 1–2
  year: 2020
  end-page: 157
  article-title: How accurately can the climate sensitivity to CO be estimated from historical climate change?
  publication-title: Climate Dynamics
– volume: 16
  issue: 5
  year: 2024
  article-title: The land component LM4.1 of the GFDL Earth system model ESM4.1: Model description and characteristics of land surface climate and carbon cycling in the historical simulation
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 23
  start-page: 163
  issue: 1
  year: 2023
  end-page: 182
  article-title: Dependence of strategic solar climate intervention on background scenario and model physics
  publication-title: Atmospheric Chemistry and Physics
– volume: 32
  issue: 12
  year: 2005
  article-title: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO concentration
  publication-title: Geophysical Research Letters
– volume: 15
  issue: 9
  year: 2023
  article-title: Climate, variability, and climate sensitivity of “middle atmosphere” chemistry configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6))
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 15
  start-page: 191
  issue: 2
  year: 2024
  end-page: 213
  article-title: Hemispherically symmetric strategies for stratospheric aerosol injection
  publication-title: Earth System Dynamics
– volume: 15
  start-page: 2103
  issue: 15
  year: 2002
  end-page: 2116
  article-title: Tropical rainfall trends and the indirect aerosol effect
  publication-title: Journal of Climate
– volume: 14
  issue: 3
  year: 2021
  article-title: Changes in polar amplification in response to increasing warming in CMIP6
  publication-title: Atmospheric and Oceanic Science Letters
– volume: 47
  issue: 19
  year: 2020
  article-title: Large variations in volcanic aerosol forcing efficiency due to eruption source parameters and rapid adjustments
  publication-title: Geophysical Research Letters
– volume: 9
  issue: 6
  year: 2014
  article-title: The physical drivers of historical and 21st century global precipitation changes
  publication-title: Environmental Research Letters
– volume: 47
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Causes of higher climate sensitivity in CMIP6 models
  publication-title: Geophysical Research Letters
– volume: 118
  issue: 15
  year: 2021
– volume: 12
  start-page: 1
  issue: 11
  year: 2020
  end-page: 56
  article-title: The GFDL Earth system model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 35
  start-page: 423
  issue: 2–3
  year: 2010
  end-page: 434
  article-title: Fast versus slow response in climate change: Implications for the global hydrological cycle
  publication-title: Climate Dynamics
– volume: 12
  issue: 2
  year: 2020
  article-title: The Community Earth System Model Version 2 (CESM2)
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 556
  start-page: 227
  issue: 7700
  year: 2018
  end-page: 230
  article-title: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years
  publication-title: Nature
– volume: 21
  start-page: 10039
  issue: 13
  year: 2021
  end-page: 10063
  article-title: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations
  publication-title: Atmospheric Chemistry and Physics
– volume: 20
  start-page: 9591
  issue: 16
  year: 2020
  end-page: 9618
  article-title: Effective radiative forcing and adjustments in CMIP6 models
  publication-title: Atmospheric Chemistry and Physics
– volume: 127
  start-page: 1
  issue: 18
  year: 2022
  end-page: 29
  article-title: On the effect of historical SST patterns on radiative feedback
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 13
  start-page: 545
  issue: 6
  year: 2023
  end-page: 553
  article-title: Sea surface warming patterns drive hydrological sensitivity uncertainties
  publication-title: Nature Climate Change
– volume: 21
  start-page: 4231
  issue: 6
  year: 2021
  end-page: 4247
  article-title: Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
  publication-title: Atmospheric Chemistry and Physics
– volume: 11
  start-page: 3167
  issue: 10
  year: 2019
  end-page: 3211
  article-title: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 22
  start-page: 2999
  issue: 5
  year: 2022
  end-page: 3016
  article-title: The impact of stratospheric aerosol intervention on the North Atlantic and Quasi‐Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment
  publication-title: Atmospheric Chemistry and Physics
– volume: 377
  issue: 1857
  year: 2022
  article-title: Risks to biodiversity from temperature overshoot pathways
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 9
  start-page: 3461
  issue: 9
  year: 2016
  end-page: 3482
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geoscientific Model Development
– volume: 7
  issue: 1
  year: 2017
  article-title: Evidence for ice‐ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone
  publication-title: Scientific Reports
– volume: 20
  start-page: 722
  issue: 5
  year: 1990
  end-page: 749
  article-title: Transient response of a global ocean‐atmosphere model to a doubling of atmospheric carbon dioxide
  publication-title: Journal of Physical Oceanography
– volume: 21
  start-page: 10179
  issue: 13
  year: 2021
  end-page: 10197
  article-title: On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations
  publication-title: Atmospheric Chemistry and Physics
– volume: 28
  start-page: 1630
  issue: 4
  year: 2015
  end-page: 1648
  article-title: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models
  publication-title: Journal of Climate
– volume: 1472
  start-page: 49
  issue: 1
  year: 2020
  end-page: 75
  article-title: Advances in understanding large‐scale responses of the water cycle to climate change
  publication-title: Annals of the New York Academy of Sciences
– volume: 122
  issue: 23
  year: 2017
  article-title: The climate response to stratospheric aerosol geoengineering can Be tailored using multiple injection locations
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 11
  start-page: 132
  issue: 2
  year: 2021
  end-page: 136
  article-title: Greater committed warming after accounting for the pattern effect
  publication-title: Nature Climate Change
– volume: 377
  issue: 6611
  year: 2022
  article-title: Exceeding 1.5°C global warming could trigger multiple climate tipping points
  publication-title: Science
– volume: 38
  issue: 6
  year: 2011
  article-title: Why is there a short‐term increase in global precipitation in response to diminished CO forcing?
  publication-title: Geophysical Research Letters
– volume: 23
  start-page: 13369
  issue: 20
  year: 2023
  end-page: 13385
  article-title: Comparison of UKESM1 and CESM2 simulations using the same multi‐target stratospheric aerosol injection strategy
  publication-title: Atmospheric Chemistry and Physics
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 122
  issue: 23
  year: 2017
  article-title: First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 35
  start-page: 533
  issue: 3
  year: 2014
  end-page: 552
  article-title: Physically consistent responses of the global atmospheric hydrological cycle in models and observations
  publication-title: Surveys in Geophysics
– volume: 33
  start-page: 585
  issue: 3–4
  year: 2012
  end-page: 608
  article-title: Energetic constraints on precipitation under climate change
  publication-title: Surveys in Geophysics
– volume: 12
  issue: 10
  year: 2020
  article-title: The GFDL global atmospheric chemistry‐climate model AM4.1: Model description and simulation characteristics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 48
  start-page: 1
  issue: 24
  year: 2021
  end-page: 12
  article-title: Biased estimates of equilibrium climate sensitivity and transient climate response derived from historical CMIP6 simulations
  publication-title: Geophysical Research Letters
– volume: 33
  start-page: 7755
  issue: 18
  year: 2020
  end-page: 7775
  article-title: Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models
  publication-title: Journal of Climate
– volume: 17
  start-page: 2583
  issue: 7
  year: 2024
  end-page: 2596
  article-title: G6‐1.5K‐SAI: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
  publication-title: Geoscientific Model Development
– volume: 11
  start-page: 1070
  issue: 12
  year: 2021
  end-page: 1076
  article-title: Net zero‐emission pathways reduce the physical and economic risks of climate change
  publication-title: Nature Climate Change
– volume: 21
  start-page: 3504
  issue: 14
  year: 2008
  end-page: 3520
  article-title: Quantifying climate feedbacks using radiative kernels
  publication-title: Journal of Climate
– volume: 8
  issue: 12
  year: 2020
  article-title: Projecting exposure to extreme climate impact events across six event categories and three spatial scales
  publication-title: Earth's Future
– volume: 50
  start-page: 1
  issue: 18
  year: 2023
  end-page: 10
  article-title: The dependence of climate sensitivity on the meridional distribution of radiative forcing
  publication-title: Geophysical Research Letters
– year: 2020
– volume: 11
  start-page: 579
  issue: 3
  year: 2020
  end-page: 601
  article-title: Reaching 1.5 and 2.0°C global surface temperature targets using stratospheric aerosol geoengineering
  publication-title: Earth System Dynamics
– volume: 9
  start-page: 2701
  issue: 8
  year: 2016
  end-page: 2719
  article-title: The model intercomparison project on the climatic response to volcanic forcing (VolMIP): Experimental design and forcing input data for CMIP6
  publication-title: Geoscientific Model Development
– start-page: 923
  year: 2021
  end-page: 1054
– volume: 8
  start-page: 3379
  issue: 10
  year: 2015
  end-page: 3392
  article-title: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results
  publication-title: Geoscientific Model Development
– volume: 15
  start-page: 8221
  issue: 22
  year: 2022
  end-page: 8243
  article-title: Assessing responses and impacts of solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE‐SAI): Protocol and initial results from the first simulations
  publication-title: Geoscientific Model Development
– volume: 118
  issue: 19
  year: 2013
  article-title: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 118
  start-page: 8320
  issue: 15
  year: 2013
  end-page: 8332
  article-title: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 553
  year: 2021
  end-page: 672
– volume: 19
  start-page: 5686
  issue: 21
  year: 2006
  end-page: 5699
  article-title: Robust responses of the hydrological cycle to global warming
  publication-title: Journal of Climate
– ident: e_1_2_7_24_1
  doi: 10.1029/2005GL023209
– ident: e_1_2_7_38_1
  doi: 10.1175/1520‐0485(1990)020<0722:TROAGO>2.0.CO;2
– ident: e_1_2_7_11_1
  doi: 10.1016/j.aosl.2021.100043
– ident: e_1_2_7_30_1
  doi: 10.1002/jgrd.50646
– ident: e_1_2_7_45_1
  doi: 10.1029/2023MS003922
– ident: e_1_2_7_18_1
  doi: 10.5281/zenodo.3836405
– ident: e_1_2_7_23_1
  doi: 10.1007/s00382‐019‐04991‐y
– ident: e_1_2_7_33_1
  doi: 10.5194/gmd‐8‐3379‐2015
– ident: e_1_2_7_42_1
  doi: 10.5194/gmd‐9‐3461‐2016
– ident: e_1_2_7_54_1
  doi: 10.5194/esd‐11‐579‐2020
– ident: e_1_2_7_55_1
  doi: 10.5194/acp‐21‐10039‐2021
– start-page: 923
  volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_7_22_1
– ident: e_1_2_7_6_1
  doi: 10.1029/2022JD036675
– ident: e_1_2_7_64_1
  doi: 10.5194/esd‐15‐191‐2024
– ident: e_1_2_7_65_1
  doi: 10.1175/jcli‐d‐18‐0616.1
– ident: e_1_2_7_21_1
  doi: 10.5194/acp‐23‐163‐2023
– ident: e_1_2_7_7_1
  doi: 10.1175/JCLI‐D‐14‐00545.1
– ident: e_1_2_7_26_1
  doi: 10.5194/acp‐23‐13369‐2023
– ident: e_1_2_7_5_1
  doi: 10.1038/nature01092
– ident: e_1_2_7_20_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_7_4_1
  doi: 10.1007/s10712‐012‐9213‐z
– ident: e_1_2_7_9_1
  doi: 10.1029/2023GL103381
– ident: e_1_2_7_34_1
  doi: 10.1029/2020EF001616
– ident: e_1_2_7_15_1
  doi: 10.1029/2021GL095778
– ident: e_1_2_7_40_1
  doi: 10.1098/rstb.2021.0394
– ident: e_1_2_7_56_1
  doi: 10.5194/gmd‐17‐2583‐2024
– ident: e_1_2_7_50_1
  doi: 10.1038/s41586‐018‐0007‐4
– ident: e_1_2_7_48_1
  doi: 10.1029/2019MS002043
– ident: e_1_2_7_47_1
  doi: 10.1175/2007JCLI2110.1
– ident: e_1_2_7_63_1
  doi: 10.5194/acp‐21‐10179‐2021
– ident: e_1_2_7_66_1
  doi: 10.1038/s41558‐020‐00955‐x
– ident: e_1_2_7_62_1
  doi: 10.1038/s41558‐023‐01678‐5
– ident: e_1_2_7_59_1
  doi: 10.1029/2019GL085782
– ident: e_1_2_7_10_1
  doi: 10.1007/s00382‐009‐0583‐y
– ident: e_1_2_7_60_1
  doi: 10.1029/2023GL105492
– ident: e_1_2_7_19_1
  doi: 10.1029/2019MS002015
– ident: e_1_2_7_25_1
  doi: 10.1175/JCLI3990.1
– ident: e_1_2_7_58_1
  doi: 10.1073/pnas.1921854118
– ident: e_1_2_7_12_1
  doi: 10.1029/2011GL046713
– ident: e_1_2_7_52_1
  doi: 10.26024/t49k‐1016
– ident: e_1_2_7_41_1
  doi: 10.1007/s10712‐011‐9159‐6
– ident: e_1_2_7_17_1
  doi: 10.1038/s41558‐021‐01218‐z
– ident: e_1_2_7_37_1
  doi: 10.1002/2017JD026868
– ident: e_1_2_7_39_1
  doi: 10.1029/2020GL090241
– ident: e_1_2_7_2_1
  doi: 10.1029/2019MS001726
– ident: e_1_2_7_14_1
  doi: 10.1029/2022MS003579
– ident: e_1_2_7_31_1
  doi: 10.1002/2017JD026874
– ident: e_1_2_7_43_1
  doi: 10.5194/gmd‐15‐8221‐2022
– ident: e_1_2_7_3_1
  doi: 10.1111/nyas.14337
– ident: e_1_2_7_8_1
  doi: 10.1126/science.abn7950
– ident: e_1_2_7_28_1
  doi: 10.5194/acp‐22‐2999‐2022
– ident: e_1_2_7_49_1
  doi: 10.5194/esd‐12‐253‐2021
– ident: e_1_2_7_53_1
  doi: 10.1002/jgrd.50868
– ident: e_1_2_7_51_1
  doi: 10.1088/1748‐9326/9/6/064024
– ident: e_1_2_7_29_1
  doi: 10.1038/s41598‐017‐08467‐z
– ident: e_1_2_7_46_1
  doi: 10.5194/acp‐20‐9591‐2020
– ident: e_1_2_7_61_1
  doi: 10.5281/zenodo.11051447
– start-page: 553
  volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_7_35_1
– ident: e_1_2_7_27_1
  doi: 10.1029/2019MS002032
– ident: e_1_2_7_44_1
  doi: 10.1175/1520‐0442(2002)015<2103:TRTATI>2.0.CO;2
– ident: e_1_2_7_13_1
  doi: 10.1029/2019MS001916
– ident: e_1_2_7_32_1
  doi: 10.5194/acp‐21‐4231‐2021
– ident: e_1_2_7_36_1
  doi: 10.1175/JCLI‐D‐12‐00283.1
– ident: e_1_2_7_57_1
  doi: 10.5194/gmd‐9‐2701‐2016
– ident: e_1_2_7_16_1
  doi: 10.1175/JCLI‐D‐19‐1011.1
SSID ssj0003031
Score 2.4693744
Snippet In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims...
Abstract In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms aerosol climate effect
Aerosols
Atmosphere
Cerebral hemispheres
Climate
Climate change
Climate feedback
Climate models
Climate sensitivity
Cooling
Earth surface
Emissions
Equator
Geoengineering
Global warming
Greenhouse effect
Greenhouse gases
Heat waves
Ice melting
Injection
Intertropical convergence zone
Northern Hemisphere
Parameter modification
Particle injection
Precipitation
Precipitation patterns
Rainfall
Sea ice
Solar radiation
Southern Hemisphere
Stratosphere
stratospheric aerosol injection
Stratospheric warming
Sunlight
Surface temperature
Temperature effects
Temperature gradients
Tropical rainfall
Uncertainty
Upper atmosphere
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF4hJCQuqIVWpFC0BzhVBnu9v8cQSKAKVKIguFnevzYI2RUJlbghnoBH4Rl4FJ6EnbVThQu9cLMsrzWeGc-P9ttvENr01ImccZlI511CdUkTVaY2MTnJBbCNOA7nnY-O-cEZ_X7BLmZGfQEmrKEHbhS3E_I7K0PS4l4wKgzRTHmT5rC_lFqr4jnykPOmzVQbg0NgbmblKZpIIngLeU-Jgm6fDoYZzHsgr5JR5Ox_VWjOlqsx3_Q_oKW2UMTdRsCPaM5Vy2hhEAfx3oarCN004xV03-zbhhSEB_294fPdw_7PI7qd4d7VKJSjDp80MFg3xpMalzjy0dZjoBMYGdx1QbL6Ch9WlxGUVeGWr_YWR3S7dRaWdf_WI4t_AIbjd11PMNlOnx57-LwEKM2vT-isv3_aO0jayQrBBiE7JcQYL7zWjBJtjHAyN1LpjApnrIcpVSn1HiaJ6SyzmeDMcAPH5hXNpQ0RKf-M5qu6cqsIe8-Y5KaUxjPqqdfcp95qq4LaQ3ujOmhrquLiT0OgUcSNb6KKWVN00C7o_98zQHsdbwRnKFpnKP7nDB20PrVe0f6L4yLPIC5BH9dB36JF3xSkGJwMuQwf9eU9JFpDi_ByAMBkfB3NT65v3NdQxkz0RvTYF9oc6ck
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessing GFDL‐ESM4.1 Climate Responses to a Stratospheric Aerosol Injection Strategy Intended to Avoid Overshoot 2.0°C Warming
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113532
https://www.proquest.com/docview/3142571617
https://doaj.org/article/5615a9016f7547c2b59fc0373950dd97
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LahRBFC0kQXAj8YVj4lALXUnHftRzOY6ZiTJRiY4GN03XK04I3SE9BrILfoGf4jf4KX6J91Z3hslGcNcUVVBdt--r69xzCXkWmJcFFypRPviEmYolukpdYou8kMg24gXWOx-8E_tz9vaIH_U_3LAWpuOHWP1wQ82I9hoVvDJtTzaAHJmQtbPpLMO-DWCCN7G6Frnzc_ZhZYnBPHcd8zRLVC5FD3yH9S_XV99wSZG5_0a4uR60Rq8z2SJ3-3CRjjr53iO3fH2f3J7GdryX8BQBnLZ9QH50t7fgiOh08nr25-rn3scDtpvR8ekCglJPDzswrG_psqEVjay0TYukAgtLRx521pzSN_VJhGbVtGetvaQR4-68w2Wji2bh6HtEcnxrmiXNd9Pfv8b0S4WAmuOHZD7Z-zTeT_r-CiAJ8FFJbm2QwRjOcmOt9KqwSpuMSW9dwF5VKQsB-4mZLHOZFNwKi8XzmhXKgV0qHpGNuqn9Y0JD4FwJWykbOAssGBHS4IzTcOyQ5OgBeX59xOVZR6NRxuvvXJfrohiQV3j-qzlIfh0HmvPjstelEkI-XkEcI4LkTNrccB1sWuCVY-qclgOycy29stfItiwytE6YzQ3IiyjRf26knB7OhIKXevJfs7fJHRxHvEsmdsjG8vy7fwpRy9IM46c5JJujz_Ov82HM_f8CQF_lgw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVQKwSbqrzEQAEvYIVSEsfP5TB0ZgqZgkorurPiV5mqSlBnQOoO8QV8Ct_Ap_Al-DrpaLpBYhdFtuT45j5sH5-D0PNAvSgZl5n0wWfU1DRTde4yW5JSANuI53DfeXbAp8f07Qk76XVO4S5Mxw-x2nADz0jxGhwcNqR7tgEgyYzLdjqpChBuiDF4k3IiwDMJ_bAKxTE-d5J5imaSCN4j32P_V-u9r-WkRN1_rd5cr1pT2hlvo62-XsTDzsB30A3f3EU3J0mP9zI-JQSnXdxDP7rj25iJ8GT8pvrz_efexxndLfDofB6rUo8POzSsX-Bli2ucaGnbBbAKzC0e-jiy9hzvN2cJm9Xgnrb2EieQu_MOug2_tXOH3wOU43PbLjHZzX__GuFPNSBqTu-j4_He0Wia9QIL0RQxSWXE2iCCMYwSY63wsrRSmYIKb10AsaqchgCCYqYoXCE4s9zC7XlFS-liYCofoI2mbfxDhENgTHJbSxsYDTQYHvLgjFNx2uMqRw3Qi6sp1l86Hg2dzr-J0uumGKDXMP-rNsB-nV60F6e6dyYdaz5Wx0KGB8GosMQwFWxewplj7pwSA7RzZT3du-RClwWEJ1jODdDLZNF_DkRPDisu40c9-q_Wz9Ct6dGs0tX-wbvH6Da0AfBLwXfQxvLiq38SS5ileZp-078SXOY8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQKxAbVF4itIAXsEJT5uHnMqRNWkgLKgQqNtb4VYKqmaoJSN1V_QI-hW_op_RL8PW4UbpBYjca2SPPvb4P28fnIvTSE8crykQmnHcZ0TXJZJ3bzFRlxYFtxDG477y3z3Ym5N0hPUwbbnAXpuOHWGy4gWVEfw0GfmJ9IhsAjsywaiejcQF1G4ILXgWivDCrV_tfJt8mC18cHHRXM0-STJScJeh7-MKb5f43glLk7r-RcC6nrTHuDNfQvZQw4n6n4fvolmseoNujWJD3LDxFCKeZPUQX3fltCEV4NNwaX53_3v60RzYLPDiehrTU4YMODutmeN7iGkde2nYGtAJTg_sujKw9xrvNjwjOanDirT3DEeVunYVu_V_t1OIPgOX43rZzXG7ml38G-GsNkJqjR2gy3P482MlShYWgixClstIYz73WlJTaGO5EZYTUBeHOWA_VqnLiPVQU00VhC86oYQauz0tSCRs8U_UYrTRt454g7D2lgplaGE-JJ14zn3urrQxiD8sc2UOvrkWsTjoiDRUPwEupllXRQ29B_os2QH8dX7SnRypZkwpJH61DJsM8p4SbUlPpTV7BoWNureQ9tHGtPZVscqaqAvwTrOd66HXU6D8HokYHYybCTz39r9Yv0J2PW0M13t1_v47uQhMAvxRsA63MT3-6ZyGFmevnaZ7-BS4T5zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+GFDL%E2%80%90ESM4.1+Climate+Responses+to+a+Stratospheric+Aerosol+Injection+Strategy+Intended+to+Avoid+Overshoot+2.0%C2%B0C+Warming&rft.jtitle=Geophysical+research+letters&rft.au=Zhang%2C+Shipeng&rft.au=Naik%2C+Vaishali&rft.au=Paynter%2C+David&rft.au=Tilmes%2C+Simone&rft.date=2024-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL113532&rft.externalDBID=10.1029%252F2024GL113532&rft.externalDocID=GRL68558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon