Assessing GFDL‐ESM4.1 Climate Responses to a Stratospheric Aerosol Injection Strategy Intended to Avoid Overshoot 2.0°C Warming
In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.12.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies.
Plain Language Summary
Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies.
Key Points
The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1
The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1
Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1 |
---|---|
AbstractList | In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies.
Plain Language Summary
Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies.
Key Points
The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1
The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1
Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1 Abstract In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims to restrict global warming to 2.0°C above pre‐industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP5‐34‐OS). Simulations of this SAI scenario with the CESM Whole Atmosphere Community Climate Model (CESM2‐WACCM6) showed nearly unchanged interhemispheric and pole‐to‐Equator surface temperature gradients relative to present‐day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and shifting precipitation patterns (Tilmes et al., 2020, https://doi.org/10.5194/esd‐11‐579‐2020 ). However, model structural uncertainties can lead to varying climate projections under the same forcing. Implementing identical stratospheric aerosol radiative properties in GFDL‐ESM4.1, which has a much lower Effective Climate Sensitivity compared to CESM2‐WACCM6, resulted in a decrease in global‐mean surface temperature by more than 1.5°C and a corresponding reduction in precipitation responses. Two major reasons contribute to the different temperature response between the two models: first, GFDL‐ESM4.1 has less warming in the SSP534‐OS scenario; second, GFDL‐ESM4.1 has shown more pronounced cooling in response to the same stratospheric AOD perturbation. Notably, the Southern Hemisphere experiences substantial cooling compared to the Northern Hemisphere, accompanied by a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, our analysis reveals that spatially heterogeneous forcing within the SAI scenario results in diverse climate feedback parameters in the GFDL‐ESM4.1 model, through varying surface warming/cooling patterns. This research highlights the importance of considering model structural uncertainties and forcing spatial patterns for a comprehensive evaluation of future scenarios and geoengineering strategies. Solar radiation modification (SRM) has been explored as a way to mitigate global warming due to ongoing greenhouse gas emissions, but the full consequences remain highly uncertain. One SRM approach, which involves injecting small scattering particles into the upper atmosphere to reduce incoming sunlight, was previously tested using the CESM2‐WACCM6 climate model to limit global warming to 2.0°C above the pre‐industrial level. Applying the stratospheric aerosol radiative properties in the GFDL‐ESM4.1 model, we found a more than 1.5°C decrease in Earth's surface temperature and a reduction in rainfall, compared to CESM2‐WACCM6. In particular, the Southern Hemisphere experienced greater cooling compared to the Northern Hemisphere, leading to a northward shift in the tropical rainfall zone. Our findings also showed that spatially uneven particle injection results in varied climate responses within the same model. These results underscore the importance of considering the different characteristics of climate models and the spatial patterns of implementation when evaluating the potential impacts of SRM strategies. The stratospheric aerosol injection (SAI) strategy used in CESM2‐WACCM6 to target a warming of 2.0°C leads to a global surface overcooling in GFDL‐ESM4.1 The SAI applied on the SSP5‐34‐OS scenario also results in a decrease in global precipitation and a northward shift of ITCZ in GFDL‐ESM4.1 Strong spatially heterogeneous forcing leads to varying climate feedback parameters within the GFDL‐ESM4.1 |
Author | Naik, Vaishali Tilmes, Simone John, Jasmin Paynter, David Zhang, Shipeng |
Author_xml | – sequence: 1 givenname: Shipeng orcidid: 0000-0003-4818-3275 surname: Zhang fullname: Zhang, Shipeng email: shipeng.zhang@princeton.edu organization: Princeton University – sequence: 2 givenname: Vaishali orcidid: 0000-0002-2254-1700 surname: Naik fullname: Naik, Vaishali organization: NOAA Geophysical Fluid Dynamics Laboratory – sequence: 3 givenname: David orcidid: 0000-0002-7092-241X surname: Paynter fullname: Paynter, David organization: NOAA Geophysical Fluid Dynamics Laboratory – sequence: 4 givenname: Simone orcidid: 0000-0002-6557-3569 surname: Tilmes fullname: Tilmes, Simone organization: National Center for Atmospheric Research – sequence: 5 givenname: Jasmin orcidid: 0000-0003-2696-277X surname: John fullname: John, Jasmin organization: NOAA Atlantic Oceanographic and Meteorological Laboratory |
BookMark | eNp9kc1u00AQx1eoSKSFGw-wElcSZr-9xyi0IZKrSi2I48pej1NHrjfsuq1yQzwBj8Iz8Cg8STcYIU6cZjTzm_98nZKTIQxIyGsGCwbcvuPA5bpkTCjBn5EZs1LOCwBzQmYANvvc6BfkNKUdAAgQbEa-LVPClLphS9cX78tfX7-f31zKBaOrvrurRqTXmPZhyAwdA63ozRirMaT9LcbO0yXGkEJPN8MO_diFYcrj9pBDIw4NNsey5UPoGnr1gDHdhjBSvoCfP1b0cxXvcuOX5Hlb9Qlf_bFn5NPF-cfVh3l5td6sluXcC22KOfe-NW1dK8lr7w0Wwhe2ZtKgb1rOCg2ybT2CqBlrmNHKaw9cSStF0RgtxBnZTLpNqHZuH_N-8eBC1bnfgRC3ropj53t0SjNVWWC6NUoaz2tlWw_CCKugaazJWm8mrX0MX-4xjW4X7uOQx3eCSa4M0-xIvZ0on8-UIrZ_uzJwx4-5fz-WcT7hj12Ph_-ybn1d6kKpQjwB9syYlg |
Cites_doi | 10.1029/2005GL023209 10.1175/1520‐0485(1990)020<0722:TROAGO>2.0.CO;2 10.1016/j.aosl.2021.100043 10.1002/jgrd.50646 10.1029/2023MS003922 10.5281/zenodo.3836405 10.1007/s00382‐019‐04991‐y 10.5194/gmd‐8‐3379‐2015 10.5194/gmd‐9‐3461‐2016 10.5194/esd‐11‐579‐2020 10.5194/acp‐21‐10039‐2021 10.1029/2022JD036675 10.5194/esd‐15‐191‐2024 10.1175/jcli‐d‐18‐0616.1 10.5194/acp‐23‐163‐2023 10.1175/JCLI‐D‐14‐00545.1 10.5194/acp‐23‐13369‐2023 10.1038/nature01092 10.5194/gmd‐9‐1937‐2016 10.1007/s10712‐012‐9213‐z 10.1029/2023GL103381 10.1029/2020EF001616 10.1029/2021GL095778 10.1098/rstb.2021.0394 10.5194/gmd‐17‐2583‐2024 10.1038/s41586‐018‐0007‐4 10.1029/2019MS002043 10.1175/2007JCLI2110.1 10.5194/acp‐21‐10179‐2021 10.1038/s41558‐020‐00955‐x 10.1038/s41558‐023‐01678‐5 10.1029/2019GL085782 10.1007/s00382‐009‐0583‐y 10.1029/2023GL105492 10.1029/2019MS002015 10.1175/JCLI3990.1 10.1073/pnas.1921854118 10.1029/2011GL046713 10.26024/t49k‐1016 10.1007/s10712‐011‐9159‐6 10.1038/s41558‐021‐01218‐z 10.1002/2017JD026868 10.1029/2020GL090241 10.1029/2019MS001726 10.1029/2022MS003579 10.1002/2017JD026874 10.5194/gmd‐15‐8221‐2022 10.1111/nyas.14337 10.1126/science.abn7950 10.5194/acp‐22‐2999‐2022 10.5194/esd‐12‐253‐2021 10.1002/jgrd.50868 10.1088/1748‐9326/9/6/064024 10.1038/s41598‐017‐08467‐z 10.5194/acp‐20‐9591‐2020 10.5281/zenodo.11051447 10.1029/2019MS002032 10.1175/1520‐0442(2002)015<2103:TRTATI>2.0.CO;2 10.1029/2019MS001916 10.5194/acp‐21‐4231‐2021 10.1175/JCLI‐D‐12‐00283.1 10.5194/gmd‐9‐2701‐2016 10.1175/JCLI‐D‐19‐1011.1 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL113532 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_5615a9016f7547c2b59fc0373950dd97 10_1029_2024GL113532 GRL68558 |
Genre | article |
GeographicLocations | Northern Hemisphere Southern Hemisphere |
GeographicLocations_xml | – name: Southern Hemisphere – name: Northern Hemisphere |
GrantInformation_xml | – fundername: Climate Program Office – fundername: National Oceanic and Atmospheric Administration funderid: NA23OAR4320198 – fundername: Princeton University – fundername: Simons Foundation funderid: MPS‐SRM‐00006584 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3678-2ccf7fbb542bcc7e83c89b147ecdf218604ffce03b11d1765c6c02549438d7633 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:26:05 EDT 2025 Fri Jul 25 12:20:46 EDT 2025 Tue Aug 05 11:58:10 EDT 2025 Wed Jan 22 17:12:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3678-2ccf7fbb542bcc7e83c89b147ecdf218604ffce03b11d1765c6c02549438d7633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7092-241X 0000-0003-4818-3275 0000-0002-2254-1700 0000-0003-2696-277X 0000-0002-6557-3569 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113532 |
PQID | 3142571617 |
PQPubID | 54723 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5615a9016f7547c2b59fc0373950dd97 proquest_journals_3142571617 crossref_primary_10_1029_2024GL113532 wiley_primary_10_1029_2024GL113532_GRL68558 |
PublicationCentury | 2000 |
PublicationDate | 16 December 2024 |
PublicationDateYYYYMMDD | 2024-12-16 |
PublicationDate_xml | – month: 12 year: 2024 text: 16 December 2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 7 2002; 15 2021; 21 2013; 26 2020; 20 2019; 11 2020; 12 2020; 11 2020; 54 2022; 22 2024 2022; 377 2020; 8 2020; 1472 2023; 23 2013; 118 2021; 118 2005; 32 2020; 47 2008; 21 2017; 122 2014; 9 2022; 127 2021; 48 2023; 13 2010; 35 2023; 15 2019; 32 2006; 19 2002; 419 2020; 33 2011; 38 2024; 15 2015; 8 2024; 16 2012; 33 2024; 17 2021; 14 1990; 20 2015; 28 2021; 12 2021; 11 2018; 556 2021 2020 2014; 35 2022; 15 2023; 50 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 Forster P. M. (e_1_2_7_22_1) 2021 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 Lee J.‐Y. (e_1_2_7_35_1) 2021 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 50 issue: 14 year: 2023 article-title: Overturning pathways control AMOC weakening in CMIP6 models publication-title: Geophysical Research Letters – volume: 419 start-page: 228 issue: 6903 year: 2002 end-page: 232 article-title: Constraints on future changes in climate and the hydrologic cycle publication-title: Nature – volume: 26 start-page: 2482 issue: 8 year: 2013 end-page: 2501 article-title: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation publication-title: Journal of Climate – volume: 12 issue: 10 year: 2020 article-title: Ocean biogeochemistry in GFDL’s Earth system model 4.1 and its response to increasing atmospheric CO publication-title: Journal of Advances in Modeling Earth Systems – volume: 32 start-page: 5567 issue: 17 year: 2019 end-page: 5582 article-title: Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations publication-title: Journal of Climate – volume: 12 start-page: 253 issue: 1 year: 2021 end-page: 293 article-title: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6 publication-title: Earth System Dynamics – year: 2024 – volume: 54 start-page: 129 issue: 1–2 year: 2020 end-page: 157 article-title: How accurately can the climate sensitivity to CO be estimated from historical climate change? publication-title: Climate Dynamics – volume: 16 issue: 5 year: 2024 article-title: The land component LM4.1 of the GFDL Earth system model ESM4.1: Model description and characteristics of land surface climate and carbon cycling in the historical simulation publication-title: Journal of Advances in Modeling Earth Systems – volume: 23 start-page: 163 issue: 1 year: 2023 end-page: 182 article-title: Dependence of strategic solar climate intervention on background scenario and model physics publication-title: Atmospheric Chemistry and Physics – volume: 32 issue: 12 year: 2005 article-title: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO concentration publication-title: Geophysical Research Letters – volume: 15 issue: 9 year: 2023 article-title: Climate, variability, and climate sensitivity of “middle atmosphere” chemistry configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6)) publication-title: Journal of Advances in Modeling Earth Systems – volume: 15 start-page: 191 issue: 2 year: 2024 end-page: 213 article-title: Hemispherically symmetric strategies for stratospheric aerosol injection publication-title: Earth System Dynamics – volume: 15 start-page: 2103 issue: 15 year: 2002 end-page: 2116 article-title: Tropical rainfall trends and the indirect aerosol effect publication-title: Journal of Climate – volume: 14 issue: 3 year: 2021 article-title: Changes in polar amplification in response to increasing warming in CMIP6 publication-title: Atmospheric and Oceanic Science Letters – volume: 47 issue: 19 year: 2020 article-title: Large variations in volcanic aerosol forcing efficiency due to eruption source parameters and rapid adjustments publication-title: Geophysical Research Letters – volume: 9 issue: 6 year: 2014 article-title: The physical drivers of historical and 21st century global precipitation changes publication-title: Environmental Research Letters – volume: 47 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Causes of higher climate sensitivity in CMIP6 models publication-title: Geophysical Research Letters – volume: 118 issue: 15 year: 2021 – volume: 12 start-page: 1 issue: 11 year: 2020 end-page: 56 article-title: The GFDL Earth system model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics publication-title: Journal of Advances in Modeling Earth Systems – volume: 35 start-page: 423 issue: 2–3 year: 2010 end-page: 434 article-title: Fast versus slow response in climate change: Implications for the global hydrological cycle publication-title: Climate Dynamics – volume: 12 issue: 2 year: 2020 article-title: The Community Earth System Model Version 2 (CESM2) publication-title: Journal of Advances in Modeling Earth Systems – volume: 556 start-page: 227 issue: 7700 year: 2018 end-page: 230 article-title: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years publication-title: Nature – volume: 21 start-page: 10039 issue: 13 year: 2021 end-page: 10063 article-title: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations publication-title: Atmospheric Chemistry and Physics – volume: 20 start-page: 9591 issue: 16 year: 2020 end-page: 9618 article-title: Effective radiative forcing and adjustments in CMIP6 models publication-title: Atmospheric Chemistry and Physics – volume: 127 start-page: 1 issue: 18 year: 2022 end-page: 29 article-title: On the effect of historical SST patterns on radiative feedback publication-title: Journal of Geophysical Research: Atmospheres – volume: 13 start-page: 545 issue: 6 year: 2023 end-page: 553 article-title: Sea surface warming patterns drive hydrological sensitivity uncertainties publication-title: Nature Climate Change – volume: 21 start-page: 4231 issue: 6 year: 2021 end-page: 4247 article-title: Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP) publication-title: Atmospheric Chemistry and Physics – volume: 11 start-page: 3167 issue: 10 year: 2019 end-page: 3211 article-title: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features publication-title: Journal of Advances in Modeling Earth Systems – volume: 22 start-page: 2999 issue: 5 year: 2022 end-page: 3016 article-title: The impact of stratospheric aerosol intervention on the North Atlantic and Quasi‐Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment publication-title: Atmospheric Chemistry and Physics – volume: 377 issue: 1857 year: 2022 article-title: Risks to biodiversity from temperature overshoot pathways publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 9 start-page: 3461 issue: 9 year: 2016 end-page: 3482 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geoscientific Model Development – volume: 7 issue: 1 year: 2017 article-title: Evidence for ice‐ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone publication-title: Scientific Reports – volume: 20 start-page: 722 issue: 5 year: 1990 end-page: 749 article-title: Transient response of a global ocean‐atmosphere model to a doubling of atmospheric carbon dioxide publication-title: Journal of Physical Oceanography – volume: 21 start-page: 10179 issue: 13 year: 2021 end-page: 10197 article-title: On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations publication-title: Atmospheric Chemistry and Physics – volume: 28 start-page: 1630 issue: 4 year: 2015 end-page: 1648 article-title: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models publication-title: Journal of Climate – volume: 1472 start-page: 49 issue: 1 year: 2020 end-page: 75 article-title: Advances in understanding large‐scale responses of the water cycle to climate change publication-title: Annals of the New York Academy of Sciences – volume: 122 issue: 23 year: 2017 article-title: The climate response to stratospheric aerosol geoengineering can Be tailored using multiple injection locations publication-title: Journal of Geophysical Research: Atmospheres – volume: 11 start-page: 132 issue: 2 year: 2021 end-page: 136 article-title: Greater committed warming after accounting for the pattern effect publication-title: Nature Climate Change – volume: 377 issue: 6611 year: 2022 article-title: Exceeding 1.5°C global warming could trigger multiple climate tipping points publication-title: Science – volume: 38 issue: 6 year: 2011 article-title: Why is there a short‐term increase in global precipitation in response to diminished CO forcing? publication-title: Geophysical Research Letters – volume: 23 start-page: 13369 issue: 20 year: 2023 end-page: 13385 article-title: Comparison of UKESM1 and CESM2 simulations using the same multi‐target stratospheric aerosol injection strategy publication-title: Atmospheric Chemistry and Physics – volume: 9 start-page: 1937 issue: 5 year: 2016 end-page: 1958 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – volume: 122 issue: 23 year: 2017 article-title: First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives publication-title: Journal of Geophysical Research: Atmospheres – volume: 35 start-page: 533 issue: 3 year: 2014 end-page: 552 article-title: Physically consistent responses of the global atmospheric hydrological cycle in models and observations publication-title: Surveys in Geophysics – volume: 33 start-page: 585 issue: 3–4 year: 2012 end-page: 608 article-title: Energetic constraints on precipitation under climate change publication-title: Surveys in Geophysics – volume: 12 issue: 10 year: 2020 article-title: The GFDL global atmospheric chemistry‐climate model AM4.1: Model description and simulation characteristics publication-title: Journal of Advances in Modeling Earth Systems – volume: 48 start-page: 1 issue: 24 year: 2021 end-page: 12 article-title: Biased estimates of equilibrium climate sensitivity and transient climate response derived from historical CMIP6 simulations publication-title: Geophysical Research Letters – volume: 33 start-page: 7755 issue: 18 year: 2020 end-page: 7775 article-title: Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models publication-title: Journal of Climate – volume: 17 start-page: 2583 issue: 7 year: 2024 end-page: 2596 article-title: G6‐1.5K‐SAI: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies publication-title: Geoscientific Model Development – volume: 11 start-page: 1070 issue: 12 year: 2021 end-page: 1076 article-title: Net zero‐emission pathways reduce the physical and economic risks of climate change publication-title: Nature Climate Change – volume: 21 start-page: 3504 issue: 14 year: 2008 end-page: 3520 article-title: Quantifying climate feedbacks using radiative kernels publication-title: Journal of Climate – volume: 8 issue: 12 year: 2020 article-title: Projecting exposure to extreme climate impact events across six event categories and three spatial scales publication-title: Earth's Future – volume: 50 start-page: 1 issue: 18 year: 2023 end-page: 10 article-title: The dependence of climate sensitivity on the meridional distribution of radiative forcing publication-title: Geophysical Research Letters – year: 2020 – volume: 11 start-page: 579 issue: 3 year: 2020 end-page: 601 article-title: Reaching 1.5 and 2.0°C global surface temperature targets using stratospheric aerosol geoengineering publication-title: Earth System Dynamics – volume: 9 start-page: 2701 issue: 8 year: 2016 end-page: 2719 article-title: The model intercomparison project on the climatic response to volcanic forcing (VolMIP): Experimental design and forcing input data for CMIP6 publication-title: Geoscientific Model Development – start-page: 923 year: 2021 end-page: 1054 – volume: 8 start-page: 3379 issue: 10 year: 2015 end-page: 3392 article-title: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results publication-title: Geoscientific Model Development – volume: 15 start-page: 8221 issue: 22 year: 2022 end-page: 8243 article-title: Assessing responses and impacts of solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE‐SAI): Protocol and initial results from the first simulations publication-title: Geoscientific Model Development – volume: 118 issue: 19 year: 2013 article-title: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP) publication-title: Journal of Geophysical Research: Atmospheres – volume: 118 start-page: 8320 issue: 15 year: 2013 end-page: 8332 article-title: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) publication-title: Journal of Geophysical Research: Atmospheres – start-page: 553 year: 2021 end-page: 672 – volume: 19 start-page: 5686 issue: 21 year: 2006 end-page: 5699 article-title: Robust responses of the hydrological cycle to global warming publication-title: Journal of Climate – ident: e_1_2_7_24_1 doi: 10.1029/2005GL023209 – ident: e_1_2_7_38_1 doi: 10.1175/1520‐0485(1990)020<0722:TROAGO>2.0.CO;2 – ident: e_1_2_7_11_1 doi: 10.1016/j.aosl.2021.100043 – ident: e_1_2_7_30_1 doi: 10.1002/jgrd.50646 – ident: e_1_2_7_45_1 doi: 10.1029/2023MS003922 – ident: e_1_2_7_18_1 doi: 10.5281/zenodo.3836405 – ident: e_1_2_7_23_1 doi: 10.1007/s00382‐019‐04991‐y – ident: e_1_2_7_33_1 doi: 10.5194/gmd‐8‐3379‐2015 – ident: e_1_2_7_42_1 doi: 10.5194/gmd‐9‐3461‐2016 – ident: e_1_2_7_54_1 doi: 10.5194/esd‐11‐579‐2020 – ident: e_1_2_7_55_1 doi: 10.5194/acp‐21‐10039‐2021 – start-page: 923 volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_7_22_1 – ident: e_1_2_7_6_1 doi: 10.1029/2022JD036675 – ident: e_1_2_7_64_1 doi: 10.5194/esd‐15‐191‐2024 – ident: e_1_2_7_65_1 doi: 10.1175/jcli‐d‐18‐0616.1 – ident: e_1_2_7_21_1 doi: 10.5194/acp‐23‐163‐2023 – ident: e_1_2_7_7_1 doi: 10.1175/JCLI‐D‐14‐00545.1 – ident: e_1_2_7_26_1 doi: 10.5194/acp‐23‐13369‐2023 – ident: e_1_2_7_5_1 doi: 10.1038/nature01092 – ident: e_1_2_7_20_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_7_4_1 doi: 10.1007/s10712‐012‐9213‐z – ident: e_1_2_7_9_1 doi: 10.1029/2023GL103381 – ident: e_1_2_7_34_1 doi: 10.1029/2020EF001616 – ident: e_1_2_7_15_1 doi: 10.1029/2021GL095778 – ident: e_1_2_7_40_1 doi: 10.1098/rstb.2021.0394 – ident: e_1_2_7_56_1 doi: 10.5194/gmd‐17‐2583‐2024 – ident: e_1_2_7_50_1 doi: 10.1038/s41586‐018‐0007‐4 – ident: e_1_2_7_48_1 doi: 10.1029/2019MS002043 – ident: e_1_2_7_47_1 doi: 10.1175/2007JCLI2110.1 – ident: e_1_2_7_63_1 doi: 10.5194/acp‐21‐10179‐2021 – ident: e_1_2_7_66_1 doi: 10.1038/s41558‐020‐00955‐x – ident: e_1_2_7_62_1 doi: 10.1038/s41558‐023‐01678‐5 – ident: e_1_2_7_59_1 doi: 10.1029/2019GL085782 – ident: e_1_2_7_10_1 doi: 10.1007/s00382‐009‐0583‐y – ident: e_1_2_7_60_1 doi: 10.1029/2023GL105492 – ident: e_1_2_7_19_1 doi: 10.1029/2019MS002015 – ident: e_1_2_7_25_1 doi: 10.1175/JCLI3990.1 – ident: e_1_2_7_58_1 doi: 10.1073/pnas.1921854118 – ident: e_1_2_7_12_1 doi: 10.1029/2011GL046713 – ident: e_1_2_7_52_1 doi: 10.26024/t49k‐1016 – ident: e_1_2_7_41_1 doi: 10.1007/s10712‐011‐9159‐6 – ident: e_1_2_7_17_1 doi: 10.1038/s41558‐021‐01218‐z – ident: e_1_2_7_37_1 doi: 10.1002/2017JD026868 – ident: e_1_2_7_39_1 doi: 10.1029/2020GL090241 – ident: e_1_2_7_2_1 doi: 10.1029/2019MS001726 – ident: e_1_2_7_14_1 doi: 10.1029/2022MS003579 – ident: e_1_2_7_31_1 doi: 10.1002/2017JD026874 – ident: e_1_2_7_43_1 doi: 10.5194/gmd‐15‐8221‐2022 – ident: e_1_2_7_3_1 doi: 10.1111/nyas.14337 – ident: e_1_2_7_8_1 doi: 10.1126/science.abn7950 – ident: e_1_2_7_28_1 doi: 10.5194/acp‐22‐2999‐2022 – ident: e_1_2_7_49_1 doi: 10.5194/esd‐12‐253‐2021 – ident: e_1_2_7_53_1 doi: 10.1002/jgrd.50868 – ident: e_1_2_7_51_1 doi: 10.1088/1748‐9326/9/6/064024 – ident: e_1_2_7_29_1 doi: 10.1038/s41598‐017‐08467‐z – ident: e_1_2_7_46_1 doi: 10.5194/acp‐20‐9591‐2020 – ident: e_1_2_7_61_1 doi: 10.5281/zenodo.11051447 – start-page: 553 volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_7_35_1 – ident: e_1_2_7_27_1 doi: 10.1029/2019MS002032 – ident: e_1_2_7_44_1 doi: 10.1175/1520‐0442(2002)015<2103:TRTATI>2.0.CO;2 – ident: e_1_2_7_13_1 doi: 10.1029/2019MS001916 – ident: e_1_2_7_32_1 doi: 10.5194/acp‐21‐4231‐2021 – ident: e_1_2_7_36_1 doi: 10.1175/JCLI‐D‐12‐00283.1 – ident: e_1_2_7_57_1 doi: 10.5194/gmd‐9‐2701‐2016 – ident: e_1_2_7_16_1 doi: 10.1175/JCLI‐D‐19‐1011.1 |
SSID | ssj0003031 |
Score | 2.4693744 |
Snippet | In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario that aims... Abstract In this work, we apply the GFDL Earth System Model (GFDL‐ESM4.1) to explore the climate responses to a stratospheric aerosol injection (SAI) scenario... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | aerosol climate effect Aerosols Atmosphere Cerebral hemispheres Climate Climate change Climate feedback Climate models Climate sensitivity Cooling Earth surface Emissions Equator Geoengineering Global warming Greenhouse effect Greenhouse gases Heat waves Ice melting Injection Intertropical convergence zone Northern Hemisphere Parameter modification Particle injection Precipitation Precipitation patterns Rainfall Sea ice Solar radiation Southern Hemisphere Stratosphere stratospheric aerosol injection Stratospheric warming Sunlight Surface temperature Temperature effects Temperature gradients Tropical rainfall Uncertainty Upper atmosphere |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF4hJCQuqIVWpFC0BzhVBnu9v8cQSKAKVKIguFnevzYI2RUJlbghnoBH4Rl4FJ6EnbVThQu9cLMsrzWeGc-P9ttvENr01ImccZlI511CdUkTVaY2MTnJBbCNOA7nnY-O-cEZ_X7BLmZGfQEmrKEHbhS3E_I7K0PS4l4wKgzRTHmT5rC_lFqr4jnykPOmzVQbg0NgbmblKZpIIngLeU-Jgm6fDoYZzHsgr5JR5Ox_VWjOlqsx3_Q_oKW2UMTdRsCPaM5Vy2hhEAfx3oarCN004xV03-zbhhSEB_294fPdw_7PI7qd4d7VKJSjDp80MFg3xpMalzjy0dZjoBMYGdx1QbL6Ch9WlxGUVeGWr_YWR3S7dRaWdf_WI4t_AIbjd11PMNlOnx57-LwEKM2vT-isv3_aO0jayQrBBiE7JcQYL7zWjBJtjHAyN1LpjApnrIcpVSn1HiaJ6SyzmeDMcAPH5hXNpQ0RKf-M5qu6cqsIe8-Y5KaUxjPqqdfcp95qq4LaQ3ujOmhrquLiT0OgUcSNb6KKWVN00C7o_98zQHsdbwRnKFpnKP7nDB20PrVe0f6L4yLPIC5BH9dB36JF3xSkGJwMuQwf9eU9JFpDi_ByAMBkfB3NT65v3NdQxkz0RvTYF9oc6ck priority: 102 providerName: Directory of Open Access Journals |
Title | Assessing GFDL‐ESM4.1 Climate Responses to a Stratospheric Aerosol Injection Strategy Intended to Avoid Overshoot 2.0°C Warming |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL113532 https://www.proquest.com/docview/3142571617 https://doaj.org/article/5615a9016f7547c2b59fc0373950dd97 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LahRBFC0kQXAj8YVj4lALXUnHftRzOY6ZiTJRiY4GN03XK04I3SE9BrILfoGf4jf4KX6J91Z3hslGcNcUVVBdt--r69xzCXkWmJcFFypRPviEmYolukpdYou8kMg24gXWOx-8E_tz9vaIH_U_3LAWpuOHWP1wQ82I9hoVvDJtTzaAHJmQtbPpLMO-DWCCN7G6Frnzc_ZhZYnBPHcd8zRLVC5FD3yH9S_XV99wSZG5_0a4uR60Rq8z2SJ3-3CRjjr53iO3fH2f3J7GdryX8BQBnLZ9QH50t7fgiOh08nr25-rn3scDtpvR8ekCglJPDzswrG_psqEVjay0TYukAgtLRx521pzSN_VJhGbVtGetvaQR4-68w2Wji2bh6HtEcnxrmiXNd9Pfv8b0S4WAmuOHZD7Z-zTeT_r-CiAJ8FFJbm2QwRjOcmOt9KqwSpuMSW9dwF5VKQsB-4mZLHOZFNwKi8XzmhXKgV0qHpGNuqn9Y0JD4FwJWykbOAssGBHS4IzTcOyQ5OgBeX59xOVZR6NRxuvvXJfrohiQV3j-qzlIfh0HmvPjstelEkI-XkEcI4LkTNrccB1sWuCVY-qclgOycy29stfItiwytE6YzQ3IiyjRf26knB7OhIKXevJfs7fJHRxHvEsmdsjG8vy7fwpRy9IM46c5JJujz_Ov82HM_f8CQF_lgw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVQKwSbqrzEQAEvYIVSEsfP5TB0ZgqZgkorurPiV5mqSlBnQOoO8QV8Ct_Ap_Al-DrpaLpBYhdFtuT45j5sH5-D0PNAvSgZl5n0wWfU1DRTde4yW5JSANuI53DfeXbAp8f07Qk76XVO4S5Mxw-x2nADz0jxGhwcNqR7tgEgyYzLdjqpChBuiDF4k3IiwDMJ_bAKxTE-d5J5imaSCN4j32P_V-u9r-WkRN1_rd5cr1pT2hlvo62-XsTDzsB30A3f3EU3J0mP9zI-JQSnXdxDP7rj25iJ8GT8pvrz_efexxndLfDofB6rUo8POzSsX-Bli2ucaGnbBbAKzC0e-jiy9hzvN2cJm9Xgnrb2EieQu_MOug2_tXOH3wOU43PbLjHZzX__GuFPNSBqTu-j4_He0Wia9QIL0RQxSWXE2iCCMYwSY63wsrRSmYIKb10AsaqchgCCYqYoXCE4s9zC7XlFS-liYCofoI2mbfxDhENgTHJbSxsYDTQYHvLgjFNx2uMqRw3Qi6sp1l86Hg2dzr-J0uumGKDXMP-rNsB-nV60F6e6dyYdaz5Wx0KGB8GosMQwFWxewplj7pwSA7RzZT3du-RClwWEJ1jODdDLZNF_DkRPDisu40c9-q_Wz9Ct6dGs0tX-wbvH6Da0AfBLwXfQxvLiq38SS5ileZp-078SXOY8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQKxAbVF4itIAXsEJT5uHnMqRNWkgLKgQqNtb4VYKqmaoJSN1V_QI-hW_op_RL8PW4UbpBYjca2SPPvb4P28fnIvTSE8crykQmnHcZ0TXJZJ3bzFRlxYFtxDG477y3z3Ym5N0hPUwbbnAXpuOHWGy4gWVEfw0GfmJ9IhsAjsywaiejcQF1G4ILXgWivDCrV_tfJt8mC18cHHRXM0-STJScJeh7-MKb5f43glLk7r-RcC6nrTHuDNfQvZQw4n6n4fvolmseoNujWJD3LDxFCKeZPUQX3fltCEV4NNwaX53_3v60RzYLPDiehrTU4YMODutmeN7iGkde2nYGtAJTg_sujKw9xrvNjwjOanDirT3DEeVunYVu_V_t1OIPgOX43rZzXG7ml38G-GsNkJqjR2gy3P482MlShYWgixClstIYz73WlJTaGO5EZYTUBeHOWA_VqnLiPVQU00VhC86oYQauz0tSCRs8U_UYrTRt454g7D2lgplaGE-JJ14zn3urrQxiD8sc2UOvrkWsTjoiDRUPwEupllXRQ29B_os2QH8dX7SnRypZkwpJH61DJsM8p4SbUlPpTV7BoWNureQ9tHGtPZVscqaqAvwTrOd66HXU6D8HokYHYybCTz39r9Yv0J2PW0M13t1_v47uQhMAvxRsA63MT3-6ZyGFmevnaZ7-BS4T5zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+GFDL%E2%80%90ESM4.1+Climate+Responses+to+a+Stratospheric+Aerosol+Injection+Strategy+Intended+to+Avoid+Overshoot+2.0%C2%B0C+Warming&rft.jtitle=Geophysical+research+letters&rft.au=Zhang%2C+Shipeng&rft.au=Naik%2C+Vaishali&rft.au=Paynter%2C+David&rft.au=Tilmes%2C+Simone&rft.date=2024-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL113532&rft.externalDBID=10.1029%252F2024GL113532&rft.externalDocID=GRL68558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |