Lie detection using extreme learning machine: A concealed information test based on short‐time Fourier transform and binary bat optimization using a novel fitness function

Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and r...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence Vol. 36; no. 2; pp. 637 - 658
Main Authors Dodia, Shubham, Edla, Damodar R., Bablani, Annushree, Cheruku, Ramalingaswamy
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2020
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and recording subject's brain responses. A P300 response is elicited whenever a person comes across a familiar stimuli in a series of rare stimuli. This P300 response is used for the lie detection method. In the proposed concealed information test, acquired signals are preprocessed to discard noise. Then, short‐time Fourier transform method is applied to extract features from the preprocessed electroencephalogram signals. To avoid the curse of dimensionality and to reduce computational overhead, binary bat algorithm is applied, which helps in choosing optimal subset of features. The obtained set of features is given as an input to the extreme learning machine classifier for training of guilty and innocent samples. The performance of the system is assessed using 10‐fold cross‐validation. The resultant accuracy obtained from the proposed lie detection system is 88.3%. The system has provided efficient results in contrast with most of the state‐of‐the‐art lie detection methods.
AbstractList Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and recording subject's brain responses. A P300 response is elicited whenever a person comes across a familiar stimuli in a series of rare stimuli. This P300 response is used for the lie detection method. In the proposed concealed information test, acquired signals are preprocessed to discard noise. Then, short‐time Fourier transform method is applied to extract features from the preprocessed electroencephalogram signals. To avoid the curse of dimensionality and to reduce computational overhead, binary bat algorithm is applied, which helps in choosing optimal subset of features. The obtained set of features is given as an input to the extreme learning machine classifier for training of guilty and innocent samples. The performance of the system is assessed using 10‐fold cross‐validation. The resultant accuracy obtained from the proposed lie detection system is 88.3%. The system has provided efficient results in contrast with most of the state‐of‐the‐art lie detection methods.
Author Edla, Damodar R.
Cheruku, Ramalingaswamy
Dodia, Shubham
Bablani, Annushree
Author_xml – sequence: 1
  givenname: Shubham
  surname: Dodia
  fullname: Dodia, Shubham
  organization: National Institute of Technology
– sequence: 2
  givenname: Damodar R.
  orcidid: 0000-0002-5040-0745
  surname: Edla
  fullname: Edla, Damodar R.
  email: dr.reddy@nitgoa.ac.in
  organization: National Institute of Technology
– sequence: 3
  givenname: Annushree
  orcidid: 0000-0003-3246-1402
  surname: Bablani
  fullname: Bablani, Annushree
  organization: National Institute of Technology
– sequence: 4
  givenname: Ramalingaswamy
  orcidid: 0000-0003-1677-5321
  surname: Cheruku
  fullname: Cheruku, Ramalingaswamy
  organization: National Institute of Technology
BookMark eNp9kUFuFDEQRS2USEwSNpzAEjukDna723azi0YEIo2SDaxbZXeZOOqxB9sDhBVHyEVyKU6CZ4ZFhBDeWC79V1Xf_4QchRiQkJecnfN63tjowzlv214-IwveSdVo2bEjsmC67Ro1iP45Ocn5jjHGRacX5HHlkU5Y0BYfA91mHz5T_F4SrpHOCCnsCmuwtz7gW3pBbQwWYcaJ-uBiWsOeK5gLNZBrub7ybUzl18-H4muTy7hNHhMtCULeERTCRI0PkO4rUmjcVJ3_AU8WABriV5yp8yVgztRtw36_M3LsYM744s99Sj5dvvu4_NCsbt5fLS9WjRVSyWZiwnadBIOKKSdcbx04DkaqtjVWazNA1ympeS8BhGnNgEri1Eut0CnTilPy6tB3k-KXbfU23lUXoY4cW6HlIOSgWVW9PqhsijkndOMm-XW1NXI27uIYd3GM-ziqmP0ltr7sPdeP8fO_EX5AvvkZ7__TfFzeXF0fmN9c06U1
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123684
crossref_primary_10_1016_j_cortex_2020_12_010
crossref_primary_10_1007_s42979_021_00515_w
crossref_primary_10_1007_s11042_023_16042_0
crossref_primary_10_3390_info14100564
crossref_primary_10_20965_jaciii_2025_p0152
crossref_primary_10_1007_s00500_023_08404_5
crossref_primary_10_1007_s11042_024_18698_8
crossref_primary_10_3390_s24113598
crossref_primary_10_37394_23209_2022_19_17
crossref_primary_10_1007_s10919_024_00451_2
crossref_primary_10_1145_3458791
crossref_primary_10_1007_s11277_024_11112_4
Cites_doi 10.1155/2014/324750
10.1109/ICIG.2007.154
10.1016/j.cmpb.2010.10.002
10.1109/TNN.2003.809401
10.1016/j.compbiomed.2004.05.001
10.1109/TIFS.2016.2590938
10.1016/j.cmpb.2008.10.001
10.1109/18.661502
10.1016/j.proenv.2011.10.053
10.1016/j.ijpsycho.2013.08.012
10.1109/TKDE.2005.144
10.1109/IJCNN.2004.1380068
10.1016/j.procs.2018.10.392
10.1109/ICSEngT.2012.6339284
10.1111/j.1469-8986.1991.tb01990.x
10.1111/j.1469-8986.2004.00158.x
10.1016/S0167-8760(03)00170-3
10.1016/j.neucom.2005.12.126
10.1109/72.655045
10.1109/ECS.2015.7124945
10.1109/SIBGRAPI.2012.47
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12256
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 658
ExternalDocumentID 10_1111_coin_12256
COIN12256
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
UCJ
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3676-d03c446abe707f3f5cfaf1ab6722bc88b9a44768156aa3b2b9e76ed5687ef7b23
IEDL.DBID DR2
ISSN 0824-7935
IngestDate Mon Jul 14 07:48:54 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 04:30:05 EDT 2025
Wed Jan 22 16:34:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3676-d03c446abe707f3f5cfaf1ab6722bc88b9a44768156aa3b2b9e76ed5687ef7b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5040-0745
0000-0003-3246-1402
0000-0003-1677-5321
PQID 2386936980
PQPubID 34323
PageCount 22
ParticipantIDs proquest_journals_2386936980
crossref_primary_10_1111_coin_12256
crossref_citationtrail_10_1111_coin_12256
wiley_primary_10_1111_coin_12256_COIN12256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2006; 70
2011; 104
2004; 41
2018; 143
1991; 28
2012
2009; 94
2013; 90
2003; 14
2007
2017
2014; 2014
2015
2004
2003; 50
2005; 17
2011; 8
1998; 44
2005; 35
1998; 9
1999
2016; 11
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Oppenheim AV (e_1_2_9_13_1) 1999
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
Jo LT (e_1_2_9_14_1) 2007
References_xml – volume: 41
  start-page: 205
  issue: 2
  year: 2004
  end-page: 219
  article-title: Simple, effective countermeasures to P300‐based tests of detection of concealed information
  publication-title: Psychophysiology
– volume: 44
  start-page: 525
  issue: 2
  year: 1998
  end-page: 536
  article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
  publication-title: IEEE Trans Inf Theory
– start-page: 97
  year: 2007
  end-page: 101
– volume: 28
  start-page: 531
  issue: 5
  year: 1991
  end-page: 547
  article-title: The truth will out: interrogative polygraphy (“Lie detection”) with event‐related brain potentials
  publication-title: Psychophysiology
– start-page: 610
  year: 2007
  end-page: 615
– volume: 50
  start-page: 247
  issue: 3
  year: 2003
  end-page: 255
  article-title: Lie detection with contingent negative variation
  publication-title: Int J Psychophysiol
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  end-page: 281
  article-title: Learning capability and storage capacity of two‐hidden‐layer feedforward networks
  publication-title: IEEE Trans Neural Netw
– start-page: 1
  year: 2012
  end-page: 4
– volume: 11
  start-page: 2584
  year: 2016
  end-page: 2593
  article-title: A novel method based on empirical mode decomposition for P300‐based detection of deception
  publication-title: IEEE Trans Inf Forensics Secur
– start-page: 451
  year: 2015
  end-page: 456
– volume: 8
  start-page: 337
  year: 2011
  end-page: 343
  article-title: Identifying concealed information using wavelet feature extraction and support vector machine
  publication-title: Procedia Environ Sci
– volume: 143
  start-page: 242
  year: 2018
  end-page: 249
  article-title: Classification of EEG data using ‐nearest neighbor approach for concealed information test
  publication-title: Procedia Comput Sci
– start-page: 985
  year: 2004
  end-page: 990
– volume: 90
  start-page: 118
  issue: 2
  year: 2013
  end-page: 134
  article-title: Review of recent studies and issues regarding the P300‐based complex trial protocol for detection of concealed information
  publication-title: Int J Psychophysiol
– volume: 35
  start-page: 603
  issue: 7
  year: 2005
  end-page: 616
  article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real‐time application
  publication-title: Comput Biol Med
– volume: 2014
  start-page: 324750
  year: 2014
  article-title: Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone's BSS Algorithm
  publication-title: Math Probl Eng
– volume: 17
  start-page: 1186
  issue: 9
  year: 2005
  end-page: 1198
  article-title: Feature subset selection and feature ranking for multivariate time series
  publication-title: IEEE Trans Knowl Data Eng
– year: 2017
– volume: 94
  start-page: 48
  issue: 1
  year: 2009
  end-page: 57
  article-title: A new approach for EEG feature extraction in P300‐based lie detection
  publication-title: Comput Methods Programs Biomed
– volume: 104
  start-page: 410
  issue: 3
  year: 2011
  end-page: 417
  article-title: Denoised P300 and machine learning‐based concealed information test method
  publication-title: Comput Methods Programs Biomed
– volume: 9
  start-page: 224
  issue: 1
  year: 1998
  end-page: 229
  article-title: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
  publication-title: IEEE Trans Neural Netw
– volume: 70
  start-page: 489
  issue: 1‐3
  year: 2006
  end-page: 501
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– start-page: 291
  year: 2012
  end-page: 297
– year: 1999
– ident: e_1_2_9_10_1
  doi: 10.1155/2014/324750
– ident: e_1_2_9_3_1
– ident: e_1_2_9_15_1
  doi: 10.1109/ICIG.2007.154
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cmpb.2010.10.002
– ident: e_1_2_9_23_1
  doi: 10.1109/TNN.2003.809401
– ident: e_1_2_9_12_1
  doi: 10.1016/j.compbiomed.2004.05.001
– ident: e_1_2_9_24_1
  doi: 10.1109/TIFS.2016.2590938
– ident: e_1_2_9_7_1
  doi: 10.1016/j.cmpb.2008.10.001
– ident: e_1_2_9_20_1
  doi: 10.1109/18.661502
– volume-title: Discrete‐Time Signal Processing
  year: 1999
  ident: e_1_2_9_13_1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.proenv.2011.10.053
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijpsycho.2013.08.012
– ident: e_1_2_9_6_1
  doi: 10.1109/TKDE.2005.144
– ident: e_1_2_9_21_1
  doi: 10.1109/IJCNN.2004.1380068
– ident: e_1_2_9_26_1
  doi: 10.1016/j.procs.2018.10.392
– ident: e_1_2_9_16_1
  doi: 10.1109/ICSEngT.2012.6339284
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1469-8986.1991.tb01990.x
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1469-8986.2004.00158.x
– ident: e_1_2_9_2_1
  doi: 10.1016/S0167-8760(03)00170-3
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neucom.2005.12.126
– ident: e_1_2_9_9_1
– ident: e_1_2_9_11_1
– start-page: 97
  volume-title: IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 2007 (ICT‐MICC 2007)
  year: 2007
  ident: e_1_2_9_14_1
– ident: e_1_2_9_22_1
  doi: 10.1109/72.655045
– ident: e_1_2_9_17_1
  doi: 10.1109/ECS.2015.7124945
– ident: e_1_2_9_18_1
  doi: 10.1109/SIBGRAPI.2012.47
SSID ssj0001348
Score 2.279386
Snippet Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 637
SubjectTerms Algorithms
Artificial neural networks
binary bat
Brain
brain‐computer interface
concealed information test
electroencephalogram
extreme learning machine
Feature extraction
Forensic science
Fourier transforms
Machine learning
Optimization
short‐time Fourier transform
Visual stimuli
Title Lie detection using extreme learning machine: A concealed information test based on short‐time Fourier transform and binary bat optimization using a novel fitness function
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12256
https://www.proquest.com/docview/2386936980
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEK4QuHgBUQmrSCqRCyaz2fntWeNlQTdgBBMCCRcy6V_cCLPGHTx48hF8EV_KJ7Gqp4dFQ0jgNpPpnsykuqq-6lR_H8CWMYTYnC4j6fIBFSgyi5TN2SClik2WydirlhwcFnsn2YfT_HQB3nZnYVp-iOsNN_YMH6_ZwaWa3XByPZ3U_ZiWI_Ntc7MWI6KjOXdUnHrpLEpxWUSLMA_cpNzGM5_6bzaaQ8ybQNVnmvEKnHXf2DaYfOlfNaqvf_xH3_jQn3gMywGC4qhdM6uwYOsnsNLJO2Dw9qfw--PEorGNb9aqkTvkz5FiOe8oYlCbOMdL341p3-AINR-BpIRjMNCx-nmEZRvkZGmQ7mafCe__-fmLNe1x3ArmYdOhZ5S1QeWPCNOUBqcU0C7DSdHwARLr6Xd7gW7ScJRGTsz8-BmcjN8f7-5FQd0h0swSF5lBqqkWlcqKgXCpy7WTLpaqEEmidFmqocwyKoaowJQyVYkaWlFYkxelsE6oJF2DxXpa23XAuBRaD-NcKycoIOmhdYWzWpS5c4oAVA-2OytXOlCfswLHRdWVQGyHytuhB6-ux35tCT9uHbXRLZYqOP2sIvRTsD5iOejBa2_1O95Q7X7aP_RXz-8z-AU8Srji9y2XG7DYfLuyLwkWNWoTlkY773bGm94N_gK5xBDi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF4VeoBLU6CIUFpGgguVHMW_6_SGUKNQQpAQSNys_Q0R4FTE6aGnPkJfpC_VJ-nMek2gqirRmy3vWrZmZ-ab1ez3MbavNSI2q_JA2LSLBYpIAmlSMkguQ50kInSqJaejbHCZfL5Kr3xvDp2FqfkhHjbcyDNcvCYHpw3pR16uppOyE-J6zJbYS5L0dhXV-YI9KoydeBYmuSTAZZh6dlJq5FnMfZqPFiDzMVR1uabfqgVVZ46ikFpMbjrzSnbUtz8IHP_7N16zVx6FwmG9bNbYC1Ous1aj8ADe4TfYz-HEgDaV69cqgZrkx4DhnDYVwQtOjOHONWSaj3AIik5BYs7R4BlZ3TyEsxVQvtSAd7NrhPy_vv8gWXvo15p5UDUAGkSpQbpTwjilginGtDt_WNR_gIBy-tXcgp1UFKiBcjM9fsMu-58ujgaBF3gIFBHFBbobKyxHhTS8y21sU2WFDYXMeBRJleeyJ5IE6yGsMYWIZSR7hmdGp1nOjeUyijfZcjktzRaDMOdK9cJUScsxJqmesZk1iueptRIxVJsdNGYulGc_JxGO26KpgsgOhbNDm-09jP1Sc378ddROs1oK7_ezAgFQRhKJebfNPjiz_-MNxdHZ8chdbT9n8C5bGVycDovh8ejkLVuNaAPAdWDusOXqfm7eIUqq5HvnC78BBk4Tiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iBPFifOJq1AK9KMwy7-4VLyFxSTSuIgZykaGfcTGZDWbiwZM_wT_in_KXWNXTk40igt5mmO5hhnp91VTVB_DIWkJs3shE-SqlBEWViXYVC0TqzJalygJryatZvb1Xvtiv9lfg2dAL08-HODtwY8sI_poN_Nj6c0ZuFvN2nJE61hfgYlmnknV66-1yeFRWBO4sinFlQlpYxeGkXMez3PtrOFpizPNINYSa6Rq8Hz6yrzD5OD7t9Nh8-W1-4__-xVW4EjEobvRKcw1WXHsd1gZ-B4zmfgO-784dWteFaq0WuUT-AMmZ85EiRrqJAzwK5ZjuKW6g4R5IijgW4zzWsI_AbIccLS3S3ckHAvw_vn5jUnuc9ox52A3wGVVrUYceYdrS4YI82lFsFY0foLBdfHaH6Ocdu2nkyMyPb8Le9Pm7ze0k0jskhsfEJTYtDCWjSjuRCl_4ynjlM6VrkefaSKknqiwpG6IMU6lC53riRO1sVUvhvNB5cQtW20XrbgNmUhgzySqjvSCPZCbO194ZISvvNSGoETwepNyYOPucKTgOmyEHYjk0QQ4jeHi29rif-PHHVeuDsjTR6k8agj81EyTKdARPgtT_8oZm8_XOLFzd-ZfFD-DSm61ps7sze3kXLuec_Yfyy3VY7T6dunsEkTp9P1jCT-5fEkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie+detection+using+extreme+learning+machine%3A+A+concealed+information+test+based+on+short%E2%80%90time+Fourier+transform+and+binary+bat+optimization+using+a+novel+fitness+function&rft.jtitle=Computational+intelligence&rft.au=Dodia%2C+Shubham&rft.au=Edla%2C+Damodar+R&rft.au=Bablani%2C+Annushree&rft.au=Cheruku%2C+Ramalingaswamy&rft.date=2020-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=36&rft.issue=2&rft.spage=637&rft.epage=658&rft_id=info:doi/10.1111%2Fcoin.12256&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon