Lie detection using extreme learning machine: A concealed information test based on short‐time Fourier transform and binary bat optimization using a novel fitness function
Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and r...
Saved in:
Published in | Computational intelligence Vol. 36; no. 2; pp. 637 - 658 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2020
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and recording subject's brain responses. A P300 response is elicited whenever a person comes across a familiar stimuli in a series of rare stimuli. This P300 response is used for the lie detection method. In the proposed concealed information test, acquired signals are preprocessed to discard noise. Then, short‐time Fourier transform method is applied to extract features from the preprocessed electroencephalogram signals. To avoid the curse of dimensionality and to reduce computational overhead, binary bat algorithm is applied, which helps in choosing optimal subset of features. The obtained set of features is given as an input to the extreme learning machine classifier for training of guilty and innocent samples. The performance of the system is assessed using 10‐fold cross‐validation. The resultant accuracy obtained from the proposed lie detection system is 88.3%. The system has provided efficient results in contrast with most of the state‐of‐the‐art lie detection methods. |
---|---|
AbstractList | Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is a tedious task. Brain‐computer interface is one such medium which provides a solution to this problem by displaying visual stimuli and recording subject's brain responses. A P300 response is elicited whenever a person comes across a familiar stimuli in a series of rare stimuli. This P300 response is used for the lie detection method. In the proposed concealed information test, acquired signals are preprocessed to discard noise. Then, short‐time Fourier transform method is applied to extract features from the preprocessed electroencephalogram signals. To avoid the curse of dimensionality and to reduce computational overhead, binary bat algorithm is applied, which helps in choosing optimal subset of features. The obtained set of features is given as an input to the extreme learning machine classifier for training of guilty and innocent samples. The performance of the system is assessed using 10‐fold cross‐validation. The resultant accuracy obtained from the proposed lie detection system is 88.3%. The system has provided efficient results in contrast with most of the state‐of‐the‐art lie detection methods. |
Author | Edla, Damodar R. Cheruku, Ramalingaswamy Dodia, Shubham Bablani, Annushree |
Author_xml | – sequence: 1 givenname: Shubham surname: Dodia fullname: Dodia, Shubham organization: National Institute of Technology – sequence: 2 givenname: Damodar R. orcidid: 0000-0002-5040-0745 surname: Edla fullname: Edla, Damodar R. email: dr.reddy@nitgoa.ac.in organization: National Institute of Technology – sequence: 3 givenname: Annushree orcidid: 0000-0003-3246-1402 surname: Bablani fullname: Bablani, Annushree organization: National Institute of Technology – sequence: 4 givenname: Ramalingaswamy orcidid: 0000-0003-1677-5321 surname: Cheruku fullname: Cheruku, Ramalingaswamy organization: National Institute of Technology |
BookMark | eNp9kUFuFDEQRS2USEwSNpzAEjukDna723azi0YEIo2SDaxbZXeZOOqxB9sDhBVHyEVyKU6CZ4ZFhBDeWC79V1Xf_4QchRiQkJecnfN63tjowzlv214-IwveSdVo2bEjsmC67Ro1iP45Ocn5jjHGRacX5HHlkU5Y0BYfA91mHz5T_F4SrpHOCCnsCmuwtz7gW3pBbQwWYcaJ-uBiWsOeK5gLNZBrub7ybUzl18-H4muTy7hNHhMtCULeERTCRI0PkO4rUmjcVJ3_AU8WABriV5yp8yVgztRtw36_M3LsYM744s99Sj5dvvu4_NCsbt5fLS9WjRVSyWZiwnadBIOKKSdcbx04DkaqtjVWazNA1ympeS8BhGnNgEri1Eut0CnTilPy6tB3k-KXbfU23lUXoY4cW6HlIOSgWVW9PqhsijkndOMm-XW1NXI27uIYd3GM-ziqmP0ltr7sPdeP8fO_EX5AvvkZ7__TfFzeXF0fmN9c06U1 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123684 crossref_primary_10_1016_j_cortex_2020_12_010 crossref_primary_10_1007_s42979_021_00515_w crossref_primary_10_1007_s11042_023_16042_0 crossref_primary_10_3390_info14100564 crossref_primary_10_20965_jaciii_2025_p0152 crossref_primary_10_1007_s00500_023_08404_5 crossref_primary_10_1007_s11042_024_18698_8 crossref_primary_10_3390_s24113598 crossref_primary_10_37394_23209_2022_19_17 crossref_primary_10_1007_s10919_024_00451_2 crossref_primary_10_1145_3458791 crossref_primary_10_1007_s11277_024_11112_4 |
Cites_doi | 10.1155/2014/324750 10.1109/ICIG.2007.154 10.1016/j.cmpb.2010.10.002 10.1109/TNN.2003.809401 10.1016/j.compbiomed.2004.05.001 10.1109/TIFS.2016.2590938 10.1016/j.cmpb.2008.10.001 10.1109/18.661502 10.1016/j.proenv.2011.10.053 10.1016/j.ijpsycho.2013.08.012 10.1109/TKDE.2005.144 10.1109/IJCNN.2004.1380068 10.1016/j.procs.2018.10.392 10.1109/ICSEngT.2012.6339284 10.1111/j.1469-8986.1991.tb01990.x 10.1111/j.1469-8986.2004.00158.x 10.1016/S0167-8760(03)00170-3 10.1016/j.neucom.2005.12.126 10.1109/72.655045 10.1109/ECS.2015.7124945 10.1109/SIBGRAPI.2012.47 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/coin.12256 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1467-8640 |
EndPage | 658 |
ExternalDocumentID | 10_1111_coin_12256 COIN12256 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 UCJ VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3676-d03c446abe707f3f5cfaf1ab6722bc88b9a44768156aa3b2b9e76ed5687ef7b23 |
IEDL.DBID | DR2 |
ISSN | 0824-7935 |
IngestDate | Mon Jul 14 07:48:54 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:30:05 EDT 2025 Wed Jan 22 16:34:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3676-d03c446abe707f3f5cfaf1ab6722bc88b9a44768156aa3b2b9e76ed5687ef7b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5040-0745 0000-0003-3246-1402 0000-0003-1677-5321 |
PQID | 2386936980 |
PQPubID | 34323 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2386936980 crossref_primary_10_1111_coin_12256 crossref_citationtrail_10_1111_coin_12256 wiley_primary_10_1111_coin_12256_COIN12256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Computational intelligence |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
References | 2006; 70 2011; 104 2004; 41 2018; 143 1991; 28 2012 2009; 94 2013; 90 2003; 14 2007 2017 2014; 2014 2015 2004 2003; 50 2005; 17 2011; 8 1998; 44 2005; 35 1998; 9 1999 2016; 11 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 Oppenheim AV (e_1_2_9_13_1) 1999 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 Jo LT (e_1_2_9_14_1) 2007 |
References_xml | – volume: 41 start-page: 205 issue: 2 year: 2004 end-page: 219 article-title: Simple, effective countermeasures to P300‐based tests of detection of concealed information publication-title: Psychophysiology – volume: 44 start-page: 525 issue: 2 year: 1998 end-page: 536 article-title: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network publication-title: IEEE Trans Inf Theory – start-page: 97 year: 2007 end-page: 101 – volume: 28 start-page: 531 issue: 5 year: 1991 end-page: 547 article-title: The truth will out: interrogative polygraphy (“Lie detection”) with event‐related brain potentials publication-title: Psychophysiology – start-page: 610 year: 2007 end-page: 615 – volume: 50 start-page: 247 issue: 3 year: 2003 end-page: 255 article-title: Lie detection with contingent negative variation publication-title: Int J Psychophysiol – volume: 14 start-page: 274 issue: 2 year: 2003 end-page: 281 article-title: Learning capability and storage capacity of two‐hidden‐layer feedforward networks publication-title: IEEE Trans Neural Netw – start-page: 1 year: 2012 end-page: 4 – volume: 11 start-page: 2584 year: 2016 end-page: 2593 article-title: A novel method based on empirical mode decomposition for P300‐based detection of deception publication-title: IEEE Trans Inf Forensics Secur – start-page: 451 year: 2015 end-page: 456 – volume: 8 start-page: 337 year: 2011 end-page: 343 article-title: Identifying concealed information using wavelet feature extraction and support vector machine publication-title: Procedia Environ Sci – volume: 143 start-page: 242 year: 2018 end-page: 249 article-title: Classification of EEG data using ‐nearest neighbor approach for concealed information test publication-title: Procedia Comput Sci – start-page: 985 year: 2004 end-page: 990 – volume: 90 start-page: 118 issue: 2 year: 2013 end-page: 134 article-title: Review of recent studies and issues regarding the P300‐based complex trial protocol for detection of concealed information publication-title: Int J Psychophysiol – volume: 35 start-page: 603 issue: 7 year: 2005 end-page: 616 article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real‐time application publication-title: Comput Biol Med – volume: 2014 start-page: 324750 year: 2014 article-title: Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone's BSS Algorithm publication-title: Math Probl Eng – volume: 17 start-page: 1186 issue: 9 year: 2005 end-page: 1198 article-title: Feature subset selection and feature ranking for multivariate time series publication-title: IEEE Trans Knowl Data Eng – year: 2017 – volume: 94 start-page: 48 issue: 1 year: 2009 end-page: 57 article-title: A new approach for EEG feature extraction in P300‐based lie detection publication-title: Comput Methods Programs Biomed – volume: 104 start-page: 410 issue: 3 year: 2011 end-page: 417 article-title: Denoised P300 and machine learning‐based concealed information test method publication-title: Comput Methods Programs Biomed – volume: 9 start-page: 224 issue: 1 year: 1998 end-page: 229 article-title: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions publication-title: IEEE Trans Neural Netw – volume: 70 start-page: 489 issue: 1‐3 year: 2006 end-page: 501 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – start-page: 291 year: 2012 end-page: 297 – year: 1999 – ident: e_1_2_9_10_1 doi: 10.1155/2014/324750 – ident: e_1_2_9_3_1 – ident: e_1_2_9_15_1 doi: 10.1109/ICIG.2007.154 – ident: e_1_2_9_5_1 doi: 10.1016/j.cmpb.2010.10.002 – ident: e_1_2_9_23_1 doi: 10.1109/TNN.2003.809401 – ident: e_1_2_9_12_1 doi: 10.1016/j.compbiomed.2004.05.001 – ident: e_1_2_9_24_1 doi: 10.1109/TIFS.2016.2590938 – ident: e_1_2_9_7_1 doi: 10.1016/j.cmpb.2008.10.001 – ident: e_1_2_9_20_1 doi: 10.1109/18.661502 – volume-title: Discrete‐Time Signal Processing year: 1999 ident: e_1_2_9_13_1 – ident: e_1_2_9_25_1 doi: 10.1016/j.proenv.2011.10.053 – ident: e_1_2_9_8_1 doi: 10.1016/j.ijpsycho.2013.08.012 – ident: e_1_2_9_6_1 doi: 10.1109/TKDE.2005.144 – ident: e_1_2_9_21_1 doi: 10.1109/IJCNN.2004.1380068 – ident: e_1_2_9_26_1 doi: 10.1016/j.procs.2018.10.392 – ident: e_1_2_9_16_1 doi: 10.1109/ICSEngT.2012.6339284 – ident: e_1_2_9_4_1 doi: 10.1111/j.1469-8986.1991.tb01990.x – ident: e_1_2_9_27_1 doi: 10.1111/j.1469-8986.2004.00158.x – ident: e_1_2_9_2_1 doi: 10.1016/S0167-8760(03)00170-3 – ident: e_1_2_9_19_1 doi: 10.1016/j.neucom.2005.12.126 – ident: e_1_2_9_9_1 – ident: e_1_2_9_11_1 – start-page: 97 volume-title: IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 2007 (ICT‐MICC 2007) year: 2007 ident: e_1_2_9_14_1 – ident: e_1_2_9_22_1 doi: 10.1109/72.655045 – ident: e_1_2_9_17_1 doi: 10.1109/ECS.2015.7124945 – ident: e_1_2_9_18_1 doi: 10.1109/SIBGRAPI.2012.47 |
SSID | ssj0001348 |
Score | 2.279386 |
Snippet | Lie detection is one of the major challenges that is being faced by the forensic sciences. Identification of lie on the basis of a person's mental behavior is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 637 |
SubjectTerms | Algorithms Artificial neural networks binary bat Brain brain‐computer interface concealed information test electroencephalogram extreme learning machine Feature extraction Forensic science Fourier transforms Machine learning Optimization short‐time Fourier transform Visual stimuli |
Title | Lie detection using extreme learning machine: A concealed information test based on short‐time Fourier transform and binary bat optimization using a novel fitness function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12256 https://www.proquest.com/docview/2386936980 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThRBEK4QuHgBUQmrSCqRCyaz2fntWeNlQTdgBBMCCRcy6V_cCLPGHTx48hF8EV_KJ7Gqp4dFQ0jgNpPpnsykuqq-6lR_H8CWMYTYnC4j6fIBFSgyi5TN2SClik2WydirlhwcFnsn2YfT_HQB3nZnYVp-iOsNN_YMH6_ZwaWa3XByPZ3U_ZiWI_Ntc7MWI6KjOXdUnHrpLEpxWUSLMA_cpNzGM5_6bzaaQ8ybQNVnmvEKnHXf2DaYfOlfNaqvf_xH3_jQn3gMywGC4qhdM6uwYOsnsNLJO2Dw9qfw--PEorGNb9aqkTvkz5FiOe8oYlCbOMdL341p3-AINR-BpIRjMNCx-nmEZRvkZGmQ7mafCe__-fmLNe1x3ArmYdOhZ5S1QeWPCNOUBqcU0C7DSdHwARLr6Xd7gW7ScJRGTsz8-BmcjN8f7-5FQd0h0swSF5lBqqkWlcqKgXCpy7WTLpaqEEmidFmqocwyKoaowJQyVYkaWlFYkxelsE6oJF2DxXpa23XAuBRaD-NcKycoIOmhdYWzWpS5c4oAVA-2OytXOlCfswLHRdWVQGyHytuhB6-ux35tCT9uHbXRLZYqOP2sIvRTsD5iOejBa2_1O95Q7X7aP_RXz-8z-AU8Srji9y2XG7DYfLuyLwkWNWoTlkY773bGm94N_gK5xBDi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF4VeoBLU6CIUFpGgguVHMW_6_SGUKNQQpAQSNys_Q0R4FTE6aGnPkJfpC_VJ-nMek2gqirRmy3vWrZmZ-ab1ez3MbavNSI2q_JA2LSLBYpIAmlSMkguQ50kInSqJaejbHCZfL5Kr3xvDp2FqfkhHjbcyDNcvCYHpw3pR16uppOyE-J6zJbYS5L0dhXV-YI9KoydeBYmuSTAZZh6dlJq5FnMfZqPFiDzMVR1uabfqgVVZ46ikFpMbjrzSnbUtz8IHP_7N16zVx6FwmG9bNbYC1Ous1aj8ADe4TfYz-HEgDaV69cqgZrkx4DhnDYVwQtOjOHONWSaj3AIik5BYs7R4BlZ3TyEsxVQvtSAd7NrhPy_vv8gWXvo15p5UDUAGkSpQbpTwjilginGtDt_WNR_gIBy-tXcgp1UFKiBcjM9fsMu-58ujgaBF3gIFBHFBbobKyxHhTS8y21sU2WFDYXMeBRJleeyJ5IE6yGsMYWIZSR7hmdGp1nOjeUyijfZcjktzRaDMOdK9cJUScsxJqmesZk1iueptRIxVJsdNGYulGc_JxGO26KpgsgOhbNDm-09jP1Sc378ddROs1oK7_ezAgFQRhKJebfNPjiz_-MNxdHZ8chdbT9n8C5bGVycDovh8ejkLVuNaAPAdWDusOXqfm7eIUqq5HvnC78BBk4Tiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iBPFifOJq1AK9KMwy7-4VLyFxSTSuIgZykaGfcTGZDWbiwZM_wT_in_KXWNXTk40igt5mmO5hhnp91VTVB_DIWkJs3shE-SqlBEWViXYVC0TqzJalygJryatZvb1Xvtiv9lfg2dAL08-HODtwY8sI_poN_Nj6c0ZuFvN2nJE61hfgYlmnknV66-1yeFRWBO4sinFlQlpYxeGkXMez3PtrOFpizPNINYSa6Rq8Hz6yrzD5OD7t9Nh8-W1-4__-xVW4EjEobvRKcw1WXHsd1gZ-B4zmfgO-784dWteFaq0WuUT-AMmZ85EiRrqJAzwK5ZjuKW6g4R5IijgW4zzWsI_AbIccLS3S3ckHAvw_vn5jUnuc9ox52A3wGVVrUYceYdrS4YI82lFsFY0foLBdfHaH6Ocdu2nkyMyPb8Le9Pm7ze0k0jskhsfEJTYtDCWjSjuRCl_4ynjlM6VrkefaSKknqiwpG6IMU6lC53riRO1sVUvhvNB5cQtW20XrbgNmUhgzySqjvSCPZCbO194ZISvvNSGoETwepNyYOPucKTgOmyEHYjk0QQ4jeHi29rif-PHHVeuDsjTR6k8agj81EyTKdARPgtT_8oZm8_XOLFzd-ZfFD-DSm61ps7sze3kXLuec_Yfyy3VY7T6dunsEkTp9P1jCT-5fEkM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie+detection+using+extreme+learning+machine%3A+A+concealed+information+test+based+on+short%E2%80%90time+Fourier+transform+and+binary+bat+optimization+using+a+novel+fitness+function&rft.jtitle=Computational+intelligence&rft.au=Dodia%2C+Shubham&rft.au=Edla%2C+Damodar+R&rft.au=Bablani%2C+Annushree&rft.au=Cheruku%2C+Ramalingaswamy&rft.date=2020-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=36&rft.issue=2&rft.spage=637&rft.epage=658&rft_id=info:doi/10.1111%2Fcoin.12256&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon |