Impact of Convective Parameterizations on Atmospheric Mesoscale Kinetic Energy Spectra in Global High‐Resolution Simulations

The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 50; no. 23
Main Authors Li, Zongheng, Peng, Jun, Zhang, Lifeng
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.12.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. Plain Language Summary At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales. Key Points The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales The more latent heat released from CP, the steeper KE spectra at mesoscales The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades
AbstractList The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales. The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales The more latent heat released from CP, the steeper KE spectra at mesoscales The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades
The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere.
The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. Plain Language Summary At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales. Key Points The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales The more latent heat released from CP, the steeper KE spectra at mesoscales The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades
Abstract The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere.
Author Peng, Jun
Zhang, Lifeng
Li, Zongheng
Author_xml – sequence: 1
  givenname: Zongheng
  surname: Li
  fullname: Li, Zongheng
  organization: National University of Defense Technology
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-4585-036X
  surname: Peng
  fullname: Peng, Jun
  email: pengjun@nudt.edu.cn
  organization: National University of Defense Technology
– sequence: 3
  givenname: Lifeng
  orcidid: 0000-0002-2333-4826
  surname: Zhang
  fullname: Zhang, Lifeng
  email: zhanglif_qxxy@sina.cn
  organization: National University of Defense Technology
BookMark eNp9kdFuFCEUholpE7etdz4AibeuHmAGhstmU7cb19i0ek0YYLZsZmCE2Zr1wvgIPqNPInVM45VXkD8fH-fkP0MnIQaH0EsCbwhQ-ZYCZestgbom7BlaEFlVywZAnKAFgCx3KvhzdJbzHgAYMLJA3zfDqM2EY4dXMTw4M_kHh2900oObXPLf9ORjyDgGfDkNMY_3JTT4g8sxG907_N4HN5XkKri0O-K7sSiSxj7gdR9b3eNrv7v_9ePnbXnRHx5l-M4Ph372XqDTTvfZvfh7nqPP764-ra6X24_rzepyuzSMC76UneSUasqhk5pKLmndNk0nwbVCcu0aaQixphXcWG2Z5MYxyRrbWlN1bd2xc7SZvTbqvRqTH3Q6qqi9-hPEtFM6lTV6pyTnhlgBja6aqsh0TS0w0RoDVtimKq5Xs2tM8cvB5Unt4yGFMr6ijZQVMFbVhXo9UybFnJPrnn4loB7bUv-2VXA64199747_ZdX6dsu5YJz9Bn8Kmi0
Cites_doi 10.1175/MWR-D-11-00215.1
10.5194/angeo-28-1827-2010
10.24381/cds.adbb2d47
10.1029/2018MS001390
10.1111/j.2153-3490.1969.tb00444.x
10.1175/JAS-D-20-0294.1
10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
10.1007/s40641-019-00127-w
10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2
10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2
10.1029/2021JD036069
10.1175/MWR-D-15-0311.1
10.1017/S0022112006002060
10.1175/JAS-D-14-0306.1
10.1175/JAS-D-11-0347.1
10.1038/310036a0
10.5194/gmd-13-2851-2020
10.1002/2016MS000659
10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
10.1126/science.204.4395.832
10.1029/2012JD018213
10.1029/2008JD009944
10.1175/JAS-D-22-0213.1
10.1002/qj.4202
10.1175/MWR2830.1
10.1175/2008JAS2653.1
10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
10.1002/2015JD023970
10.1175/JAS-D-17-0006.1
10.1175/MWR3199.1
10.1175/JAS-D-21-0332.1
10.1029/2020MS002192
10.1017/S0022112005008128
10.1175/JAS-D-21-0147.1
10.1175/JAS-D-16-0341.1
10.1175/JCLI-D-16-0597.1
10.1175/JAS-D-19-0116.1
10.1175/JAS-D-12-025.1
10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2
10.1175/JAS-D-14-0114.1
10.24381/cds.bd0915c6
10.1175/JAS-D-12-0281.1
10.1016/j.atmosres.2018.05.017
10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
10.1175/MWR-D-19-0043.1
10.5281/zenodo.10087863
10.1080/07055900.1984.9649199
10.1029/2008JD009785
10.1175/2008MWR2596.1
10.1007/s00376-021-0425-3
10.1175/JAS-D-16-0108.1
10.1175/JAS-D-14-0359.1
10.1073/pnas.0605494103
10.1017/S0022112099004851
ContentType Journal Article
Copyright 2023. The Authors.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL105513
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_966c1d708a484ad3a52d037bcc0d7d84
10_1029_2023GL105513
GRL66736
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42275062; 41975066; 41705037
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
PHGZM
PHGZT
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
PQGLB
PUEGO
ID FETCH-LOGICAL-c3676-9f9622a260f9a296925b88f90eb796ae89c11dcb76cdad396ce3938dbdc4fb5f3
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:28:52 EDT 2025
Fri Jul 25 09:58:32 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Wed Jan 22 16:19:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3676-9f9622a260f9a296925b88f90eb796ae89c11dcb76cdad396ce3938dbdc4fb5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4585-036X
0000-0002-2333-4826
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105513
PQID 2899403345
PQPubID 54723
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_966c1d708a484ad3a52d037bcc0d7d84
proquest_journals_2899403345
crossref_primary_10_1029_2023GL105513
wiley_primary_10_1029_2023GL105513_GRL66736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 December 2023
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 16 December 2023
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1984; 22
2016; 144
2013; 70
2016; 73
2020; 13
2023b
2023a
2015a; 72
2020; 12
2006; 134
2023; 80
2004; 132
2021; 38
2017; 74
2017; 30
2021; 78
2001
1984; 310
2010; 28
2018; 212
2013; 118
2022; 79
2008; 113
2015b; 72
2001; 58
2006; 568
2022; 127
2004; 43
2012; 140
2009; 66
1979; 204
2019; 5
1971; 28
2006; 550
2006
2016; 121
2019; 147
1999; 388
2004
2020; 77
1996; 124
1985; 42
1997; 125
2023
1969; 21
2008; 136
2003; 60
2018; 10
2014; 71
2016; 8
2022; 148
2006; 103
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hong S.‐Y. (e_1_2_7_13_1) 2006
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Janji Z. I. (e_1_2_7_16_1) 2001
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 388
  start-page: 259
  year: 1999
  end-page: 288
  article-title: Can the atmospheric kinetic energy spectrum be explained by two‐dimensional turbulence?
  publication-title: Journal of Fluid Mechanics
– volume: 212
  start-page: 172
  year: 2018
  end-page: 185
  article-title: Combined impacts of convection and microphysics parameterizations on the simulations of precipitation and cloud properties over Asia
  publication-title: Atmospheric Research
– volume: 72
  start-page: 3923
  issue: 10
  year: 2015b
  end-page: 3939
  article-title: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part II: The upper‐tropospheric energy spectra
  publication-title: Journal of the Atmospheric Sciences
– volume: 310
  start-page: 36
  issue: 5972
  year: 1984
  end-page: 38
  article-title: Kinetic energy spectrum of large‐and mesoscale atmospheric processes
  publication-title: Nature
– volume: 42
  start-page: 950
  issue: 9
  year: 1985
  end-page: 960
  article-title: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft
  publication-title: Journal of the Atmospheric Sciences
– volume: 8
  start-page: 1073
  issue: 3
  year: 2016
  end-page: 1091
  article-title: Can nudging be used to quantify model sensitivities in precipitation and cloud forcing? Nudging and model sensitivities
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 21
  start-page: 289
  issue: 3
  year: 1969
  end-page: 307
  article-title: The predictability of a flow which possesses many scales of motion
  publication-title: Tellus
– year: 2006
  article-title: The WRF single‐moment 6‐class microphysics scheme (WSM6)
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– volume: 5
  start-page: 95
  issue: 2
  year: 2019
  end-page: 111
  article-title: Ongoing breakthroughs in convective parameterization
  publication-title: Current Climate Change Reports
– volume: 58
  start-page: 329
  issue: 4
  year: 2001
  end-page: 348
  article-title: The horizontal kinetic energy spectrum and spectral budget simulated by a high‐resolution troposphere–stratosphere–mesosphere GCM
  publication-title: Journal of the Atmospheric Sciences
– volume: 74
  start-page: 2191
  issue: 7
  year: 2017
  end-page: 2210
  article-title: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 118
  start-page: 395
  issue: 2
  year: 2013
  end-page: 415
  article-title: Uncertainty quantification and parameter tuning in the CAM5 Zhang‐McFarlane convection scheme and impact of improved convection on the global circulation and climate: Parameters tuning in CAM5 and its impact
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 77
  start-page: 257
  issue: 1
  year: 2020
  end-page: 276
  article-title: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm‐resolving simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 80
  start-page: 813
  issue: 3
  year: 2023
  end-page: 831
  article-title: Spectral budget of rotational and divergent kinetic energy in global analyses
  publication-title: Journal of the Atmospheric Sciences
– volume: 147
  start-page: 2641
  issue: 7
  year: 2019
  end-page: 2656
  article-title: Vertical resolution requirements in atmospheric simulation
  publication-title: Monthly Weather Review
– volume: 134
  start-page: 2318
  issue: 9
  year: 2006
  end-page: 2341
  article-title: A new vertical diffusion package with an explicit treatment of entrainment processes
  publication-title: Monthly Weather Review
– volume: 30
  start-page: 5923
  issue: 15
  year: 2017
  end-page: 5941
  article-title: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20‐km‐mesh regional climate model
  publication-title: Journal of Climate
– volume: 140
  start-page: 3090
  issue: 9
  year: 2012
  end-page: 3105
  article-title: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C‐grid staggering
  publication-title: Monthly Weather Review
– volume: 80
  start-page: 1701
  issue: 7
  year: 2023
  end-page: 1718
  article-title: Mesoscale spectra of vertical vorticity and horizontal divergence in an idealized baroclinic wave simulation
  publication-title: Journal of the Atmospheric Sciences
– volume: 43
  start-page: 170
  issue: 1
  year: 2004
  end-page: 181
  article-title: The Kain–Fritsch convective parameterization: An update
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 66
  start-page: 450
  issue: 2
  year: 2009
  end-page: 467
  article-title: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum
  publication-title: Journal of the Atmospheric Sciences
– year: 2004
– year: 2023b
– volume: 78
  start-page: 2589
  issue: 8
  year: 2021
  end-page: 2603
  article-title: Inconsistent global kinetic energy spectra in reanalyses and models
  publication-title: Journal of the Atmospheric Sciences
– volume: 12
  issue: 11
  year: 2020
  article-title: A baseline for global weather and climate simulations at 1 km resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 28
  start-page: 1087
  issue: 6
  year: 1971
  end-page: 1095
  article-title: Geostrophic turbulence
  publication-title: Journal of the Atmospheric Sciences
– volume: 103
  start-page: 14690
  issue: 40
  year: 2006
  end-page: 14694
  article-title: A theory for the atmospheric energy spectrum: Depth‐limited temperature anomalies at the tropopause
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 824
  issue: 6
  year: 2003
  end-page: 835
  article-title: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two‐level model simulation
  publication-title: Journal of the Atmospheric Sciences
– volume: 13
  start-page: 2851
  issue: 6
  year: 2020
  end-page: 2877
  article-title: Impact of scale‐aware deep convection on the cloud liquid and ice water paths and precipitation using the Model for Prediction Across Scales (MPAS‐v5.2)
  publication-title: Geoscientific Model Development
– volume: 132
  start-page: 3019
  issue: 12
  year: 2004
  end-page: 3032
  article-title: Evaluating mesoscale NWP models using kinetic energy spectra
  publication-title: Monthly Weather Review
– volume: 124
  start-page: 1409
  issue: 7
  year: 1996
  end-page: 1434
  article-title: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization
  publication-title: Monthly Weather Review
– volume: 550
  start-page: 207
  issue: 1
  year: 2006
  article-title: The energy cascade in a strongly stratified fluid
  publication-title: Journal of Fluid Mechanics
– volume: 74
  start-page: 2447
  issue: 8
  year: 2017
  end-page: 2466
  article-title: Energy spectra and inertia–gravity waves in global analyses
  publication-title: Journal of the Atmospheric Sciences
– volume: 70
  start-page: 2293
  issue: 7
  year: 2013
  end-page: 2308
  article-title: A new formulation of the spectral energy budget of the atmosphere, with application to two high‐resolution general circulation models
  publication-title: Journal of the Atmospheric Sciences
– volume: 72
  start-page: 2090
  issue: 5
  year: 2015a
  end-page: 2108
  article-title: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower‐stratospheric energy spectra
  publication-title: Journal of the Atmospheric Sciences
– volume: 70
  start-page: 1242
  issue: 4
  year: 2013
  end-page: 1256
  article-title: Mesoscale energy spectra of moist baroclinic waves
  publication-title: Journal of the Atmospheric Sciences
– volume: 73
  start-page: 4853
  issue: 12
  year: 2016
  end-page: 4872
  article-title: The dynamics of mesoscale winds in the upper troposphere and lower stratosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 10
  start-page: 2564
  issue: 10
  year: 2018
  end-page: 2588
  article-title: Convectively generated gravity waves in high resolution models of tropical dynamics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 148
  start-page: 233
  issue: 742
  year: 2022
  end-page: 251
  article-title: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2023a
– volume: 113
  issue: D18
  year: 2008
  article-title: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model
  publication-title: Journal of Geophysical Research
– volume: 79
  start-page: 119
  issue: 1
  year: 2022
  end-page: 139
  article-title: Mesoscale predictability in moist midlatitude cyclones is not sensitive to the slope of the background kinetic energy spectrum
  publication-title: Journal of the Atmospheric Sciences
– volume: 71
  start-page: 4369
  issue: 11
  year: 2014
  end-page: 4381
  article-title: Atmospheric kinetic energy spectra from global high‐resolution nonhydrostatic simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 121
  start-page: 5395
  issue: 10
  year: 2016
  end-page: 5410
  article-title: How does subgrid‐scale parametrization influence nonlinear spectral energy fluxes in global NWP models?
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 70
  start-page: 231
  issue: 1
  year: 2013
  end-page: 247
  article-title: Indications of stratified turbulence in a mechanistic GCM
  publication-title: Journal of the Atmospheric Sciences
– volume: 127
  issue: 11
  year: 2022
  article-title: Improved climate simulation by using a double‐plume convection scheme in a global model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 568
  start-page: 89
  year: 2006
  article-title: The transition from geostrophic to stratified turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 28
  start-page: 1827
  issue: 10
  year: 2010
  end-page: 1846
  article-title: Sensitivity of the simulated precipitation to changes in convective relaxation time scale
  publication-title: Annales Geophysicae
– volume: 204
  start-page: 832
  issue: 4395
  year: 1979
  end-page: 835
  article-title: Stratospheric wave spectra resembling turbulence
  publication-title: Science
– volume: 125
  start-page: 252
  issue: 2
  year: 1997
  end-page: 278
  article-title: A comparison study of convective parameterization schemes in a mesoscale model
  publication-title: Monthly Weather Review
– volume: 144
  start-page: 2285
  issue: 6
  year: 2016
  end-page: 2306
  article-title: Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model
  publication-title: Monthly Weather Review
– volume: 113
  issue: D13
  year: 2008
  article-title: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models
  publication-title: Journal of Geophysical Research
– year: 2023
– volume: 38
  start-page: 1267
  issue: 8
  year: 2021
  end-page: 1284
– volume: 136
  start-page: 3987
  issue: 10
  year: 2008
  end-page: 4004
  article-title: An upper gravity‐wave absorbing layer for NWP applications
  publication-title: Monthly Weather Review
– volume: 22
  start-page: 265
  issue: 3
  year: 1984
  end-page: 282
  article-title: A global available potential energy‐kinetic energy budget in terms of the two‐dimensional wavenumber for the FGGE year
  publication-title: Atmosphere‐Ocean
– start-page: 437
  year: 2001
– ident: e_1_2_7_43_1
  doi: 10.1175/MWR-D-11-00215.1
– ident: e_1_2_7_33_1
  doi: 10.5194/angeo-28-1827-2010
– ident: e_1_2_7_12_1
  doi: 10.24381/cds.adbb2d47
– ident: e_1_2_7_34_1
  doi: 10.1029/2018MS001390
– ident: e_1_2_7_31_1
  doi: 10.1111/j.2153-3490.1969.tb00444.x
– ident: e_1_2_7_52_1
  doi: 10.1175/JAS-D-20-0294.1
– ident: e_1_2_7_18_1
  doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1007/s40641-019-00127-w
– ident: e_1_2_7_49_1
  doi: 10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2
– ident: e_1_2_7_21_1
  doi: 10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2
– ident: e_1_2_7_23_1
  doi: 10.1029/2021JD036069
– ident: e_1_2_7_9_1
  doi: 10.1175/MWR-D-15-0311.1
– ident: e_1_2_7_50_1
  doi: 10.1017/S0022112006002060
– ident: e_1_2_7_38_1
  doi: 10.1175/JAS-D-14-0306.1
– ident: e_1_2_7_51_1
  doi: 10.1175/JAS-D-11-0347.1
– ident: e_1_2_7_36_1
  doi: 10.1038/310036a0
– ident: e_1_2_7_8_1
  doi: 10.5194/gmd-13-2851-2020
– ident: e_1_2_7_26_1
  doi: 10.1002/2016MS000659
– ident: e_1_2_7_5_1
  doi: 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
– ident: e_1_2_7_6_1
  doi: 10.1126/science.204.4395.832
– ident: e_1_2_7_57_1
  doi: 10.1029/2012JD018213
– ident: e_1_2_7_15_1
  doi: 10.1029/2008JD009944
– ident: e_1_2_7_37_1
  doi: 10.1175/JAS-D-22-0213.1
– ident: e_1_2_7_40_1
  doi: 10.1002/qj.4202
– ident: e_1_2_7_42_1
  doi: 10.1175/MWR2830.1
– ident: e_1_2_7_48_1
  doi: 10.1175/2008JAS2653.1
– ident: e_1_2_7_35_1
  doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2
– ident: e_1_2_7_46_1
– ident: e_1_2_7_32_1
  doi: 10.1002/2015JD023970
– ident: e_1_2_7_55_1
  doi: 10.1175/JAS-D-17-0006.1
– ident: e_1_2_7_14_1
  doi: 10.1175/MWR3199.1
– ident: e_1_2_7_24_1
  doi: 10.1175/JAS-D-21-0332.1
– ident: e_1_2_7_54_1
  doi: 10.1029/2020MS002192
– ident: e_1_2_7_28_1
  doi: 10.1017/S0022112005008128
– ident: e_1_2_7_30_1
  doi: 10.1175/JAS-D-21-0147.1
– ident: e_1_2_7_58_1
  doi: 10.1175/JAS-D-16-0341.1
– ident: e_1_2_7_59_1
  doi: 10.1175/JCLI-D-16-0597.1
– ident: e_1_2_7_17_1
  doi: 10.1175/JAS-D-19-0116.1
– start-page: 437
  volume-title: Nonsingular implementation of the Mellor‐Yamada level 2.5 scheme in the NCEP meso model
  year: 2001
  ident: e_1_2_7_16_1
– ident: e_1_2_7_3_1
  doi: 10.1175/JAS-D-12-025.1
– ident: e_1_2_7_20_1
  doi: 10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2
– ident: e_1_2_7_44_1
  doi: 10.1175/JAS-D-14-0114.1
– ident: e_1_2_7_11_1
  doi: 10.24381/cds.bd0915c6
– ident: e_1_2_7_2_1
  doi: 10.1175/JAS-D-12-0281.1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.atmosres.2018.05.017
– ident: e_1_2_7_53_1
  doi: 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
– ident: e_1_2_7_45_1
  doi: 10.1175/MWR-D-19-0043.1
– ident: e_1_2_7_25_1
  doi: 10.5281/zenodo.10087863
– ident: e_1_2_7_22_1
  doi: 10.1080/07055900.1984.9649199
– ident: e_1_2_7_10_1
  doi: 10.1029/2008JD009785
– year: 2006
  ident: e_1_2_7_13_1
  article-title: The WRF single‐moment 6‐class microphysics scheme (WSM6)
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– ident: e_1_2_7_19_1
  doi: 10.1175/2008MWR2596.1
– ident: e_1_2_7_56_1
  doi: 10.1007/s00376-021-0425-3
– ident: e_1_2_7_4_1
  doi: 10.1175/JAS-D-16-0108.1
– ident: e_1_2_7_39_1
  doi: 10.1175/JAS-D-14-0359.1
– ident: e_1_2_7_47_1
  doi: 10.1073/pnas.0605494103
– ident: e_1_2_7_27_1
  doi: 10.1017/S0022112099004851
SSID ssj0003031
Score 2.4460735
Snippet The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The...
Abstract The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Atmospheric models
Convection
Convective clouds
Convective development
convective parameterization
Convergence and divergence
diabatic heating
Energy
Energy spectra
Finite element method
Fluid flow
Gravity waves
Heat
Kinetic energy
Latent heat
Lower stratosphere
Mesoscale phenomena
Microphysics
microphysics parameterization
Modelling
Moist convection
Parameterization
Simulation
Slopes
Spectra
spectral budget
Spectral sensitivity
Stratosphere
Troposphere
Upper troposphere
Vertical motion
Vorticity
Wave propagation
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMglpGlKtt0GHdpTMLUtWdIcN8t-tN2UkmRhb0Zfhj3ELuvtoZfSn9DfmF9Sjewtm0t6yc0YY4uZkfTGmnmPkPdhfgmTOZdo4YoE2U0SSI1IENpLx4oK4gn-9VcxX_LPq2K1J_WFNWEdPXBnuI8BjtvMyVRprrh2TBe5S5k01qZOOhWZQMOet0um-jU4LMydVh7wROVS9CXvaQ6Y7bPZAnUhM_ZoM4qc_Y-A5j5cjfvN9IQc90CRjroBviQHvj4lL2ZRiPdnuIqlm7Z9RX59io2OtKnoGEvI4wJGv2msukIi5r7PkjY1HW3vmxZ5BNaWXvu2aYODPP0SgGb4CJ3ENkCKivTbjabrmnaCABRrQR5-_8E__V2c0tv1fS_71Z6R5XRyN54nvapCYpGdLYEKRJ7rkMdUoHMQkBdGqQpSbyQI7RXYLHPWSGFdsDcI6xkw5YyzvDJFxV6Tw7qp_TmhzhdeAjLUWMWNDWBdO6hkZgIO1FzqAfmwM2_5vSPPKOOhdw7lvhsG5Apt_-8ZpLyON0IglH0glP8LhAEZ7jxX9vOwLTGd5CljvBiQy-jNJwdSzm4WqIMq3jzHiN6SI3w5Fr9kYkgOt5sf_l2AMFtzEaP1L3I7654
  priority: 102
  providerName: Directory of Open Access Journals
Title Impact of Convective Parameterizations on Atmospheric Mesoscale Kinetic Energy Spectra in Global High‐Resolution Simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105513
https://www.proquest.com/docview/2899403345
https://doaj.org/article/966c1d708a484ad3a52d037bcc0d7d84
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqUCUuiFIQgTTyoT1VK_bh9eOYoBBoSRQBQYjLyq9FOWQXZcOhl6o_ob-xv6Qer4nCBYnTrixbu_J4xjP2zPch9NXpF1WJMZGkJo8A3SQSsaIRuPbMZHkp_A3-eEIvZuTHfX4fDtygFqbFh1gfuIFmeHsNCi5VE8AGACMTeL9HV8DvCKS121BdCyl9KZmuLbEzzy1jniARTxkNie9u_Onm6Fdbkkfuf-Vubjqtftc530O7wV3E_Va-n9AHW-2jjyNPx_vLvfkETt18Rr8vfbkjrkt8Bonk3ozhqYTcK4BjDtWWuK5wf7WoG0ATmGs8tk3dODFZ_NNNiPsIHvpiQAy89KulxPMKt7QAGDJC_v35C-f97WrFN_NFIP9qDtDsfHh7dhEFboVIA0ZbJEpB01S6aKYUMhVUpLnivBSxVUxQabnQSWK0YlQbaTJBtc1Exo0ympQqL7NDtFXVlT1C2NjcMgE4NZoTpZ3LLo0oWaKcNygJkx307WV6i6cWQqPwV9-pKDbF0EEDmPt1HwC-9g318rEIelS46EwnhsVcEk7cj8k8NXHGlNaxYYaTDuq-SK4I2tgUEFSSOMtI3kHfvTTf_JFidH0FbKj0-F29T9AOtEOuS0K7aGu1fLZfnMeyUj2_LHtou383e5i552A4mV73fPz_H_XU55E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQIwQbVF4iNIAXsEIj5uHxYxmiNClJKgQNqthYfk2VRWeqTLropuon9Bv5Enw9bpRskNiNRp6HfH2vj-17z0Hoo_cvqjNrE0VtmQC7SSJSTROA9swWZSXCCf7ilE6X5Nt5eR51TqEWpuOH2G64gWeEeA0ODhvSkW0ASDJB-HsyB4FHUK3tAbDxw7o3_LX8vdwGYx-hO9E8QRKeMxpz3_0bvuw-vzcrBfL-PcS5i1vDxHN8iJ5FxIiHnYmfo0eufoEeT4Ii742_Cjmcpn2Jbk9CxSNuKjyCXPIQyfB3BelXwMgcCy5xU-Ph5rJpgVBgZfDCtU3rLeXwzPeJ_wgeh3pADNL0m7XCqxp3ygAYkkL-3N3Dln83YPHP1WXU_2pfoeXx-Gw0TaK8QmKApi0RlaB5rvyCphIqF1Tkpea8EqnTTFDluDBZZo1m1FhlC0GNK0TBrbaGVLqsitfooG5q9wZh60rHBFDVGE608ahdWVGxTHtAqAhTffTpoXvlVceiIcPpdy7krhn66Cv0_bYNcF-HG836QkZXkn6BZjLLUq4IJ_7HVJnbtGDamNQyy0kfDR4sJ6NDthLWlSQtClL20edgzX_-iJz8mIMgKn37X60_oCfTs8Vczk9OZ0foKbSB1JeMDtDBZn3t3nkAs9Hv4yD9Cwfe6H8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQKhAbxFMECngBKzRiHn4uQ2nS0rSqgKCKjeVnlUVnqkxYdFPxCXwjX4Kvx43SDRK70cjzkK_v9bF97zkIvY3-xUzlXKGZowWwmxSyNKwAaM9dQ4NMJ_jHJ-xgQT6f0bO84Qa1MAM_xGbDDTwjxWtw8EsXMtkAcGSC7vdsDvqOIFq7Q-PEVI7QzuT74sdiE4tjgB408yQpRM1ZTn2Pb_iw_fytSSlx998CnNuwNc0704foQQaMeDJY-BG649vH6O4sCfJexauUwmn7J-j6MBU84i7gPUglT4EMn2rIvgJC5lxvibsWT9YXXQ98AkuLj33f9dFQHh_FLokfwfupHBCDMv16pfGyxYMwAIackD-_fsOO_zBe8dflRZb_6p-ixXT_295BkdUVCgssbYUMktW1juuZIHUtmaypESLI0hsumfZC2qpy1nBmnXaNZNY3shHOOEuCoaF5hkZt1_rnCDtPPZfAVGMFMTaCdu1k4JWJeFATrsfo3U33qsuBREOlw-9aqm0zjNFH6PtNG6C-Tje61bnKnqTi-sxWjpdCE0Hij2lau7LhxtrScSfIGO3eWE5lf-wVLCtJ2TSEjtH7ZM1__oiafZmDHip78V-t36B7p5-man54cvQS3YcmkPhSsV00Wq9--lcRvqzN6zxG_wKOmuef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Convective+Parameterizations+on+Atmospheric+Mesoscale+Kinetic+Energy+Spectra+in+Global+High%E2%80%90Resolution+Simulations&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Zongheng&rft.au=Peng%2C+Jun&rft.au=Zhang%2C+Lifeng&rft.date=2023-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105513&rft.externalDBID=10.1029%252F2023GL105513&rft.externalDocID=GRL66736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon