Impact of Convective Parameterizations on Atmospheric Mesoscale Kinetic Energy Spectra in Global High‐Resolution Simulations
The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 23 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.12.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere.
Plain Language Summary
At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales.
Key Points
The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales
The more latent heat released from CP, the steeper KE spectra at mesoscales
The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades |
---|---|
AbstractList | The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere.
At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales.
The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales
The more latent heat released from CP, the steeper KE spectra at mesoscales
The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. Plain Language Summary At the current horizontal resolution level of the atmospheric models, convective parameterization (CP) is crucial for representing convective clouds unresolved by model mesh and thus is still an important model component. Exploring the impacts of different CP schemes on global high‐resolution simulations is an important subject of modeling. Energy spectra have become a useful diagnostic for validating and comparing atmospheric models. Their sensitivity to CP is an important and not‐well‐studied part of this subject. This paper investigates the impact of CPs on atmospheric mesoscale kinetic energy spectra with global simulations from the Model for Prediction Across Scales. We found that the energy spectral slope and energy cascade are sensitive to the CP schemes. This is related to the complementary relationship between CP and microphysical parameterization (MP), which is also important for moist convection development and evolution. The less latent heat released by the CP, the more released by the MP. This leads to stronger vertical motion, accompanied by stronger convergence/divergence in the troposphere, thereby enhancing vortex motion. As a result, more energy is transferred from the synoptic scale to the mesoscale and more gravity waves are vertically propagated into the lower stratosphere, leading to the shallower spectra at mesoscales. Key Points The kinetic energy (KE) spectra exhibit high sensitivity to the convective parameterizations (CPs) mainly at mesoscales The more latent heat released from CP, the steeper KE spectra at mesoscales The shallowest mesoscale KE spectra generated by the Grell‐Freitas scheme are attributed to the strongest RKE downscale cascades Abstract The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The results show that the KE spectra exhibit high sensitivity to the CPs, mainly at mesoscales in the middle and upper troposphere. The New Tiedtke scheme produces the steepest mesoscale slope, followed by the Kain‐Fritsch scheme and then the Grell‐Freitas scheme. In general, there is a compensating relationship between latent heat released by the CP and microphysics parameterization (MP). The less latent heat released by the CP is compensated by the more latent heat released by the MP. The shallowest mesoscale spectra for the Grell‐Freitas scheme are related to the strongest downscale cascade dominated by the rotational component of the flow, and this is attributed to more latent heat released from MP enhancing the intensity of vorticity in the troposphere and producing more gravity wave activities in the lower stratosphere. |
Author | Peng, Jun Zhang, Lifeng Li, Zongheng |
Author_xml | – sequence: 1 givenname: Zongheng surname: Li fullname: Li, Zongheng organization: National University of Defense Technology – sequence: 2 givenname: Jun orcidid: 0000-0003-4585-036X surname: Peng fullname: Peng, Jun email: pengjun@nudt.edu.cn organization: National University of Defense Technology – sequence: 3 givenname: Lifeng orcidid: 0000-0002-2333-4826 surname: Zhang fullname: Zhang, Lifeng email: zhanglif_qxxy@sina.cn organization: National University of Defense Technology |
BookMark | eNp9kdFuFCEUholpE7etdz4AibeuHmAGhstmU7cb19i0ek0YYLZsZmCE2Zr1wvgIPqNPInVM45VXkD8fH-fkP0MnIQaH0EsCbwhQ-ZYCZestgbom7BlaEFlVywZAnKAFgCx3KvhzdJbzHgAYMLJA3zfDqM2EY4dXMTw4M_kHh2900oObXPLf9ORjyDgGfDkNMY_3JTT4g8sxG907_N4HN5XkKri0O-K7sSiSxj7gdR9b3eNrv7v_9ePnbXnRHx5l-M4Ph372XqDTTvfZvfh7nqPP764-ra6X24_rzepyuzSMC76UneSUasqhk5pKLmndNk0nwbVCcu0aaQixphXcWG2Z5MYxyRrbWlN1bd2xc7SZvTbqvRqTH3Q6qqi9-hPEtFM6lTV6pyTnhlgBja6aqsh0TS0w0RoDVtimKq5Xs2tM8cvB5Unt4yGFMr6ijZQVMFbVhXo9UybFnJPrnn4loB7bUv-2VXA64199747_ZdX6dsu5YJz9Bn8Kmi0 |
Cites_doi | 10.1175/MWR-D-11-00215.1 10.5194/angeo-28-1827-2010 10.24381/cds.adbb2d47 10.1029/2018MS001390 10.1111/j.2153-3490.1969.tb00444.x 10.1175/JAS-D-20-0294.1 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 10.1007/s40641-019-00127-w 10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2 10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2 10.1029/2021JD036069 10.1175/MWR-D-15-0311.1 10.1017/S0022112006002060 10.1175/JAS-D-14-0306.1 10.1175/JAS-D-11-0347.1 10.1038/310036a0 10.5194/gmd-13-2851-2020 10.1002/2016MS000659 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2 10.1126/science.204.4395.832 10.1029/2012JD018213 10.1029/2008JD009944 10.1175/JAS-D-22-0213.1 10.1002/qj.4202 10.1175/MWR2830.1 10.1175/2008JAS2653.1 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 10.1002/2015JD023970 10.1175/JAS-D-17-0006.1 10.1175/MWR3199.1 10.1175/JAS-D-21-0332.1 10.1029/2020MS002192 10.1017/S0022112005008128 10.1175/JAS-D-21-0147.1 10.1175/JAS-D-16-0341.1 10.1175/JCLI-D-16-0597.1 10.1175/JAS-D-19-0116.1 10.1175/JAS-D-12-025.1 10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2 10.1175/JAS-D-14-0114.1 10.24381/cds.bd0915c6 10.1175/JAS-D-12-0281.1 10.1016/j.atmosres.2018.05.017 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2 10.1175/MWR-D-19-0043.1 10.5281/zenodo.10087863 10.1080/07055900.1984.9649199 10.1029/2008JD009785 10.1175/2008MWR2596.1 10.1007/s00376-021-0425-3 10.1175/JAS-D-16-0108.1 10.1175/JAS-D-14-0359.1 10.1073/pnas.0605494103 10.1017/S0022112099004851 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2023GL105513 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_966c1d708a484ad3a52d037bcc0d7d84 10_1029_2023GL105513 GRL66736 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42275062; 41975066; 41705037 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION PHGZM PHGZT 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M PQGLB PUEGO |
ID | FETCH-LOGICAL-c3676-9f9622a260f9a296925b88f90eb796ae89c11dcb76cdad396ce3938dbdc4fb5f3 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Fri Jul 25 09:58:32 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Wed Jan 22 16:19:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3676-9f9622a260f9a296925b88f90eb796ae89c11dcb76cdad396ce3938dbdc4fb5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4585-036X 0000-0002-2333-4826 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105513 |
PQID | 2899403345 |
PQPubID | 54723 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_966c1d708a484ad3a52d037bcc0d7d84 proquest_journals_2899403345 crossref_primary_10_1029_2023GL105513 wiley_primary_10_1029_2023GL105513_GRL66736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 December 2023 |
PublicationDateYYYYMMDD | 2023-12-16 |
PublicationDate_xml | – month: 12 year: 2023 text: 16 December 2023 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1984; 22 2016; 144 2013; 70 2016; 73 2020; 13 2023b 2023a 2015a; 72 2020; 12 2006; 134 2023; 80 2004; 132 2021; 38 2017; 74 2017; 30 2021; 78 2001 1984; 310 2010; 28 2018; 212 2013; 118 2022; 79 2008; 113 2015b; 72 2001; 58 2006; 568 2022; 127 2004; 43 2012; 140 2009; 66 1979; 204 2019; 5 1971; 28 2006; 550 2006 2016; 121 2019; 147 1999; 388 2004 2020; 77 1996; 124 1985; 42 1997; 125 2023 1969; 21 2008; 136 2003; 60 2018; 10 2014; 71 2016; 8 2022; 148 2006; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hong S.‐Y. (e_1_2_7_13_1) 2006 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Janji Z. I. (e_1_2_7_16_1) 2001 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 388 start-page: 259 year: 1999 end-page: 288 article-title: Can the atmospheric kinetic energy spectrum be explained by two‐dimensional turbulence? publication-title: Journal of Fluid Mechanics – volume: 212 start-page: 172 year: 2018 end-page: 185 article-title: Combined impacts of convection and microphysics parameterizations on the simulations of precipitation and cloud properties over Asia publication-title: Atmospheric Research – volume: 72 start-page: 3923 issue: 10 year: 2015b end-page: 3939 article-title: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part II: The upper‐tropospheric energy spectra publication-title: Journal of the Atmospheric Sciences – volume: 310 start-page: 36 issue: 5972 year: 1984 end-page: 38 article-title: Kinetic energy spectrum of large‐and mesoscale atmospheric processes publication-title: Nature – volume: 42 start-page: 950 issue: 9 year: 1985 end-page: 960 article-title: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft publication-title: Journal of the Atmospheric Sciences – volume: 8 start-page: 1073 issue: 3 year: 2016 end-page: 1091 article-title: Can nudging be used to quantify model sensitivities in precipitation and cloud forcing? Nudging and model sensitivities publication-title: Journal of Advances in Modeling Earth Systems – volume: 21 start-page: 289 issue: 3 year: 1969 end-page: 307 article-title: The predictability of a flow which possesses many scales of motion publication-title: Tellus – year: 2006 article-title: The WRF single‐moment 6‐class microphysics scheme (WSM6) publication-title: Asia‐Pacific Journal of Atmospheric Sciences – volume: 5 start-page: 95 issue: 2 year: 2019 end-page: 111 article-title: Ongoing breakthroughs in convective parameterization publication-title: Current Climate Change Reports – volume: 58 start-page: 329 issue: 4 year: 2001 end-page: 348 article-title: The horizontal kinetic energy spectrum and spectral budget simulated by a high‐resolution troposphere–stratosphere–mesosphere GCM publication-title: Journal of the Atmospheric Sciences – volume: 74 start-page: 2191 issue: 7 year: 2017 end-page: 2210 article-title: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations publication-title: Journal of the Atmospheric Sciences – volume: 118 start-page: 395 issue: 2 year: 2013 end-page: 415 article-title: Uncertainty quantification and parameter tuning in the CAM5 Zhang‐McFarlane convection scheme and impact of improved convection on the global circulation and climate: Parameters tuning in CAM5 and its impact publication-title: Journal of Geophysical Research: Atmospheres – volume: 77 start-page: 257 issue: 1 year: 2020 end-page: 276 article-title: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm‐resolving simulations publication-title: Journal of the Atmospheric Sciences – volume: 80 start-page: 813 issue: 3 year: 2023 end-page: 831 article-title: Spectral budget of rotational and divergent kinetic energy in global analyses publication-title: Journal of the Atmospheric Sciences – volume: 147 start-page: 2641 issue: 7 year: 2019 end-page: 2656 article-title: Vertical resolution requirements in atmospheric simulation publication-title: Monthly Weather Review – volume: 134 start-page: 2318 issue: 9 year: 2006 end-page: 2341 article-title: A new vertical diffusion package with an explicit treatment of entrainment processes publication-title: Monthly Weather Review – volume: 30 start-page: 5923 issue: 15 year: 2017 end-page: 5941 article-title: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20‐km‐mesh regional climate model publication-title: Journal of Climate – volume: 140 start-page: 3090 issue: 9 year: 2012 end-page: 3105 article-title: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C‐grid staggering publication-title: Monthly Weather Review – volume: 80 start-page: 1701 issue: 7 year: 2023 end-page: 1718 article-title: Mesoscale spectra of vertical vorticity and horizontal divergence in an idealized baroclinic wave simulation publication-title: Journal of the Atmospheric Sciences – volume: 43 start-page: 170 issue: 1 year: 2004 end-page: 181 article-title: The Kain–Fritsch convective parameterization: An update publication-title: Journal of Applied Meteorology and Climatology – volume: 66 start-page: 450 issue: 2 year: 2009 end-page: 467 article-title: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum publication-title: Journal of the Atmospheric Sciences – year: 2004 – year: 2023b – volume: 78 start-page: 2589 issue: 8 year: 2021 end-page: 2603 article-title: Inconsistent global kinetic energy spectra in reanalyses and models publication-title: Journal of the Atmospheric Sciences – volume: 12 issue: 11 year: 2020 article-title: A baseline for global weather and climate simulations at 1 km resolution publication-title: Journal of Advances in Modeling Earth Systems – volume: 28 start-page: 1087 issue: 6 year: 1971 end-page: 1095 article-title: Geostrophic turbulence publication-title: Journal of the Atmospheric Sciences – volume: 103 start-page: 14690 issue: 40 year: 2006 end-page: 14694 article-title: A theory for the atmospheric energy spectrum: Depth‐limited temperature anomalies at the tropopause publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 60 start-page: 824 issue: 6 year: 2003 end-page: 835 article-title: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two‐level model simulation publication-title: Journal of the Atmospheric Sciences – volume: 13 start-page: 2851 issue: 6 year: 2020 end-page: 2877 article-title: Impact of scale‐aware deep convection on the cloud liquid and ice water paths and precipitation using the Model for Prediction Across Scales (MPAS‐v5.2) publication-title: Geoscientific Model Development – volume: 132 start-page: 3019 issue: 12 year: 2004 end-page: 3032 article-title: Evaluating mesoscale NWP models using kinetic energy spectra publication-title: Monthly Weather Review – volume: 124 start-page: 1409 issue: 7 year: 1996 end-page: 1434 article-title: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization publication-title: Monthly Weather Review – volume: 550 start-page: 207 issue: 1 year: 2006 article-title: The energy cascade in a strongly stratified fluid publication-title: Journal of Fluid Mechanics – volume: 74 start-page: 2447 issue: 8 year: 2017 end-page: 2466 article-title: Energy spectra and inertia–gravity waves in global analyses publication-title: Journal of the Atmospheric Sciences – volume: 70 start-page: 2293 issue: 7 year: 2013 end-page: 2308 article-title: A new formulation of the spectral energy budget of the atmosphere, with application to two high‐resolution general circulation models publication-title: Journal of the Atmospheric Sciences – volume: 72 start-page: 2090 issue: 5 year: 2015a end-page: 2108 article-title: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower‐stratospheric energy spectra publication-title: Journal of the Atmospheric Sciences – volume: 70 start-page: 1242 issue: 4 year: 2013 end-page: 1256 article-title: Mesoscale energy spectra of moist baroclinic waves publication-title: Journal of the Atmospheric Sciences – volume: 73 start-page: 4853 issue: 12 year: 2016 end-page: 4872 article-title: The dynamics of mesoscale winds in the upper troposphere and lower stratosphere publication-title: Journal of the Atmospheric Sciences – volume: 10 start-page: 2564 issue: 10 year: 2018 end-page: 2588 article-title: Convectively generated gravity waves in high resolution models of tropical dynamics publication-title: Journal of Advances in Modeling Earth Systems – volume: 148 start-page: 233 issue: 742 year: 2022 end-page: 251 article-title: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2023a – volume: 113 issue: D18 year: 2008 article-title: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model publication-title: Journal of Geophysical Research – volume: 79 start-page: 119 issue: 1 year: 2022 end-page: 139 article-title: Mesoscale predictability in moist midlatitude cyclones is not sensitive to the slope of the background kinetic energy spectrum publication-title: Journal of the Atmospheric Sciences – volume: 71 start-page: 4369 issue: 11 year: 2014 end-page: 4381 article-title: Atmospheric kinetic energy spectra from global high‐resolution nonhydrostatic simulations publication-title: Journal of the Atmospheric Sciences – volume: 121 start-page: 5395 issue: 10 year: 2016 end-page: 5410 article-title: How does subgrid‐scale parametrization influence nonlinear spectral energy fluxes in global NWP models? publication-title: Journal of Geophysical Research: Atmospheres – volume: 70 start-page: 231 issue: 1 year: 2013 end-page: 247 article-title: Indications of stratified turbulence in a mechanistic GCM publication-title: Journal of the Atmospheric Sciences – volume: 127 issue: 11 year: 2022 article-title: Improved climate simulation by using a double‐plume convection scheme in a global model publication-title: Journal of Geophysical Research: Atmospheres – volume: 568 start-page: 89 year: 2006 article-title: The transition from geostrophic to stratified turbulence publication-title: Journal of Fluid Mechanics – volume: 28 start-page: 1827 issue: 10 year: 2010 end-page: 1846 article-title: Sensitivity of the simulated precipitation to changes in convective relaxation time scale publication-title: Annales Geophysicae – volume: 204 start-page: 832 issue: 4395 year: 1979 end-page: 835 article-title: Stratospheric wave spectra resembling turbulence publication-title: Science – volume: 125 start-page: 252 issue: 2 year: 1997 end-page: 278 article-title: A comparison study of convective parameterization schemes in a mesoscale model publication-title: Monthly Weather Review – volume: 144 start-page: 2285 issue: 6 year: 2016 end-page: 2306 article-title: Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model publication-title: Monthly Weather Review – volume: 113 issue: D13 year: 2008 article-title: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models publication-title: Journal of Geophysical Research – year: 2023 – volume: 38 start-page: 1267 issue: 8 year: 2021 end-page: 1284 – volume: 136 start-page: 3987 issue: 10 year: 2008 end-page: 4004 article-title: An upper gravity‐wave absorbing layer for NWP applications publication-title: Monthly Weather Review – volume: 22 start-page: 265 issue: 3 year: 1984 end-page: 282 article-title: A global available potential energy‐kinetic energy budget in terms of the two‐dimensional wavenumber for the FGGE year publication-title: Atmosphere‐Ocean – start-page: 437 year: 2001 – ident: e_1_2_7_43_1 doi: 10.1175/MWR-D-11-00215.1 – ident: e_1_2_7_33_1 doi: 10.5194/angeo-28-1827-2010 – ident: e_1_2_7_12_1 doi: 10.24381/cds.adbb2d47 – ident: e_1_2_7_34_1 doi: 10.1029/2018MS001390 – ident: e_1_2_7_31_1 doi: 10.1111/j.2153-3490.1969.tb00444.x – ident: e_1_2_7_52_1 doi: 10.1175/JAS-D-20-0294.1 – ident: e_1_2_7_18_1 doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 – ident: e_1_2_7_41_1 doi: 10.1007/s40641-019-00127-w – ident: e_1_2_7_49_1 doi: 10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2 – ident: e_1_2_7_21_1 doi: 10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2 – ident: e_1_2_7_23_1 doi: 10.1029/2021JD036069 – ident: e_1_2_7_9_1 doi: 10.1175/MWR-D-15-0311.1 – ident: e_1_2_7_50_1 doi: 10.1017/S0022112006002060 – ident: e_1_2_7_38_1 doi: 10.1175/JAS-D-14-0306.1 – ident: e_1_2_7_51_1 doi: 10.1175/JAS-D-11-0347.1 – ident: e_1_2_7_36_1 doi: 10.1038/310036a0 – ident: e_1_2_7_8_1 doi: 10.5194/gmd-13-2851-2020 – ident: e_1_2_7_26_1 doi: 10.1002/2016MS000659 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.1126/science.204.4395.832 – ident: e_1_2_7_57_1 doi: 10.1029/2012JD018213 – ident: e_1_2_7_15_1 doi: 10.1029/2008JD009944 – ident: e_1_2_7_37_1 doi: 10.1175/JAS-D-22-0213.1 – ident: e_1_2_7_40_1 doi: 10.1002/qj.4202 – ident: e_1_2_7_42_1 doi: 10.1175/MWR2830.1 – ident: e_1_2_7_48_1 doi: 10.1175/2008JAS2653.1 – ident: e_1_2_7_35_1 doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2 – ident: e_1_2_7_46_1 – ident: e_1_2_7_32_1 doi: 10.1002/2015JD023970 – ident: e_1_2_7_55_1 doi: 10.1175/JAS-D-17-0006.1 – ident: e_1_2_7_14_1 doi: 10.1175/MWR3199.1 – ident: e_1_2_7_24_1 doi: 10.1175/JAS-D-21-0332.1 – ident: e_1_2_7_54_1 doi: 10.1029/2020MS002192 – ident: e_1_2_7_28_1 doi: 10.1017/S0022112005008128 – ident: e_1_2_7_30_1 doi: 10.1175/JAS-D-21-0147.1 – ident: e_1_2_7_58_1 doi: 10.1175/JAS-D-16-0341.1 – ident: e_1_2_7_59_1 doi: 10.1175/JCLI-D-16-0597.1 – ident: e_1_2_7_17_1 doi: 10.1175/JAS-D-19-0116.1 – start-page: 437 volume-title: Nonsingular implementation of the Mellor‐Yamada level 2.5 scheme in the NCEP meso model year: 2001 ident: e_1_2_7_16_1 – ident: e_1_2_7_3_1 doi: 10.1175/JAS-D-12-025.1 – ident: e_1_2_7_20_1 doi: 10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2 – ident: e_1_2_7_44_1 doi: 10.1175/JAS-D-14-0114.1 – ident: e_1_2_7_11_1 doi: 10.24381/cds.bd0915c6 – ident: e_1_2_7_2_1 doi: 10.1175/JAS-D-12-0281.1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_29_1 doi: 10.1016/j.atmosres.2018.05.017 – ident: e_1_2_7_53_1 doi: 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2 – ident: e_1_2_7_45_1 doi: 10.1175/MWR-D-19-0043.1 – ident: e_1_2_7_25_1 doi: 10.5281/zenodo.10087863 – ident: e_1_2_7_22_1 doi: 10.1080/07055900.1984.9649199 – ident: e_1_2_7_10_1 doi: 10.1029/2008JD009785 – year: 2006 ident: e_1_2_7_13_1 article-title: The WRF single‐moment 6‐class microphysics scheme (WSM6) publication-title: Asia‐Pacific Journal of Atmospheric Sciences – ident: e_1_2_7_19_1 doi: 10.1175/2008MWR2596.1 – ident: e_1_2_7_56_1 doi: 10.1007/s00376-021-0425-3 – ident: e_1_2_7_4_1 doi: 10.1175/JAS-D-16-0108.1 – ident: e_1_2_7_39_1 doi: 10.1175/JAS-D-14-0359.1 – ident: e_1_2_7_47_1 doi: 10.1073/pnas.0605494103 – ident: e_1_2_7_27_1 doi: 10.1017/S0022112099004851 |
SSID | ssj0003031 |
Score | 2.4460735 |
Snippet | The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are revealed. The... Abstract The responses of atmospheric kinetic energy (KE) spectra to three convective parameterizations (CPs) in global high‐resolution simulations are... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Atmospheric models Convection Convective clouds Convective development convective parameterization Convergence and divergence diabatic heating Energy Energy spectra Finite element method Fluid flow Gravity waves Heat Kinetic energy Latent heat Lower stratosphere Mesoscale phenomena Microphysics microphysics parameterization Modelling Moist convection Parameterization Simulation Slopes Spectra spectral budget Spectral sensitivity Stratosphere Troposphere Upper troposphere Vertical motion Vorticity Wave propagation |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMglpGlKtt0GHdpTMLUtWdIcN8t-tN2UkmRhb0Zfhj3ELuvtoZfSn9DfmF9Sjewtm0t6yc0YY4uZkfTGmnmPkPdhfgmTOZdo4YoE2U0SSI1IENpLx4oK4gn-9VcxX_LPq2K1J_WFNWEdPXBnuI8BjtvMyVRprrh2TBe5S5k01qZOOhWZQMOet0um-jU4LMydVh7wROVS9CXvaQ6Y7bPZAnUhM_ZoM4qc_Y-A5j5cjfvN9IQc90CRjroBviQHvj4lL2ZRiPdnuIqlm7Z9RX59io2OtKnoGEvI4wJGv2msukIi5r7PkjY1HW3vmxZ5BNaWXvu2aYODPP0SgGb4CJ3ENkCKivTbjabrmnaCABRrQR5-_8E__V2c0tv1fS_71Z6R5XRyN54nvapCYpGdLYEKRJ7rkMdUoHMQkBdGqQpSbyQI7RXYLHPWSGFdsDcI6xkw5YyzvDJFxV6Tw7qp_TmhzhdeAjLUWMWNDWBdO6hkZgIO1FzqAfmwM2_5vSPPKOOhdw7lvhsG5Apt_-8ZpLyON0IglH0glP8LhAEZ7jxX9vOwLTGd5CljvBiQy-jNJwdSzm4WqIMq3jzHiN6SI3w5Fr9kYkgOt5sf_l2AMFtzEaP1L3I7654 priority: 102 providerName: Directory of Open Access Journals |
Title | Impact of Convective Parameterizations on Atmospheric Mesoscale Kinetic Energy Spectra in Global High‐Resolution Simulations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105513 https://www.proquest.com/docview/2899403345 https://doaj.org/article/966c1d708a484ad3a52d037bcc0d7d84 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqUCUuiFIQgTTyoT1VK_bh9eOYoBBoSRQBQYjLyq9FOWQXZcOhl6o_ob-xv6Qer4nCBYnTrixbu_J4xjP2zPch9NXpF1WJMZGkJo8A3SQSsaIRuPbMZHkp_A3-eEIvZuTHfX4fDtygFqbFh1gfuIFmeHsNCi5VE8AGACMTeL9HV8DvCKS121BdCyl9KZmuLbEzzy1jniARTxkNie9u_Onm6Fdbkkfuf-Vubjqtftc530O7wV3E_Va-n9AHW-2jjyNPx_vLvfkETt18Rr8vfbkjrkt8Bonk3ozhqYTcK4BjDtWWuK5wf7WoG0ATmGs8tk3dODFZ_NNNiPsIHvpiQAy89KulxPMKt7QAGDJC_v35C-f97WrFN_NFIP9qDtDsfHh7dhEFboVIA0ZbJEpB01S6aKYUMhVUpLnivBSxVUxQabnQSWK0YlQbaTJBtc1Exo0ympQqL7NDtFXVlT1C2NjcMgE4NZoTpZ3LLo0oWaKcNygJkx307WV6i6cWQqPwV9-pKDbF0EEDmPt1HwC-9g318rEIelS46EwnhsVcEk7cj8k8NXHGlNaxYYaTDuq-SK4I2tgUEFSSOMtI3kHfvTTf_JFidH0FbKj0-F29T9AOtEOuS0K7aGu1fLZfnMeyUj2_LHtou383e5i552A4mV73fPz_H_XU55E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQIwQbVF4iNIAXsEIj5uHxYxmiNClJKgQNqthYfk2VRWeqTLropuon9Bv5Enw9bpRskNiNRp6HfH2vj-17z0Hoo_cvqjNrE0VtmQC7SSJSTROA9swWZSXCCf7ilE6X5Nt5eR51TqEWpuOH2G64gWeEeA0ODhvSkW0ASDJB-HsyB4FHUK3tAbDxw7o3_LX8vdwGYx-hO9E8QRKeMxpz3_0bvuw-vzcrBfL-PcS5i1vDxHN8iJ5FxIiHnYmfo0eufoEeT4Ii742_Cjmcpn2Jbk9CxSNuKjyCXPIQyfB3BelXwMgcCy5xU-Ph5rJpgVBgZfDCtU3rLeXwzPeJ_wgeh3pADNL0m7XCqxp3ygAYkkL-3N3Dln83YPHP1WXU_2pfoeXx-Gw0TaK8QmKApi0RlaB5rvyCphIqF1Tkpea8EqnTTFDluDBZZo1m1FhlC0GNK0TBrbaGVLqsitfooG5q9wZh60rHBFDVGE608ahdWVGxTHtAqAhTffTpoXvlVceiIcPpdy7krhn66Cv0_bYNcF-HG836QkZXkn6BZjLLUq4IJ_7HVJnbtGDamNQyy0kfDR4sJ6NDthLWlSQtClL20edgzX_-iJz8mIMgKn37X60_oCfTs8Vczk9OZ0foKbSB1JeMDtDBZn3t3nkAs9Hv4yD9Cwfe6H8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLVQKhAbxFMECngBKzRiHn4uQ2nS0rSqgKCKjeVnlUVnqkxYdFPxCXwjX4Kvx43SDRK70cjzkK_v9bF97zkIvY3-xUzlXKGZowWwmxSyNKwAaM9dQ4NMJ_jHJ-xgQT6f0bO84Qa1MAM_xGbDDTwjxWtw8EsXMtkAcGSC7vdsDvqOIFq7Q-PEVI7QzuT74sdiE4tjgB408yQpRM1ZTn2Pb_iw_fytSSlx998CnNuwNc0704foQQaMeDJY-BG649vH6O4sCfJexauUwmn7J-j6MBU84i7gPUglT4EMn2rIvgJC5lxvibsWT9YXXQ98AkuLj33f9dFQHh_FLokfwfupHBCDMv16pfGyxYMwAIackD-_fsOO_zBe8dflRZb_6p-ixXT_295BkdUVCgssbYUMktW1juuZIHUtmaypESLI0hsumfZC2qpy1nBmnXaNZNY3shHOOEuCoaF5hkZt1_rnCDtPPZfAVGMFMTaCdu1k4JWJeFATrsfo3U33qsuBREOlw-9aqm0zjNFH6PtNG6C-Tje61bnKnqTi-sxWjpdCE0Hij2lau7LhxtrScSfIGO3eWE5lf-wVLCtJ2TSEjtH7ZM1__oiafZmDHip78V-t36B7p5-man54cvQS3YcmkPhSsV00Wq9--lcRvqzN6zxG_wKOmuef |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Convective+Parameterizations+on+Atmospheric+Mesoscale+Kinetic+Energy+Spectra+in+Global+High%E2%80%90Resolution+Simulations&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Zongheng&rft.au=Peng%2C+Jun&rft.au=Zhang%2C+Lifeng&rft.date=2023-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105513&rft.externalDBID=10.1029%252F2023GL105513&rft.externalDocID=GRL66736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |