Voltammetric Characterization of Micro- and Submicrometer-Electrode Arrays of Conical Shape for Electroanalytical Use

Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N, of electrodes in each array varies between 225 and 3600) are fabricated by photolithographic technique and vapor deposition processes of metal films. The electrodes are conical‐shaped and only their...

Full description

Saved in:
Bibliographic Details
Published inElectroanalysis (New York, N.Y.) Vol. 18; no. 18; pp. 1749 - 1756
Main Authors Daniele, Salvatore, De Faveri, Eddy, Kleps, Irina, Angelescu, Anca
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.09.2006
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N, of electrodes in each array varies between 225 and 3600) are fabricated by photolithographic technique and vapor deposition processes of metal films. The electrodes are conical‐shaped and only their apexes are exposed to the electrolytic solution. The electrode arrays are characterized electrochemically in Ru(NH3)6Cl3 aqueous solutions by using cyclic voltammetry at low scan rates, to establish the number of electrochemically active electrodes (Nac) in each array; the geometric characterization is performed by scanning electron microscopy. All the investigated arrays provide steady‐state voltammograms, indicating diffusionally independent behavior of each microelectrode. The number of microelectrodes that are active in the fabricated arrays depends on microelectrode density. In particular, for the arrays with N=3600 and N=225, the fraction of active sites is about 45% and 90%, respectively. The analytical performance of some of the Pt version of the arrays is tested in hydrogen peroxide solutions, allowing verifying that linear calibration plots over the concentration range (0.1–20 mM) are obtained. This dynamic range is larger than that typically recorded at smooth polycrystalline platinum electrodes (0.5–5 mM), and the better performance is attributed to both the higher aspect ratio of the cone geometry and the higher mass transport associated to each microelectrode of the array. Reproducibility (within 3.5%, r.s.d.) and long‐term stability (within 5%, r.s.d., after 8 h continuous use) of the electrode systems are satisfactory. A low detection limit, based on the signal to noise ratio equal to 3, of 0.05 mM is found, which is adequate for a rapid monitoring of H2O2 in real samples and industrial processes.
AbstractList Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N, of electrodes in each array varies between 225 and 3600) are fabricated by photolithographic technique and vapor deposition processes of metal films. The electrodes are conical‐shaped and only their apexes are exposed to the electrolytic solution. The electrode arrays are characterized electrochemically in Ru(NH3)6Cl3 aqueous solutions by using cyclic voltammetry at low scan rates, to establish the number of electrochemically active electrodes (Nac) in each array; the geometric characterization is performed by scanning electron microscopy. All the investigated arrays provide steady‐state voltammograms, indicating diffusionally independent behavior of each microelectrode. The number of microelectrodes that are active in the fabricated arrays depends on microelectrode density. In particular, for the arrays with N=3600 and N=225, the fraction of active sites is about 45% and 90%, respectively. The analytical performance of some of the Pt version of the arrays is tested in hydrogen peroxide solutions, allowing verifying that linear calibration plots over the concentration range (0.1–20 mM) are obtained. This dynamic range is larger than that typically recorded at smooth polycrystalline platinum electrodes (0.5–5 mM), and the better performance is attributed to both the higher aspect ratio of the cone geometry and the higher mass transport associated to each microelectrode of the array. Reproducibility (within 3.5%, r.s.d.) and long‐term stability (within 5%, r.s.d., after 8 h continuous use) of the electrode systems are satisfactory. A low detection limit, based on the signal to noise ratio equal to 3, of 0.05 mM is found, which is adequate for a rapid monitoring of H2O2 in real samples and industrial processes.
Abstract Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N , of electrodes in each array varies between 225 and 3600) are fabricated by photolithographic technique and vapor deposition processes of metal films. The electrodes are conical‐shaped and only their apexes are exposed to the electrolytic solution. The electrode arrays are characterized electrochemically in Ru(NH 3 ) 6 Cl 3 aqueous solutions by using cyclic voltammetry at low scan rates, to establish the number of electrochemically active electrodes ( N ac ) in each array; the geometric characterization is performed by scanning electron microscopy. All the investigated arrays provide steady‐state voltammograms, indicating diffusionally independent behavior of each microelectrode. The number of microelectrodes that are active in the fabricated arrays depends on microelectrode density. In particular, for the arrays with N =3600 and N =225, the fraction of active sites is about 45% and 90%, respectively. The analytical performance of some of the Pt version of the arrays is tested in hydrogen peroxide solutions, allowing verifying that linear calibration plots over the concentration range (0.1–20 mM) are obtained. This dynamic range is larger than that typically recorded at smooth polycrystalline platinum electrodes (0.5–5 mM), and the better performance is attributed to both the higher aspect ratio of the cone geometry and the higher mass transport associated to each microelectrode of the array. Reproducibility (within 3.5%, r.s.d.) and long‐term stability (within 5%, r.s.d., after 8 h continuous use) of the electrode systems are satisfactory. A low detection limit, based on the signal to noise ratio equal to 3, of 0.05 mM is found, which is adequate for a rapid monitoring of H 2 O 2 in real samples and industrial processes.
Author Angelescu, Anca
Daniele, Salvatore
De Faveri, Eddy
Kleps, Irina
Author_xml – sequence: 1
  givenname: Salvatore
  surname: Daniele
  fullname: Daniele, Salvatore
  email: sig@unive.it
  organization: Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
– sequence: 2
  givenname: Eddy
  surname: De Faveri
  fullname: De Faveri, Eddy
  organization: Department of Physical Chemistry, University of Venice, Calle Larga S. Marta, 2137, 30123 Venice, Italy
– sequence: 3
  givenname: Irina
  surname: Kleps
  fullname: Kleps, Irina
  organization: National Institute for Research and Development in Microtechnologies (IMT-Bucharest,) P. O. Box 38-160, 72996 Bucharest, Romania
– sequence: 4
  givenname: Anca
  surname: Angelescu
  fullname: Angelescu, Anca
  organization: National Institute for Research and Development in Microtechnologies (IMT-Bucharest,) P. O. Box 38-160, 72996 Bucharest, Romania
BookMark eNqFkE1PwkAQhjcGEwG9et4_UJzt9muPhCBqED_4Om6m22molpZsSxR_va0Q483TzGSeZzJ5e6xTlAUxdi1gIADcG8qxGLgAAUhf-WesK3xXOJ4A1Wl68MABqcIL1quqNwBQgae6bL8q8xq3W6ptZvhogxZNTTb7wjorC16m_DEztnQ4Fgmf7-NtOzU0WWeck6ltmRAfWouHqoVHZZEZzPl8gzviaWn5icIC80P9s1tWdMnOU8wrujrVPlvejhejO2f6NLkfDaeOkUHoO1LFrp-kEZlYytTE4FEoAimiKFJuQKTQ-G7oxSRDUJGUGAaBSD1wKU0AfZJ9NjjebZ6uKkup3tlsi_agBeg2NN2Gpn9DawR1FD6ynA7_0Ho8Hc7-us7RzaqaPn9dtO86CGXo6_VsouXL-mHxunrWC_kN9-OEFQ
CitedBy_id crossref_primary_10_1016_j_electacta_2021_139524
crossref_primary_10_1016_j_jelechem_2007_12_008
crossref_primary_10_1021_ac200307n
crossref_primary_10_1016_j_elecom_2007_04_008
crossref_primary_10_1016_j_apmt_2018_01_006
crossref_primary_10_1016_j_electacta_2012_06_066
crossref_primary_10_20964_2016_09_58
crossref_primary_10_1021_ac103083y
crossref_primary_10_1134_S1061934808050158
crossref_primary_10_1243_09544089JPME153
crossref_primary_10_3390_s121216571
Cites_doi 10.1007/s10008-005-0699-x
10.1016/S0956-5663(01)00134-8
10.1021/ac0520994
10.1021/j100311a021
10.1016/S0013-4686(97)00125-4
10.1016/S0925-4005(00)00553-0
10.1016/j.jneumeth.2005.08.015
10.1016/0022-0728(91)85203-2
10.1016/0013-4686(81)90029-3
10.1021/ac025649w
10.1023/A:1011469102224
10.1016/S0003-2670(00)82009-7
10.1021/ac011052p
10.1039/b506956d
10.1016/S0165-0270(01)00514-3
10.1016/S0013-4686(99)00183-8
10.1016/j.talanta.2005.08.023
10.1016/S0013-4686(00)00481-3
10.1039/b415395m
10.1021/ac010933t
10.1016/0022-0728(93)80483-X
10.1021/jp982983g
10.1016/S0013-4686(97)10116-5
10.1016/S0925-4005(98)00124-5
10.1016/S0928-4931(01)00469-6
10.1135/cccc19370150
10.1021/ac034974w
10.3390/s6040308
10.1039/B513786A
10.1016/S1388-2481(99)00100-9
10.1126/science.250.4984.1118
10.1016/S0022-0728(01)00343-6
10.1016/S0731-7085(03)00181-X
10.1016/S0013-4686(98)00369-7
10.1016/j.jelechem.2005.07.021
10.1021/ac034370s
10.1016/0003-2670(96)00169-9
10.1021/ac015669i
10.1007/978-94-011-3210-7
10.1002/elan.200390068
10.1016/j.bios.2004.08.022
ContentType Journal Article
Copyright Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/elan.200603595
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-4109
EndPage 1756
ExternalDocumentID 10_1002_elan_200603595
ELAN200603595
ark_67375_WNG_3QWJTRVP_T
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3675-39b25df8ecb33fcb04e71631888926ee9ac5274be3709833a7661f402efd0a5e3
IEDL.DBID DR2
ISSN 1040-0397
IngestDate Fri Aug 23 00:38:22 EDT 2024
Sat Aug 24 00:54:39 EDT 2024
Wed Oct 30 09:49:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3675-39b25df8ecb33fcb04e71631888926ee9ac5274be3709833a7661f402efd0a5e3
Notes istex:23FADC8E408652A719EC80AF8BFC5A25F7C10AA6
ArticleID:ELAN200603595
ark:/67375/WNG-3QWJTRVP-T
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/elan.200603595
PageCount 8
ParticipantIDs crossref_primary_10_1002_elan_200603595
wiley_primary_10_1002_elan_200603595_ELAN200603595
istex_primary_ark_67375_WNG_3QWJTRVP_T
PublicationCentury 2000
PublicationDate September 2006
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: September 2006
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Electroanalysis (New York, N.Y.)
PublicationTitleAlternate Electroanalysis
PublicationYear 2006
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References T. J. Davies , S.Ward-Jones , C. E. Banks , J. del Campo , R. Mas , F. X. Minoz , R. G. Compton , J. Electroanal. Chem. 2005, 585, 51.
L. Campanella , G. Favero , D. Giancola , M. Tomassetti , J. Pharm. Biomed. Anal. 2003, 32, 737.
A. L. Colley , C. G. Williams , U. D. Johansson , M. E. Newton , P. R. Unwin , N. R. Wilson , J. Macpherson , Anal. Chem. 2006, 78, 2539.
C. G. Zoski , M. V. Mirkin , Anal. Chem. 2002, 74, 1986.
D. W. M. Arrigan , Analyst, 2004, 129, 1157.
S. B. Hall , E. A. Khudaish , A. L. Hart , Electrochim. Acta 2000, 45, 3573.
A. Chovin , P. Garrigue , P. Vinatier , N. Sojic , Anal. Chem. 2004, 76, 357.
S. B. Hall , E. A. Khudaish , A. L. Hart , Electrochim. Acta 1998, 43, 579
S. B. Hall , E. A. Khudaish , A. L. Hart , Electrochim. Acta 1999, 44, 2455
S. A. G. Evans , J. M. Elliot , L. M. Andrews , P. N. Bartlett , P. J. Doyle , G. Denuault , Anal. Chem. 2002, 74, 1322.
S. B. Hall , E. A. Khudaish , A. L. Hart , Electrochim. Acta 1998, 43, 2015.
H. J. Lee , C. Beriet , R. Ferrigno , H. H. Girault , J. Electroanal. Chem. 2001, 502, 138.
J. E. Baur , R. M. Wightman , J. Electroanal. Chem. 1991, 305, 73.
S. Szunerits , P. Garrigue , J. L. Bruneel , L. Servant , N. Sojic , Electroanalysis 2003, 15, 548.
M. I. Montenegro , M. A. Queiros , J. Daschbach , Microelectrodes, Theory and Applications, Nato ASI Series, Kluwer, Dordrecht, Netherlands 1991.
O. Ordeig , C. E. Banks , T. J. Davies , J. del Campo , R. Mas , F. X. Minoz , R. G. Compton , Analyst 2006, 131, 440.
J. Tomeš , Collect. Czech. Chem. Commun. 1927, 9, 150.
T. Ruzgas , E. Csoregi , J. Emneus , L. Gorton , G. Marko-Varga , Anal. Chim. Acta 1996, 330, 123.
E. Sabatani , I. Rubisntein , J. Phys. Chem. 1987, 91, 6663.
A. M. Bond , K. B. Oldham , C. G. Zoski , Anal. Chim. Acta 1989, 216.
I. Kleps , A. Angelescu , R. Vasilco , D. Dascalu , Biomed. Device 2001, 3, 29.
S. Isik , L. Berdondini , J. Oni , A. Blochl , M. Koudelka-Hep , W. Schuhmann , Biosens. Bioelectron 2005, 20, 1566.
P. Thiébaud , C. Beuret , N. F. de Rooij , M. Koudelka-Hep , Sens. Actuators 2000, 70, 51.
V. S. Polikov , P. A. Tresco , W. M. Reichert , J. Neurosci. Methods 2005, 148, 1.
N. Nather , L. M. Juarez , R. Emmerich , J. Berger , P. Friedrich , M. J. Schöning , Sensors 2006, 6, 308.
M. O. Heuschkel , M. Fejtl , M. Raggenbass , D. Bertrand , P. A. Renaud , J. Neurosci. Methods 2002, 114, 135.
V. G. Prabhu , L. R. Zarapkar , R. G. Dhaneshwar , Electrochim. Acta 1981, 26, 725.
S. B. Hall , E. A. Khudaish , A. L. Hart , Electrochim. Acta 1999, 44, 4573.
T. J. Davies , C. E. Banks , R. G. Compton , J. Solid State Electrochem. 2005, 9, 797.
S. Szunerits , D. R. Walt , Anal. Chem. 2002, 74, 1718.
M. L. Hitchman , K. F. Jensen , Chemical Vapor Deposition: Principles and Applications, Academic Press, London 1993.
W. S. Baker , R. M. Crooks , J. Phys. Chem. B 1998, 102, 10041.
Y. Zhang , G. Wilson , J. Electroanal. Chem. 1993, 345, 253.
A. Kicela , S. Daniele , Talanta 2006, 68, 1632.
A. Schwake , B. Ross , K. Cammann , Sens. Actuators B 1998, 46, 242.
I. Kleps , A. Angelescu , M. Miu , Mat. Sci. Eng. C 2002, 19, 219.
R. M. Penner , M. J. Hebben , T. L. Longin , N. S. Lewis , Science 1990, 250, 118.
S. Szunerits , J. M. Tam , L. Thuin , C. Amatore , D. R. Walt , Anal. Chem. 2003, 75, 4382.
M. E. Sandison , N. Anicet , A. Glidle , J. M. Cooper , Anal. Chem. 2002, 74, 5717.
Y. Nam , B. C. Wheeler , M. O. Heuschkel , J. Neurosci. Methods 2006, in press.
E. E. Ferapontova , V. G. Grigorenko , A. M. Egorov , T. Borchers , T. Ruzgas , L. Gorton , Biosens. Biolectron. 2001, 16, 147.
S. Daniele , P. Ugo , G. A. Mazzocchin , D. Rudello , Colloids and Dispersions, (Ed: J. Texter) VCH, New York 1992, p. 55.
S. Fletcher , M. D. Horne , Electrochem. Commun. 1999, 1, 502.
A. O. Simm , C. E. Banks , S.Ward-Jones , T. J. Davies , N. S. Lawrence , T. G. J. Jones , L. Jiang , R. G. Compton , Analyst 2005, 130, 1303.
2005; 130
2002; 19
2006; 78
2002; 74
1987; 91
2000; 45
2002; 114
2000; 70
2005; 20
2003; 15
1999; 44
2006; 131
2006
1981; 26
2006; 6
1993
1992
1991
1999; 1
1993; 345
2004; 129
1998; 43
2003; 75
2003; 32
2001; 502
1998; 46
2004; 76
2006; 68
2005; 585
2005; 9
2005; 148
2001; 3
1996; 330
2001; 16
1927; 9
1991; 305
1998; 102
1989; 216.
1990; 250
Daniele S. (e_1_2_1_30_2) 1992
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_46_2
e_1_2_1_28_2
e_1_2_1_29_2
Tomeš J. (e_1_2_1_26_2) 1927; 9
Hitchman M. L. (e_1_2_1_25_2) 1993
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
Nam Y. (e_1_2_1_16_2) 2006
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_1_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – volume: 68
  start-page: 1632
  year: 2006
  publication-title: Talanta
– volume: 6
  start-page: 308
  year: 2006
  publication-title: Sensors
– volume: 130
  start-page: 1303
  year: 2005
  publication-title: Analyst
– volume: 43
  start-page: 579
  year: 1998
  publication-title: Electrochim. Acta
– volume: 20
  start-page: 1566
  year: 2005
  publication-title: Biosens. Bioelectron
– volume: 585
  start-page: 51
  year: 2005
  publication-title: J. Electroanal. Chem.
– volume: 305
  start-page: 73
  year: 1991
  publication-title: J. Electroanal. Chem.
– volume: 44
  start-page: 4573
  year: 1999
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 147
  year: 2001
  publication-title: Biosens. Biolectron.
– volume: 250
  start-page: 118
  year: 1990
  publication-title: Science
– volume: 76
  start-page: 357
  year: 2004
  publication-title: Anal. Chem.
– volume: 91
  start-page: 6663
  year: 1987
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 2455
  year: 1999
  publication-title: Electrochim. Acta
– volume: 102
  start-page: 10041
  year: 1998
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 219
  year: 2002
  publication-title: Mat. Sci. Eng. C
– volume: 32
  start-page: 737
  year: 2003
  publication-title: J. Pharm. Biomed. Anal.
– volume: 15
  start-page: 548
  year: 2003
  publication-title: Electroanalysis
– volume: 26
  start-page: 725
  year: 1981
  publication-title: Electrochim. Acta
– volume: 74
  start-page: 5717
  year: 2002
  publication-title: Anal. Chem.
– volume: 114
  start-page: 135
  year: 2002
  publication-title: J. Neurosci. Methods
– volume: 131
  start-page: 440
  year: 2006
  publication-title: Analyst
– volume: 75
  start-page: 4382
  year: 2003
  publication-title: Anal. Chem.
– volume: 74
  start-page: 1718
  year: 2002
  publication-title: Anal. Chem.
– volume: 70
  start-page: 51
  year: 2000
  publication-title: Sens. Actuators
– volume: 330
  start-page: 123
  year: 1996
  publication-title: Anal. Chim. Acta
– volume: 216.
  year: 1989
  publication-title: Anal. Chim. Acta
– volume: 74
  start-page: 1322
  year: 2002
  publication-title: Anal. Chem.
– volume: 1
  start-page: 502
  year: 1999
  publication-title: Electrochem. Commun.
– volume: 148
  start-page: 1
  year: 2005
  publication-title: J. Neurosci. Methods
– volume: 9
  start-page: 797
  year: 2005
  publication-title: J. Solid State Electrochem.
– volume: 9
  start-page: 150
  year: 1927
  publication-title: Collect. Czech. Chem. Commun.
– volume: 78
  start-page: 2539
  year: 2006
  publication-title: Anal. Chem.
– volume: 45
  start-page: 3573
  year: 2000
  publication-title: Electrochim. Acta
– volume: 502
  start-page: 138
  year: 2001
  publication-title: J. Electroanal. Chem.
– year: 1991
– volume: 129
  start-page: 1157
  year: 2004
  publication-title: Analyst
– start-page: 55
  year: 1992
– volume: 43
  start-page: 2015
  year: 1998
  publication-title: Electrochim. Acta
– year: 1993
– volume: 74
  start-page: 1986
  year: 2002
  publication-title: Anal. Chem.
– volume: 345
  start-page: 253
  year: 1993
  publication-title: J. Electroanal. Chem.
– year: 2006
  publication-title: J. Neurosci. Methods
– volume: 3
  start-page: 29
  year: 2001
  publication-title: Biomed. Device
– volume: 46
  start-page: 242
  year: 1998
  publication-title: Sens. Actuators B
– ident: e_1_2_1_6_2
  doi: 10.1007/s10008-005-0699-x
– ident: e_1_2_1_42_2
  doi: 10.1016/S0956-5663(01)00134-8
– ident: e_1_2_1_10_2
  doi: 10.1021/ac0520994
– ident: e_1_2_1_31_2
  doi: 10.1021/j100311a021
– ident: e_1_2_1_35_2
  doi: 10.1016/S0013-4686(97)00125-4
– ident: e_1_2_1_14_2
  doi: 10.1016/S0925-4005(00)00553-0
– ident: e_1_2_1_15_2
  doi: 10.1016/j.jneumeth.2005.08.015
– ident: e_1_2_1_32_2
  doi: 10.1016/0022-0728(91)85203-2
– ident: e_1_2_1_34_2
  doi: 10.1016/0013-4686(81)90029-3
– ident: e_1_2_1_12_2
  doi: 10.1021/ac025649w
– ident: e_1_2_1_23_2
  doi: 10.1023/A:1011469102224
– volume-title: Chemical Vapor Deposition: Principles and Applications
  year: 1993
  ident: e_1_2_1_25_2
  contributor:
    fullname: Hitchman M. L.
– ident: e_1_2_1_28_2
  doi: 10.1016/S0003-2670(00)82009-7
– ident: e_1_2_1_40_2
  doi: 10.1021/ac011052p
– ident: e_1_2_1_7_2
  doi: 10.1039/b506956d
– ident: e_1_2_1_17_2
  doi: 10.1016/S0165-0270(01)00514-3
– ident: e_1_2_1_38_2
  doi: 10.1016/S0013-4686(99)00183-8
– ident: e_1_2_1_2_2
– ident: e_1_2_1_45_2
  doi: 10.1016/j.talanta.2005.08.023
– ident: e_1_2_1_39_2
  doi: 10.1016/S0013-4686(00)00481-3
– ident: e_1_2_1_3_2
  doi: 10.1039/b415395m
– ident: e_1_2_1_13_2
  doi: 10.1021/ac010933t
– ident: e_1_2_1_33_2
  doi: 10.1016/0022-0728(93)80483-X
– ident: e_1_2_1_11_2
  doi: 10.1021/jp982983g
– ident: e_1_2_1_36_2
  doi: 10.1016/S0013-4686(97)10116-5
– ident: e_1_2_1_43_2
  doi: 10.1016/S0925-4005(98)00124-5
– ident: e_1_2_1_24_2
  doi: 10.1016/S0928-4931(01)00469-6
– year: 2006
  ident: e_1_2_1_16_2
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Nam Y.
– volume: 9
  start-page: 150
  year: 1927
  ident: e_1_2_1_26_2
  publication-title: Collect. Czech. Chem. Commun.
  doi: 10.1135/cccc19370150
  contributor:
    fullname: Tomeš J.
– ident: e_1_2_1_21_2
  doi: 10.1021/ac034974w
– ident: e_1_2_1_27_2
– ident: e_1_2_1_46_2
  doi: 10.3390/s6040308
– ident: e_1_2_1_8_2
  doi: 10.1039/B513786A
– ident: e_1_2_1_4_2
  doi: 10.1016/S1388-2481(99)00100-9
– ident: e_1_2_1_29_2
  doi: 10.1126/science.250.4984.1118
– start-page: 55
  volume-title: Colloids and Dispersions
  year: 1992
  ident: e_1_2_1_30_2
  contributor:
    fullname: Daniele S.
– ident: e_1_2_1_9_2
  doi: 10.1016/S0022-0728(01)00343-6
– ident: e_1_2_1_44_2
  doi: 10.1016/S0731-7085(03)00181-X
– ident: e_1_2_1_37_2
  doi: 10.1016/S0013-4686(98)00369-7
– ident: e_1_2_1_5_2
  doi: 10.1016/j.jelechem.2005.07.021
– ident: e_1_2_1_20_2
  doi: 10.1021/ac034370s
– ident: e_1_2_1_41_2
  doi: 10.1016/0003-2670(96)00169-9
– ident: e_1_2_1_22_2
  doi: 10.1021/ac015669i
– ident: e_1_2_1_1_2
  doi: 10.1007/978-94-011-3210-7
– ident: e_1_2_1_19_2
  doi: 10.1002/elan.200390068
– ident: e_1_2_1_18_2
  doi: 10.1016/j.bios.2004.08.022
SSID ssj0009649
Score 1.9238517
Snippet Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N, of electrodes in each array varies between 225 and 3600)...
Abstract Densely packed micro‐ and submicrometer electrode arrays of platinum and gold (the nominal number, N , of electrodes in each array varies between 225...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1749
SubjectTerms Conical shape
Micrometer electrode arrays
Submicrometer electrode arrays
Title Voltammetric Characterization of Micro- and Submicrometer-Electrode Arrays of Conical Shape for Electroanalytical Use
URI https://api.istex.fr/ark:/67375/WNG-3QWJTRVP-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.200603595
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOcCFHVE2-YDglDa1sx5RaKkqUUHpdovsxBZSS1p1kSgnPoFv5EvwOE2gXJDgmGicxctsevMGoQvbM5VVBOZHlzHDsrgweBSr4x5bDpO-58lIoy2aTr1jNfp2_1sVf8oPkSfc4GRofQ0HnPFp-Ys0VAyZ5i91gIQOqswr1AVM103riz_Kd7T_WwHYnKksb8baaJLy6vAVq7QOE_yy6q1qc1PbRiz70BRlMijNZ7wUvf7gcPzPn-ygraUviq_TzbOL1kSyhzaCrAXcPlp0R8MZpLaBxh8HObdzWrqJRxLfAZ7v4-0dsyTGSgk9a3wfQGzUzWraYicW6hUTtpjCgGCkCzHx4xMbC6w8ZryUYsCOohPruDMVB6hTq7aDurHs1WBEVMUcBvU5sWPpiYhTKiNuWkJFYkpheJ5PHCF8FtkqAOaCuqbvUcpc5RhIFbwKGZvMFvQQFZJRIo4QlpSrKCsiMatwy3EkjyVR8q7DiWkLToroKlurcJxScoQp-TIJYSrDfCqL6FIvZS7GJgMAsrl22GvehvSh12i3uvdhu4iIXqBfnhdCF5P86vgvg07QZprEAZTaKSrMJnNxptyaGT_XW_cTFj3y6Q
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTiMxEC0xcIALOyIzLD4gODV07F6Po7CELWJJgJtld9tCAhIUggRz4hP4Rr6EKne6UbiMNHPslt2Ly-Va9OoVwEaY-GgVifkxVsoLAm08neWo7nkQKZsmic0c2qIVNTvB0U1YogmpFqbgh6gSbqQZ7rwmBaeE9M4Xa6i5V47ANCIWuvAHTKDOC-resHvxxSCVRs4DrhNwzkfbW_I2-nxndP6IXZqgJX4Z9VedwdmfAV1-aoEzudt-Hujt7M83Fsf_-pdZmB66o-x3sX_mYMx052GyUXaBW4DXq979gLLbxOTPGhW9c1G9yXqWnRKk7-PtnaluzvAcenAQP0LZ4M29ostObvAVffX6RBMaPVeLyS5v1aNh6DSz4ShFBCkut846T2YROvt77UbTG7Zr8DKBYYcnUs3D3CYm00LYTPuBwWAMz4wkSXlkTKqyEGNgbUTsp4kQKkbfwGL8amzuq9CIJRjv9rpmGZgVGgOtjOeqroMosjq3HMfHkeZ-aDSvwVYpLPlYsHLIgn-ZS1pKWS1lDTadLKthqn9HWLY4lNetAynOr4_aF1dnsl0D7iT0l-dJamRSXf38l0nrMNlsn57Ik8PW8S-YKnI6BFpbgfFB_9msopcz0GtuH38CN-n3AQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB21ILVcoC0gQgv4UJXTwmLvenePVSBQ2kYUEuBm2WtbSEAShSCVnvoT-hv7S5jxJkvDBYked-XZD3_Nm9HzG4CPaR6jVyTlx0zrKEmMi0xpcbnbRGpf5LkvA9uiLQ-6yeF5ev7PKf5KH6JOuNHKCPs1LfCB9dsPoqHuSgf9UkkidOlLmE0kwl-CRccPAlKFDAB4h3hzMbreiWxjzLen7afc0iz18M9puBr8TWsB9ORLK5rJ5dbtyGyVvx6JOP7Pr7yB-TEYZZ-r2fMWXrjeO3jdnNSAW4S70_7ViHLbpOPPmrW4c3V2k_U9-06Evr-__zDdswx3oetA8COODd7cq2rsWIevGOq7GzJo9sNJTHZyoQeOIWRm41aa5FFCZp11b9wSdFt7neZBNC7WEJUCg45IFIan1ueuNEL40sSJw1AMd4w8L7h0rtBlihGwcSKLi1wInSEy8Bi9Om9jnTqxDDO9fs-tAPPCYJhVcqt3TCKlN9ZzbJ9Jw-PUGd6AzclYqUGlyaEq9WWuqCtV3ZUN-BSGsm6mh5fEZMtSddbeV-LH2WHn-PRIdRrAwwA98TxFZUzqq9XnGG3Aq6Pdlvr2pf31PcxVCR1irH2AmdHw1q0hxBmZ9TCL7wFgG_Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltammetric+Characterization+of+Micro%E2%80%90+and+Submicrometer%E2%80%90Electrode+Arrays+of+Conical+Shape+for+Electroanalytical+Use&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=Daniele%2C+Salvatore&rft.au=De%E2%80%85Faveri%2C+Eddy&rft.au=Kleps%2C+Irina&rft.au=Angelescu%2C+Anca&rft.date=2006-09-01&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=18&rft.issue=18&rft.spage=1749&rft.epage=1756&rft_id=info:doi/10.1002%2Felan.200603595&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_elan_200603595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon