Consolidated bioprocessing performance of a two‐species microbial consortium for butanol production from lignocellulosic biomass

Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridiu...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 117; no. 10; pp. 2985 - 2995
Main Authors Jiang, Yujia, Lv, Yang, Wu, Ruofan, Lu, Jiasheng, Dong, Weiliang, Zhou, Jie, Zhang, Wenming, Xin, Fengxue, Jiang, Min
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose. Microbial consortia could perform more complicated tasks through the labor division. An emerging constructed two‐species consortium consisting of lignocellulosic degrader strain M5 and butanol producer strain NJ4 showed complementary functions, and the interaction mechanism of microbial consortium was explored through the analysis of key genes transcriptional levels. Finally, 13.28 g/L of butanol was obtained from xylan, and 7.61 g/L of butanol was achieved from corncob via CBP after the fermentation optimization. The successful microbial consortium could provide the platform for the emerging butanol production from lignocellulose.
AbstractList Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.
Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.
Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose. Microbial consortia could perform more complicated tasks through the labor division. An emerging constructed two‐species consortium consisting of lignocellulosic degrader strain M5 and butanol producer strain NJ4 showed complementary functions, and the interaction mechanism of microbial consortium was explored through the analysis of key genes transcriptional levels. Finally, 13.28 g/L of butanol was obtained from xylan, and 7.61 g/L of butanol was achieved from corncob via CBP after the fermentation optimization. The successful microbial consortium could provide the platform for the emerging butanol production from lignocellulose.
Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.
Author Wu, Ruofan
Dong, Weiliang
Zhou, Jie
Jiang, Yujia
Zhang, Wenming
Lu, Jiasheng
Lv, Yang
Jiang, Min
Xin, Fengxue
Author_xml – sequence: 1
  givenname: Yujia
  surname: Jiang
  fullname: Jiang, Yujia
  organization: Nanjing Tech University
– sequence: 2
  givenname: Yang
  surname: Lv
  fullname: Lv, Yang
  organization: Nanjing Tech University
– sequence: 3
  givenname: Ruofan
  surname: Wu
  fullname: Wu, Ruofan
  organization: Nanjing Tech University
– sequence: 4
  givenname: Jiasheng
  surname: Lu
  fullname: Lu, Jiasheng
  organization: Nanjing Tech University
– sequence: 5
  givenname: Weiliang
  surname: Dong
  fullname: Dong, Weiliang
  organization: Nanjing Tech University
– sequence: 6
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: Nanjing Tech University
– sequence: 7
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
  organization: Nanjing Tech University
– sequence: 8
  givenname: Fengxue
  orcidid: 0000-0002-0758-8340
  surname: Xin
  fullname: Xin, Fengxue
  email: xinfengxue@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 9
  givenname: Min
  orcidid: 0000-0002-4013-819X
  surname: Jiang
  fullname: Jiang, Min
  email: bioengine@njtech.edu.cn
  organization: Nanjing Tech University
BookMark eNp9kc1K7TAUhYMoePwZ-AYBJ9dBdSfNSdrhvQf_QHCi45KmiUTS5NwkRZyJT-Az-iSmHkeCjsLefGtlsdce2vbBa4SOCJwSAHrW23xKBeNsCy0ItKIC2sI2WgAAr-plS3fRXkqPZRQN5wv0ugo-BWcHmfWAexvWMSidkvUPeK2jCXGUXmkcDJY4P4X3l7e01srqhEerYuitdFjNHjHbacRFgPspSx8cLlbDpLINHpsYRuzsgy_mzk0uJKvm30aZ0gHaMdIlffj17qP7i_O71VV1c3t5vfp7U6maC1ZJNdSgW8H6XgI1AA0tCyqJqGUDA3DGKW-YJr1RVJOyNEvSN4NgQtDW1PU--rPxLbn-TzrlbrRpjiO9DlPqKGOsFpwCFPT4G_oYpuhLupkiy7bhQAt1sqHKHVKK2nTraEcZnzsC3dxGV9roPtso7Nk3Vtks59vkKK37TfFknX7-2br7d323UXwAQO-hFQ
CitedBy_id crossref_primary_10_1016_j_enzmictec_2022_110190
crossref_primary_10_1080_10408398_2022_2129582
crossref_primary_10_1016_j_csbj_2021_06_048
crossref_primary_10_1007_s13399_024_06423_2
crossref_primary_10_1016_j_biortech_2022_127153
crossref_primary_10_1039_D1RA09396G
crossref_primary_10_1016_j_rineng_2024_102366
crossref_primary_10_3389_fmicb_2022_940610
crossref_primary_10_1007_s11244_024_01941_9
crossref_primary_10_1016_j_bej_2023_109102
crossref_primary_10_35534_sbe_2023_10005
crossref_primary_10_1111_1751_7915_14400
crossref_primary_10_1111_1751_7915_14148
crossref_primary_10_1039_D1SE00927C
crossref_primary_10_1016_j_bej_2020_107891
crossref_primary_10_1016_j_eti_2021_102073
crossref_primary_10_5772_geet_20240082
crossref_primary_10_1016_j_indcrop_2023_117374
crossref_primary_10_3389_fbioe_2022_1051233
crossref_primary_10_1016_j_biotechadv_2024_108460
crossref_primary_10_1016_j_indcrop_2023_117117
crossref_primary_10_1016_j_tibtech_2021_12_008
crossref_primary_10_1021_acs_jafc_2c07650
crossref_primary_10_1016_j_jhazmat_2022_129460
crossref_primary_10_1016_j_eti_2022_102679
crossref_primary_10_1186_s13068_021_02053_2
crossref_primary_10_1016_j_fuel_2020_119505
crossref_primary_10_1039_D4NJ03377A
crossref_primary_10_1186_s13068_021_02070_1
crossref_primary_10_1039_D2GC01850K
crossref_primary_10_1007_s00253_021_11450_4
crossref_primary_10_1016_j_biortech_2021_125222
crossref_primary_10_1016_j_ijbiomac_2022_08_186
crossref_primary_10_1016_j_biotechadv_2025_108523
crossref_primary_10_1021_acssynbio_3c00329
crossref_primary_10_3390_molecules26175411
crossref_primary_10_1002_cbic_202400297
crossref_primary_10_3389_fbioe_2024_1423935
crossref_primary_10_1016_j_bej_2023_108857
crossref_primary_10_3389_fbioe_2023_1272429
crossref_primary_10_1016_j_ijhydene_2021_04_046
crossref_primary_10_1016_j_mib_2021_09_008
crossref_primary_10_1016_j_psep_2024_03_027
crossref_primary_10_1039_D2GC04520F
crossref_primary_10_1007_s00253_025_13428_y
crossref_primary_10_1016_j_tibtech_2022_10_005
crossref_primary_10_1016_j_cogsc_2023_100842
Cites_doi 10.1186/1754-6834-6-138
10.1016/j.biortech.2012.10.002
10.1128/AEM.00706-11
10.1007/s00284-017-1425-5
10.1016/j.biortech.2017.05.117
10.1038/nchembio.975
10.1016/j.rser.2011.06.001
10.1016/j.biortech.2015.03.061
10.1186/s13068-017-0805-1
10.1016/j.biortech.2012.11.033
10.1186/s12934-014-0092-5
10.1016/j.ymben.2012.05.003
10.1016/j.synbio.2016.08.004
10.1007/s00284-018-1513-1
10.1016/j.ijhydene.2019.01.226
10.1186/s13068-018-1092-1
10.1007/BF00132170
10.1186/s13068-019-1508-6
10.1186/s13068-019-1495-7
10.1016/j.procbio.2014.07.009
10.1186/1471-2164-12-93
10.1186/s12934-015-0406-2
10.1016/j.fuel.2006.12.013
10.1002/biot.201100046
10.1016/j.jbiotec.2009.08.009
10.1016/j.biombioe.2009.12.023
10.1016/j.biortech.2011.12.133
10.1016/j.biortech.2016.06.091
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.27464
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 2995
ExternalDocumentID 10_1002_bit_27464
BIT27464
Genre article
GrantInformation_xml – fundername: Project of State Key Laboratory of Materials‐Oriented Chemical Engineering
  funderid: ZK201601
– fundername: Jiangsu Province Natural Science Foundation for Youths
  funderid: BK20170993
– fundername: National Key R&D Program of China
  funderid: 2018YFA0902200; 2019YFA0905500
– fundername: National Natural Science Foundation of China
  funderid: 21706125; 21978130; 31961133017
– fundername: Jiangsu Synergetic Innovation Center for Advanced Bio‐Manufacture
  funderid: XTE1840
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3674-acd30e974bba02f0082d302a173a80d06462684e1bfc2e13a8f51b8d747729f33
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 05:34:18 EDT 2025
Fri Jul 25 19:10:25 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Tue Jul 01 01:09:04 EDT 2025
Wed Jan 22 17:00:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3674-acd30e974bba02f0082d302a173a80d06462684e1bfc2e13a8f51b8d747729f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0758-8340
0000-0002-4013-819X
PQID 2441598602
PQPubID 48814
PageCount 11
ParticipantIDs proquest_miscellaneous_2444376200
proquest_journals_2441598602
crossref_primary_10_1002_bit_27464
crossref_citationtrail_10_1002_bit_27464
wiley_primary_10_1002_bit_27464_BIT27464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Biotechnology and bioengineering
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 34
2014b; 49
2019; 12
2015; 186
1983; 5
2011; 77
2014a; 13
2011; 12
2011; 15
2012; 14
2011; 6
2016; 15
2013; 6
2016; 1
2012; 113
2016; 218
2019; 44
2017; 10
2009; 143
2013; 135
2017; 241
2007; 86
2018; 11
2018; 75
2012; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 8
  start-page: 527
  issue: 6
  year: 2012
  end-page: 535
  article-title: Natural strategies for the spatial optimization of metabolism in synthetic biology
  publication-title: Nature Chemical Biology
– volume: 15
  year: 2016
  article-title: Metabolic engineering of for the production of n‐butanol from crystalline cellulose
  publication-title: Microbial Cell Factories
– volume: 12
  year: 2011
  article-title: Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in EA 2018
  publication-title: BMC Genomics
– volume: 1
  start-page: 230
  issue: 4
  year: 2016
  end-page: 235
  article-title: Design and construction of synthetic microbial consortia in China
  publication-title: Synthetic and Systems Biotechnology
– volume: 75
  start-page: 620
  issue: 5
  year: 2018
  end-page: 623
  article-title: The draft genome sequence of thermophilic M5 capable of directly producing butanol from hemicellulose
  publication-title: Current Microbiology
– volume: 11
  year: 2018
  article-title: Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic sp. M5
  publication-title: Biotechnology for Biofuels
– volume: 12
  start-page: 155
  year: 2019
  article-title: Recent advances of biofuels and biochemicals production from sustainable resources using co‐cultivation systems
  publication-title: Biotechnology for Biofuels
– volume: 135
  start-page: 309
  year: 2013
  end-page: 315
  article-title: Characterization of a thermostable xylanase from a newly isolated species and its application for biobutanol production
  publication-title: Bioresource Technology
– volume: 5
  start-page: 119
  issue: 2
  year: 1983
  end-page: 124
  article-title: A novel one step process for cellulose fermentation using mesophilic cellulolytic and glycolytic
  publication-title: Biotechnology Letters
– volume: 135
  start-page: 254
  year: 2013
  end-page: 261
  article-title: Butanol production from acid hydrolyzed corn fiber with mutant
  publication-title: Bioresource Technology
– volume: 113
  start-page: 58
  year: 2012
  end-page: 64
  article-title: High yield bio‐butanol production by solvent‐producing bacterial microflora
  publication-title: Bioresource Technology
– volume: 34
  start-page: 566
  issue: 4
  year: 2010
  end-page: 571
  article-title: Production of butanol (a biofuel) from agricultural residues: Part II ‐ Use of corn stover and switchgrass hydrolysates
  publication-title: Biomass & Bioenergy
– volume: 49
  start-page: 1941
  issue: 11
  year: 2014b
  end-page: 1949
  article-title: A novel strategy for sequential co‐culture of and to produce solvents from alkali extracted corn cobs
  publication-title: Process Biochemistry
– volume: 86
  start-page: 1781
  issue: 12–13
  year: 2007
  end-page: 1788
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 186
  start-page: 325
  year: 2015
  end-page: 328
  article-title: Butanol production from alkali‐pretreated rice straw by co‐culture of and
  publication-title: Bioresource Technology
– volume: 77
  start-page: 6470
  issue: 18
  year: 2011
  end-page: 6475
  article-title: Butanol production from crystalline cellulose by cocultured and N1‐4
  publication-title: Applied and Environmental Microbiology
– volume: 241
  start-page: 369
  year: 2017
  end-page: 373
  article-title: Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production
  publication-title: Bioresource Technology
– volume: 6
  start-page: 1348
  issue: 11
  year: 2011
  end-page: 1357
  article-title: Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer
  publication-title: Biotechnology Journal
– volume: 6
  issue: 1
  year: 2013
  article-title: Effects of supplementary butyrate on butanol production and the metabolic switch in NCIMB 8052: Genome‐wide transcriptional analysis with RNA‐Seq
  publication-title: Biotechnology for Biofuels
– volume: 10
  year: 2017
  article-title: Strategies for improved isopropanol‐butanol production by a strain from glucose and hemicellulose through consolidated bioprocessing
  publication-title: Biotechnology for Biofuels
– volume: 12
  start-page: 167
  year: 2019
  article-title: Butanol production from lignocellulosic biomass: Revisiting fermentation performance indicators with exploratory data analysis
  publication-title: Biotechnology for Biofuels
– volume: 15
  start-page: 4080
  issue: 8
  year: 2011
  end-page: 4106
  article-title: Progress in the production and application of n‐butanol as a biofuel
  publication-title: Sustainable Energy Reviews
– volume: 218
  start-page: 174
  year: 2016
  end-page: 182
  article-title: Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation
  publication-title: Bioresource Technology
– volume: 44
  start-page: 14380
  issue: 28
  year: 2019
  end-page: 14386
  article-title: Efficient hydrogen production from lignocellulosic feedstocks by a newly isolated thermophlic sp. strain F6
  publication-title: International Journal of Hydrogen Energy
– volume: 13
  issue: 1
  year: 2014a
  article-title: Artificial symbiosis for acetone‐butanol‐ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co‐culture of and
  publication-title: Microbial Cell Factories
– volume: 143
  start-page: 284
  issue: 4
  year: 2009
  end-page: 287
  article-title: Improvement of xylose utilization in via expression of the gene encoding transaldolase from
  publication-title: Journal of Biotechnology
– volume: 75
  start-page: 1221
  issue: 9
  year: 2018
  end-page: 1225
  article-title: The draft genome sequence of sp. strain NJ4, a bacterium capable of producing butanol from inulin through consolidated bioprocessing
  publication-title: Current Microbiology
– volume: 14
  start-page: 569
  issue: 5
  year: 2012
  end-page: 578
  article-title: Metabolic engineering of D‐xylose pathway in to optimize solvent production from xylose mother liquid
  publication-title: Metabolic Engineering
– ident: e_1_2_8_22_1
  doi: 10.1186/1754-6834-6-138
– ident: e_1_2_8_28_1
  doi: 10.1016/j.biortech.2012.10.002
– ident: e_1_2_8_19_1
  doi: 10.1128/AEM.00706-11
– ident: e_1_2_8_14_1
  doi: 10.1007/s00284-017-1425-5
– ident: e_1_2_8_25_1
  doi: 10.1016/j.biortech.2017.05.117
– ident: e_1_2_8_2_1
  doi: 10.1038/nchembio.975
– ident: e_1_2_8_4_1
  doi: 10.1016/j.rser.2011.06.001
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biortech.2015.03.061
– ident: e_1_2_8_27_1
  doi: 10.1186/s13068-017-0805-1
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biortech.2012.11.033
– ident: e_1_2_8_23_1
  doi: 10.1186/s12934-014-0092-5
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ymben.2012.05.003
– ident: e_1_2_8_7_1
  doi: 10.1016/j.synbio.2016.08.004
– ident: e_1_2_8_15_1
  doi: 10.1007/s00284-018-1513-1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ijhydene.2019.01.226
– ident: e_1_2_8_13_1
  doi: 10.1186/s13068-018-1092-1
– ident: e_1_2_8_20_1
  doi: 10.1007/BF00132170
– ident: e_1_2_8_3_1
  doi: 10.1186/s13068-019-1508-6
– ident: e_1_2_8_17_1
  doi: 10.1186/s13068-019-1495-7
– ident: e_1_2_8_24_1
  doi: 10.1016/j.procbio.2014.07.009
– ident: e_1_2_8_12_1
  doi: 10.1186/1471-2164-12-93
– ident: e_1_2_8_9_1
  doi: 10.1186/s12934-015-0406-2
– ident: e_1_2_8_29_1
  doi: 10.1016/j.fuel.2006.12.013
– ident: e_1_2_8_10_1
  doi: 10.1002/biot.201100046
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jbiotec.2009.08.009
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biombioe.2009.12.023
– ident: e_1_2_8_5_1
  doi: 10.1016/j.biortech.2011.12.133
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biortech.2016.06.091
SSID ssj0007866
Score 2.5203733
Snippet Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2985
SubjectTerms Biodegradation
Biofuels
Bioprocessing
Butanol
consolidated bioprocessing
Consortia
corncob
Hemicellulose
Lignocellulose
microbial consortium
Microorganisms
Optimization
Substrate inhibition
Xylan
Xylanase
Xylose
Xylosidase
Title Consolidated bioprocessing performance of a two‐species microbial consortium for butanol production from lignocellulosic biomass
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27464
https://www.proquest.com/docview/2441598602
https://www.proquest.com/docview/2444376200
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS9xAFH4sgtgetK6KW22ZSim9ZE0mvzb0pFLRHjyIgodCmJlMSmg2s3QTxJ6Kf4F_o39J35tsdtfSgvQWkslmsvPezPdN3vsewHupEdPnaLwxcgEnEB76nMuVo3CpRTzuxjq30RYX0dl18OUmvOnBpy4XptWHmG-4kWfY-ZocXMjp4UI0VBb1EClVRFqgFKtFgOhyIR0Vj9rvlMSY_TDhnaqQyw_ndz5dixYAcxmm2nXmdAO-dj1sw0u-D5taDtXPP8Qb__MVXsH6DH-yo9ZgNqGnqz5sHVXIvcd37AOzEaF2q70Pq8fd0dpJVxeuDy-XJAy34J4qfpqyoI2DjMnCTNrMA7zIJoukBGZyJlh9ax5_PVByJ_JzNi6sCBT2RtFvYI-aMcMbmGwQsZqSTVo1WrQcRlkwrCy-VYa-NDSlQeOip40R-2_D9ennq5MzZ1bXwVF-FAeOUJnvaiQyUgqX54RC8AQXXuyLkZshSIpIg0Z7Mldce3gyDz05ypD5IBXIfX8HVipT6V1gOtIyzmMVorkFMknEKBOIQLkOEh2FcTCAj90Ip2omek61N8q0lWvmKY5BasdgAAfzppNW6eNvjfY7M0lnzj5NOXHShIp5DeDd_DKOCv0jotKmsW0CnMtxTsIuWZv490PS4_Mre_D6-U334AWnnQAbZrgPK_WPRr9BuFTLt9YvfgPIQxOw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrVDhwM8WxNICBgHikm3izc_mwKE_VLu09IC2Um-pnTgoajZedRNV7aniCXgQXoWX4EmYcZLdgkDi0gO3KHESy57xfDP2fAPwSirE9CkKb4C-gOUKB3XO5rEVo6lFPG4HKjWnLQ794ZH74dg7XoJvbS5MzQ8xD7iRZpj1mhScAtKbC9ZQmZU99Kl8tzlSua8uztFhm70b7eLsvuZ87_14Z2g1NQWsuO8HriXipG8rBNFSCpunZAHxBhdO0BcDO0ED7RP_iXJkGnPl4M3Uc-QgQdSNMDSl8Ccu-CtUQZyY-nc_LciqgkG9M0o-et8LectjZPPNeVd_tX4LSHsdGBvLtncPvrdjUh9oOe1VpezFl7_RRf4vg3Yf7jYQm23VOvEAllTRgbWtQpR6csHeMHPo1ewmdODWdnu1utOWvuvAnWssjWvwhYqa6jyj2EjCZKandXIFPmTTRd4F0ykTrDzXP66-Uv5qpmZskhmeK-xNTN_AHlUThi8wWSEo1zmb1oS7qByMEn1Ynn0uNG2mVLlG_aG_TdC9eQhHNzJij2C50IV6DEz5SgZpEHuoUa4MQzFIBIJsrtxQ-V7gduFtK1JR3PC6U3mRPKoZqXmEcx6ZOe_Cy3nTaU1m8qdGG61cRs16Nos4ud0h1Svrwov5Y5wVGhFRKF2ZNi6aK1x2sUtGCP_-k2h7NDYXT_696XNYHY4_HkQHo8P9dbjNKfBhTlVuwHJ5VqmniA5L-cwoJYOTmxbon6egb5E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrfjpocAWxNICBgHikm3izc_mwKHtsupSVCHUSr0FO3FQRDaO2ERVOSGegPfgVXgKnoQZJ9ktCCQuPXCLEiex7BnPN_bMNwBPpEJMn6LwBugLWK5wUOdsHlsxmlrE43agUhNtceQfnLivTr3TFfjW5cI0_BCLDTfSDLNek4KXSbqzJA2VWTVAl8p324jKQ3V-hv7a_MV0jJP7lPPJy-P9A6stKWDFQz9wLREnQ1shhpZS2DwlA4g3uHCCoRjZCdpnn-hPlCPTmCsHb6aeI0cJgm5EoSntfuJ6v-b6dkh1IsZvl1xVwag5GCUXfeiFvKMxsvnOoqu_Gr8lor2Ii41hm9yA792QNPEsHwZ1JQfxp9_YIv-TMbsJGy3AZruNRtyCFVX0YHO3EJWenbNnzIS8mrOEHlzZ666u7XeF73qwfoGjcRO-UElTnWe0M5IwmemySa3Ah6xcZl0wnTLBqjP94_NXyl7N1JzNMsNyhb2J6RvYo3rG8AUma4TkOmdlQ7eLqsEozYfl2ftC01FKnWvUHvrbDJ2b23ByKSN2B1YLXai7wJSvZJAGsYf65MowFKNEIMTmyg2V7wVuH553EhXFLas7FRfJo4aPmkc455GZ8z48XjQtGyqTPzXa7sQyalezecTJ6Q6pWlkfHi0e46zQiIhC6dq0cdFY4aKLXTIy-PefRHvTY3Nx79-bPoSrb8aT6PX06HALrnPa9TAhlduwWn2s1X2EhpV8YFSSwbvLluef2D1uQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consolidated+bioprocessing+performance+of+a+two%E2%80%90species+microbial+consortium+for+butanol+production+from+lignocellulosic+biomass&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Jiang%2C+Yujia&rft.au=Lv%2C+Yang&rft.au=Wu%2C+Ruofan&rft.au=Lu%2C+Jiasheng&rft.date=2020-10-01&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=117&rft.issue=10&rft.spage=2985&rft.epage=2995&rft_id=info:doi/10.1002%2Fbit.27464&rft.externalDBID=10.1002%252Fbit.27464&rft.externalDocID=BIT27464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon