Assessment of the Madden‐Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory

The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties rela...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 8
Main Authors Lin, Qiao‐Jun, Mayta, Víctor C., Adames Corraliza, Ángel F.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.04.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Plain Language Summary The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic. Key Points Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features
AbstractList The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance.
Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Plain Language Summary The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic. Key Points Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features
Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance.
The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Plain Language Summary The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic. Key Points Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features
Author Mayta, Víctor C.
Lin, Qiao‐Jun
Adames Corraliza, Ángel F.
Author_xml – sequence: 1
  givenname: Qiao‐Jun
  orcidid: 0000-0003-4539-2688
  surname: Lin
  fullname: Lin, Qiao‐Jun
  email: qiaojun.lin@wisc.edu
  organization: University of Wisconsin
– sequence: 2
  givenname: Víctor C.
  orcidid: 0000-0003-4037-1722
  surname: Mayta
  fullname: Mayta, Víctor C.
  organization: University of Wisconsin
– sequence: 3
  givenname: Ángel F.
  orcidid: 0000-0003-3822-5347
  surname: Adames Corraliza
  fullname: Adames Corraliza, Ángel F.
  organization: University of Wisconsin
BookMark eNp9kc9uEzEQxq2qSKSFGw9gqdemjP-svT62EQ1BiYpQOXGwZtezraPtutgbVbnxCDwjT8LSVIgTpxnN99M3n_SdsOMhDcTYOwEXAqR7L0Gq5VqAMU4dsZlwWs9rAHvMZgBu2qU1r9lJKVsAUKDEjH27LIVKeaBh5Knj4z3xDYZAw68fPz_t-ogDvylt7HscYxp4HPhis_ps-CYF6gu_wkKBT8ImxTLuMj0L_PaeUt6_Ya867Au9fZmn7Ov1h9vFx_n6ZrlaXK7nrTJWz41QdWWgRm0DUBNEIyqkUNVt5wigDk6SsgFlsE0wnVCd1M44K43oXEtSnbLVwTck3PrHHB8w733C6J8PKd95zGNse_IkjBVoEQSgRqmwIQeqVR1JCbpRk9fZwesxp-87KqPfpl0epvhega6Es6aCiTo_UG1OpWTq_n4V4P9U4f-tYsLlAX-KPe3_y_rll7Wxymr1G9_Cin0
Cites_doi 10.1007/s00376‐019‐8167‐1
10.1038/s41612‐022‐00263‐5
10.1175/jas‐d‐20‐0074.1
10.1007/s00382‐017‐3558‐4
10.1175/jas‐d‐14‐0052.1
10.1175/jas‐d‐12‐0227.1
10.1007/s13351‐019‐9015‐z
10.1175/jcli‐d‐17‐0601.1
10.1175/jcli‐d‐20‐0662.1
10.1016/j.atmosres.2021.105880
10.1175/jas‐d‐16‐0242.1
10.1029/2011jd016031
10.1175/1520‐0442(2001)014<2015:tsoivi>2.0.co;2
10.1175/jcli‐d‐19‐0956.1
10.1007/s00382‐013‐1890‐x
10.1175/1520‐0469(1999)056<0374:ccewao>2.0.co;2
10.1175/1520‐0442(2003)016<0345:sotmjo>2.0.co;2
10.1029/2023gl103002
10.1175/jas‐d‐15‐0170.1
10.1175/2008jcli2739.1
10.1175/mwr‐d‐21‐0225.1
10.5194/gmd‐15‐5529‐2022
10.5194/gmd‐9‐1937‐2016
10.1029/2020gl087250
10.1007/s00382‐021‐05656‐5
10.1002/2015jd023278
10.1175/jas‐d‐12‐0189.1
10.5194/gmd‐15‐5689‐2022
10.1175/jcli‐d‐14‐00416.1
10.1029/2022gl097799
10.1175/jas‐d‐15‐0003.1
10.1002/asl.1215
10.1175/jcli‐d‐19‐0144.1
10.1175/2008JCLI2731.1
10.1007/s00382‐018‐4355‐4
10.1175/jcli‐d‐22‐0435.1
10.1175/1520‐0442(2004)017<1517:rbwvpa>2.0.co;2
10.1029/2023gl104452
10.1175/jas4018.1
10.1175/jcli4003.1
10.1175/jcli‐d‐22‐0835.1
10.1175/1520‐0469(1971)028<0702:doadoi>2.0.co;2
10.1186/s40562‐016‐0066‐z
10.1175/jas‐d‐11‐0118.1
10.1175/jcli‐d‐13‐00084.1
10.1175/jcli‐d‐16‐0614.1
10.1002/2016gl070898
10.1175/jas‐d‐14‐0249.1
10.1007/s40641‐021‐00172‐4
10.3390/atmos11101049
10.1175/jcli‐d‐18‐0437.1
10.1175/1520‐0442(2003)016<0365:sotmjo>2.0.co;2
10.1175/jas‐d‐19‐0121.1
10.1175/jas‐d‐13‐0240.1
10.1175/jcli‐d‐17‐0139.1
10.1175/jas‐d‐21‐0215.1
10.1175/jcli‐d‐20‐0653.1
10.1175/1520‐0450(2001)040<1965:tsottr>2.0.co;2
10.1175/2009jcli3063.1
10.1175/1520‐0469(1972)029<1109:dogscc>2.0.co;2
10.2151/jmsj.81.963
10.3894/james.2010.2.5
10.1175/1520‐0493(2004)132<1917:aarmmi>2.0.co;2
10.1002/2016jd025955
10.1175/jas‐d‐20‐0184.1
10.1175/jcli‐d‐21‐0378.1
10.1175/jcli‐d‐20‐0305.1
10.1002/qj.49712051902
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL106693
DatabaseName Wiley Open Access Journals
Wiley Online Library Free Content
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e1671a7a010a4a23abe903c3fe2204b3
10_1029_2023GL106693
GRL67374
Genre article
GeographicLocations Indian Ocean
GeographicLocations_xml – name: Indian Ocean
GrantInformation_xml – fundername: National Science Foundation
  funderid: 2236433
– fundername: National Science and Technology Council Taiwan
  funderid: 111‐2917‐I‐008‐002
– fundername: National Oceanic and Atmospheric Administration
  funderid: NA22OAR4310611
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3674-61385608a47d0ebd1b15aed58cf9e008d92e37da2d7bd6f13f249697261f9ce23
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Tue Oct 22 15:14:58 EDT 2024
Thu Nov 07 08:08:05 EST 2024
Fri Aug 23 00:39:29 EDT 2024
Sat Aug 24 00:57:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3674-61385608a47d0ebd1b15aed58cf9e008d92e37da2d7bd6f13f249697261f9ce23
ORCID 0000-0003-4539-2688
0000-0003-3822-5347
0000-0003-4037-1722
OpenAccessLink https://doaj.org/article/e1671a7a010a4a23abe903c3fe2204b3
PQID 3045197650
PQPubID 54723
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e1671a7a010a4a23abe903c3fe2204b3
proquest_journals_3045197650
crossref_primary_10_1029_2023GL106693
wiley_primary_10_1029_2023GL106693_GRL67374
PublicationCentury 2000
PublicationDate 28 April 2024
PublicationDateYYYYMMDD 2024-04-28
PublicationDate_xml – month: 04
  year: 2024
  text: 28 April 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_2_4_1
e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_2_2_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
Liebmann B. (e_1_2_9_1_43_1) 1996; 77
e_1_2_9_1_30_1
e_1_2_9_1_2_1
Hersbach H. (e_1_2_9_1_23_1) 2019; 159
e_1_2_9_1_4_1
e_1_2_9_1_6_1
e_1_2_9_1_60_1
e_1_2_9_1_62_1
e_1_2_9_1_64_1
e_1_2_9_1_66_1
e_1_2_9_1_29_1
e_1_2_9_1_68_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
Radon J. (e_1_2_9_1_55_1) 1917; 69
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_56_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_58_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_3_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
e_1_2_9_1_61_1
e_1_2_9_1_63_1
e_1_2_9_1_65_1
e_1_2_9_1_67_1
e_1_2_9_1_69_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
Cowan T. (e_1_2_9_1_17_1) 2022
e_1_2_9_1_70_1
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
e_1_2_9_1_38_1
e_1_2_9_1_59_1
References_xml – ident: e_1_2_9_1_40_1
  doi: 10.1007/s00376‐019‐8167‐1
– ident: e_1_2_9_1_53_1
  doi: 10.1038/s41612‐022‐00263‐5
– ident: e_1_2_9_1_7_1
  doi: 10.1175/jas‐d‐20‐0074.1
– ident: e_1_2_9_1_11_1
  doi: 10.1007/s00382‐017‐3558‐4
– ident: e_1_2_9_1_63_1
  doi: 10.1175/jas‐d‐14‐0052.1
– ident: e_1_2_9_1_24_1
  doi: 10.1175/jas‐d‐12‐0227.1
– ident: e_1_2_9_1_70_1
  doi: 10.1007/s13351‐019‐9015‐z
– ident: e_1_2_9_1_16_1
  doi: 10.1175/jcli‐d‐17‐0601.1
– ident: e_1_2_9_1_52_1
  doi: 10.1175/jcli‐d‐20‐0662.1
– ident: e_1_2_9_1_56_1
  doi: 10.1016/j.atmosres.2021.105880
– volume: 77
  start-page: 1275
  issue: 6
  year: 1996
  ident: e_1_2_9_1_43_1
  article-title: Description of a complete (interpolated) outgoing longwave radiation dataset
  publication-title: Bulletin of the American Meteorological Society
  contributor:
    fullname: Liebmann B.
– ident: e_1_2_9_1_2_1
  doi: 10.1175/jas‐d‐16‐0242.1
– ident: e_1_2_9_1_34_1
  doi: 10.1029/2011jd016031
– ident: e_1_2_9_1_46_1
  doi: 10.1175/1520‐0442(2001)014<2015:tsoivi>2.0.co;2
– ident: e_1_2_9_1_54_1
  doi: 10.1175/jcli‐d‐19‐0956.1
– ident: e_1_2_9_1_32_1
  doi: 10.1007/s00382‐013‐1890‐x
– ident: e_1_2_9_1_67_1
  doi: 10.1175/1520‐0469(1999)056<0374:ccewao>2.0.co;2
– ident: e_1_2_9_1_26_1
  doi: 10.1175/1520‐0442(2003)016<0345:sotmjo>2.0.co;2
– ident: e_1_2_9_1_50_1
  doi: 10.1029/2023gl103002
– ident: e_1_2_9_1_4_1
  doi: 10.1175/jas‐d‐15‐0170.1
– ident: e_1_2_9_1_57_1
  doi: 10.1175/2008jcli2739.1
– ident: e_1_2_9_1_59_1
  doi: 10.1175/mwr‐d‐21‐0225.1
– ident: e_1_2_9_1_65_1
  doi: 10.5194/gmd‐15‐5529‐2022
– ident: e_1_2_9_1_21_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_9_1_10_1
  doi: 10.1029/2020gl087250
– ident: e_1_2_9_1_15_1
  doi: 10.1007/s00382‐021‐05656‐5
– ident: e_1_2_9_1_19_1
  doi: 10.1002/2015jd023278
– ident: e_1_2_9_1_62_1
  doi: 10.1175/jas‐d‐12‐0189.1
– ident: e_1_2_9_1_36_1
  doi: 10.5194/gmd‐15‐5689‐2022
– ident: e_1_2_9_1_64_1
  doi: 10.1175/jcli‐d‐14‐00416.1
– ident: e_1_2_9_1_49_1
  doi: 10.1029/2022gl097799
– ident: e_1_2_9_1_8_1
  doi: 10.1175/jas‐d‐15‐0003.1
– ident: e_1_2_9_1_51_1
  doi: 10.1002/asl.1215
– ident: e_1_2_9_1_68_1
  doi: 10.1175/jcli‐d‐19‐0144.1
– ident: e_1_2_9_2_2_1
  doi: 10.1175/2008JCLI2731.1
– ident: e_1_2_9_1_37_1
  doi: 10.1007/s00382‐018‐4355‐4
– ident: e_1_2_9_1_48_1
  doi: 10.1175/jcli‐d‐22‐0435.1
– ident: e_1_2_9_1_14_1
  doi: 10.1175/1520‐0442(2004)017<1517:rbwvpa>2.0.co;2
– ident: e_1_2_9_1_39_1
  doi: 10.1029/2023gl104452
– volume: 159
  start-page: 17
  year: 2019
  ident: e_1_2_9_1_23_1
  article-title: Global reanalysis: Goodbye ERA‐Interim, hello ERA5
  publication-title: ECMWF newsletter
  contributor:
    fullname: Hersbach H.
– ident: e_1_2_9_2_4_1
  doi: 10.1175/jas4018.1
– ident: e_1_2_9_1_22_1
  doi: 10.1175/jcli4003.1
– ident: e_1_2_9_1_18_1
  doi: 10.1175/jcli‐d‐22‐0835.1
– ident: e_1_2_9_1_44_1
  doi: 10.1175/1520‐0469(1971)028<0702:doadoi>2.0.co;2
– ident: e_1_2_9_1_66_1
  doi: 10.1186/s40562‐016‐0066‐z
– ident: e_1_2_9_1_61_1
  doi: 10.1175/jas‐d‐11‐0118.1
– ident: e_1_2_9_1_31_1
  doi: 10.1175/jcli‐d‐13‐00084.1
– ident: e_1_2_9_1_69_1
  doi: 10.1175/jcli‐d‐16‐0614.1
– ident: e_1_2_9_1_30_1
  doi: 10.1002/2016gl070898
– ident: e_1_2_9_1_28_1
  doi: 10.1175/jas‐d‐14‐0249.1
– ident: e_1_2_9_1_6_1
  doi: 10.1007/s40641‐021‐00172‐4
– ident: e_1_2_9_1_41_1
  doi: 10.3390/atmos11101049
– ident: e_1_2_9_1_60_1
  doi: 10.1175/jcli‐d‐18‐0437.1
– ident: e_1_2_9_1_27_1
  doi: 10.1175/1520‐0442(2003)016<0365:sotmjo>2.0.co;2
– ident: e_1_2_9_1_5_1
  doi: 10.1175/jas‐d‐19‐0121.1
– ident: e_1_2_9_1_13_1
  doi: 10.1175/jas‐d‐13‐0240.1
– ident: e_1_2_9_1_25_1
  doi: 10.1175/jcli‐d‐17‐0139.1
– ident: e_1_2_9_1_3_1
  doi: 10.1175/jas‐d‐21‐0215.1
– ident: e_1_2_9_1_58_1
  doi: 10.1175/jcli‐d‐20‐0653.1
– ident: e_1_2_9_1_35_1
  doi: 10.1175/1520‐0450(2001)040<1965:tsottr>2.0.co;2
– volume: 69
  start-page: 262
  year: 1917
  ident: e_1_2_9_1_55_1
  article-title: Uber die bestimmung von funktionen durch ihre intergralwerte la’ngs gewisser mannigfaltikeiten
  publication-title: Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig
  contributor:
    fullname: Radon J.
– ident: e_1_2_9_1_33_1
  doi: 10.1175/2009jcli3063.1
– ident: e_1_2_9_1_45_1
  doi: 10.1175/1520‐0469(1972)029<1109:dogscc>2.0.co;2
– ident: e_1_2_9_1_38_1
  doi: 10.2151/jmsj.81.963
– ident: e_1_2_9_1_47_1
  doi: 10.3894/james.2010.2.5
– start-page: 1
  year: 2022
  ident: e_1_2_9_1_17_1
  article-title: The combined influence of the Madden‐Julian Oscillation and El Niño‐Southern Oscillation on Australian rainfall
  publication-title: Journal of Climate
  contributor:
    fullname: Cowan T.
– ident: e_1_2_9_2_3_1
  doi: 10.1175/1520‐0493(2004)132<1917:aarmmi>2.0.co;2
– ident: e_1_2_9_1_29_1
  doi: 10.1002/2016jd025955
– ident: e_1_2_9_1_9_1
  doi: 10.1175/jas‐d‐20‐0184.1
– ident: e_1_2_9_1_42_1
  doi: 10.1175/jcli‐d‐21‐0378.1
– ident: e_1_2_9_1_12_1
  doi: 10.1175/jcli‐d‐20‐0305.1
– ident: e_1_2_9_1_20_1
  doi: 10.1002/qj.49712051902
SSID ssj0003031
Score 2.4929874
Snippet The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode...
Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture...
Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Climate
Climate models
CMIP6
Criteria
Intercomparison
Madden-Julian oscillation
Moist static energy
Moisture
moisture mode
Oceans
Simulation
Temperature gradients
Theories
Thermodynamics
Winds
Zonal winds
SummonAdditionalLinks – databaseName: Wiley Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IngRn7i6Sg56kmLzaNIc3cVdFVdFFAQPJWlSEZau7OPgzZ_gb_SXOEnrsnsRvJW8KJnOzDfp5BuEjh3RKlFWR7l1JuLCplEKKDeynFFDjTEx8beR-7fi8olfPyfP9YGbvwtT8UPMDty8ZgR77RVcm3FNNuA5Mn3d794NRDRCsWW04kljPHc-5fczSwzmuaqYp3iUUinqxHeYfzY_e8ElBeb-Bbg5D1qD1-luoPUaLuLzSr6baMmVW2i1F8rxfsBTSODMx9vo5XxGsYmHBQZYh_vBqHx_fvk70LrEd-DtBlXqG34rcad_dS-wr4U2GOM2ODOLoaM_BLlPRy504Orm_g566l48di6junBClDMhOYSDLAUkk2oubeyMJYYk2tkkzQvlwOlbRR2TVlMrjRUFYQUEYUJJiKYKlTvKdlGjHJZuD2GlJITbSWx4TrjUQoNNSKwmMuexllo20cnv3mXvFT9GFv5rU5XN73ETtf3GzsZ4VuvQMBy9ZrWSZI4ISWBViBE115Rp41TMclY4SmNuYJHWr1iyWtXGGQsMORKQZhOdBlH9-SJZ7-HG1-bh-_8afYDWoD3k7NC0hRqT0dQdAhyZmKPwzf0AoofUjw
  priority: 102
  providerName: Wiley-Blackwell
Title Assessment of the Madden‐Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL106693
https://www.proquest.com/docview/3045197650
https://doaj.org/article/e1671a7a010a4a23abe903c3fe2204b3
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFL34QHAjPnF8DFnoSorNo0mzHEVHxVERR0QXJWlSEIaOOLpw5yf4jX6Jt2lHxo1u3JW2lHBPe-859OZcgB1PjU60M1HuvI2EdGmUIsuNnODMMmttTKvdyL0LedIXZ3fJ3cSor6onrLYHrgO376lU1CiDusEIw7ixXsc854VnLBa29vmM9VhMNTkYE3M9K0-LKGVKNi3vMdOV2ufdc1RCUvMfxSh49v8gmpN0NdSb40VYaIgi6dQLXIIpXy7DXDcM4n3Do9C6mY9W4KHzba5JhgVBQkd6IZ18vn9Uu59NSS6xzg3qpjfyWJLD3umVJNUUtMGIHGAZcwQv9IaI-OuzDxdIvWd_FfrHRzeHJ1EzMiHKuVQChSBPkcOkRigXe-uopYnxLknzQnss904zz5UzzCnrZEF5gfJLaoU6qtC5Z3wNZsph6deBaK1QaCexFTkVykiD2SBxhqpcxIiHasHuOHbZU-2MkYU_2kxnkzFuwUEV2O97Kj_rcAJRzhqUs79QbsHWGJas-chGGQ_eOAo5Zgv2AlS_LiTrXp9XU3nExn-saBPm8eGhiYelWzDz8vzqt5GfvNg2TDNx1YbZzm3_vt8OL-YXYPrfJA
link.rule.ids 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VrRBcEOVH3VKoD3BCEfFP7Pi4rehuy6Yg1EUVHCw7dqpKVRbttofeeASesU_SsZOuthckblHiWJEnM_ONPfMNwPtArS60t1ntg8uE9GVWIsrNvODMMedcTmM1cnUiJzNxfFac9X1OYy1Mxw-x2nCLmpHsdVTwuCHdsw1EkszY-Hs8xZBGav4INot4pDeAzdGP2c_Zyhijhe6a5mmRlUzJPvcdZ_i0_v4Dr5TI-x8gznXcmhzP4XN41iNGMupEvAUboX0Bj8epI-8NXqUcznr5En6NViybZN4QRHakSnbl9s_fWAZtW_IVHd5ll_1GLlpyUB19kyS2Q7tckn30Z57gg2qOor9ehPSAdMX7r2B2-Pn0YJL1vROymkslMCLkJYKZ0grl8-A8dbSwwRdl3eiAft9rFrjylnnlvGwobzAOk1phQNXoOjD-GgbtvA3bQLRWGHEXuRM1FcpKi2ah8JaqWuRWWTWED_drZ353FBkmHW0zbdbXeAj7cWFXYyKxdboxX5ybXk9MoFJRnBXDRCss49YFnfOaN4GxXDicZPdeLKbXtqXhiSRHIdgcwsckqn9-iBl_n8b2PGLnv0bvwZPJaTU106OTL2_gKY5JKTys3IXB1eI6vEV0cuXe9X_gHW4u2ck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZgUVEvFaUgFmjrAz1VEfFP7Pi4S9kf2KWrCiQkDpYdO6gSyqJdOHDjEfqMPAljJ6x2L0i9RYltRZ7MzDfOzDcIHXliVKacSQrnbcKFy5McUG7iOKOWWmtTEqqRxxdicMXPrrPr5sAt1MLU_BCLA7egGdFeBwW_d2VDNhA4MkPf7_4IIhqh2Dra4IDEA3c-5ZOFJQbzXHfMUzzJqRRN4jvMP16eveKSInP_CtxcBq3R6_S20KcGLuJOLd_PaM1X2-hDP7bjfYKrmMBZzL-gm86CYhNPSwywDo-jUXl5_hdqoE2Ff4O3u6tT3_DfCp-MhxOBQy-0uznugjNzGB6MpyD3x5mPD3Bdub-DrnqnlyeDpGmckBRMSA7hIMsByeSGS5d664glmfEuy4tSeXD6TlHPpDPUSetESVgJQZhQEqKpUhWesl3UqqaV30NYKQnhdpZaXhAujTBgEzJniCx4aqSRbfTjbe_0fc2PoeN_bar08h63UTds7GJMYLWON6azW90oifZESAKrQoxouKHMWK9SVrDSU5pyC4scvolFN6o21ywy5EhAmm30M4rq3RfR_T-j0JuH7__X6O9oc_Krp0fDi_MD9BGGxPQdmh-i1sPs0X8FZPJgv8XP7xXu0Ncj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+Madden%E2%80%90Julian+Oscillation+in+CMIP6+Models+Based+on+Moisture+Mode+Theory&rft.jtitle=Geophysical+research+letters&rft.au=Qiao%E2%80%90Jun+Lin&rft.au=Mayta%2C+V%C3%ADctor+C&rft.au=%C3%81ngel+F+Adames+Corraliza&rft.date=2024-04-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft_id=info:doi/10.1029%2F2023GL106693&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon