Assessment of the Madden‐Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory
The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties rela...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.04.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance.
Plain Language Summary
The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic.
Key Points
Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory
No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean
Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features |
---|---|
AbstractList | The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Plain Language Summary The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic. Key Points Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. Plain Language Summary The Madden‐Julian Oscillation (MJO) is arguably the most important tropical phenomenon that drives weather at the intraseasonal time scale. Although the MJO has been analyzed for the past decades, its simulation in climate models can still be improved. Previous studies have emphasized that the MJO evolution is tightly modulated by moisture fluctuations and posited the moisture mode theory to explain its behavior. Here, we show that no climate model can realistically reproduce the moist thermodynamics of the MJO, particularly its sensitivity to humidity anomalies. The models that most reproduce the MJO's moist thermodynamics simulate a stronger MJO, and are generally more realistic. Key Points Madden‐Julian Oscillation (MJO) simulation skill in 25 Coupled Model Intercomparison Project Phase 6 models is assessed using moisture mode theory No model can realistically reproduce all the moisture mode properties of the MJO over the Indian Ocean Models that best capture the MJO's moisture mode features exhibit more realistic mean states and MJO structure and propagation features |
Author | Mayta, Víctor C. Lin, Qiao‐Jun Adames Corraliza, Ángel F. |
Author_xml | – sequence: 1 givenname: Qiao‐Jun orcidid: 0000-0003-4539-2688 surname: Lin fullname: Lin, Qiao‐Jun email: qiaojun.lin@wisc.edu organization: University of Wisconsin – sequence: 2 givenname: Víctor C. orcidid: 0000-0003-4037-1722 surname: Mayta fullname: Mayta, Víctor C. organization: University of Wisconsin – sequence: 3 givenname: Ángel F. orcidid: 0000-0003-3822-5347 surname: Adames Corraliza fullname: Adames Corraliza, Ángel F. organization: University of Wisconsin |
BookMark | eNp9kc9uEzEQxq2qSKSFGw9gqdemjP-svT62EQ1BiYpQOXGwZtezraPtutgbVbnxCDwjT8LSVIgTpxnN99M3n_SdsOMhDcTYOwEXAqR7L0Gq5VqAMU4dsZlwWs9rAHvMZgBu2qU1r9lJKVsAUKDEjH27LIVKeaBh5Knj4z3xDYZAw68fPz_t-ogDvylt7HscYxp4HPhis_ps-CYF6gu_wkKBT8ImxTLuMj0L_PaeUt6_Ya867Au9fZmn7Ov1h9vFx_n6ZrlaXK7nrTJWz41QdWWgRm0DUBNEIyqkUNVt5wigDk6SsgFlsE0wnVCd1M44K43oXEtSnbLVwTck3PrHHB8w733C6J8PKd95zGNse_IkjBVoEQSgRqmwIQeqVR1JCbpRk9fZwesxp-87KqPfpl0epvhega6Es6aCiTo_UG1OpWTq_n4V4P9U4f-tYsLlAX-KPe3_y_rll7Wxymr1G9_Cin0 |
Cites_doi | 10.1007/s00376‐019‐8167‐1 10.1038/s41612‐022‐00263‐5 10.1175/jas‐d‐20‐0074.1 10.1007/s00382‐017‐3558‐4 10.1175/jas‐d‐14‐0052.1 10.1175/jas‐d‐12‐0227.1 10.1007/s13351‐019‐9015‐z 10.1175/jcli‐d‐17‐0601.1 10.1175/jcli‐d‐20‐0662.1 10.1016/j.atmosres.2021.105880 10.1175/jas‐d‐16‐0242.1 10.1029/2011jd016031 10.1175/1520‐0442(2001)014<2015:tsoivi>2.0.co;2 10.1175/jcli‐d‐19‐0956.1 10.1007/s00382‐013‐1890‐x 10.1175/1520‐0469(1999)056<0374:ccewao>2.0.co;2 10.1175/1520‐0442(2003)016<0345:sotmjo>2.0.co;2 10.1029/2023gl103002 10.1175/jas‐d‐15‐0170.1 10.1175/2008jcli2739.1 10.1175/mwr‐d‐21‐0225.1 10.5194/gmd‐15‐5529‐2022 10.5194/gmd‐9‐1937‐2016 10.1029/2020gl087250 10.1007/s00382‐021‐05656‐5 10.1002/2015jd023278 10.1175/jas‐d‐12‐0189.1 10.5194/gmd‐15‐5689‐2022 10.1175/jcli‐d‐14‐00416.1 10.1029/2022gl097799 10.1175/jas‐d‐15‐0003.1 10.1002/asl.1215 10.1175/jcli‐d‐19‐0144.1 10.1175/2008JCLI2731.1 10.1007/s00382‐018‐4355‐4 10.1175/jcli‐d‐22‐0435.1 10.1175/1520‐0442(2004)017<1517:rbwvpa>2.0.co;2 10.1029/2023gl104452 10.1175/jas4018.1 10.1175/jcli4003.1 10.1175/jcli‐d‐22‐0835.1 10.1175/1520‐0469(1971)028<0702:doadoi>2.0.co;2 10.1186/s40562‐016‐0066‐z 10.1175/jas‐d‐11‐0118.1 10.1175/jcli‐d‐13‐00084.1 10.1175/jcli‐d‐16‐0614.1 10.1002/2016gl070898 10.1175/jas‐d‐14‐0249.1 10.1007/s40641‐021‐00172‐4 10.3390/atmos11101049 10.1175/jcli‐d‐18‐0437.1 10.1175/1520‐0442(2003)016<0365:sotmjo>2.0.co;2 10.1175/jas‐d‐19‐0121.1 10.1175/jas‐d‐13‐0240.1 10.1175/jcli‐d‐17‐0139.1 10.1175/jas‐d‐21‐0215.1 10.1175/jcli‐d‐20‐0653.1 10.1175/1520‐0450(2001)040<1965:tsottr>2.0.co;2 10.1175/2009jcli3063.1 10.1175/1520‐0469(1972)029<1109:dogscc>2.0.co;2 10.2151/jmsj.81.963 10.3894/james.2010.2.5 10.1175/1520‐0493(2004)132<1917:aarmmi>2.0.co;2 10.1002/2016jd025955 10.1175/jas‐d‐20‐0184.1 10.1175/jcli‐d‐21‐0378.1 10.1175/jcli‐d‐20‐0305.1 10.1002/qj.49712051902 |
ContentType | Journal Article |
Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2023GL106693 |
DatabaseName | Wiley Open Access Journals Wiley Online Library Free Content CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e1671a7a010a4a23abe903c3fe2204b3 10_1029_2023GL106693 GRL67374 |
Genre | article |
GeographicLocations | Indian Ocean |
GeographicLocations_xml | – name: Indian Ocean |
GrantInformation_xml | – fundername: National Science Foundation funderid: 2236433 – fundername: National Science and Technology Council Taiwan funderid: 111‐2917‐I‐008‐002 – fundername: National Oceanic and Atmospheric Administration funderid: NA22OAR4310611 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD ALXUD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3674-61385608a47d0ebd1b15aed58cf9e008d92e37da2d7bd6f13f249697261f9ce23 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Tue Oct 22 15:14:58 EDT 2024 Thu Nov 07 08:08:05 EST 2024 Fri Aug 23 00:39:29 EDT 2024 Sat Aug 24 00:57:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3674-61385608a47d0ebd1b15aed58cf9e008d92e37da2d7bd6f13f249697261f9ce23 |
ORCID | 0000-0003-4539-2688 0000-0003-3822-5347 0000-0003-4037-1722 |
OpenAccessLink | https://doaj.org/article/e1671a7a010a4a23abe903c3fe2204b3 |
PQID | 3045197650 |
PQPubID | 54723 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e1671a7a010a4a23abe903c3fe2204b3 proquest_journals_3045197650 crossref_primary_10_1029_2023GL106693 wiley_primary_10_1029_2023GL106693_GRL67374 |
PublicationCentury | 2000 |
PublicationDate | 28 April 2024 |
PublicationDateYYYYMMDD | 2024-04-28 |
PublicationDate_xml | – month: 04 year: 2024 text: 28 April 2024 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_2_4_1 e_1_2_9_1_15_1 e_1_2_9_1_36_1 e_1_2_9_2_2_1 e_1_2_9_1_13_1 e_1_2_9_1_34_1 e_1_2_9_1_11_1 e_1_2_9_1_32_1 Liebmann B. (e_1_2_9_1_43_1) 1996; 77 e_1_2_9_1_30_1 e_1_2_9_1_2_1 Hersbach H. (e_1_2_9_1_23_1) 2019; 159 e_1_2_9_1_4_1 e_1_2_9_1_6_1 e_1_2_9_1_60_1 e_1_2_9_1_62_1 e_1_2_9_1_64_1 e_1_2_9_1_66_1 e_1_2_9_1_29_1 e_1_2_9_1_68_1 e_1_2_9_1_27_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_1_46_1 e_1_2_9_1_21_1 e_1_2_9_1_44_1 e_1_2_9_1_42_1 e_1_2_9_1_40_1 e_1_2_9_1_8_1 Radon J. (e_1_2_9_1_55_1) 1917; 69 e_1_2_9_1_50_1 e_1_2_9_1_52_1 e_1_2_9_1_54_1 e_1_2_9_1_18_1 e_1_2_9_1_56_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_58_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_2_3_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_31_1 e_1_2_9_1_3_1 e_1_2_9_1_5_1 e_1_2_9_1_61_1 e_1_2_9_1_63_1 e_1_2_9_1_65_1 e_1_2_9_1_67_1 e_1_2_9_1_69_1 e_1_2_9_1_28_1 e_1_2_9_1_49_1 e_1_2_9_1_26_1 e_1_2_9_1_47_1 e_1_2_9_1_24_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_20_1 e_1_2_9_1_41_1 e_1_2_9_1_7_1 e_1_2_9_1_9_1 Cowan T. (e_1_2_9_1_17_1) 2022 e_1_2_9_1_70_1 e_1_2_9_1_51_1 e_1_2_9_1_53_1 e_1_2_9_1_19_1 e_1_2_9_1_57_1 e_1_2_9_1_38_1 e_1_2_9_1_59_1 |
References_xml | – ident: e_1_2_9_1_40_1 doi: 10.1007/s00376‐019‐8167‐1 – ident: e_1_2_9_1_53_1 doi: 10.1038/s41612‐022‐00263‐5 – ident: e_1_2_9_1_7_1 doi: 10.1175/jas‐d‐20‐0074.1 – ident: e_1_2_9_1_11_1 doi: 10.1007/s00382‐017‐3558‐4 – ident: e_1_2_9_1_63_1 doi: 10.1175/jas‐d‐14‐0052.1 – ident: e_1_2_9_1_24_1 doi: 10.1175/jas‐d‐12‐0227.1 – ident: e_1_2_9_1_70_1 doi: 10.1007/s13351‐019‐9015‐z – ident: e_1_2_9_1_16_1 doi: 10.1175/jcli‐d‐17‐0601.1 – ident: e_1_2_9_1_52_1 doi: 10.1175/jcli‐d‐20‐0662.1 – ident: e_1_2_9_1_56_1 doi: 10.1016/j.atmosres.2021.105880 – volume: 77 start-page: 1275 issue: 6 year: 1996 ident: e_1_2_9_1_43_1 article-title: Description of a complete (interpolated) outgoing longwave radiation dataset publication-title: Bulletin of the American Meteorological Society contributor: fullname: Liebmann B. – ident: e_1_2_9_1_2_1 doi: 10.1175/jas‐d‐16‐0242.1 – ident: e_1_2_9_1_34_1 doi: 10.1029/2011jd016031 – ident: e_1_2_9_1_46_1 doi: 10.1175/1520‐0442(2001)014<2015:tsoivi>2.0.co;2 – ident: e_1_2_9_1_54_1 doi: 10.1175/jcli‐d‐19‐0956.1 – ident: e_1_2_9_1_32_1 doi: 10.1007/s00382‐013‐1890‐x – ident: e_1_2_9_1_67_1 doi: 10.1175/1520‐0469(1999)056<0374:ccewao>2.0.co;2 – ident: e_1_2_9_1_26_1 doi: 10.1175/1520‐0442(2003)016<0345:sotmjo>2.0.co;2 – ident: e_1_2_9_1_50_1 doi: 10.1029/2023gl103002 – ident: e_1_2_9_1_4_1 doi: 10.1175/jas‐d‐15‐0170.1 – ident: e_1_2_9_1_57_1 doi: 10.1175/2008jcli2739.1 – ident: e_1_2_9_1_59_1 doi: 10.1175/mwr‐d‐21‐0225.1 – ident: e_1_2_9_1_65_1 doi: 10.5194/gmd‐15‐5529‐2022 – ident: e_1_2_9_1_21_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_9_1_10_1 doi: 10.1029/2020gl087250 – ident: e_1_2_9_1_15_1 doi: 10.1007/s00382‐021‐05656‐5 – ident: e_1_2_9_1_19_1 doi: 10.1002/2015jd023278 – ident: e_1_2_9_1_62_1 doi: 10.1175/jas‐d‐12‐0189.1 – ident: e_1_2_9_1_36_1 doi: 10.5194/gmd‐15‐5689‐2022 – ident: e_1_2_9_1_64_1 doi: 10.1175/jcli‐d‐14‐00416.1 – ident: e_1_2_9_1_49_1 doi: 10.1029/2022gl097799 – ident: e_1_2_9_1_8_1 doi: 10.1175/jas‐d‐15‐0003.1 – ident: e_1_2_9_1_51_1 doi: 10.1002/asl.1215 – ident: e_1_2_9_1_68_1 doi: 10.1175/jcli‐d‐19‐0144.1 – ident: e_1_2_9_2_2_1 doi: 10.1175/2008JCLI2731.1 – ident: e_1_2_9_1_37_1 doi: 10.1007/s00382‐018‐4355‐4 – ident: e_1_2_9_1_48_1 doi: 10.1175/jcli‐d‐22‐0435.1 – ident: e_1_2_9_1_14_1 doi: 10.1175/1520‐0442(2004)017<1517:rbwvpa>2.0.co;2 – ident: e_1_2_9_1_39_1 doi: 10.1029/2023gl104452 – volume: 159 start-page: 17 year: 2019 ident: e_1_2_9_1_23_1 article-title: Global reanalysis: Goodbye ERA‐Interim, hello ERA5 publication-title: ECMWF newsletter contributor: fullname: Hersbach H. – ident: e_1_2_9_2_4_1 doi: 10.1175/jas4018.1 – ident: e_1_2_9_1_22_1 doi: 10.1175/jcli4003.1 – ident: e_1_2_9_1_18_1 doi: 10.1175/jcli‐d‐22‐0835.1 – ident: e_1_2_9_1_44_1 doi: 10.1175/1520‐0469(1971)028<0702:doadoi>2.0.co;2 – ident: e_1_2_9_1_66_1 doi: 10.1186/s40562‐016‐0066‐z – ident: e_1_2_9_1_61_1 doi: 10.1175/jas‐d‐11‐0118.1 – ident: e_1_2_9_1_31_1 doi: 10.1175/jcli‐d‐13‐00084.1 – ident: e_1_2_9_1_69_1 doi: 10.1175/jcli‐d‐16‐0614.1 – ident: e_1_2_9_1_30_1 doi: 10.1002/2016gl070898 – ident: e_1_2_9_1_28_1 doi: 10.1175/jas‐d‐14‐0249.1 – ident: e_1_2_9_1_6_1 doi: 10.1007/s40641‐021‐00172‐4 – ident: e_1_2_9_1_41_1 doi: 10.3390/atmos11101049 – ident: e_1_2_9_1_60_1 doi: 10.1175/jcli‐d‐18‐0437.1 – ident: e_1_2_9_1_27_1 doi: 10.1175/1520‐0442(2003)016<0365:sotmjo>2.0.co;2 – ident: e_1_2_9_1_5_1 doi: 10.1175/jas‐d‐19‐0121.1 – ident: e_1_2_9_1_13_1 doi: 10.1175/jas‐d‐13‐0240.1 – ident: e_1_2_9_1_25_1 doi: 10.1175/jcli‐d‐17‐0139.1 – ident: e_1_2_9_1_3_1 doi: 10.1175/jas‐d‐21‐0215.1 – ident: e_1_2_9_1_58_1 doi: 10.1175/jcli‐d‐20‐0653.1 – ident: e_1_2_9_1_35_1 doi: 10.1175/1520‐0450(2001)040<1965:tsottr>2.0.co;2 – volume: 69 start-page: 262 year: 1917 ident: e_1_2_9_1_55_1 article-title: Uber die bestimmung von funktionen durch ihre intergralwerte la’ngs gewisser mannigfaltikeiten publication-title: Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig contributor: fullname: Radon J. – ident: e_1_2_9_1_33_1 doi: 10.1175/2009jcli3063.1 – ident: e_1_2_9_1_45_1 doi: 10.1175/1520‐0469(1972)029<1109:dogscc>2.0.co;2 – ident: e_1_2_9_1_38_1 doi: 10.2151/jmsj.81.963 – ident: e_1_2_9_1_47_1 doi: 10.3894/james.2010.2.5 – start-page: 1 year: 2022 ident: e_1_2_9_1_17_1 article-title: The combined influence of the Madden‐Julian Oscillation and El Niño‐Southern Oscillation on Australian rainfall publication-title: Journal of Climate contributor: fullname: Cowan T. – ident: e_1_2_9_2_3_1 doi: 10.1175/1520‐0493(2004)132<1917:aarmmi>2.0.co;2 – ident: e_1_2_9_1_29_1 doi: 10.1002/2016jd025955 – ident: e_1_2_9_1_9_1 doi: 10.1175/jas‐d‐20‐0184.1 – ident: e_1_2_9_1_42_1 doi: 10.1175/jcli‐d‐21‐0378.1 – ident: e_1_2_9_1_12_1 doi: 10.1175/jcli‐d‐20‐0305.1 – ident: e_1_2_9_1_20_1 doi: 10.1002/qj.49712051902 |
SSID | ssj0003031 |
Score | 2.4929874 |
Snippet | The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode... Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture... Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Climate Climate models CMIP6 Criteria Intercomparison Madden-Julian oscillation Moist static energy Moisture moisture mode Oceans Simulation Temperature gradients Theories Thermodynamics Winds Zonal winds |
SummonAdditionalLinks | – databaseName: Wiley Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IngRn7i6Sg56kmLzaNIc3cVdFVdFFAQPJWlSEZau7OPgzZ_gb_SXOEnrsnsRvJW8KJnOzDfp5BuEjh3RKlFWR7l1JuLCplEKKDeynFFDjTEx8beR-7fi8olfPyfP9YGbvwtT8UPMDty8ZgR77RVcm3FNNuA5Mn3d794NRDRCsWW04kljPHc-5fczSwzmuaqYp3iUUinqxHeYfzY_e8ElBeb-Bbg5D1qD1-luoPUaLuLzSr6baMmVW2i1F8rxfsBTSODMx9vo5XxGsYmHBQZYh_vBqHx_fvk70LrEd-DtBlXqG34rcad_dS-wr4U2GOM2ODOLoaM_BLlPRy504Orm_g566l48di6junBClDMhOYSDLAUkk2oubeyMJYYk2tkkzQvlwOlbRR2TVlMrjRUFYQUEYUJJiKYKlTvKdlGjHJZuD2GlJITbSWx4TrjUQoNNSKwmMuexllo20cnv3mXvFT9GFv5rU5XN73ETtf3GzsZ4VuvQMBy9ZrWSZI4ISWBViBE115Rp41TMclY4SmNuYJHWr1iyWtXGGQsMORKQZhOdBlH9-SJZ7-HG1-bh-_8afYDWoD3k7NC0hRqT0dQdAhyZmKPwzf0AoofUjw priority: 102 providerName: Wiley-Blackwell |
Title | Assessment of the Madden‐Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL106693 https://www.proquest.com/docview/3045197650 https://doaj.org/article/e1671a7a010a4a23abe903c3fe2204b3 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFL34QHAjPnF8DFnoSorNo0mzHEVHxVERR0QXJWlSEIaOOLpw5yf4jX6Jt2lHxo1u3JW2lHBPe-859OZcgB1PjU60M1HuvI2EdGmUIsuNnODMMmttTKvdyL0LedIXZ3fJ3cSor6onrLYHrgO376lU1CiDusEIw7ixXsc854VnLBa29vmM9VhMNTkYE3M9K0-LKGVKNi3vMdOV2ufdc1RCUvMfxSh49v8gmpN0NdSb40VYaIgi6dQLXIIpXy7DXDcM4n3Do9C6mY9W4KHzba5JhgVBQkd6IZ18vn9Uu59NSS6xzg3qpjfyWJLD3umVJNUUtMGIHGAZcwQv9IaI-OuzDxdIvWd_FfrHRzeHJ1EzMiHKuVQChSBPkcOkRigXe-uopYnxLknzQnss904zz5UzzCnrZEF5gfJLaoU6qtC5Z3wNZsph6deBaK1QaCexFTkVykiD2SBxhqpcxIiHasHuOHbZU-2MkYU_2kxnkzFuwUEV2O97Kj_rcAJRzhqUs79QbsHWGJas-chGGQ_eOAo5Zgv2AlS_LiTrXp9XU3nExn-saBPm8eGhiYelWzDz8vzqt5GfvNg2TDNx1YbZzm3_vt8OL-YXYPrfJA |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VrRBcEOVH3VKoD3BCEfFP7Pi4rehuy6Yg1EUVHCw7dqpKVRbttofeeASesU_SsZOuthckblHiWJEnM_ONPfMNwPtArS60t1ntg8uE9GVWIsrNvODMMedcTmM1cnUiJzNxfFac9X1OYy1Mxw-x2nCLmpHsdVTwuCHdsw1EkszY-Hs8xZBGav4INot4pDeAzdGP2c_Zyhijhe6a5mmRlUzJPvcdZ_i0_v4Dr5TI-x8gznXcmhzP4XN41iNGMupEvAUboX0Bj8epI-8NXqUcznr5En6NViybZN4QRHakSnbl9s_fWAZtW_IVHd5ll_1GLlpyUB19kyS2Q7tckn30Z57gg2qOor9ehPSAdMX7r2B2-Pn0YJL1vROymkslMCLkJYKZ0grl8-A8dbSwwRdl3eiAft9rFrjylnnlvGwobzAOk1phQNXoOjD-GgbtvA3bQLRWGHEXuRM1FcpKi2ah8JaqWuRWWTWED_drZ353FBkmHW0zbdbXeAj7cWFXYyKxdboxX5ybXk9MoFJRnBXDRCss49YFnfOaN4GxXDicZPdeLKbXtqXhiSRHIdgcwsckqn9-iBl_n8b2PGLnv0bvwZPJaTU106OTL2_gKY5JKTys3IXB1eI6vEV0cuXe9X_gHW4u2ck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZgUVEvFaUgFmjrAz1VEfFP7Pi4S9kf2KWrCiQkDpYdO6gSyqJdOHDjEfqMPAljJ6x2L0i9RYltRZ7MzDfOzDcIHXliVKacSQrnbcKFy5McUG7iOKOWWmtTEqqRxxdicMXPrrPr5sAt1MLU_BCLA7egGdFeBwW_d2VDNhA4MkPf7_4IIhqh2Dra4IDEA3c-5ZOFJQbzXHfMUzzJqRRN4jvMP16eveKSInP_CtxcBq3R6_S20KcGLuJOLd_PaM1X2-hDP7bjfYKrmMBZzL-gm86CYhNPSwywDo-jUXl5_hdqoE2Ff4O3u6tT3_DfCp-MhxOBQy-0uznugjNzGB6MpyD3x5mPD3Bdub-DrnqnlyeDpGmckBRMSA7hIMsByeSGS5d664glmfEuy4tSeXD6TlHPpDPUSetESVgJQZhQEqKpUhWesl3UqqaV30NYKQnhdpZaXhAujTBgEzJniCx4aqSRbfTjbe_0fc2PoeN_bar08h63UTds7GJMYLWON6azW90oifZESAKrQoxouKHMWK9SVrDSU5pyC4scvolFN6o21ywy5EhAmm30M4rq3RfR_T-j0JuH7__X6O9oc_Krp0fDi_MD9BGGxPQdmh-i1sPs0X8FZPJgv8XP7xXu0Ncj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+Madden%E2%80%90Julian+Oscillation+in+CMIP6+Models+Based+on+Moisture+Mode+Theory&rft.jtitle=Geophysical+research+letters&rft.au=Qiao%E2%80%90Jun+Lin&rft.au=Mayta%2C+V%C3%ADctor+C&rft.au=%C3%81ngel+F+Adames+Corraliza&rft.date=2024-04-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft_id=info:doi/10.1029%2F2023GL106693&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |