Mechanical Properties of TiB/Ti Composites by Spark Plasma Sintering
In-situ TiB whisker reinforced, pure Ti matrix composites have been fabricated by spark plasma sintering (SPS). The microstructure and morphology of the in-situ TiB whiskers in the matrix was observed by scanning electron microscopy (SEM). Mechanical properties, such as elevated-temperature tensile...
Saved in:
Published in | Journal of Solid Mechanics and Materials Engineering Vol. 2; no. 2; pp. 234 - 242 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Mechanical Engineers
2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In-situ TiB whisker reinforced, pure Ti matrix composites have been fabricated by spark plasma sintering (SPS). The microstructure and morphology of the in-situ TiB whiskers in the matrix was observed by scanning electron microscopy (SEM). Mechanical properties, such as elevated-temperature tensile strength, fatigue resistance at 600°C, and creep rupture strength at 600°C were investigated. When the composites (TiB/Ti) were sintered at 900°C with a pressure of 60 MPa for 30 min, most of TiB2 was transformed into TiB whiskers in the matrix. The composites sintered at 900°C with a pressure of 60 MPa for 30 min had the highest tensile strength at room temperature. The tensile strength of the composites sintered by SPS is higher than those produced by vacuum arc melting. The elastic modulus of the composites increased proportionally with the TiB volume fraction. The composites show the same or higher strength of Ti-15V-3Cr-3Al-3Sn sintered by SPS at less than 600°C. The fatigue and creep resistance of the composites at 600°C are relatively higher compared to those of Ti sintered by SPS. |
---|---|
AbstractList | In-situ TiB whisker reinforced, pure Ti matrix composites have been fabricated by spark plasma sintering (SPS). The microstructure and morphology of the in-situ TiB whiskers in the matrix was observed by scanning electron microscopy (SEM). Mechanical properties, such as elevated-temperature tensile strength, fatigue resistance at 600°C, and creep rupture strength at 600°C were investigated. When the composites (TiB/Ti) were sintered at 900°C with a pressure of 60 MPa for 30 min, most of TiB2 was transformed into TiB whiskers in the matrix. The composites sintered at 900°C with a pressure of 60 MPa for 30 min had the highest tensile strength at room temperature. The tensile strength of the composites sintered by SPS is higher than those produced by vacuum arc melting. The elastic modulus of the composites increased proportionally with the TiB volume fraction. The composites show the same or higher strength of Ti-15V-3Cr-3Al-3Sn sintered by SPS at less than 600°C. The fatigue and creep resistance of the composites at 600°C are relatively higher compared to those of Ti sintered by SPS. In-situ TiB whisker reinforced, pure Ti matrix composites have been fabricated by spark plasma sintering (SPS). The microstructure and morphology of the in-situ TiB whiskers in the matrix was observed by scanning electron microscopy (SEM). Mechanical properties, such as elevated-temperature tensile strength, fatigue resistance at 600C, and creep rupture strength at 600C were investigated. When the composites (TiB/Ti) were sintered at 900C with a pressure of 60 MPa for 30 min, most of TiB sub(2) was transformed into TiB whiskers in the matrix. The composites sintered at 900C with a pressure of 60 MPa for 30 min had the highest tensile strength at room temperature. The tensile strength of the composites sintered by SPS is higher than those produced by vacuum arc melting. The elastic modulus of the composites increased proportionally with the TiB volume fraction. The composites show the same or higher strength of Ti-15V-3Cr-3Al-3Sn sintered by SPS at less than 600C. The fatigue and creep resistance of the composites at 600C are relatively higher compared to those of Ti sintered by SPS. |
Author | KOMAKI, Shuhei OKANO, Michiharu IZUI, Hiroshi |
Author_xml | – sequence: 1 fullname: IZUI, Hiroshi organization: Department of Aerospace Engineering, College of Science and Technology, Nihon University – sequence: 2 fullname: KOMAKI, Shuhei organization: Graduate School of Science and Technology, Nihon University – sequence: 3 fullname: OKANO, Michiharu organization: Department of Mechanical Engineering, College of Science and Technology, Nihon University |
BookMark | eNpNkE1Lw0AQhhdRsK1e_AU5itB2v_KxF0HrJ1QsNPdlupnUrUk27qaH_ntTIkXmMMM7DzPwjMl54xok5IbRGeNKzXd13c74jAt5RkYsy-hUZSk7_zdfknEIO0oTRVU8Ik8faL6gsQaqaOVdi76zGCJXRrl9nOc2Wri6dcF2fbg5ROsW_He0qiDUEK1t06G3zfaKXJRQBbz-6xOSvzzni7fp8vP1ffGwnBqRpHLKpJCFSST0vzcGBc9YuYmzGApqDBZJrEBSrmLBJQeFGRgwZSwy4EwVIMSE3A5nW-9-9hg6XdtgsKqgQbcPmiUpEzyhNO3RuwE13oXgsdSttzX4g2ZUH03poynNdW-qh-8HeBc62OIJhd6FqfCEDiXkadGb8xob8QtOQXRp |
CitedBy_id | crossref_primary_10_1007_s11666_022_01421_0 crossref_primary_10_3390_ceramics4020014 crossref_primary_10_1080_02670836_2018_1508327 |
Cites_doi | 10.1016/0921-5093(92)90386-F 10.1016/j.scriptamat.2006.11.035 10.1016/S1359-6462(97)00111-5 10.1016/S1359-6454(02)00597-9 10.1016/1359-6462(96)00258-8 10.1007/s11661-003-0249-z 10.1016/j.compositesa.2004.09.003 10.1016/S1359-6462(97)00251-0 10.1016/S1359-6462(03)00435-4 10.1021/cg050443k 10.1016/j.actamat.2005.12.003 10.1016/j.surfcoat.2004.09.003 10.1016/0036-9748(87)90227-4 10.1016/S1359-6462(99)00354-1 10.1016/0167-577X(93)90201-8 10.1007/s11661-002-0336-6 10.1016/S0925-8388(01)01445-1 10.1179/026708304225012198 10.1007/s11661-997-0160-0 |
ContentType | Journal Article |
Copyright | 2008 by The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: 2008 by The Japan Society of Mechanical Engineers |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1299/jmmp.2.234 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1880-9871 |
EndPage | 242 |
ExternalDocumentID | 10_1299_jmmp_2_234 article_jmmp_2_2_2_2_234_article_char_en |
GroupedDBID | 2WC ALMA_UNASSIGNED_HOLDINGS CS3 JSF JSH KQ8 OK1 RJT RZJ TKC AAYXX CITATION 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3674-1434dc64a690bce3281fb585ad0cced659a402953242a9e8acacf538a219da33 |
ISSN | 1880-9871 |
IngestDate | Fri Aug 16 14:12:06 EDT 2024 Fri Aug 23 01:26:12 EDT 2024 Wed Apr 05 06:21:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3674-1434dc64a690bce3281fb585ad0cced659a402953242a9e8acacf538a219da33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jmmp/2/2/2_2_234/_article/-char/en |
PQID | 1671326007 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671326007 crossref_primary_10_1299_jmmp_2_234 jstage_primary_article_jmmp_2_2_2_2_234_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2008 2008-00-00 20080101 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Solid Mechanics and Materials Engineering |
PublicationTitleAlternate | JSMME |
PublicationYear | 2008 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | (2) H. J. Brinkman, J. Duszczyk and L. Katgerman, In-situ Formation of TiB2, in a P/M Aluminum Matrix, Scripta Materialia, Vol. 37, No. 3 (1997), pp. 293-297 (10) K.. S. Rivi Chandran and K. B. Panda, Titanium Composites with TiB Whiskers, Advanced Materials & Processes, Vol. 160, No. 10 (2002), pp. 59-62. (22) E. A. Brandes & G. B. Brook, Smithells Metals Reference Book, (1992), pp. 15-3. (1) S. Ranganath, M. Vijayakumar and J. Subrahmanyam, Combustion-assisted Synthesis of Ti-TiB-TiC Composite via the Casting Route, Materials Science and Engineering, A149 (1992), pp. 253-257. (19) S. Tamirisakandala, D. B. Miracle, R. Srinivasan, and J. S. Gunasekera, Titanium Alloyed with Boron, Advanced Materials & Processes, Vol. 164, No. 12 (2006), pp. 41-43. (3) D. X. Li, D. H. Ping, Y. X. Lu, and H. Q. Ye, Characterization of Microstructure in TiB-Whisker Reinforced Ti Alloy Matrix Composite, Materials Letters, Vol. 16, (1993), pp. 322-326. (7) Z. Y. Ma, S. C. Tjong, and L. Gen, In-situ Ti-TiB Metal-Matrix Composite Prepared by a Reactive Process, Scipta Materialia, Vol. 42 No. 4 (2000), pp. 367-373. (16) V. Ocelik, D. Matthews, J. Th. M. De Hosson, Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High power Laser, Surface & Coating Technology, Vol. 197, (2005), pp. 303-315. (8) Weijie Lu, Di Zhang, Xiaonong Zhang, Renjie, Wu, Takao Sakata, and Hirotaro Mori, Microsturctural Characerization of TiB in In-situ Synthesized Titanium matrix Composites Prepared by Casting Technique, Journal of Alloys and Compounds, Vol. 327, (2001), pp. 240-247. (9) S. Aich and K.. S. Rivi Chandran, TiB Whisker Coating on Titanium Surfaces by Solid-State Diffusion: Synthesis Microstructure and Mechanical properties, Metallurgical and Materials Transactions A, Vol. 33A, June (2002), pp. 3489-3498. (11) K. B. Panda and K.. S. Rivi Chandran, Synthesis of Ductile Titanium-Titanium Boride (Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formation and Composite Properties, Metallugical and Materials Transactions A, Vol. 34A, June (2003), pp. 1371-1385. (17) H. Feng, Y. Zhou, D. Jia, Q. Meng, and J. Rao, Growth mechanism of In Situ Whiskers in Spark Plasma Sintered TiB/Ti Metal Matrix Composites, Crystal Growth & Design, Vol. 6, No. 7 (2006), pp. 1626-1630. (6) S. Dubey, R. J. Lederrich, and W. O. Soboyejo, Fatigue and Fracture of Damage-Tolerant In Situ Titanium Matrix Composites, Metallurgical and Material Transactions A, Vol. 28A, October (1997), pp 2037-2047. (13) Seung JinYang, Satoshi Emura, Masuo Hagiwara, Soo Woo Nam, The Role of TiB Particulate Reinforcement in Ti2AlNb Based Composite Under High Cycle Fatigue, Scripta Materialia, Vol. 49, (2003), pp. 897-902. (12) K. Kawabata, E. Sato, and K. Kurabayashi, High Temperature Deformation with Diffusional and Plastic Accommodation, in Ti/TiB Whisker-reinforce In-situ Composites, Acta Materialia, Vol. 51, (2003), pp. 1909-1922. (4) H. T. Tsang, C. G. Chao, and C. Y. Ma, In Situ Fracture Observation of a TiC/Ti MMC Produced by Combustion Synthesis, Scripta Materialia, Vol. 35, No. 8 (1996), pp. 1007-1012. (20) P. Chandrasekar, V. Balusamy, K. S. Ravi Chndran, and H. Kumar, Laser Surface Hardening of Titanium-Titanium Boride (Ti-TiB) Metal Matrix Composite, Scripta Materialia, Vol. 56, (2007), pp. 641-644. (23) E. A. Brandes & G. B. Brook, Smithells Metals Reference Book, (1992), pp. 14-2. (18) K. B. Panda and K.. S. Rivi Chandran, First principles Determination of Elastic Constants and Chemical Bonding of Titanium Boride (TiB) on the Basis of Density functional Theory, Acta Materialia, Vol. 54, (2006), pp. 1641-1657. (14) H. Feng, D. Jia, Y. Zhou, and J. Huo, Microstructural Characterisation of In situ TiB/Ti Matrix Composites Prepared by Mechanical Alloying and Hot Pressing, Materials Science and Technology, Vol. 20, September (2004), pp. 1205-1210. (5) H. T. Tsang, C. G. Chao, and C. Y. Ma, Effects of Volume Fraction of Reinforcement on Tensile and Creep properties of In-situ TiB/Ti MMC, Scripta Materialia, Vol. 37, No. 9 (1996), pp. 1359-1365. (21) M. Taya and R. J. Arsenault, A Comparison between a Shear Lag Type Model and an Eshelby Type Model in Predicting the Mechanical Properties of a Short Fiber Composite, Script METALLUGICA, Vol. 21, (1987), pp. 349-354. (15) H. Feng, D. Jia, and Y. Zhou, Spark Plasma Sintering Reaction Synthesized TiB reinforced Titanium Matrix Composites, Composites: Part A, Vol. 36, (2005), pp. 558-563. 22 12 23 13 14 15 16 AICH S (9) 2002; 33A 17 18 PANDA K B (11) 2003; 34A 19 1 2 3 4 5 6 7 8 20 10 21 |
References_xml | – ident: 1 doi: 10.1016/0921-5093(92)90386-F – ident: 20 doi: 10.1016/j.scriptamat.2006.11.035 – ident: 2 doi: 10.1016/S1359-6462(97)00111-5 – ident: 12 doi: 10.1016/S1359-6454(02)00597-9 – ident: 4 doi: 10.1016/1359-6462(96)00258-8 – volume: 34A start-page: 1371 issn: 1073-5623 issue: 6 year: 2003 ident: 11 doi: 10.1007/s11661-003-0249-z contributor: fullname: PANDA K B – ident: 15 doi: 10.1016/j.compositesa.2004.09.003 – ident: 5 doi: 10.1016/S1359-6462(97)00251-0 – ident: 13 doi: 10.1016/S1359-6462(03)00435-4 – ident: 17 doi: 10.1021/cg050443k – ident: 18 doi: 10.1016/j.actamat.2005.12.003 – ident: 10 – ident: 19 – ident: 16 doi: 10.1016/j.surfcoat.2004.09.003 – ident: 21 doi: 10.1016/0036-9748(87)90227-4 – ident: 7 doi: 10.1016/S1359-6462(99)00354-1 – ident: 3 doi: 10.1016/0167-577X(93)90201-8 – volume: 33A start-page: 3489 issn: 1073-5623 issue: 11 year: 2002 ident: 9 doi: 10.1007/s11661-002-0336-6 contributor: fullname: AICH S – ident: 8 doi: 10.1016/S0925-8388(01)01445-1 – ident: 14 doi: 10.1179/026708304225012198 – ident: 6 doi: 10.1007/s11661-997-0160-0 – ident: 22 – ident: 23 |
SSID | ssj0069095 |
Score | 1.694354 |
Snippet | In-situ TiB whisker reinforced, pure Ti matrix composites have been fabricated by spark plasma sintering (SPS). The microstructure and morphology of the... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 234 |
SubjectTerms | Creep Rupture Strength Fatigue Resistance Mechanical properties Metal Matrix Composites Particulate composites Scanning electron microscopy Sintering Spark Plasma Sintering Tensile strength Tensile Strength at Elevated Temperature TiB Whisker Titanium Whisker composites |
Title | Mechanical Properties of TiB/Ti Composites by Spark Plasma Sintering |
URI | https://www.jstage.jst.go.jp/article/jmmp/2/2/2_2_234/_article/-char/en https://search.proquest.com/docview/1671326007 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Solid Mechanics and Materials Engineering, 2008, Vol.2(2), pp.234-242 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwgEOiKe2vGQEt1W6jeM48bG8tFB1C2pWWnGJHMelAfpQ2hzgD_C3GduJk6ocllWlqHLSuJ7v88zEGc8g9JpkMqN6IuVURh6NBfE4U9xj3JcqyLhgptjE5JydXdBPl-Flr_enE7VU7bKB_P3PfSXXQRXaAFe9S_Y_kHU3hQb4DvjCERCG45Uwnii9b9eI-bNeVC91dlTt_iXFG50VpDDTXYdlQTP4mbONKH_oOkXbpTiZ6UwRZWO5Dv3T2fpnkZ80XWzriIydHVc3j6Fj19eLj8aSFWB5F4VT5dPJaGxOzBbVQrn26Xh0Pm0i94uFKKu9FYjYscXsXgObvnIhpjpspx1681fqtOtWw4LC8Hhs6640Kph0mEa66rRe6LSWmdg8XAdKHyyqVvrL5WZABu4ne0m0a4hSfVFKmk9A0-aE3uMGlLqBbpKIh7oIw_iLex3FODiidW5b6Oy07WrPm7n1HRz6b4dW3bgqyT10t8YQj2yn91FPrR6gOx3EHqJ3rfxwSx28nmOgzmlS4JY4OPuFDXGwJQ52xHmEkg_vk7dnXl1Qw5MBi6gHvjHNJaMCBpTBVCSxP8_geVHkQylVzkIu6JDwUDvZgqtYSCHnMJEFmLVcBMFjdLRar9QxwkSXgRRhHuZK0jmLMumTKJbDSMDFwzDro1eNXNKNTZuS6sdNkJ7DIKB9FFmRuWuuilMfvWxknII-1C-5xEqtq23qs8gPTNWFJ9e--1N024YF6ZW2Z-hoV1bqOfieu-yF4cVfMhCQ6w |
link.rule.ids | 315,786,790,4043,27954,27955,27956 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Properties+of+TiB%2FTi+Composites+by+Spark+Plasma+Sintering&rft.jtitle=Journal+of+Solid+Mechanics+and+Materials+Engineering&rft.au=IZUI%2C+Hiroshi&rft.au=KOMAKI%2C+Shuhei&rft.au=OKANO%2C+Michiharu&rft.date=2008&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.eissn=1880-9871&rft.volume=2&rft.issue=2&rft.spage=234&rft.epage=242&rft_id=info:doi/10.1299%2Fjmmp.2.234&rft.externalDocID=article_jmmp_2_2_2_2_234_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-9871&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-9871&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-9871&client=summon |