Impact of substrate geometry on electrospun fiber deposition and alignment
ABSTRACT Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with wel...
Saved in:
Published in | Journal of applied polymer science Vol. 134; no. 19; pp. np - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
15.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823. |
---|---|
AbstractList | ABSTRACT
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823. Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well-defined geometries (rectangular, concave, and E-shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well-aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. J. Appl. Polym. Sci. 2017, 134, 44823. Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44823. Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well-defined geometries (rectangular, concave, and E-shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well-aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823. |
Author | Li, Jing‐Song Zhou, Wenyan Ahmad, Zeeshan Chang, Ming‐Wei Wang, Baolin |
Author_xml | – sequence: 1 givenname: Baolin surname: Wang fullname: Wang, Baolin organization: Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal – sequence: 2 givenname: Wenyan surname: Zhou fullname: Zhou, Wenyan organization: Zhejiang University – sequence: 3 givenname: Ming‐Wei surname: Chang fullname: Chang, Ming‐Wei email: mwchang@zju.edu.cn organization: Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal – sequence: 4 givenname: Zeeshan surname: Ahmad fullname: Ahmad, Zeeshan organization: De Montfort University, The Gateway – sequence: 5 givenname: Jing‐Song surname: Li fullname: Li, Jing‐Song organization: Zhejiang University |
BookMark | eNp1kD9PwzAQxS1UJNrCwDeIxAJDWttxHGesKv4UVaIDzJEbXypXiR1sR6jfHpd2QrDcDfd7p_feBI2MNYDQLcEzgjGdy76fMSZodoHGBJdFyjgVIzSON5KKssyv0MT7PcaE5JiP0euq62UdEtskftj64GSAZAe2g-AOiTUJtFAHZ30_mKTRW3CJgt56HXQ8SqMS2eqd6cCEa3TZyNbDzXlP0cfT4_vyJV2_Pa-Wi3VaZ7zI0pJyyrdEKcFAqCyHOi-baJLJkhPSQMMlLpTiTMVREFC0YJIImjfZVigQ2RTdn_72zn4O4EPVaV9D20oDdvAVEYKRjOY4i-jdL3RvB2eiu0hFMyWjhERqfqLqmNM7aKpaB3kMGOvQbUVwdey2it1WP91GxcMvRe90J93hT_b8_Uu3cPgfrBabzUnxDWJ_iqs |
CODEN | JAPNAB |
CitedBy_id | crossref_primary_10_1016_j_addr_2021_05_033 crossref_primary_10_3389_fbiom_2022_928537 crossref_primary_10_3390_mi13040642 crossref_primary_10_1016_j_eurpolymj_2018_05_005 crossref_primary_10_1038_s41598_018_33088_5 crossref_primary_10_1016_j_cej_2017_10_033 crossref_primary_10_1007_s42242_018_0027_9 crossref_primary_10_1007_s12221_017_7478_z crossref_primary_10_3390_polym9070265 crossref_primary_10_1080_1061186X_2020_1795180 crossref_primary_10_1016_j_addma_2021_101882 |
Cites_doi | 10.1002/app.31597 10.1016/j.msec.2010.04.001 10.1109/TIA.2010.2103392 10.1016/j.memsci.2006.11.056 10.1021/ja056810y 10.1039/c0nr00192a 10.1016/j.carbpol.2016.06.066 10.1177/1528083713498916 10.1007/s11051-012-1201-1 10.1016/j.jmatprotec.2013.05.013 10.1016/j.ijbiomac.2014.10.040 10.1016/j.compscitech.2010.01.010 10.1557/jmr.2012.346 10.1002/app.43747 10.1016/j.actbio.2012.10.042 10.1002/app.38116 10.1016/j.colsurfb.2011.07.045 10.1002/adma.200306226 10.1016/j.ces.2007.06.007 10.1016/S0032-3861(99)00068-3 10.1016/j.polymer.2015.03.052 10.22203/eCM.v019a19 10.1002/app.43945 10.1016/j.biomaterials.2010.08.021 10.1016/j.colsurfb.2014.06.034 10.1016/j.carbpol.2010.10.009 10.1021/nn901391q 10.1002/marc.201000292 10.1007/BF03218561 10.1021/nl0504235 10.1016/j.matlet.2011.05.043 10.1163/156856208783721029 10.1016/j.ces.2015.12.030 10.1109/TDEI.2009.5128519 10.1002/pat.1625 10.1016/j.polymer.2006.05.012 10.1088/0957-4484/12/3/329 10.3144/expresspolymlett.2015.12 10.1016/j.matdes.2015.10.116 10.1016/j.biomaterials.2004.06.051 10.1016/j.colsurfb.2016.05.092 10.1002/app.38838 10.1016/j.biomaterials.2004.03.021 10.1002/adhm.201200287 10.1016/j.elstat.2010.06.009 10.1134/S1070363215120038 10.1016/j.carbpol.2016.05.032 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.44823 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 4313295971 10_1002_app_44823 APP44823 |
Genre | article |
GrantInformation_xml | – fundername: Research Fund for The Doctoral Program of Higher Education of China funderid: 20130101120170 – fundername: Key Technologies R&D Program of Zhejiang Province funderid: 2015C02G2010104; 2015C02035 – fundername: National Nature Science Foundation of China funderid: 81301304 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3673-92626b1dd84e8d35ec59f6284a9611fef6a07dd64ddd671ed274a1825f3b8de83 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 11 16:31:15 EDT 2025 Fri Jul 25 12:12:09 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Wed Jan 22 16:41:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3673-92626b1dd84e8d35ec59f6284a9611fef6a07dd64ddd671ed274a1825f3b8de83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1867394211 |
PQPubID | 1006379 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1884132503 proquest_journals_1867394211 crossref_citationtrail_10_1002_app_44823 crossref_primary_10_1002_app_44823 wiley_primary_10_1002_app_44823_APP44823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 May 2017 |
PublicationDateYYYYMMDD | 2017-05-15 |
PublicationDate_xml | – month: 05 year: 2017 text: 15 May 2017 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 289 2010; 31 2013; 2 2013; 44 2010; 19 2008; 19 2013; 129 2008; 16 2013; 128 2011; 83 2011; 31 2016; 145 2016; 144 1999; 40 2012; 14 2005; 26 2015; 9 2014; 131 2013; 9 2010; 21 2010; 68 2010; 118 2016; 90 2015; 81 2004; 16 2015; 85 2006; 47 2015; 65 2005; 5 2016; 133 2013; 213 2011; 88 2011; 65 2012; 27 2007; 62 2011; 47 2010; 70 2014; 121 2010; 2 2001; 12 2006; 128 2010; 4 2009; 16 2016; 151 2016; 150 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 Zhou Z. (e_1_2_6_3_1) 2014; 131 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 31 start-page: 1903 year: 2010 publication-title: Macromol. Rapid Commun. – volume: 9 start-page: 105 year: 2015 publication-title: eXPRESS Polym. Lett. – volume: 44 start-page: 463 year: 2013 publication-title: J. Ind. Text. – volume: 131 start-page: 1366 year: 2014 publication-title: J. Appl. Polym. Sci. – volume: 65 start-page: 26 year: 2015 publication-title: Polymer – volume: 2 start-page: 923 year: 2010 publication-title: Nanoscale – volume: 2 start-page: 702 year: 2013 publication-title: Adv. Healthcare Mater. – volume: 118 start-page: 405 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 213 start-page: 1894 year: 2013 publication-title: J. Mater. Process. Technol. – volume: 65 start-page: 2377 year: 2011 publication-title: J. Mater. Lett. – volume: 150 start-page: 232 year: 2016 publication-title: Carbohydr. Polym. – volume: 68 start-page: 458 year: 2010 publication-title: J. Electrostat. – volume: 151 start-page: 1240 year: 2016 publication-title: Carbohydr. Polym. – volume: 26 start-page: 1261 year: 2005 publication-title: Biomaterials – volume: 27 start-page: 3013 year: 2012 publication-title: J. Mater. Res. – volume: 289 start-page: 210 year: 2007 publication-title: J. Membr. Sci. – volume: 9 start-page: 5698 year: 2013 publication-title: Acta Biomater. – volume: 144 start-page: 17 year: 2016 publication-title: Chem. Eng. Sci. – volume: 4 start-page: 2730 year: 2010 publication-title: J. ACS Nano – volume: 129 start-page: 1383 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 81 start-page: 1089 year: 2015 publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 1 year: 2012 publication-title: J. Nanopart. Res. – volume: 19 start-page: 193 year: 2010 publication-title: Eur. Cells Mater. – volume: 31 start-page: 9031 year: 2010 publication-title: Biomaterials – volume: 16 start-page: 567 year: 2008 publication-title: Macromol. Res. – volume: 145 start-page: 757 year: 2016 publication-title: Colloids Surf. B – volume: 133 start-page: 9 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 4901 year: 2006 publication-title: Polymer – volume: 40 start-page: 4585 year: 1999 publication-title: Polymer – volume: 47 start-page: 1028 year: 2011 publication-title: IEEE Trans. Ind. Appl. – volume: 85 start-page: 2681 year: 2015 publication-title: Russ. J. Gen. Chem. – volume: 128 start-page: 1436 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 133 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 19 start-page: 339 year: 2008 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 90 start-page: 1 year: 2016 publication-title: Mater. Des. – volume: 128 start-page: 958 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 16 start-page: 361 year: 2004 publication-title: Adv. Mater. – volume: 12 start-page: 384 year: 2001 publication-title: Nanotechnology – volume: 70 start-page: 703 year: 2010 publication-title: Compos. Sci. Technol. – volume: 21 start-page: 77 year: 2010 publication-title: Polym. Adv. Technol. – volume: 121 start-page: 432 year: 2014 publication-title: Colloids Surf. B – volume: 5 start-page: 913 year: 2005 publication-title: Nano Lett. – volume: 62 start-page: 4751 year: 2007 publication-title: Chem. Eng. Sci. – volume: 88 start-page: 587 year: 2011 publication-title: Colloids Surf. B – volume: 83 start-page: 1541 year: 2011 publication-title: Carbohydr. Polym. – volume: 16 start-page: 785 year: 2009 publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 31 start-page: 22 year: 2011 publication-title: J. Mater. Sci. Eng. C – volume: 26 start-page: 2603 year: 2005 publication-title: Biomaterials – ident: e_1_2_6_4_1 doi: 10.1002/app.31597 – ident: e_1_2_6_29_1 doi: 10.1016/j.msec.2010.04.001 – ident: e_1_2_6_17_1 doi: 10.1109/TIA.2010.2103392 – volume: 131 start-page: 1366 year: 2014 ident: e_1_2_6_3_1 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_6_5_1 doi: 10.1016/j.memsci.2006.11.056 – ident: e_1_2_6_22_1 doi: 10.1021/ja056810y – ident: e_1_2_6_28_1 doi: 10.1039/c0nr00192a – ident: e_1_2_6_23_1 doi: 10.1016/j.carbpol.2016.06.066 – ident: e_1_2_6_45_1 doi: 10.1177/1528083713498916 – ident: e_1_2_6_6_1 doi: 10.1007/s11051-012-1201-1 – ident: e_1_2_6_15_1 doi: 10.1016/j.jmatprotec.2013.05.013 – ident: e_1_2_6_25_1 doi: 10.1016/j.ijbiomac.2014.10.040 – ident: e_1_2_6_34_1 doi: 10.1016/j.compscitech.2010.01.010 – ident: e_1_2_6_44_1 doi: 10.1557/jmr.2012.346 – ident: e_1_2_6_13_1 doi: 10.1002/app.43747 – ident: e_1_2_6_42_1 doi: 10.1016/j.actbio.2012.10.042 – ident: e_1_2_6_2_1 doi: 10.1002/app.38116 – ident: e_1_2_6_49_1 doi: 10.1016/j.colsurfb.2011.07.045 – ident: e_1_2_6_35_1 doi: 10.1002/adma.200306226 – ident: e_1_2_6_48_1 doi: 10.1016/j.ces.2007.06.007 – ident: e_1_2_6_19_1 doi: 10.1016/S0032-3861(99)00068-3 – ident: e_1_2_6_18_1 doi: 10.1016/j.polymer.2015.03.052 – ident: e_1_2_6_27_1 doi: 10.22203/eCM.v019a19 – ident: e_1_2_6_9_1 doi: 10.1002/app.43945 – ident: e_1_2_6_30_1 doi: 10.1016/j.biomaterials.2010.08.021 – ident: e_1_2_6_46_1 doi: 10.1016/j.colsurfb.2014.06.034 – ident: e_1_2_6_11_1 doi: 10.1016/j.carbpol.2010.10.009 – ident: e_1_2_6_26_1 doi: 10.1021/nn901391q – ident: e_1_2_6_8_1 doi: 10.1002/marc.201000292 – ident: e_1_2_6_31_1 doi: 10.1007/BF03218561 – ident: e_1_2_6_36_1 doi: 10.1021/nl0504235 – ident: e_1_2_6_21_1 doi: 10.1016/j.matlet.2011.05.043 – ident: e_1_2_6_7_1 doi: 10.1163/156856208783721029 – ident: e_1_2_6_47_1 doi: 10.1016/j.ces.2015.12.030 – ident: e_1_2_6_32_1 doi: 10.1109/TDEI.2009.5128519 – ident: e_1_2_6_24_1 doi: 10.1002/pat.1625 – ident: e_1_2_6_16_1 doi: 10.1016/j.polymer.2006.05.012 – ident: e_1_2_6_33_1 doi: 10.1088/0957-4484/12/3/329 – ident: e_1_2_6_37_1 doi: 10.3144/expresspolymlett.2015.12 – ident: e_1_2_6_38_1 doi: 10.1016/j.matdes.2015.10.116 – ident: e_1_2_6_40_1 doi: 10.1016/j.biomaterials.2004.06.051 – ident: e_1_2_6_41_1 doi: 10.1016/j.colsurfb.2016.05.092 – ident: e_1_2_6_20_1 doi: 10.1002/app.38838 – ident: e_1_2_6_39_1 doi: 10.1016/j.biomaterials.2004.03.021 – ident: e_1_2_6_43_1 doi: 10.1002/adhm.201200287 – ident: e_1_2_6_14_1 doi: 10.1016/j.elstat.2010.06.009 – ident: e_1_2_6_10_1 doi: 10.1134/S1070363215120038 – ident: e_1_2_6_12_1 doi: 10.1016/j.carbpol.2016.05.032 |
SSID | ssj0011506 |
Score | 2.3131487 |
Snippet | ABSTRACT
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES)... Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Alignment Deposition electric field Electrospinning Fibers Materials science Mathematical morphology micron fibers Orientation Polymers substrate Substrates Topography |
Title | Impact of substrate geometry on electrospun fiber deposition and alignment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.44823 https://www.proquest.com/docview/1867394211 https://www.proquest.com/docview/1884132503 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8UwEMcH0Yse3MWnT4niwUv1tU3aPjw9XFBRERfwIJQ0iwe1lbcc9NM7ky4uKIiXUmi6pZnkP83kNwBblidWoLvjKY7WxLmQXtYxRMKUKvAV9psO9nx-ER3f8tM7cTcGe_VamJIP0fxwI8tw_TUZuMwGux_QUEqDhb5FQKRPitUiQXTVoKNI6ERleIfvoU8haqpQJ9htzvw6Fn0IzM8y1Y0zRzNwXz9hGV7yuDMaZjvq7Ru88Z-vMAvTlf5kvbLBzMGYyedh6hOVcAFOT9zKSVZYNsBuxeFr2YMpns2w_8qKnFWpcwYvo5xZijhh2tTBX0zmmqG2f3BRBotwe3R4s3_sVSkXPBVGcegRPTDKfK0TbhIdCqNE10Y4hMlu5PvW2Eh2Yq0jrnET-0ajUyvRRRE2zBJtknAJxvMiN8vADM3haR4YbA1c2VgaG4oud0tbeaDiFmzXlZ-qikdOaTGe0pKkHKRYPamrnhZsNkVfSgjHT4Xa9RdMKzscpITrC7scvdwWbDSH0YJoWkTmphhRmQRHcpSCeIlt97l-v0nau7x0Oyt_L7oKkwFpAUK-ijaMD_sjs4ZKZpitw0Tv4Pzset013XeEKPAX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Remg5tPQltjzqVq3EJbBx7CR76AFB0S4voQokbmlijzm0TRC7KwS_ib_Cf2LGeUCrVuqFQy9RpIycxOMZf2OPvwH46FTqNIU7gVFkTUrpPCj6yEyYuZGhIb_pyZ73D-Lhsdo50SczcN2ehan5IboFN7YM76_ZwHlBev2ONZTrYFFwIdvS1bt4eUEB2_jzaIu0-0nK7S9Hm8OgqSkQmChOooDp8eIitDZVmNpIo9EDF5OPzgdxGDp0cd5PrI2VpUsSoqWoLScMrl1UpBbTiNp9BI-5gjgz9W997ciqGFrFdUJJGFAUo1seo75c7z7119nvDtLeB8Z-Ztt-Djdtn9QJLd_XppNizVz9Rhf5v3TaPDxrILbYqG3iBcxg-RLm7hEvvoKdkT8cKionxuQ5PUOvOMXqJ07OL0VViqY60PhsWgrHSTXCYpvfJvLSCgpfTn0ixWs4fpCfeQOzZVXiAgjkbUqrJNKAV8YlObpID5Q_vaukSXqw2mo7Mw3lOlf--JHVZNEyI3VkXh09-NCJntU8I38SWmqHTNa4mnHGjITRQFEg34P33WNyErzzk5dYTVkmJbBCaJeaWPXj4-8vyTYOD_3N238XfQdPhkf7e9ne6GB3EZ5Khj7McKuXYHZyPsVlAm6TYsXbi4BvDz3WbgFs_Uy8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKlXtofSFui1QU7USl8DGsZ3kwAGxrFigaFUViVua2GMObZMVu6uK_iX-Cj-KsfOAVkXqhUMvUaSMnMTzyDfx-BuAD1YkVlK6E2hB3iSEzIOij44JM9c81BQ3Pdnzp2O1fyIOTuXpAly2e2Fqfojuh5vzDB-vnYNPjN26IQ11bbAot-Bt5-pDvPhJ-dp0ezQg5X7kfLj3ZXc_aFoKBDpScRQ4djxVhMYkAhMTSdQytYpCdJ6qMLRoVd6PjVHC0CEO0VDSlhMElzYqEoNJROM-gIdC9VPXJ2LwueOqcshK1fUkYUBJjGxpjPp8q3vU3z9-N4j2Ni72H7bhEly1U1LXs3zbnM-KTf3rD7bI_2TOnsHTBmCzndojnsMCli_gyS3axZdwMPJbQ1ll2ZTipufnZWdY_cDZ-QWrStb0BppO5iWzrqSGGWyr21heGkbJy5kvo3gFJ_fyMsuwWFYlvgaGbpHSCI5k7kLbOEcbyVT4vbuC67gHG62yM90Qrru-H9-zmiqaZ6SOzKujB-870UnNMvI3oZXWYrIm0Ewzx0cYpYLS-B6sd5cpRLh1n7zEau5kEoIqhHVpiA1vHnffJNsZj_3Jm38XfQePxoNhdjQ6PnwLj7nDPY7eVq7A4ux8jquE2mbFmvcWBl_v29SuASEBS2s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+substrate+geometry+on+electrospun+fiber+deposition+and+alignment&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Wang%2C+Baolin&rft.au=Zhou%2C+Wenyan&rft.au=Chang%2C+Ming%E2%80%90Wei&rft.au=Ahmad%2C+Zeeshan&rft.date=2017-05-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=134&rft.issue=19&rft_id=info:doi/10.1002%2Fapp.44823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_44823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |