Impact of substrate geometry on electrospun fiber deposition and alignment

ABSTRACT Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with wel...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 134; no. 19; pp. np - n/a
Main Authors Wang, Baolin, Zhou, Wenyan, Chang, Ming‐Wei, Ahmad, Zeeshan, Li, Jing‐Song
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 15.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823.
AbstractList ABSTRACT Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823.
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well-defined geometries (rectangular, concave, and E-shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well-aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. J. Appl. Polym. Sci. 2017, 134, 44823.
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well‐defined geometries (rectangular, concave, and E‐shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well‐aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44823.
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition substrates (paired and in parallel) are explored to achieve rapid preparation of multiple topographies. Three ES substrates with well-defined geometries (rectangular, concave, and E-shaped) were investigated (arranged in parallel) for their impact on fiber size, morphology, orientation, and cell behavior. The results indicate fiber alignment and orientation can be improved and modulated based on the substrate geometry. In addition, altering the interdistance space between various parallel substrates has a clear impact on fiber diameter size and alignment (random, aligned, and perpendicular orientation). Electric field simulations based on substrate geometries show greater probable regions of aligned electric field vectors and distribution, which indicates the most likely deposition attributes of electrospun PCL fibers. Fibrous PCL membranes were biocompatible, and cell growth and guidance were along the fiber path, with evidence of branching at intersecting fibers for multiaxial fibrous topographies. These findings show that the substrate geometry can be optimized to effectively assemble multiaxial layered and well-aligned fibers in a controlled fashion, which is ideal to support several application developments dependent on fiber topography, integrity, and morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44823.
Author Li, Jing‐Song
Zhou, Wenyan
Ahmad, Zeeshan
Chang, Ming‐Wei
Wang, Baolin
Author_xml – sequence: 1
  givenname: Baolin
  surname: Wang
  fullname: Wang, Baolin
  organization: Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
– sequence: 2
  givenname: Wenyan
  surname: Zhou
  fullname: Zhou, Wenyan
  organization: Zhejiang University
– sequence: 3
  givenname: Ming‐Wei
  surname: Chang
  fullname: Chang, Ming‐Wei
  email: mwchang@zju.edu.cn
  organization: Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
– sequence: 4
  givenname: Zeeshan
  surname: Ahmad
  fullname: Ahmad, Zeeshan
  organization: De Montfort University, The Gateway
– sequence: 5
  givenname: Jing‐Song
  surname: Li
  fullname: Li, Jing‐Song
  organization: Zhejiang University
BookMark eNp1kD9PwzAQxS1UJNrCwDeIxAJDWttxHGesKv4UVaIDzJEbXypXiR1sR6jfHpd2QrDcDfd7p_feBI2MNYDQLcEzgjGdy76fMSZodoHGBJdFyjgVIzSON5KKssyv0MT7PcaE5JiP0euq62UdEtskftj64GSAZAe2g-AOiTUJtFAHZ30_mKTRW3CJgt56HXQ8SqMS2eqd6cCEa3TZyNbDzXlP0cfT4_vyJV2_Pa-Wi3VaZ7zI0pJyyrdEKcFAqCyHOi-baJLJkhPSQMMlLpTiTMVREFC0YJIImjfZVigQ2RTdn_72zn4O4EPVaV9D20oDdvAVEYKRjOY4i-jdL3RvB2eiu0hFMyWjhERqfqLqmNM7aKpaB3kMGOvQbUVwdey2it1WP91GxcMvRe90J93hT_b8_Uu3cPgfrBabzUnxDWJ_iqs
CODEN JAPNAB
CitedBy_id crossref_primary_10_1016_j_addr_2021_05_033
crossref_primary_10_3389_fbiom_2022_928537
crossref_primary_10_3390_mi13040642
crossref_primary_10_1016_j_eurpolymj_2018_05_005
crossref_primary_10_1038_s41598_018_33088_5
crossref_primary_10_1016_j_cej_2017_10_033
crossref_primary_10_1007_s42242_018_0027_9
crossref_primary_10_1007_s12221_017_7478_z
crossref_primary_10_3390_polym9070265
crossref_primary_10_1080_1061186X_2020_1795180
crossref_primary_10_1016_j_addma_2021_101882
Cites_doi 10.1002/app.31597
10.1016/j.msec.2010.04.001
10.1109/TIA.2010.2103392
10.1016/j.memsci.2006.11.056
10.1021/ja056810y
10.1039/c0nr00192a
10.1016/j.carbpol.2016.06.066
10.1177/1528083713498916
10.1007/s11051-012-1201-1
10.1016/j.jmatprotec.2013.05.013
10.1016/j.ijbiomac.2014.10.040
10.1016/j.compscitech.2010.01.010
10.1557/jmr.2012.346
10.1002/app.43747
10.1016/j.actbio.2012.10.042
10.1002/app.38116
10.1016/j.colsurfb.2011.07.045
10.1002/adma.200306226
10.1016/j.ces.2007.06.007
10.1016/S0032-3861(99)00068-3
10.1016/j.polymer.2015.03.052
10.22203/eCM.v019a19
10.1002/app.43945
10.1016/j.biomaterials.2010.08.021
10.1016/j.colsurfb.2014.06.034
10.1016/j.carbpol.2010.10.009
10.1021/nn901391q
10.1002/marc.201000292
10.1007/BF03218561
10.1021/nl0504235
10.1016/j.matlet.2011.05.043
10.1163/156856208783721029
10.1016/j.ces.2015.12.030
10.1109/TDEI.2009.5128519
10.1002/pat.1625
10.1016/j.polymer.2006.05.012
10.1088/0957-4484/12/3/329
10.3144/expresspolymlett.2015.12
10.1016/j.matdes.2015.10.116
10.1016/j.biomaterials.2004.06.051
10.1016/j.colsurfb.2016.05.092
10.1002/app.38838
10.1016/j.biomaterials.2004.03.021
10.1002/adhm.201200287
10.1016/j.elstat.2010.06.009
10.1134/S1070363215120038
10.1016/j.carbpol.2016.05.032
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.44823
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 4313295971
10_1002_app_44823
APP44823
Genre article
GrantInformation_xml – fundername: Research Fund for The Doctoral Program of Higher Education of China
  funderid: 20130101120170
– fundername: Key Technologies R&D Program of Zhejiang Province
  funderid: 2015C02G2010104; 2015C02035
– fundername: National Nature Science Foundation of China
  funderid: 81301304
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3673-92626b1dd84e8d35ec59f6284a9611fef6a07dd64ddd671ed274a1825f3b8de83
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 11 16:31:15 EDT 2025
Fri Jul 25 12:12:09 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Jan 22 16:41:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3673-92626b1dd84e8d35ec59f6284a9611fef6a07dd64ddd671ed274a1825f3b8de83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1867394211
PQPubID 1006379
PageCount 12
ParticipantIDs proquest_miscellaneous_1884132503
proquest_journals_1867394211
crossref_citationtrail_10_1002_app_44823
crossref_primary_10_1002_app_44823
wiley_primary_10_1002_app_44823_APP44823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 May 2017
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 15 May 2017
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 289
2010; 31
2013; 2
2013; 44
2010; 19
2008; 19
2013; 129
2008; 16
2013; 128
2011; 83
2011; 31
2016; 145
2016; 144
1999; 40
2012; 14
2005; 26
2015; 9
2014; 131
2013; 9
2010; 21
2010; 68
2010; 118
2016; 90
2015; 81
2004; 16
2015; 85
2006; 47
2015; 65
2005; 5
2016; 133
2013; 213
2011; 88
2011; 65
2012; 27
2007; 62
2011; 47
2010; 70
2014; 121
2010; 2
2001; 12
2006; 128
2010; 4
2009; 16
2016; 151
2016; 150
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Zhou Z. (e_1_2_6_3_1) 2014; 131
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 31
  start-page: 1903
  year: 2010
  publication-title: Macromol. Rapid Commun.
– volume: 9
  start-page: 105
  year: 2015
  publication-title: eXPRESS Polym. Lett.
– volume: 44
  start-page: 463
  year: 2013
  publication-title: J. Ind. Text.
– volume: 131
  start-page: 1366
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 65
  start-page: 26
  year: 2015
  publication-title: Polymer
– volume: 2
  start-page: 923
  year: 2010
  publication-title: Nanoscale
– volume: 2
  start-page: 702
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 118
  start-page: 405
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 213
  start-page: 1894
  year: 2013
  publication-title: J. Mater. Process. Technol.
– volume: 65
  start-page: 2377
  year: 2011
  publication-title: J. Mater. Lett.
– volume: 150
  start-page: 232
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 68
  start-page: 458
  year: 2010
  publication-title: J. Electrostat.
– volume: 151
  start-page: 1240
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 26
  start-page: 1261
  year: 2005
  publication-title: Biomaterials
– volume: 27
  start-page: 3013
  year: 2012
  publication-title: J. Mater. Res.
– volume: 289
  start-page: 210
  year: 2007
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 5698
  year: 2013
  publication-title: Acta Biomater.
– volume: 144
  start-page: 17
  year: 2016
  publication-title: Chem. Eng. Sci.
– volume: 4
  start-page: 2730
  year: 2010
  publication-title: J. ACS Nano
– volume: 129
  start-page: 1383
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 81
  start-page: 1089
  year: 2015
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  start-page: 1
  year: 2012
  publication-title: J. Nanopart. Res.
– volume: 19
  start-page: 193
  year: 2010
  publication-title: Eur. Cells Mater.
– volume: 31
  start-page: 9031
  year: 2010
  publication-title: Biomaterials
– volume: 16
  start-page: 567
  year: 2008
  publication-title: Macromol. Res.
– volume: 145
  start-page: 757
  year: 2016
  publication-title: Colloids Surf. B
– volume: 133
  start-page: 9
  year: 2016
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 4901
  year: 2006
  publication-title: Polymer
– volume: 40
  start-page: 4585
  year: 1999
  publication-title: Polymer
– volume: 47
  start-page: 1028
  year: 2011
  publication-title: IEEE Trans. Ind. Appl.
– volume: 85
  start-page: 2681
  year: 2015
  publication-title: Russ. J. Gen. Chem.
– volume: 128
  start-page: 1436
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 133
  year: 2016
  publication-title: J. Appl. Polym. Sci.
– volume: 19
  start-page: 339
  year: 2008
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 90
  start-page: 1
  year: 2016
  publication-title: Mater. Des.
– volume: 128
  start-page: 958
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 16
  start-page: 361
  year: 2004
  publication-title: Adv. Mater.
– volume: 12
  start-page: 384
  year: 2001
  publication-title: Nanotechnology
– volume: 70
  start-page: 703
  year: 2010
  publication-title: Compos. Sci. Technol.
– volume: 21
  start-page: 77
  year: 2010
  publication-title: Polym. Adv. Technol.
– volume: 121
  start-page: 432
  year: 2014
  publication-title: Colloids Surf. B
– volume: 5
  start-page: 913
  year: 2005
  publication-title: Nano Lett.
– volume: 62
  start-page: 4751
  year: 2007
  publication-title: Chem. Eng. Sci.
– volume: 88
  start-page: 587
  year: 2011
  publication-title: Colloids Surf. B
– volume: 83
  start-page: 1541
  year: 2011
  publication-title: Carbohydr. Polym.
– volume: 16
  start-page: 785
  year: 2009
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 31
  start-page: 22
  year: 2011
  publication-title: J. Mater. Sci. Eng. C
– volume: 26
  start-page: 2603
  year: 2005
  publication-title: Biomaterials
– ident: e_1_2_6_4_1
  doi: 10.1002/app.31597
– ident: e_1_2_6_29_1
  doi: 10.1016/j.msec.2010.04.001
– ident: e_1_2_6_17_1
  doi: 10.1109/TIA.2010.2103392
– volume: 131
  start-page: 1366
  year: 2014
  ident: e_1_2_6_3_1
  publication-title: J. Appl. Polym. Sci.
– ident: e_1_2_6_5_1
  doi: 10.1016/j.memsci.2006.11.056
– ident: e_1_2_6_22_1
  doi: 10.1021/ja056810y
– ident: e_1_2_6_28_1
  doi: 10.1039/c0nr00192a
– ident: e_1_2_6_23_1
  doi: 10.1016/j.carbpol.2016.06.066
– ident: e_1_2_6_45_1
  doi: 10.1177/1528083713498916
– ident: e_1_2_6_6_1
  doi: 10.1007/s11051-012-1201-1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jmatprotec.2013.05.013
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ijbiomac.2014.10.040
– ident: e_1_2_6_34_1
  doi: 10.1016/j.compscitech.2010.01.010
– ident: e_1_2_6_44_1
  doi: 10.1557/jmr.2012.346
– ident: e_1_2_6_13_1
  doi: 10.1002/app.43747
– ident: e_1_2_6_42_1
  doi: 10.1016/j.actbio.2012.10.042
– ident: e_1_2_6_2_1
  doi: 10.1002/app.38116
– ident: e_1_2_6_49_1
  doi: 10.1016/j.colsurfb.2011.07.045
– ident: e_1_2_6_35_1
  doi: 10.1002/adma.200306226
– ident: e_1_2_6_48_1
  doi: 10.1016/j.ces.2007.06.007
– ident: e_1_2_6_19_1
  doi: 10.1016/S0032-3861(99)00068-3
– ident: e_1_2_6_18_1
  doi: 10.1016/j.polymer.2015.03.052
– ident: e_1_2_6_27_1
  doi: 10.22203/eCM.v019a19
– ident: e_1_2_6_9_1
  doi: 10.1002/app.43945
– ident: e_1_2_6_30_1
  doi: 10.1016/j.biomaterials.2010.08.021
– ident: e_1_2_6_46_1
  doi: 10.1016/j.colsurfb.2014.06.034
– ident: e_1_2_6_11_1
  doi: 10.1016/j.carbpol.2010.10.009
– ident: e_1_2_6_26_1
  doi: 10.1021/nn901391q
– ident: e_1_2_6_8_1
  doi: 10.1002/marc.201000292
– ident: e_1_2_6_31_1
  doi: 10.1007/BF03218561
– ident: e_1_2_6_36_1
  doi: 10.1021/nl0504235
– ident: e_1_2_6_21_1
  doi: 10.1016/j.matlet.2011.05.043
– ident: e_1_2_6_7_1
  doi: 10.1163/156856208783721029
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ces.2015.12.030
– ident: e_1_2_6_32_1
  doi: 10.1109/TDEI.2009.5128519
– ident: e_1_2_6_24_1
  doi: 10.1002/pat.1625
– ident: e_1_2_6_16_1
  doi: 10.1016/j.polymer.2006.05.012
– ident: e_1_2_6_33_1
  doi: 10.1088/0957-4484/12/3/329
– ident: e_1_2_6_37_1
  doi: 10.3144/expresspolymlett.2015.12
– ident: e_1_2_6_38_1
  doi: 10.1016/j.matdes.2015.10.116
– ident: e_1_2_6_40_1
  doi: 10.1016/j.biomaterials.2004.06.051
– ident: e_1_2_6_41_1
  doi: 10.1016/j.colsurfb.2016.05.092
– ident: e_1_2_6_20_1
  doi: 10.1002/app.38838
– ident: e_1_2_6_39_1
  doi: 10.1016/j.biomaterials.2004.03.021
– ident: e_1_2_6_43_1
  doi: 10.1002/adhm.201200287
– ident: e_1_2_6_14_1
  doi: 10.1016/j.elstat.2010.06.009
– ident: e_1_2_6_10_1
  doi: 10.1134/S1070363215120038
– ident: e_1_2_6_12_1
  doi: 10.1016/j.carbpol.2016.05.032
SSID ssj0011506
Score 2.3131487
Snippet ABSTRACT Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES)...
Aligned, uniform fiber matrixes are highly desirable in numerous engineering and physical science applications. Here, modified electrospinning (ES) deposition...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Alignment
Deposition
electric field
Electrospinning
Fibers
Materials science
Mathematical morphology
micron fibers
Orientation
Polymers
substrate
Substrates
Topography
Title Impact of substrate geometry on electrospun fiber deposition and alignment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.44823
https://www.proquest.com/docview/1867394211
https://www.proquest.com/docview/1884132503
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8UwEMcH0Yse3MWnT4niwUv1tU3aPjw9XFBRERfwIJQ0iwe1lbcc9NM7ky4uKIiXUmi6pZnkP83kNwBblidWoLvjKY7WxLmQXtYxRMKUKvAV9psO9nx-ER3f8tM7cTcGe_VamJIP0fxwI8tw_TUZuMwGux_QUEqDhb5FQKRPitUiQXTVoKNI6ERleIfvoU8haqpQJ9htzvw6Fn0IzM8y1Y0zRzNwXz9hGV7yuDMaZjvq7Ru88Z-vMAvTlf5kvbLBzMGYyedh6hOVcAFOT9zKSVZYNsBuxeFr2YMpns2w_8qKnFWpcwYvo5xZijhh2tTBX0zmmqG2f3BRBotwe3R4s3_sVSkXPBVGcegRPTDKfK0TbhIdCqNE10Y4hMlu5PvW2Eh2Yq0jrnET-0ajUyvRRRE2zBJtknAJxvMiN8vADM3haR4YbA1c2VgaG4oud0tbeaDiFmzXlZ-qikdOaTGe0pKkHKRYPamrnhZsNkVfSgjHT4Xa9RdMKzscpITrC7scvdwWbDSH0YJoWkTmphhRmQRHcpSCeIlt97l-v0nau7x0Oyt_L7oKkwFpAUK-ijaMD_sjs4ZKZpitw0Tv4Pzset013XeEKPAX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Remg5tPQltjzqVq3EJbBx7CR76AFB0S4voQokbmlijzm0TRC7KwS_ib_Cf2LGeUCrVuqFQy9RpIycxOMZf2OPvwH46FTqNIU7gVFkTUrpPCj6yEyYuZGhIb_pyZ73D-Lhsdo50SczcN2ehan5IboFN7YM76_ZwHlBev2ONZTrYFFwIdvS1bt4eUEB2_jzaIu0-0nK7S9Hm8OgqSkQmChOooDp8eIitDZVmNpIo9EDF5OPzgdxGDp0cd5PrI2VpUsSoqWoLScMrl1UpBbTiNp9BI-5gjgz9W997ciqGFrFdUJJGFAUo1seo75c7z7119nvDtLeB8Z-Ztt-Djdtn9QJLd_XppNizVz9Rhf5v3TaPDxrILbYqG3iBcxg-RLm7hEvvoKdkT8cKionxuQ5PUOvOMXqJ07OL0VViqY60PhsWgrHSTXCYpvfJvLSCgpfTn0ixWs4fpCfeQOzZVXiAgjkbUqrJNKAV8YlObpID5Q_vaukSXqw2mo7Mw3lOlf--JHVZNEyI3VkXh09-NCJntU8I38SWmqHTNa4mnHGjITRQFEg34P33WNyErzzk5dYTVkmJbBCaJeaWPXj4-8vyTYOD_3N238XfQdPhkf7e9ne6GB3EZ5Khj7McKuXYHZyPsVlAm6TYsXbi4BvDz3WbgFs_Uy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKlXtofSFui1QU7USl8DGsZ3kwAGxrFigaFUViVua2GMObZMVu6uK_iX-Cj-KsfOAVkXqhUMvUaSMnMTzyDfx-BuAD1YkVlK6E2hB3iSEzIOij44JM9c81BQ3Pdnzp2O1fyIOTuXpAly2e2Fqfojuh5vzDB-vnYNPjN26IQ11bbAot-Bt5-pDvPhJ-dp0ezQg5X7kfLj3ZXc_aFoKBDpScRQ4djxVhMYkAhMTSdQytYpCdJ6qMLRoVd6PjVHC0CEO0VDSlhMElzYqEoNJROM-gIdC9VPXJ2LwueOqcshK1fUkYUBJjGxpjPp8q3vU3z9-N4j2Ni72H7bhEly1U1LXs3zbnM-KTf3rD7bI_2TOnsHTBmCzndojnsMCli_gyS3axZdwMPJbQ1ll2ZTipufnZWdY_cDZ-QWrStb0BppO5iWzrqSGGWyr21heGkbJy5kvo3gFJ_fyMsuwWFYlvgaGbpHSCI5k7kLbOEcbyVT4vbuC67gHG62yM90Qrru-H9-zmiqaZ6SOzKujB-870UnNMvI3oZXWYrIm0Ewzx0cYpYLS-B6sd5cpRLh1n7zEau5kEoIqhHVpiA1vHnffJNsZj_3Jm38XfQePxoNhdjQ6PnwLj7nDPY7eVq7A4ux8jquE2mbFmvcWBl_v29SuASEBS2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+substrate+geometry+on+electrospun+fiber+deposition+and+alignment&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Wang%2C+Baolin&rft.au=Zhou%2C+Wenyan&rft.au=Chang%2C+Ming%E2%80%90Wei&rft.au=Ahmad%2C+Zeeshan&rft.date=2017-05-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=134&rft.issue=19&rft_id=info:doi/10.1002%2Fapp.44823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_44823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon