OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice
Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance‐associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP...
Saved in:
Published in | Plant, cell and environment Vol. 43; no. 10; pp. 2476 - 2491 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0140-7791 1365-3040 1365-3040 |
DOI | 10.1111/pce.13843 |
Cover
Loading…
Abstract | Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance‐associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane‐localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant.
Rice is the major dietary source of the toxic metal cadmium. Understand how rice takes up Cd is important. Two previous studies showed that OsNRAMP1 could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays, but its in planta function remains unknown. Here, we functionally characterize OsNRAMP1 and show that the transporter contributes significantly to the uptake of Cd and Mn in rice, but not the uptake of Fe or As. OsNRAMP1 and OsNRAMP5 play similar but non‐redundant functions. Our study sheds light on the mechanisms of Cd and Mn uptake by rice. |
---|---|
AbstractList | Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane-localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant. Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance‐associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane‐localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5 , while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant. Rice is the major dietary source of the toxic metal cadmium. Understand how rice takes up Cd is important. Two previous studies showed that OsNRAMP1 could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays, but its in planta function remains unknown. Here, we functionally characterize OsNRAMP1 and show that the transporter contributes significantly to the uptake of Cd and Mn in rice, but not the uptake of Fe or As. OsNRAMP1 and OsNRAMP5 play similar but non‐redundant functions. Our study sheds light on the mechanisms of Cd and Mn uptake by rice. Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane-localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant.Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane-localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant. Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance‐associated macrophage protein 1) could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays. However, the in planta function of OsNRAMP1 remains unknown. Here, we showed that OsNRAMP1 was able to transport Cd and manganese (Mn) when expressed in yeast, but did not transport Fe or As. OsNRAMP1 was mainly expressed in roots and leaves and encoded a plasma membrane‐localized protein. OsNRAMP1 expression was induced by Cd treatment and Fe deficiency. Immunostaining showed that OsNRAMP1 was localized in all root cells, except the central vasculature, and in leaf mesophyll cells. The knockout of OsNRAMP1 resulted in significant decreases in root uptake of Cd and Mn and their accumulation in rice shoots and grains, and increased sensitivity to Mn deficiency. The knockout of OsNRAMP1 had smaller effects on Cd and Mn uptake than knockout of OsNRAMP5, while knockout of both genes resulted in large decreases in the uptake of the two metals. Taken together, OsNRAMP1 contributes significantly to the uptake of Mn and Cd in rice, and the functions of OsNRAMP1 and OsNRAMP5 are similar but not redundant. Rice is the major dietary source of the toxic metal cadmium. Understand how rice takes up Cd is important. Two previous studies showed that OsNRAMP1 could transport iron (Fe), Cd and arsenic (As) in heterologous yeast assays, but its in planta function remains unknown. Here, we functionally characterize OsNRAMP1 and show that the transporter contributes significantly to the uptake of Cd and Mn in rice, but not the uptake of Fe or As. OsNRAMP1 and OsNRAMP5 play similar but non‐redundant functions. Our study sheds light on the mechanisms of Cd and Mn uptake by rice. |
Author | Huang, Sheng Ma, Jian Feng Yamaji, Naoki Chang, Jia‐Dong Zhang, Wenwen Zhao, Fang‐Jie |
Author_xml | – sequence: 1 givenname: Jia‐Dong orcidid: 0000-0002-4415-033X surname: Chang fullname: Chang, Jia‐Dong organization: Nanjing Agricultural University – sequence: 2 givenname: Sheng surname: Huang fullname: Huang, Sheng organization: Okayama University – sequence: 3 givenname: Naoki surname: Yamaji fullname: Yamaji, Naoki organization: Okayama University – sequence: 4 givenname: Wenwen surname: Zhang fullname: Zhang, Wenwen organization: Nanjing Agricultural University – sequence: 5 givenname: Jian Feng orcidid: 0000-0003-3411-827X surname: Ma fullname: Ma, Jian Feng organization: Okayama University – sequence: 6 givenname: Fang‐Jie orcidid: 0000-0002-0164-169X surname: Zhao fullname: Zhao, Fang‐Jie email: fangjie.zhao@njau.edu.cn organization: Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32666540$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLJTEQhYM46FVnMX9AAm7GRWvl0a-lXJxRcFTEWYfcpHqIdqfbJI347yd6rxtxmNoUFN85VNXZI9t-9EjINwYnLNfpZPCEiUaKLbJgoioLARK2yQKYhKKuW7ZL9mJ8AMiDut0hu4JXVVVKWJCLm3h9d_brltEUtI_TGBIGakafglvNCSNNIzXaDm4eqPaWDtr_0R4j0nlK-hGp8zQ4gwfkS6f7iF83fZ_8_nF-v7worm5-Xi7PrgojqloUrLUWdFlKIXRpV7oC3cmmAWhqaZquZqZa2Y4zi9hV2PEWWMM7AcAts1kg9sn3te8UxqcZY1KDiwb7Pi81zlHxkst8HUD5f1RyCW3dCJbRow_owzgHnw_JlJQ8LyHbTB1uqHk1oFVTcIMOL-r9nRk4XQMmjDEG7JRxSSf3-k7tesVAvQamcmDqLbCsOP6geDf9jN24P7seX_4Nqtvl-VrxF5tWoe0 |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2025_117722 crossref_primary_10_1016_j_scitotenv_2021_152765 crossref_primary_10_3390_agronomy13082000 crossref_primary_10_1016_j_plantsci_2023_111839 crossref_primary_10_3390_agronomy13030800 crossref_primary_10_3390_ijms24087383 crossref_primary_10_3389_fpls_2022_1011872 crossref_primary_10_1016_j_scitotenv_2023_162327 crossref_primary_10_3389_fpls_2023_1111789 crossref_primary_10_1016_j_cj_2023_01_007 crossref_primary_10_1016_j_plantsci_2023_111831 crossref_primary_10_1007_s11356_023_28629_z crossref_primary_10_1016_j_envpol_2021_118650 crossref_primary_10_1016_j_rsci_2023_11_010 crossref_primary_10_1016_j_jhazmat_2023_132889 crossref_primary_10_1016_j_ecoenv_2024_116352 crossref_primary_10_1080_10643389_2023_2210985 crossref_primary_10_3390_ijms22126414 crossref_primary_10_1093_plphys_kiae353 crossref_primary_10_1016_j_scitotenv_2024_176462 crossref_primary_10_1111_nph_19070 crossref_primary_10_3389_fpls_2023_1261518 crossref_primary_10_1093_jxb_erad495 crossref_primary_10_3389_fpls_2024_1482099 crossref_primary_10_1016_j_scitotenv_2021_145328 crossref_primary_10_3389_fpls_2022_840941 crossref_primary_10_1016_j_jhazmat_2024_137009 crossref_primary_10_3390_agronomy13041000 crossref_primary_10_1016_j_jhazmat_2024_133569 crossref_primary_10_1016_j_scitotenv_2023_162325 crossref_primary_10_1016_j_chemosphere_2023_140559 crossref_primary_10_1016_j_envpol_2023_122458 crossref_primary_10_3389_fpls_2022_1027551 crossref_primary_10_3390_plants12061226 crossref_primary_10_1016_j_jhazmat_2023_131442 crossref_primary_10_1007_s11104_022_05802_w crossref_primary_10_3390_plants10061055 crossref_primary_10_3390_plants13010070 crossref_primary_10_1007_s11104_024_06669_9 crossref_primary_10_1007_s10725_023_01105_x crossref_primary_10_1016_j_ecoenv_2023_115440 crossref_primary_10_1016_j_ecoenv_2024_117102 crossref_primary_10_1111_nph_17566 crossref_primary_10_1016_j_aquabot_2024_103762 crossref_primary_10_3390_toxics12110805 crossref_primary_10_1016_j_eti_2021_102142 crossref_primary_10_3390_ijms252413454 crossref_primary_10_1007_s10725_021_00791_9 crossref_primary_10_1080_15226514_2023_2293892 crossref_primary_10_1038_s41598_021_85324_0 crossref_primary_10_1021_acs_jafc_3c04967 crossref_primary_10_1016_j_jhazmat_2022_129048 crossref_primary_10_1111_pce_15182 crossref_primary_10_3390_cells13110907 crossref_primary_10_3390_ijms241411278 crossref_primary_10_1016_j_rsci_2021_07_011 crossref_primary_10_1007_s40502_021_00619_8 crossref_primary_10_3390_ijms26030896 crossref_primary_10_3390_ijms24010052 crossref_primary_10_1016_j_jhazmat_2024_135402 crossref_primary_10_1016_j_jhazmat_2023_132758 crossref_primary_10_1016_j_plaphy_2024_108671 crossref_primary_10_3390_plants14050707 crossref_primary_10_1016_j_scitotenv_2024_171005 crossref_primary_10_1016_j_envpol_2021_117918 crossref_primary_10_1016_j_rsci_2024_02_007 crossref_primary_10_1093_jxb_erab444 crossref_primary_10_1007_s10661_024_12940_4 crossref_primary_10_1016_j_ecoenv_2021_112907 crossref_primary_10_1016_j_envpol_2025_126110 crossref_primary_10_1016_j_jenvman_2024_121979 crossref_primary_10_3389_fpls_2023_1318383 crossref_primary_10_1016_j_molp_2021_09_016 crossref_primary_10_1111_pce_14993 crossref_primary_10_1016_j_celrep_2025_115336 crossref_primary_10_1016_j_scitotenv_2024_171915 crossref_primary_10_1093_plphys_kiac423 crossref_primary_10_1016_j_plaphy_2024_108564 crossref_primary_10_1016_j_molp_2024_09_012 crossref_primary_10_1111_brv_13182 crossref_primary_10_3390_toxics10080411 crossref_primary_10_3390_agronomy12081952 crossref_primary_10_3390_ijms24021161 crossref_primary_10_1007_s10653_025_02438_4 crossref_primary_10_1021_acs_est_2c06384 crossref_primary_10_3390_life13071456 crossref_primary_10_1080_00380768_2021_1955602 crossref_primary_10_1016_j_plaphy_2023_108149 crossref_primary_10_3390_ijms24054378 crossref_primary_10_1007_s11274_022_03435_w crossref_primary_10_1007_s42976_023_00453_8 crossref_primary_10_3390_ijms24021713 crossref_primary_10_1007_s10725_023_01091_0 crossref_primary_10_12677_AAC_2023_132022 crossref_primary_10_3390_ijms241411587 crossref_primary_10_1111_ppl_13370 crossref_primary_10_1016_j_jhazmat_2021_126379 crossref_primary_10_1111_nph_18698 crossref_primary_10_3390_agronomy14092129 crossref_primary_10_3390_cells11233888 crossref_primary_10_1007_s00425_023_04296_9 crossref_primary_10_1016_j_plaphy_2024_109427 crossref_primary_10_1016_j_envres_2024_120374 crossref_primary_10_3389_fpls_2024_1349456 crossref_primary_10_1007_s10653_024_02141_w crossref_primary_10_1007_s44307_024_00052_6 crossref_primary_10_3390_ijms25158269 crossref_primary_10_1007_s00128_024_03915_9 crossref_primary_10_1016_j_plaphy_2024_109431 crossref_primary_10_1016_j_envres_2022_115098 crossref_primary_10_1039_D3EN00958K crossref_primary_10_3390_ijms23031734 crossref_primary_10_3390_genes14122204 crossref_primary_10_1093_jxb_erac302 crossref_primary_10_1039_D2EN00487A crossref_primary_10_3390_toxics10050249 crossref_primary_10_1007_s10725_023_00991_5 crossref_primary_10_1007_s12403_023_00600_w crossref_primary_10_1016_j_ecoenv_2022_113952 crossref_primary_10_1016_j_jhazmat_2023_131860 crossref_primary_10_3389_fpls_2021_647341 crossref_primary_10_1016_j_jhazmat_2023_131865 crossref_primary_10_1021_acs_jafc_1c07896 crossref_primary_10_1360_SSV_2023_0027 crossref_primary_10_1016_j_jhazmat_2023_132958 crossref_primary_10_1016_j_plaphy_2023_107754 crossref_primary_10_1016_j_plaphy_2024_109169 crossref_primary_10_1016_j_envexpbot_2024_105712 crossref_primary_10_1016_j_envexpbot_2022_104867 crossref_primary_10_1186_s12870_024_04981_1 crossref_primary_10_3390_agriculture13050944 crossref_primary_10_1007_s10725_021_00774_w crossref_primary_10_1016_j_jhazmat_2025_137252 crossref_primary_10_1016_j_envint_2021_106749 crossref_primary_10_1007_s11104_022_05323_6 crossref_primary_10_1007_s00344_025_11670_2 crossref_primary_10_1021_acs_est_0c04713 crossref_primary_10_1111_pce_14154 crossref_primary_10_1016_j_xplc_2024_100830 crossref_primary_10_1016_j_ijbiomac_2023_127103 crossref_primary_10_1093_jxb_erac323 crossref_primary_10_1093_pcp_pcaa150 crossref_primary_10_1016_j_scienta_2023_112554 crossref_primary_10_1007_s42729_023_01163_0 crossref_primary_10_1016_j_scitotenv_2024_175533 crossref_primary_10_3389_fpls_2021_794373 crossref_primary_10_1016_j_scitotenv_2024_176742 crossref_primary_10_1016_j_ijbiomac_2023_125607 crossref_primary_10_1016_j_jplph_2024_154335 crossref_primary_10_1016_j_jes_2022_10_005 crossref_primary_10_1016_j_jhazmat_2023_130991 crossref_primary_10_1016_j_jhazmat_2023_130998 crossref_primary_10_1111_pce_15130 crossref_primary_10_1007_s10653_024_02099_9 crossref_primary_10_1111_jipb_13487 crossref_primary_10_1016_j_envexpbot_2023_105333 crossref_primary_10_3390_cells11030569 crossref_primary_10_1016_j_scitotenv_2024_172352 crossref_primary_10_1111_pbi_14379 crossref_primary_10_1007_s00299_024_03303_x crossref_primary_10_3389_fgene_2022_944529 crossref_primary_10_1021_acsagscitech_4c00006 crossref_primary_10_1007_s10725_024_01137_x crossref_primary_10_1016_j_chemosphere_2021_129590 crossref_primary_10_1016_j_ncrops_2024_100035 crossref_primary_10_3389_fpls_2022_1003953 crossref_primary_10_1111_pce_14257 crossref_primary_10_1016_j_chemosphere_2023_139888 crossref_primary_10_3390_plants12203615 crossref_primary_10_1016_j_plaphy_2024_108411 crossref_primary_10_1016_j_scitotenv_2021_150633 crossref_primary_10_1016_j_jhazmat_2023_130969 crossref_primary_10_1016_j_pbi_2023_102376 crossref_primary_10_1007_s42729_024_01658_4 crossref_primary_10_3389_fgene_2023_1235855 crossref_primary_10_1007_s10658_021_02375_9 crossref_primary_10_1016_j_rsci_2023_12_003 crossref_primary_10_1186_s12284_021_00530_8 crossref_primary_10_1111_pce_14819 crossref_primary_10_1016_j_bbagen_2024_130685 crossref_primary_10_1016_j_jhazmat_2024_134276 crossref_primary_10_1016_j_scitotenv_2024_175193 crossref_primary_10_1016_j_ecoenv_2021_112639 crossref_primary_10_1016_j_jhazmat_2024_135007 crossref_primary_10_3389_fpls_2023_1076876 crossref_primary_10_1111_pce_14263 crossref_primary_10_1093_plphys_kiac434 crossref_primary_10_3389_fgeed_2022_987817 crossref_primary_10_1071_FP24092 crossref_primary_10_1080_15226514_2025_2456095 crossref_primary_10_3390_agronomy13020384 crossref_primary_10_1016_j_jhazmat_2023_131945 crossref_primary_10_1016_j_cj_2021_02_001 crossref_primary_10_1071_FP24101 crossref_primary_10_1007_s00284_023_03249_5 crossref_primary_10_1016_j_envres_2024_119092 crossref_primary_10_1016_j_scitotenv_2023_165369 crossref_primary_10_1016_j_jhazmat_2024_136766 crossref_primary_10_1007_s00425_023_04170_8 crossref_primary_10_1093_jxb_erab159 crossref_primary_10_3390_cells12030441 crossref_primary_10_1007_s10343_024_01072_x crossref_primary_10_1016_j_ibiod_2024_105787 crossref_primary_10_1093_jxb_erad330 crossref_primary_10_3390_ijms23147593 crossref_primary_10_1016_j_stress_2023_100344 crossref_primary_10_1080_26395940_2024_2368588 crossref_primary_10_1016_j_jhazmat_2023_131008 crossref_primary_10_1186_s13104_025_07112_7 crossref_primary_10_1016_j_plaphy_2022_01_024 crossref_primary_10_3390_microorganisms11010069 crossref_primary_10_1111_jipb_13440 crossref_primary_10_1093_jxb_erad366 crossref_primary_10_1016_j_cj_2022_09_013 crossref_primary_10_1016_j_jhazmat_2022_129526 crossref_primary_10_1007_s11104_025_07236_6 crossref_primary_10_1271_kagakutoseibutsu_61_445 crossref_primary_10_1016_j_ijbiomac_2022_12_176 crossref_primary_10_1007_s42729_024_01778_x crossref_primary_10_1016_j_plantsci_2023_111935 crossref_primary_10_1007_s10534_023_00569_8 crossref_primary_10_1007_s12355_024_01448_3 crossref_primary_10_1007_s11356_024_35018_7 crossref_primary_10_1016_j_scitotenv_2023_166435 crossref_primary_10_1016_j_ecoenv_2024_117386 crossref_primary_10_1016_j_jhazmat_2023_131219 crossref_primary_10_1093_bbb_zbab180 crossref_primary_10_3390_cells11233928 crossref_primary_10_1016_j_ecoenv_2023_115110 crossref_primary_10_1016_j_envpol_2024_125331 crossref_primary_10_1016_j_plantsci_2024_112082 crossref_primary_10_1016_j_cpb_2021_100211 crossref_primary_10_1016_j_scitotenv_2022_155006 crossref_primary_10_1016_j_envexpbot_2023_105627 crossref_primary_10_1016_j_scitotenv_2024_172046 crossref_primary_10_1016_j_scitotenv_2024_173257 crossref_primary_10_1016_j_envint_2024_108904 crossref_primary_10_1016_j_scitotenv_2023_168721 crossref_primary_10_3390_genes13112130 crossref_primary_10_1021_acs_est_4c01851 crossref_primary_10_1038_s43016_022_00569_w crossref_primary_10_1007_s10142_024_01405_z crossref_primary_10_1093_plphys_kiac475 crossref_primary_10_1016_j_chemosphere_2021_131113 crossref_primary_10_1007_s11356_022_22826_y crossref_primary_10_1016_j_plaphy_2025_109578 |
Cites_doi | 10.1104/pp.109.150946 10.1073/pnas.1004949107 10.1093/jxb/eraa287 10.1111/pce.12016 10.1016/j.envpol.2016.10.043 10.1105/tpc.112.096925 10.1073/pnas.0802361105 10.1093/jxb/erw060 10.1021/es400521h 10.1038/nplants.2015.170 10.1111/pce.12138 10.1105/tpc.109.073023 10.1111/j.1365-3040.2009.01935.x 10.1021/es5047099 10.1073/pnas.1211132109 10.1111/j.1747-0765.2006.00055.x 10.1038/s41467-019-10544-y 10.1093/pcp/pcx087 10.1371/journal.pone.0003647 10.1105/tpc.001388 10.1093/pcp/pcv017 10.1007/s11104-018-3849-5 10.1104/pp.18.01380 10.1111/nph.14783 10.1038/srep37222 10.1093/jexbot/53.368.535 10.1038/cr.2013.123 10.1038/ncomms3442 10.1016/B978-0-12-407247-3.00004-4 10.1016/j.taap.2009.03.015 10.1104/pp.113.226225 10.1023/A:1005847615493 10.1105/tpc.17.00578 10.1146/annurev-arplant-043015-112301 10.1038/sj.emboj.7600864 10.1016/j.pbi.2019.05.010 10.1038/s41598-017-14832-9 10.1093/jxb/err136 10.1289/ehp.1307110 10.1186/1746-4811-7-30 10.1371/journal.pone.0005553 10.1104/pp.16.01189 10.1016/j.scitotenv.2018.05.050 10.1073/pnas.97.9.4991 10.1093/jxb/eru259 10.1111/pce.12747 10.1371/journal.pone.0177978 10.1007/s11104-019-04374-6 10.1111/nph.15190 10.1104/pp.106.093005 10.1016/j.molp.2015.02.012 10.1016/j.envpol.2019.03.063 10.1104/pp.112.204461 10.1007/s12011-008-8239-z |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.13843 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic AGRICOLA Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 2491 |
ExternalDocumentID | 32666540 10_1111_pce_13843 PCE13843 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China: 31520103914 – fundername: Innovative Research Team Development Plan of the Ministry of Education of China funderid: IRT_17R56 – fundername: Grant‐in‐Aid for Specially Promoted Research of Japan funderid: 16H06296 – fundername: Fundamental Research Funds for the Central Universities funderid: KYT201802 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3673-19dd0a55433a5dba60af48800874c8f71c6bdf21deef6ef290182f3002d1d5db3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:29:34 EDT 2025 Thu Jul 10 23:58:21 EDT 2025 Fri Jul 25 19:36:44 EDT 2025 Mon Jul 21 06:06:41 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Tue Jul 01 04:28:43 EDT 2025 Wed Jan 22 16:34:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | OsNRAMP1 food safety cadmium rice manganese metal transporter |
Language | English |
License | 2020 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3673-19dd0a55433a5dba60af48800874c8f71c6bdf21deef6ef290182f3002d1d5db3 |
Notes | Funding information National Natural Science Foundation of China: 31520103914; Fundamental Research Funds for the Central Universities, Grant/Award Number: KYT201802; Grant‐in‐Aid for Specially Promoted Research of Japan, Grant/Award Number: 16H06296; Innovative Research Team Development Plan of the Ministry of Education of China, Grant/Award Number: IRT_17R56 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4415-033X 0000-0002-0164-169X 0000-0003-3411-827X |
PMID | 32666540 |
PQID | 2444218249 |
PQPubID | 37957 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2524266005 proquest_miscellaneous_2424097831 proquest_journals_2444218249 pubmed_primary_32666540 crossref_citationtrail_10_1111_pce_13843 crossref_primary_10_1111_pce_13843 wiley_primary_10_1111_pce_13843_PCE13843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2017; 7 2002; 14 2013; 4 2010; 107 2019; 52 2002; 53 2013; 23 2019; 10 2007; 143 2011; 62 2012; 160 2020; 446 2013; 163 2008; 105 2008; 3 2019; 249 2016; 39 2005; 24 2014; 65 2009; 238 2010; 22 2015; 49 2013; 119 2018; 217 2000; 97 2010; 152 2018; 219 2014; 122 2012; 24 2009; 127 2015; 56 2015; 1 2006; 52 2013; 47 2017; 29 2006; 313 2015; 8 2011; 7 2012; 109 2016; 6 2019; 180 2013; 36 2009; 32 2017; 58 2016; 219 2020 1997; 35 2017; 12 2018; 433 2014; 37 2018; 639 2009; 4 2016; 67 2016; 172 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Gietz R. D. (e_1_2_7_14_1) 2006 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 7 year: 2017 article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low cd‐accumulating rice without compromising yield publication-title: Scientific Reports – volume: 6 year: 2016 article-title: The high‐affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision publication-title: Scientific Reports – volume: 14 start-page: 1223 year: 2002 end-page: 1233 article-title: IRT1, an transporter essential for iron uptake from the soil and for plant growth publication-title: The Plant Cell – volume: 219 start-page: 99 year: 2016 end-page: 106 article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China publication-title: Environmental Pollution – volume: 23 start-page: 1233 year: 2013 end-page: 1236 article-title: Targeted mutagenesis in rice using CRISPR‐Cas system publication-title: Cell Research – volume: 62 start-page: 4843 year: 2011 end-page: 4850 article-title: The OsNRAMP1 iron transporter is involved in cd accumulation in rice publication-title: Journal of Experimental Botany – volume: 29 start-page: 3068 year: 2017 end-page: 3084 article-title: Intracellular distribution of manganese by the trans‐Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis publication-title: The Plant Cell – volume: 105 start-page: 9931 year: 2008 end-page: 9935 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proceedings of the National Academy of Sciences of USA – volume: 52 start-page: 464 year: 2006 end-page: 469 article-title: Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OsIRT2 in rice publication-title: Soil Science and Plant Nutrition – volume: 97 start-page: 4991 year: 2000 end-page: 4996 article-title: Cadmium and iron transport by members of a plant metal transporter family in with homology to p genes publication-title: Proceedings of the National Academy of Sciences of USA – volume: 3 year: 2008 article-title: A one pot, one step, precision cloning method with high throughput capability publication-title: PLoS One – volume: 24 start-page: 2155 year: 2012 end-page: 2167 article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice publication-title: The Plant Cell – volume: 49 start-page: 750 year: 2015 end-page: 759 article-title: Soil contamination in China: Current status and mitigation strategies publication-title: Environmental Science & Technology – volume: 219 start-page: 641 year: 2018 end-page: 653 article-title: Decreasing arsenic accumulation in rice by overexpressing and through disrupting arsenite radial transport in roots publication-title: New Phytologist – volume: 58 start-page: 1583 year: 2017 end-page: 1593 article-title: Allelic variation of associated with cultivar variation in cadmium accumulation in tobacco publication-title: Plant and Cell Physiology – volume: 67 start-page: 489 year: 2016 end-page: 512 article-title: Toxic heavy metal and metalloid accumulation in crop plants and foods publication-title: Annual Review of Plant Biology – volume: 47 start-page: 5613 year: 2013 end-page: 5618 article-title: Variation in rice cadmium related to human exposure publication-title: Environmental Science & Technology – volume: 24 start-page: 4041 year: 2005 end-page: 4051 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO Journal – volume: 22 start-page: 904 year: 2010 end-page: 917 article-title: High‐affinity manganese uptake by the metal transporter NRAMP1 is essential for growth in low manganese conditions publication-title: The Plant Cell – volume: 160 start-page: 2052 year: 2012 end-page: 2063 article-title: Knockdown of a rice stelar nitrate transporter alters long‐distance translocation but not root influx publication-title: Plant Physiology – volume: 163 start-page: 1353 year: 2013 end-page: 1362 article-title: A member of the heavy metal P‐type ATPase OsHMA5 is involved in xylem loading of copper in rice publication-title: Plant Physiology – volume: 37 start-page: 140 year: 2014 end-page: 152 article-title: Expression in and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance publication-title: Plant, Cell & Environment – volume: 109 start-page: 19166 year: 2012 end-page: 19171 article-title: Ion‐beam irradiation, gene identification, and marker‐assisted breeding in the development of low‐cadmium rice publication-title: Proceedings of the National Academy of Sciences of USA – volume: 107 start-page: 18381 year: 2010 end-page: 18385 article-title: Plasma membrane‐localized transporter for aluminum in rice publication-title: Proceedings of the National Academy of Sciences of USA – volume: 313 year: 2006 – volume: 67 start-page: 3645 year: 2016 end-page: 3653 article-title: Transporters involved in mineral nutrient uptake in rice publication-title: Journal of Experimental Botany – volume: 39 start-page: 1941 year: 2016 end-page: 1954 article-title: A loss‐of‐function allele of associated with high cadmium accumulation in shoots and grain of japonica rice cultivars publication-title: Plant, Cell & Environment – volume: 4 year: 2009 article-title: Golden gate shuffling: A one‐pot DNA shuffling method based on type IIS restriction enzymes publication-title: PLoS One – volume: 53 start-page: 535 year: 2002 end-page: 543 article-title: Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator publication-title: Journal of Experimental Botany – volume: 249 start-page: 1038 year: 2019 end-page: 1048 article-title: Cadmium contamination in agricultural soils of China and the impact on food safety publication-title: Environmental Pollution – volume: 119 start-page: 183 year: 2013 end-page: 273 article-title: Cadmium contamination and its risk management in rice ecosystems publication-title: Advances in Agronomy – volume: 217 start-page: 179 year: 2018 end-page: 193 article-title: NRAMP2, a trans‐Golgi network‐localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency publication-title: New Phytologist – volume: 35 start-page: 205 year: 1997 end-page: 217 article-title: Transformation of rice mediated by publication-title: Plant Molecular Biology – volume: 36 start-page: 804 year: 2013 end-page: 817 article-title: Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in publication-title: Plant, Cell & Environment – volume: 433 start-page: 377 year: 2018 end-page: 389 article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize publication-title: Plant and Soil – volume: 152 start-page: 1986 year: 2010 end-page: 1999 article-title: Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency publication-title: Plant Physiology – volume: 12 year: 2017 article-title: Dietary cadmium exposure assessment among the Chinese population publication-title: PLoS One – volume: 180 start-page: 529 year: 2019 end-page: 542 article-title: The R2R3‐MYB transcription factor MYB49 regulates cadmium accumulation publication-title: Plant Physiology – volume: 639 start-page: 271 year: 2018 end-page: 277 article-title: Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China publication-title: Science of the Total Environment – volume: 10 start-page: 2562 year: 2019 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nature Communications – volume: 7 start-page: 30 year: 2011 article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast‐related processes publication-title: Plant Methods – volume: 143 start-page: 1306 year: 2007 end-page: 1313 article-title: Spatial distribution and temporal variation of the rice silicon transporter Lsi1 publication-title: Plant Physiology – volume: 65 start-page: 4849 year: 2014 end-page: 4861 article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots publication-title: Journal of Experimental Botany – year: 2020 article-title: Overexpression of the manganese/cadmium transporter reduces cadmium accumulation in rice grain publication-title: Journal of Experimental Botany – volume: 4 year: 2013 article-title: A node‐based switch for preferential distribution of manganese in rice publication-title: Nature Communications – volume: 238 start-page: 192 year: 2009 end-page: 200 article-title: Historical perspectives on cadmium toxicology publication-title: Toxicology and Applied Pharmacology – volume: 172 start-page: 1899 year: 2016 end-page: 1910 article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron publication-title: Plant Physiology – volume: 52 start-page: 23 year: 2019 end-page: 29 article-title: Polarized transport across root epithelia publication-title: Current Opinion in Plant Biology – volume: 32 start-page: 408 year: 2009 end-page: 416 article-title: Over‐expression of leads to increased iron and zinc accumulations in rice publication-title: Plant Cell and Environment – volume: 446 start-page: 1 year: 2020 end-page: 21 article-title: Arsenic and cadmium accumulation in rice and mitigation strategies publication-title: Plant and Soil – volume: 8 start-page: 1285 year: 2015 end-page: 1287 article-title: Rapid decoding of sequence‐specific nuclease‐induced heterozygous and biallelic mutations by direct sequencing of PCR products publication-title: Molecular Plant – volume: 56 start-page: 631 year: 2015 end-page: 639 article-title: In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots publication-title: Plant and Cell Physiology – volume: 122 start-page: 431 year: 2014 end-page: 438 article-title: Non‐renal effects and the risk assessment of environmental cadmium exposure publication-title: Environmental Health Perspective – volume: 1 year: 2015 article-title: A polarly localized transporter for efficient manganese uptake in rice publication-title: Nature Plants – volume: 127 start-page: 257 year: 2009 end-page: 268 article-title: Influence of consumption of cadmium‐polluted rice or Jinzu river water on occurrence of renal tubular dysfunction and/or Itai‐itai disease publication-title: Biological Trace Element Research – ident: e_1_2_7_19_1 doi: 10.1104/pp.109.150946 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.1004949107 – ident: e_1_2_7_7_1 doi: 10.1093/jxb/eraa287 – ident: e_1_2_7_25_1 doi: 10.1111/pce.12016 – volume-title: Yeast protocol. Methods in molecular biology year: 2006 ident: e_1_2_7_14_1 – ident: e_1_2_7_56_1 doi: 10.1016/j.envpol.2016.10.043 – ident: e_1_2_7_31_1 doi: 10.1105/tpc.112.096925 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.0802361105 – ident: e_1_2_7_30_1 doi: 10.1093/jxb/erw060 – ident: e_1_2_7_23_1 doi: 10.1021/es400521h – ident: e_1_2_7_41_1 doi: 10.1038/nplants.2015.170 – ident: e_1_2_7_40_1 doi: 10.1111/pce.12138 – ident: e_1_2_7_5_1 doi: 10.1105/tpc.109.073023 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-3040.2009.01935.x – ident: e_1_2_7_54_1 doi: 10.1021/es5047099 – ident: e_1_2_7_16_1 doi: 10.1073/pnas.1211132109 – ident: e_1_2_7_26_1 doi: 10.1111/j.1747-0765.2006.00055.x – ident: e_1_2_7_48_1 doi: 10.1038/s41467-019-10544-y – ident: e_1_2_7_37_1 doi: 10.1093/pcp/pcx087 – ident: e_1_2_7_12_1 doi: 10.1371/journal.pone.0003647 – ident: e_1_2_7_42_1 doi: 10.1105/tpc.001388 – ident: e_1_2_7_29_1 doi: 10.1093/pcp/pcv017 – ident: e_1_2_7_33_1 doi: 10.1007/s11104-018-3849-5 – ident: e_1_2_7_51_1 doi: 10.1104/pp.18.01380 – ident: e_1_2_7_13_1 doi: 10.1111/nph.14783 – ident: e_1_2_7_6_1 doi: 10.1038/srep37222 – ident: e_1_2_7_53_1 doi: 10.1093/jexbot/53.368.535 – ident: e_1_2_7_24_1 doi: 10.1038/cr.2013.123 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms3442 – ident: e_1_2_7_4_1 doi: 10.1016/B978-0-12-407247-3.00004-4 – ident: e_1_2_7_27_1 doi: 10.1016/j.taap.2009.03.015 – ident: e_1_2_7_10_1 doi: 10.1104/pp.113.226225 – ident: e_1_2_7_15_1 doi: 10.1023/A:1005847615493 – ident: e_1_2_7_3_1 doi: 10.1105/tpc.17.00578 – ident: e_1_2_7_9_1 doi: 10.1146/annurev-arplant-043015-112301 – ident: e_1_2_7_18_1 doi: 10.1038/sj.emboj.7600864 – ident: e_1_2_7_28_1 doi: 10.1016/j.pbi.2019.05.010 – ident: e_1_2_7_36_1 doi: 10.1038/s41598-017-14832-9 – ident: e_1_2_7_35_1 doi: 10.1093/jxb/err136 – ident: e_1_2_7_2_1 doi: 10.1289/ehp.1307110 – ident: e_1_2_7_52_1 doi: 10.1186/1746-4811-7-30 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0005553 – ident: e_1_2_7_44_1 doi: 10.1104/pp.16.01189 – ident: e_1_2_7_8_1 doi: 10.1016/j.scitotenv.2018.05.050 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.97.9.4991 – ident: e_1_2_7_50_1 doi: 10.1093/jxb/eru259 – ident: e_1_2_7_49_1 doi: 10.1111/pce.12747 – ident: e_1_2_7_32_1 doi: 10.1371/journal.pone.0177978 – ident: e_1_2_7_55_1 doi: 10.1007/s11104-019-04374-6 – ident: e_1_2_7_34_1 doi: 10.1111/nph.15190 – ident: e_1_2_7_46_1 doi: 10.1104/pp.106.093005 – ident: e_1_2_7_22_1 doi: 10.1016/j.molp.2015.02.012 – ident: e_1_2_7_43_1 doi: 10.1016/j.envpol.2019.03.063 – ident: e_1_2_7_38_1 doi: 10.1104/pp.112.204461 – ident: e_1_2_7_17_1 doi: 10.1007/s12011-008-8239-z |
SSID | ssj0001479 |
Score | 2.6749938 |
Snippet | Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance‐associated... Rice is a major dietary source of the toxic metal, cadmium (Cd). Previous studies reported that the rice transporter, OsNRAMP1, (Natural resistance-associated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2476 |
SubjectTerms | Arsenic Cadmium Cadmium - metabolism Cation Transport Proteins - metabolism environment food safety Gene Knockdown Techniques Heavy metals Iron Iron deficiency Leaves Macrophages Manganese Manganese - metabolism Membrane proteins Mesophyll metal transporter Microorganisms, Genetically-Modified nutrient deficiencies Oryza - metabolism OsNRAMP1 Plant Proteins - metabolism Plants, Genetically Modified Protein transport Proteins Rice Saccharomyces cerevisiae Shoots toxicity Transcriptome Yeast yeasts |
Title | OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13843 https://www.ncbi.nlm.nih.gov/pubmed/32666540 https://www.proquest.com/docview/2444218249 https://www.proquest.com/docview/2424097831 https://www.proquest.com/docview/2524266005 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IVOhLW-3FbVVi8aEvs0wmmcwsfbKiLIJWRMGHwpCriO7s4s486K83J3OxWivi20BOILeTfGdy8n0AWyrTeeyEiIxSWcQVV5EUwkbWBxPUOcZt0Iw8OBTjU75_lp4twM_uLUzDD9H_cEPPCPs1OrhU87-cfKbtkLKcI9Mn5mohIDq-p46ivOHZw_TFLBvRllUIs3j6mg_Pon8A5kO8Gg6cvffwp2tqk2dyOawrNdS3j1gcX9mXD_CuBaJku1k5y7BgyxVYaqQpb1bgza-ph403H2H8e354vH1wREnV86Bfk5DhjlJZdk6qKdHSTC7qCZGlIRNZnkvUtST1rJKXllyUBJmLPsHp3u7Jzjhq5RcizUTGIjoyJpYebjAmU6OkiKVDd4_zjOvcZVQLZVxCjbVOWIcXsnnimN9iDTW-AvsMi-W0tKtAtE5EqqzJbY5BcKyMlIw5o7SwaZbIAfzoJqLQLTc5SmRcFV2M4keoCCM0gO-96awh5HjKaK2bzaL1yXnhgQxHvno-GsBmX-y9Ca9I_LhMa7RJeHjZQp-xSQOs8dvXAL40K6VviQfDKOcc-w6F-f5_E4ujnd3w8fXlpt_gbYLhfsglXIPF6rq26x4TVWojLP47dk0GAA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qBQQXlrINLWAQBy4ZxbHjZKRe2tJqgM5QVa3USxV5RVWZzKiTHMqvx89ZStmEuEXKs-Tt2d-zn78P4K3KdB47ISKjVBZxxVUkhbCR9cEEdY5xGzQjJ1MxPuYfT9KTFdjs3sI0_BD9gRt6Rliv0cHxQPoHL19oO6Qs5-wG3ERFb9QveH94RR5FecO0hwmMWTaiLa8Q5vH0Ra_vRr9AzOuINWw5e_fhtKtsk2lyPqwrNdTffuJx_N_WPIB7LRYlW83keQgrtlyD24065eUa3Nqee-R4-QjGn5fTw63JASVVT4V-QUKSO6pl2SWp5kRLMzurZ0SWhsxk-UWitCWpF5U8t-SsJEhe9BiO93aPdsZRq8AQaSYyFtGRMbH0iIMxmRolRSwdenycZ1znLqNaKOMSaqx1wjq8k80Tx_wqa6jxBdgTWC3npX0GROtEpMqa3OYYB8fKSMmYM0oLm2aJHMC7biQK3dKTo0rG16ILU3wPFaGHBvCmN100nBy_M9rohrNo3XJZeCzDkbKejwbwuv_tHQpvSXy_zGu0SXh43EL_YpMGZONXsAE8baZKXxOPh1HROfYNCgP-5yoWBzu74eP5v5u-gjvjo8l-sf9h-mkd7iYY_YfUwg1YrS5q-8JDpEq9DJ7wHcw3Cho |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qZREXlrINLWAQBy4ZxbHjZNRTWzoalg6jiko9VIq8oqpMZtRJDuXX4-cspWxC3CL5WfL22d-Ln78H8FplOo-dEJFRKou44iqSQtjIemeCOse4DTkjD6ZicsTfH6fHa7DdvYVp9CH6H26IjLBfI8CXxv0A8qW2Q8pyzq7BdS48WJARHV5qR1HeCO1h_GKWjWgrK4RhPH3Vq4fRLwzzKmENJ874Lpx0bW0CTc6GdaWG-ttPMo7_2Zl7cKdlomSnWTr3Yc2WG3CzyU15sQE3dheeN148gMmn1fRw52BGSdULoZ-TEOKOubLsilQLoqWZn9ZzIktD5rL8IjGxJamXlTyz5LQkKF30EI7G-5_3JlGbfyHSTGQsoiNjYun5BmMyNUqKWDrEe5xnXOcuo1oo4xJqrHXCOryRzRPH_B5rqPEV2CNYLxelfQJE60Skyprc5ugFx8pIyZgzSgubZokcwJtuIgrdipNjjoyvReek-BEqwggN4FVvumwUOX5ntNXNZtGCclV4JsNRsJ6PBvCyL_ZwwjsSPy6LGm0SHp620L_YpIHX-P1rAI-bldK3xLNhzOcc-w6F-f5zE4vZ3n74ePrvpi_g1uztuPj4bvphE24n6PqHuMItWK_Oa_vM86NKPQ84-A7BXQjS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsNRAMP1+transporter+contributes+to+cadmium+and+manganese+uptake+in+rice&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Chang%2C+Jia%E2%80%90Dong&rft.au=Huang%2C+Sheng&rft.au=Yamaji%2C+Naoki&rft.au=Zhang%2C+Wenwen&rft.date=2020-10-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=43&rft.issue=10&rft.spage=2476&rft.epage=2491&rft_id=info:doi/10.1111%2Fpce.13843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_13843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |