Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste

BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 96; no. 6; pp. 1623 - 1631
Main Authors Sheng, Tao, Meng, Qingbin, Wen, Xuechen, Sun, Caiyu, Yang, Lisha, Li, Lixin
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production. RESULTS Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge. CONCLUSION Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry
AbstractList BACKGROUND: High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production. RESULTS: Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H₂/g substrate; corn cob: from 0.61 to 5.55 mmol H₂/g substrate; pine wood waste: from 0.58 to 5.32 mmol H₂/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge. CONCLUSION: Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry
BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production. RESULTS Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge. CONCLUSION Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry
BACKGROUNDHigh‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production.RESULTSResults of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge.CONCLUSIONThermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry
Author Wen, Xuechen
Sheng, Tao
Meng, Qingbin
Sun, Caiyu
Li, Lixin
Yang, Lisha
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-2008-331X
  surname: Sheng
  fullname: Sheng, Tao
  email: tsheng@usth.edu.cn
  organization: Heilongjiang University of Science and Technology
– sequence: 2
  givenname: Qingbin
  surname: Meng
  fullname: Meng, Qingbin
  organization: Heilongjiang University of Science and Technology
– sequence: 3
  givenname: Xuechen
  surname: Wen
  fullname: Wen, Xuechen
  organization: Heilongjiang University of Science and Technology
– sequence: 4
  givenname: Caiyu
  surname: Sun
  fullname: Sun, Caiyu
  organization: Heilongjiang University of Science and Technology
– sequence: 5
  givenname: Lisha
  surname: Yang
  fullname: Yang, Lisha
  organization: Heilongjiang University of Science and Technology
– sequence: 6
  givenname: Lixin
  surname: Li
  fullname: Li, Lixin
  organization: Heilongjiang University of Science and Technology
BookMark eNp1kUFvEzEQhS1UJNLCgX9giQsctvXasb0-0qjQoiIkVM4rxzvOOvLawfYqyo2fjtPkVMFpNJrvPc3Mu0QXIQZA6H1LrltC6M3WlPW1EB19hRYtUbJZCkEu0IJQ0TWUS_4GXea8JYRURizQn1sX9byZIBRdXAx478qIf86TC874mEtyg5snXEZIUzTgfW2-M1wihjDqYOA82o3OO4PHw5DiBgLepTjM5tnSpjhhvUnOzL7MSXuco3cD3utc4C16bbXP8O5cr9CvL3dPq_vm8cfXh9Xnx8YwIWkDZFBMArNaSs64GhQ3ciCcCbCqs0tGpVVSM7tcApeU0E4pS9dkTVq2BqPYFfp48q2L_Z4hl35y-XiPDhDn3FMuWl4f1MmKfniBbuOcQt2uUlQIqQillbo5USbFnBPY3rjTD0vSzvct6Y-J9MdE-mMiVfHphWKX3KTT4Z_s2X3vPBz-D_bfVk-3z4q__BOgUA
CitedBy_id crossref_primary_10_1016_j_biortech_2021_125856
crossref_primary_10_1016_j_jece_2023_111838
crossref_primary_10_1016_j_biortech_2023_130286
crossref_primary_10_1016_j_ijhydene_2022_12_231
crossref_primary_10_1016_j_scitotenv_2022_159333
crossref_primary_10_1016_j_ecmx_2021_100153
crossref_primary_10_1007_s00449_022_02738_4
crossref_primary_10_1016_j_biortech_2024_130565
crossref_primary_10_1016_j_ijhydene_2023_11_179
Cites_doi 10.1016/j.cbpa.2016.08.024
10.1111/j.1432-1033.1985.tb08653.x
10.1016/j.biortech.2017.08.089
10.1016/j.apenergy.2015.01.045
10.1016/j.jbiosc.2008.12.024
10.1186/s13068-016-0585-z
10.1016/j.biortech.2013.02.119
10.1107/S0907444903009843
10.1016/j.biortech.2016.02.090
10.1128/AEM.01230-10
10.1186/1754-6834-6-177
10.1002/bit.260240106
10.1016/j.watres.2020.115475
10.1016/j.enzmictec.2005.09.015
10.1016/j.ijhydene.2013.04.065
10.1016/j.ijhydene.2010.08.137
10.1016/j.biortech.2013.01.088
10.1039/C5RA20000H
10.1007/s12010-009-8700-2
10.1016/0960-8524(95)00122-0
10.1016/0922-338X(94)90005-1
10.1111/gcbb.12022
10.1016/S0065-2911(08)60143-5
10.1016/j.biortech.2007.10.020
10.1016/j.biortech.2018.02.105
10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G
10.1016/S0065-2164(08)70203-X
10.1016/j.biortech.2010.06.112
10.1016/0003-2697(76)90527-3
10.1186/2193-1801-3-92
10.1016/S0032-9592(97)00095-2
10.1016/j.procbio.2005.02.003
10.1016/j.biortech.2018.04.035
10.1186/s13068-017-0937-3
10.1016/S0960-8524(99)00104-2
10.1128/jb.173.13.4155-4162.1991
10.1016/j.rser.2018.04.043
10.1016/0141-4607(84)90030-1
10.1016/j.ijhydene.2019.01.045
10.4236/abb.2016.73014
10.1016/j.renene.2008.05.008
10.1016/j.rser.2017.08.074
10.1016/j.ijhydene.2008.07.107
10.1186/s13068-017-0975-x
10.1016/0141-0229(80)90003-4
10.1186/s13068-014-0178-7
ContentType Journal Article
Copyright 2021 Society of Chemical Industry
Copyright © 2021 Society of Chemical Industry
Copyright_xml – notice: 2021 Society of Chemical Industry
– notice: Copyright © 2021 Society of Chemical Industry
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1002/jctb.6682
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4660
EndPage 1631
ExternalDocumentID 10_1002_jctb_6682
JCTB6682
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51908200
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UAO
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c3672-e0d937e3fa775359d95c7d0536ef98f4327f97a3f44e57202899f2b0b013bec93
IEDL.DBID DR2
ISSN 0268-2575
IngestDate Fri Jul 11 18:35:50 EDT 2025
Fri Jul 25 11:58:30 EDT 2025
Tue Jul 01 00:48:48 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Wed Jan 22 16:30:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3672-e0d937e3fa775359d95c7d0536ef98f4327f97a3f44e57202899f2b0b013bec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2008-331X
PQID 2526679022
PQPubID 2034149
PageCount 9
ParticipantIDs proquest_miscellaneous_2561525787
proquest_journals_2526679022
crossref_citationtrail_10_1002_jctb_6682
crossref_primary_10_1002_jctb_6682
wiley_primary_10_1002_jctb_6682_JCTB6682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 1991; 173
2015; 5
2018; 261
2010; 35
1995; 37
2006; 38
2015; 144
2010; 101
2013; 145
2000; 72
2005; 40
1988; 33
1985; 146
2003; 59
2011; 77
2008; 99
2008; 33
2010; 162
2018; 82
2013; 5
2013; 6
2016; 35
2019; 384
1996; 55
2009; 34
1982; 24
2016; 7
2014; 3
2013; 38
1997; 54
2019; 44
1976; 72
2017; 10
1984; 11
2018; 257
2020; 172
2018; 91
2013; 133
1994; 77
2017
1979; 2
1984; 19
2016; 213
2009; 107
2017; 245
2014; 7
2016; 9
1998; 33
e_1_2_6_32_1
e_1_2_6_30_1
Yi‐di C (e_1_2_6_5_1) 2019; 384
Cohen A (e_1_2_6_49_1) 1984; 19
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Behera BC (e_1_2_6_37_1) 2017
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 33
  start-page: 1
  year: 1988
  end-page: 46
  article-title: The Cellulosome of
  publication-title: Adv Appl Microbiol
– volume: 77
  start-page: 517
  year: 2011
  end-page: 523
  article-title: Isolation and characterization of G3, capable of effective cellulosic saccharification under mesophilic conditions
  publication-title: Appl Environ Microbiol
– volume: 172
  year: 2020
  article-title: Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae
  publication-title: Water Res
– volume: 6
  start-page: 177
  year: 2013
  article-title: Secretory pathway of cellulase: a mini‐review
  publication-title: Biotechnol Biofuels
– volume: 261
  start-page: 385
  year: 2018
  end-page: 393
  article-title: Utilization of acetone‐butanol‐ethanol‐water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: thermodynamic and energy analyses
  publication-title: Bioresour Technol
– volume: 10
  year: 2017
  article-title: Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems
  publication-title: Biotechnol Biofuels
– volume: 146
  start-page: 301
  year: 1985
  end-page: 308
  article-title: The cellulase of Trichoderma viride
  publication-title: Eur J Biochem
– volume: 7
  year: 2014
  article-title: Consolidated bioprocessing performance of M18 on fungal pretreated cornstalk for enhanced hydrogen production
  publication-title: Biotechnol Biofuels
– volume: 2
  start-page: 11
  year: 1979
  end-page: 22
  article-title: Microbial degradation of lignin
  publication-title: Enzyme Microb Tech
– volume: 24
  start-page: 57
  year: 1982
  end-page: 68
  article-title: A study of producing ethanol from cellulose using
  publication-title: Biotechnol Bioeng
– volume: 54
  start-page: 428
  year: 1997
  end-page: 433
  article-title: Ethanol‐type fermentation from carbohydrate in high rate acidogenic reactor
  publication-title: Biotechnol Bioeng
– volume: 40
  start-page: 3025
  year: 2005
  end-page: 3030
  article-title: Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by SS19
  publication-title: Process Biochem
– volume: 7
  start-page: 149
  year: 2016
  end-page: 168
  article-title: Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview
  publication-title: Adv Biosci Biotechnol
– volume: 91
  start-page: 665
  year: 2018
  end-page: 694
  article-title: Hydrogen production from biomass using dark fermentation
  publication-title: Renew Sustain Energy Rev
– volume: 145
  start-page: 142
  year: 2013
  end-page: 149
  article-title: Bioprocess development on microalgae‐based CO fixation and bioethanol production using CNW‐N
  publication-title: Bioresour Technol
– volume: 162
  start-page: 103
  year: 2010
  end-page: 115
  article-title: Cloning and heterologous expression of a novel Endoglucanase gene egVIII from in
  publication-title: Appl Biochem Biotech
– volume: 257
  start-page: 290
  year: 2018
  end-page: 300
  article-title: Hydrogen production from algal biomass – advances, challenges and prospects
  publication-title: Bioresour Technol
– volume: 5
  start-page: 591
  year: 2013
  end-page: 598
  article-title: Enzymatic saccharification of cornstalk by onsite cellulases produced by for enhanced biohydrogen production
  publication-title: GCB Bioenergy
– volume: 33
  start-page: 6124
  year: 2008
  end-page: 6132
  article-title: Dark fermentation of xylose and glucose mix using isolated W16
  publication-title: Int J Hydrogen Energy
– volume: 173
  start-page: 4155
  year: 1991
  end-page: 4162
  article-title: Isolation and properties of a major cellobiohydrolase from the cellulosome of
  publication-title: J Bacteriol
– volume: 101
  start-page: 8725
  year: 2010
  end-page: 8730
  article-title: CNW‐N as a potential candidate for CO mitigation and biodiesel production
  publication-title: Bioresour Technol
– volume: 77
  start-page: 363
  year: 1994
  end-page: 369
  article-title: Purification and characterization of endoglucanase and exoglucanase components from
  publication-title: J Ferment Bioeng
– volume: 245
  start-page: 1245
  year: 2017
  end-page: 1257
  article-title: Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives
  publication-title: Bioresour Technol
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 144
  start-page: 73
  year: 2015
  end-page: 95
  article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by‐products
  publication-title: Appl Energy
– volume: 34
  start-page: 421
  year: 2009
  end-page: 424
  article-title: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio‐ethanol production
  publication-title: Renew Energy
– volume: 72
  start-page: 169
  year: 2000
  end-page: 183
  article-title: Biodegradation of lignin in a compost environment: a review
  publication-title: Bioresour Technol
– volume: 19
  start-page: 228
  year: 1984
  end-page: 232
  article-title: Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters
  publication-title: Process Biochem
– volume: 5
  start-page: 99781
  year: 2015
  end-page: 99788
  article-title: Direct hydrogen production from lignocellulose by the newly isolated strain DD32
  publication-title: RSC Adv
– volume: 9
  start-page: 172
  year: 2016
  article-title: Lignocellulosic saccharification by a newly isolated bacterium, M3 and cellular cellulase activities for high ratio of glucose to cellobiose
  publication-title: Biotechnol Biofuels
– volume: 35
  start-page: 13186
  year: 2010
  end-page: 13192
  article-title: Estimation of hydrogen production in genetically modified fermentations using an artificial neural network
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 5821
  year: 2019
  end-page: 5829
  article-title: Bioaugmentation with W16 to enhance thermophilic hydrogen production using corn Stover hydrolysate
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 7774
  year: 2013
  end-page: 7779
  article-title: Simultaneous coproduction of hydrogen and methane from sugary wastewater by an “ACSTRH–UASBMet” system
  publication-title: Int J Hydrogen Energy
– volume: 133
  start-page: 175
  year: 2013
  end-page: 182
  article-title: Enhanced cellulase production by in a rotating fibrous bed bioreactor
  publication-title: Bioresour Technol
– volume: 99
  start-page: 5738
  year: 2008
  end-page: 5748
  article-title: Parameter and process significance in mechanistic modeling of cellulose hydrolysis
  publication-title: Bioresour Technol
– volume: 213
  start-page: 155
  year: 2016
  end-page: 161
  article-title: Enzymatic saccharification of brown seaweed for production of fermentable sugars
  publication-title: Bioresour Technol
– volume: 38
  start-page: 569
  year: 2006
  end-page: 582
  article-title: Bio‐hydrogen production from waste materials
  publication-title: Enzyme Microb Technol
– volume: 59
  start-page: 1283
  year: 2003
  end-page: 1284
  article-title: Crystallization and preliminary crystallographic analysis of the catalytic domain cellobiohydrolase I from Talaromyces emersonii
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 10
  year: 2017
  article-title: Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by and fungal enzymes
  publication-title: Biotechnol Biofuels
– volume: 37
  start-page: 1
  year: 1995
  end-page: 81
  article-title: Cellulose hydrolysis by bacteria and fungi
  publication-title: Adv Microb Physiol
– volume: 33
  start-page: 435
  year: 1998
  end-page: 440
  article-title: Production of ethanol from various pure and natural cellulosic biomass by strains SS21 and SS22
  publication-title: Process Biochem
– volume: 11
  start-page: 149
  year: 1984
  end-page: 153
  article-title: Improvement of cellulase production by 253
  publication-title: Agric Wastes
– volume: 3
  start-page: 92
  year: 2014
  article-title: Process optimization and production kinetics for cellulase production by VKF3
  publication-title: SpringerPlus
– volume: 82
  start-page: 2379
  year: 2018
  end-page: 2386
  article-title: Applications of fungal cellulases in biofuel production: advances and limitations
  publication-title: Renew Sustain Energy Rev
– volume: 384
  start-page: 121384
  year: 2019
  end-page: 121384
  article-title: Optimizing the production of short and medium chain fatty acids (SCFAs and MCFAs) from waste activated sludge using different alkyl polyglucose surfactants, through bacterial metabolic analysis
  publication-title: J Hazard Mater
– year: 2017
– volume: 35
  start-page: 65
  year: 2016
  end-page: 72
  article-title: : a flexible microbial platform for the production of alcohols
  publication-title: Curr Opin Chem Biol
– volume: 107
  start-page: 488
  year: 2009
  end-page: 493
  article-title: Simultaneous non‐thermal saccharification of cassava pulp by multi‐enzyme activity and ethanol fermentation by
  publication-title: J Biosci Bioeng
– volume: 55
  start-page: 1
  year: 1996
  end-page: 33
  article-title: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review
  publication-title: Bioresour Technol
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cbpa.2016.08.024
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1432-1033.1985.tb08653.x
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biortech.2017.08.089
– ident: e_1_2_6_8_1
  doi: 10.1016/j.apenergy.2015.01.045
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jbiosc.2008.12.024
– ident: e_1_2_6_23_1
  doi: 10.1186/s13068-016-0585-z
– ident: e_1_2_6_10_1
  doi: 10.1016/j.biortech.2013.02.119
– ident: e_1_2_6_14_1
  doi: 10.1107/S0907444903009843
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biortech.2016.02.090
– ident: e_1_2_6_26_1
  doi: 10.1128/AEM.01230-10
– ident: e_1_2_6_15_1
  doi: 10.1186/1754-6834-6-177
– ident: e_1_2_6_43_1
  doi: 10.1002/bit.260240106
– volume-title: Cellulolytic microbes in mangrove & their biotechnological application
  year: 2017
  ident: e_1_2_6_37_1
– ident: e_1_2_6_6_1
  doi: 10.1016/j.watres.2020.115475
– ident: e_1_2_6_3_1
  doi: 10.1016/j.enzmictec.2005.09.015
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ijhydene.2013.04.065
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ijhydene.2010.08.137
– ident: e_1_2_6_38_1
  doi: 10.1016/j.biortech.2013.01.088
– volume: 19
  start-page: 228
  year: 1984
  ident: e_1_2_6_49_1
  article-title: Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters
  publication-title: Process Biochem
– ident: e_1_2_6_33_1
  doi: 10.1039/C5RA20000H
– volume: 384
  start-page: 121384
  year: 2019
  ident: e_1_2_6_5_1
  article-title: Optimizing the production of short and medium chain fatty acids (SCFAs and MCFAs) from waste activated sludge using different alkyl polyglucose surfactants, through bacterial metabolic analysis
  publication-title: J Hazard Mater
– ident: e_1_2_6_46_1
  doi: 10.1007/s12010-009-8700-2
– ident: e_1_2_6_45_1
  doi: 10.1016/0960-8524(95)00122-0
– ident: e_1_2_6_47_1
  doi: 10.1016/0922-338X(94)90005-1
– ident: e_1_2_6_24_1
  doi: 10.1111/gcbb.12022
– ident: e_1_2_6_44_1
  doi: 10.1016/S0065-2911(08)60143-5
– ident: e_1_2_6_18_1
  doi: 10.1016/j.biortech.2007.10.020
– ident: e_1_2_6_2_1
  doi: 10.1016/j.biortech.2018.02.105
– ident: e_1_2_6_50_1
  doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G
– ident: e_1_2_6_19_1
  doi: 10.1016/S0065-2164(08)70203-X
– ident: e_1_2_6_7_1
  doi: 10.1016/j.biortech.2010.06.112
– ident: e_1_2_6_30_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_40_1
  doi: 10.1186/2193-1801-3-92
– ident: e_1_2_6_41_1
  doi: 10.1016/S0032-9592(97)00095-2
– ident: e_1_2_6_42_1
  doi: 10.1016/j.procbio.2005.02.003
– ident: e_1_2_6_11_1
  doi: 10.1016/j.biortech.2018.04.035
– ident: e_1_2_6_20_1
  doi: 10.1186/s13068-017-0937-3
– ident: e_1_2_6_36_1
  doi: 10.1016/S0960-8524(99)00104-2
– ident: e_1_2_6_28_1
  doi: 10.1128/jb.173.13.4155-4162.1991
– ident: e_1_2_6_34_1
  doi: 10.1016/j.rser.2018.04.043
– ident: e_1_2_6_39_1
  doi: 10.1016/0141-4607(84)90030-1
– ident: e_1_2_6_31_1
  doi: 10.1016/j.ijhydene.2019.01.045
– ident: e_1_2_6_12_1
  doi: 10.4236/abb.2016.73014
– ident: e_1_2_6_13_1
  doi: 10.1016/j.renene.2008.05.008
– ident: e_1_2_6_16_1
  doi: 10.1016/j.rser.2017.08.074
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ijhydene.2008.07.107
– ident: e_1_2_6_21_1
  doi: 10.1186/s13068-017-0975-x
– ident: e_1_2_6_35_1
  doi: 10.1016/0141-0229(80)90003-4
– ident: e_1_2_6_32_1
  doi: 10.1186/s13068-014-0178-7
SSID ssj0006826
Score 2.3757908
Snippet BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification...
BACKGROUNDHigh‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification...
BACKGROUND: High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1623
SubjectTerms Agricultural pollution
Agricultural wastes
Anaerobic bacteria
Bacteria
bioaugmentation
Bioconversion
Biohydrogen
Biological effects
Bioprocessing
biotechnology
biotransformation
catalytic activity
Cellobiose
Cellulase
corn cobs
endo-1,4-beta-glucanase
Feedback
Feedback inhibition
feedstocks
Fungi
Household wastes
Hydrogen
Hydrogen production
Industrial applications
lignin content
Lignocellulose
Raw materials
Rice straw
Ruminiclostridium thermocellum; saccharification; lignocellulose; hydrogen production
Saccharification
Sewage sludge
Sludge
Solid wastes
Substrates
Trichoderma viride
waste wood
Wood waste
Title Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.6682
https://www.proquest.com/docview/2526679022
https://www.proquest.com/docview/2561525787
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LJz34FtcXUTx4qdakTRs8qbiIoIdlBQ9CSdNEV912WbeInvzpzvS1KgrirSXTNk1mJl-nmW8I2U1cYWToxg4sr8LxpC2SlaVjfKPDJD7UymA28uWVOL_2Lm78mxY5qnNhSn6IJuCGllH4azRwFT8fTEhDH_Q43hciRP-Le7UQEHUn1FHQIMr4CmgCYJKaVchlB82VX9eiCcD8DFOLdaYzR27rHpbbSx73c7iJfvtG3vjPV5gnsxX-pMelwiyQlkkXycwnVsIl8n7Sz1R-N6iyklKKsVrazZGFRD9lWOgj6ecDitBxkGHkH04uOR1n1KT3qEVV0xCDNZrevyajDPSUDkt2WbwlZrVQdTdqmD8o2EA_oS8KtG6ZXHfOeqfnTlWowdFcBMwxbgIox3CrAvj68WUifR0kYN7CWBlaj7PAykBx63nGDxj-3JSWxUUMFnRI8hUylWapWSVUgg_xuQ55aK3nelpx7QPokJpxxQN-2CZ79ZRFumIxx2IaT1HJv8wiHNQIB7VNdhrRYUnd8ZPQRj3vUWW9zxHzAbYEEuBNm2w3zWB3OKQqNVmOMgJLR4G_gy4Vk_z7Q6KL094JHqz9XXSdTDPcPlMEfDbI1HiUm03AP-N4q1D0DzcCBT4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemg50Beo21LqVj1wCQQ7cWKJCyDQQlkOaJG4oMhxbNjCJqvtRlV74qczk9fSqkgVt0SeOI49Y3-eeL4B-Jr50qrYTz1cXqUXKFcFKyvPhtbEWbpttKVo5MGp7J8HxxfhxQLstLEwNT9E53Ajy6jmazJwckhvzVlDv5tZuilljBPwM8roXW2ozubkUVgiaw8L6gKikpZXyOdb3aN_rkZziPkQqFYrzeFLuGzbWB8wudkssRLz-y_6xqd-xCtYbiAo26115jUs2PwNLD0gJnwLd3ujQpdX4yYwKWfkrmVnJRGRmNuCcn1ko3LMCD2OC3L-481AsFnBbH5NitQUTchfY9j1r2xaoKqySU0wS1VSYAvTV9OO_IOhGYwy9lOj4q3A-eHBcL_vNbkaPCNkxD3rZwh0rHA6wg1QqDIVmihDC5fWqdgFgkdORVq4ILBhxOn_pnI8rdywqEZKrMJiXuT2HTCF00goTCxi5wI_MFqYEHGHMlxoEYntHmy0Y5aYhsic8mncJjUFM0-oUxPq1B586UQnNXvHv4TW2oFPGgP-kfAQkUukEOH04HNXjKZHXapzW5QkIyl7FE552KRqlB9_SXK8P9yji_f_L_oJnveHg5Pk5Oj02wd4wek0TeX_WYPF2bS0HxEOzdL1SuvvAXDdCVk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSIg-iJ_xAHU1PvhSKLvtthufBLwgCjEEEh5Mmu1-wCnXXo5rCDz5pzvTrwOjifGtzU7b7e7M7K_Tnd8AvLWhdCoN8wCXVxlEytfJyipwsTOpzbeMdpSNfHAo906i_dP4dAHed7kwDT9EH3Ajy6j9NRn4xPrNOWnodzPLN6RM0f8uRTJMSaV3j-bcUdgimwALqgKCko5WKOSb_aV3F6M5wryNU-uFZrgC37ouNvtLfmxUeBNz8xt743--w0N40AJQ9qHRmEew4IrHcP8WLeET-Lk9KnV1Nm7TkgpGwVp2VBENibkoqdKHHVVjRthxXFLoH08OBJuVzBXnpEZt04SiNYadX9tpiYrKJg29LN2S0lqYPpv21B8MjWBk2ZVGtXsKJ8OPxzt7QVupITBCJjxwoUWY44TXCX7-xMqq2CQW7Vs6r1IfCZ54lWjho8jFCae_m8rzvA7CohIp8QwWi7Jwz4EpdCKxMKlIvY_CyGhhYkQdynChRSK2BvCum7LMtDTmVE3jImsImHlGg5rRoA7gTS86abg7_iS03s171prvZcZjxC2JQnwzgNd9MxoeDakuXFmRjKTaUejwsEv1JP_9Idn-zvE2Haz-u-grWP66O8y-fDr8vAb3OG2lqYM_67A4m1buBWKhWf6y1vlfd1gIEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioaugmentation+with+Ruminiclostridium+thermocellum+M3+to+enhance+thermophilic+hydrogen+production+from+agricultural+solid+waste&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Sheng%2C+Tao&rft.au=Meng%2C+Qingbin&rft.au=Wen%2C+Xuechen&rft.au=Sun%2C+Caiyu&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=96&rft.issue=6&rft.spage=1623&rft.epage=1631&rft_id=info:doi/10.1002%2Fjctb.6682&rft.externalDBID=10.1002%252Fjctb.6682&rft.externalDocID=JCTB6682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon