Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste
BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 96; no. 6; pp. 1623 - 1631 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production.
RESULTS
Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge.
CONCLUSION
Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry |
---|---|
AbstractList | BACKGROUND: High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production. RESULTS: Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H₂/g substrate; corn cob: from 0.61 to 5.55 mmol H₂/g substrate; pine wood waste: from 0.58 to 5.32 mmol H₂/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge. CONCLUSION: Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry BACKGROUND High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production. RESULTS Results of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge. CONCLUSION Thermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry BACKGROUNDHigh‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification currently performed by commercial cellulase, which is composed of different fungal cellulase. Compared with fungi, thermocellulosic bacteria represented by Ruminiclostridium thermocellum have a complete cellulase system, and a higher cellulase catalytic efficiency than fungi; however, R. thermocellum is susceptible to feedback inhibition by cellobiose, which limits the application of R. thermocellum on cellulosic bio‐hydrogen production. In this study, a strain named R. thermocellum M3, which is not subject to feedback inhibition by cellobiose, was used in the bio‐hydrogen production of cellulosic agricultural waste feedstocks to explore the feasibility of bacterial saccharification of cellulosic substrates for biological hydrogen production.RESULTSResults of batch tests indicate that the combination of domestic sewage sludge and strain M3 promoted the hydrogen production for different lignin content feedstocks (rice straw: from 0.66 to 6.42 mmol H2/g substrate; corn cob: from 0.61 to 5.55 mmol H2/g substrate; pine wood waste: from 0.58 to 5.32 mmol H2/g substrate), which were competitive with the combination of domestic sewage sludge and Trichoderma viride cellulase. Specific activity analysis indicates that compared with the addition of T. viride cellulase, the addition of strain M3 completed the cellulase system in sludge.CONCLUSIONThermo‐anaerobic bacteria R. thermocellum M3 enhanced the hydrogen production of the consolidated bioprocessing (CBP) of raw lignocellulosic agricultural wastes and, more importantly, provided a promising solution for the CBP strategy in the industrial application of lignocellulose bioconversion. © 2021 Society of Chemical Industry |
Author | Wen, Xuechen Sheng, Tao Meng, Qingbin Sun, Caiyu Li, Lixin Yang, Lisha |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-2008-331X surname: Sheng fullname: Sheng, Tao email: tsheng@usth.edu.cn organization: Heilongjiang University of Science and Technology – sequence: 2 givenname: Qingbin surname: Meng fullname: Meng, Qingbin organization: Heilongjiang University of Science and Technology – sequence: 3 givenname: Xuechen surname: Wen fullname: Wen, Xuechen organization: Heilongjiang University of Science and Technology – sequence: 4 givenname: Caiyu surname: Sun fullname: Sun, Caiyu organization: Heilongjiang University of Science and Technology – sequence: 5 givenname: Lisha surname: Yang fullname: Yang, Lisha organization: Heilongjiang University of Science and Technology – sequence: 6 givenname: Lixin surname: Li fullname: Li, Lixin organization: Heilongjiang University of Science and Technology |
BookMark | eNp1kUFvEzEQhS1UJNLCgX9giQsctvXasb0-0qjQoiIkVM4rxzvOOvLawfYqyo2fjtPkVMFpNJrvPc3Mu0QXIQZA6H1LrltC6M3WlPW1EB19hRYtUbJZCkEu0IJQ0TWUS_4GXea8JYRURizQn1sX9byZIBRdXAx478qIf86TC874mEtyg5snXEZIUzTgfW2-M1wihjDqYOA82o3OO4PHw5DiBgLepTjM5tnSpjhhvUnOzL7MSXuco3cD3utc4C16bbXP8O5cr9CvL3dPq_vm8cfXh9Xnx8YwIWkDZFBMArNaSs64GhQ3ciCcCbCqs0tGpVVSM7tcApeU0E4pS9dkTVq2BqPYFfp48q2L_Z4hl35y-XiPDhDn3FMuWl4f1MmKfniBbuOcQt2uUlQIqQillbo5USbFnBPY3rjTD0vSzvct6Y-J9MdE-mMiVfHphWKX3KTT4Z_s2X3vPBz-D_bfVk-3z4q__BOgUA |
CitedBy_id | crossref_primary_10_1016_j_biortech_2021_125856 crossref_primary_10_1016_j_jece_2023_111838 crossref_primary_10_1016_j_biortech_2023_130286 crossref_primary_10_1016_j_ijhydene_2022_12_231 crossref_primary_10_1016_j_scitotenv_2022_159333 crossref_primary_10_1016_j_ecmx_2021_100153 crossref_primary_10_1007_s00449_022_02738_4 crossref_primary_10_1016_j_biortech_2024_130565 crossref_primary_10_1016_j_ijhydene_2023_11_179 |
Cites_doi | 10.1016/j.cbpa.2016.08.024 10.1111/j.1432-1033.1985.tb08653.x 10.1016/j.biortech.2017.08.089 10.1016/j.apenergy.2015.01.045 10.1016/j.jbiosc.2008.12.024 10.1186/s13068-016-0585-z 10.1016/j.biortech.2013.02.119 10.1107/S0907444903009843 10.1016/j.biortech.2016.02.090 10.1128/AEM.01230-10 10.1186/1754-6834-6-177 10.1002/bit.260240106 10.1016/j.watres.2020.115475 10.1016/j.enzmictec.2005.09.015 10.1016/j.ijhydene.2013.04.065 10.1016/j.ijhydene.2010.08.137 10.1016/j.biortech.2013.01.088 10.1039/C5RA20000H 10.1007/s12010-009-8700-2 10.1016/0960-8524(95)00122-0 10.1016/0922-338X(94)90005-1 10.1111/gcbb.12022 10.1016/S0065-2911(08)60143-5 10.1016/j.biortech.2007.10.020 10.1016/j.biortech.2018.02.105 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G 10.1016/S0065-2164(08)70203-X 10.1016/j.biortech.2010.06.112 10.1016/0003-2697(76)90527-3 10.1186/2193-1801-3-92 10.1016/S0032-9592(97)00095-2 10.1016/j.procbio.2005.02.003 10.1016/j.biortech.2018.04.035 10.1186/s13068-017-0937-3 10.1016/S0960-8524(99)00104-2 10.1128/jb.173.13.4155-4162.1991 10.1016/j.rser.2018.04.043 10.1016/0141-4607(84)90030-1 10.1016/j.ijhydene.2019.01.045 10.4236/abb.2016.73014 10.1016/j.renene.2008.05.008 10.1016/j.rser.2017.08.074 10.1016/j.ijhydene.2008.07.107 10.1186/s13068-017-0975-x 10.1016/0141-0229(80)90003-4 10.1186/s13068-014-0178-7 |
ContentType | Journal Article |
Copyright | 2021 Society of Chemical Industry Copyright © 2021 Society of Chemical Industry |
Copyright_xml | – notice: 2021 Society of Chemical Industry – notice: Copyright © 2021 Society of Chemical Industry |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1002/jctb.6682 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 1631 |
ExternalDocumentID | 10_1002_jctb_6682 JCTB6682 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51908200 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c3672-e0d937e3fa775359d95c7d0536ef98f4327f97a3f44e57202899f2b0b013bec93 |
IEDL.DBID | DR2 |
ISSN | 0268-2575 |
IngestDate | Fri Jul 11 18:35:50 EDT 2025 Fri Jul 25 11:58:30 EDT 2025 Tue Jul 01 00:48:48 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Wed Jan 22 16:30:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3672-e0d937e3fa775359d95c7d0536ef98f4327f97a3f44e57202899f2b0b013bec93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2008-331X |
PQID | 2526679022 |
PQPubID | 2034149 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2561525787 proquest_journals_2526679022 crossref_citationtrail_10_1002_jctb_6682 crossref_primary_10_1002_jctb_6682 wiley_primary_10_1002_jctb_6682_JCTB6682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 1991; 173 2015; 5 2018; 261 2010; 35 1995; 37 2006; 38 2015; 144 2010; 101 2013; 145 2000; 72 2005; 40 1988; 33 1985; 146 2003; 59 2011; 77 2008; 99 2008; 33 2010; 162 2018; 82 2013; 5 2013; 6 2016; 35 2019; 384 1996; 55 2009; 34 1982; 24 2016; 7 2014; 3 2013; 38 1997; 54 2019; 44 1976; 72 2017; 10 1984; 11 2018; 257 2020; 172 2018; 91 2013; 133 1994; 77 2017 1979; 2 1984; 19 2016; 213 2009; 107 2017; 245 2014; 7 2016; 9 1998; 33 e_1_2_6_32_1 e_1_2_6_30_1 Yi‐di C (e_1_2_6_5_1) 2019; 384 Cohen A (e_1_2_6_49_1) 1984; 19 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Behera BC (e_1_2_6_37_1) 2017 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 33 start-page: 1 year: 1988 end-page: 46 article-title: The Cellulosome of publication-title: Adv Appl Microbiol – volume: 77 start-page: 517 year: 2011 end-page: 523 article-title: Isolation and characterization of G3, capable of effective cellulosic saccharification under mesophilic conditions publication-title: Appl Environ Microbiol – volume: 172 year: 2020 article-title: Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae publication-title: Water Res – volume: 6 start-page: 177 year: 2013 article-title: Secretory pathway of cellulase: a mini‐review publication-title: Biotechnol Biofuels – volume: 261 start-page: 385 year: 2018 end-page: 393 article-title: Utilization of acetone‐butanol‐ethanol‐water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: thermodynamic and energy analyses publication-title: Bioresour Technol – volume: 10 year: 2017 article-title: Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems publication-title: Biotechnol Biofuels – volume: 146 start-page: 301 year: 1985 end-page: 308 article-title: The cellulase of Trichoderma viride publication-title: Eur J Biochem – volume: 7 year: 2014 article-title: Consolidated bioprocessing performance of M18 on fungal pretreated cornstalk for enhanced hydrogen production publication-title: Biotechnol Biofuels – volume: 2 start-page: 11 year: 1979 end-page: 22 article-title: Microbial degradation of lignin publication-title: Enzyme Microb Tech – volume: 24 start-page: 57 year: 1982 end-page: 68 article-title: A study of producing ethanol from cellulose using publication-title: Biotechnol Bioeng – volume: 54 start-page: 428 year: 1997 end-page: 433 article-title: Ethanol‐type fermentation from carbohydrate in high rate acidogenic reactor publication-title: Biotechnol Bioeng – volume: 40 start-page: 3025 year: 2005 end-page: 3030 article-title: Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by SS19 publication-title: Process Biochem – volume: 7 start-page: 149 year: 2016 end-page: 168 article-title: Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview publication-title: Adv Biosci Biotechnol – volume: 91 start-page: 665 year: 2018 end-page: 694 article-title: Hydrogen production from biomass using dark fermentation publication-title: Renew Sustain Energy Rev – volume: 145 start-page: 142 year: 2013 end-page: 149 article-title: Bioprocess development on microalgae‐based CO fixation and bioethanol production using CNW‐N publication-title: Bioresour Technol – volume: 162 start-page: 103 year: 2010 end-page: 115 article-title: Cloning and heterologous expression of a novel Endoglucanase gene egVIII from in publication-title: Appl Biochem Biotech – volume: 257 start-page: 290 year: 2018 end-page: 300 article-title: Hydrogen production from algal biomass – advances, challenges and prospects publication-title: Bioresour Technol – volume: 5 start-page: 591 year: 2013 end-page: 598 article-title: Enzymatic saccharification of cornstalk by onsite cellulases produced by for enhanced biohydrogen production publication-title: GCB Bioenergy – volume: 33 start-page: 6124 year: 2008 end-page: 6132 article-title: Dark fermentation of xylose and glucose mix using isolated W16 publication-title: Int J Hydrogen Energy – volume: 173 start-page: 4155 year: 1991 end-page: 4162 article-title: Isolation and properties of a major cellobiohydrolase from the cellulosome of publication-title: J Bacteriol – volume: 101 start-page: 8725 year: 2010 end-page: 8730 article-title: CNW‐N as a potential candidate for CO mitigation and biodiesel production publication-title: Bioresour Technol – volume: 77 start-page: 363 year: 1994 end-page: 369 article-title: Purification and characterization of endoglucanase and exoglucanase components from publication-title: J Ferment Bioeng – volume: 245 start-page: 1245 year: 2017 end-page: 1257 article-title: Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives publication-title: Bioresour Technol – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 144 start-page: 73 year: 2015 end-page: 95 article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by‐products publication-title: Appl Energy – volume: 34 start-page: 421 year: 2009 end-page: 424 article-title: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio‐ethanol production publication-title: Renew Energy – volume: 72 start-page: 169 year: 2000 end-page: 183 article-title: Biodegradation of lignin in a compost environment: a review publication-title: Bioresour Technol – volume: 19 start-page: 228 year: 1984 end-page: 232 article-title: Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters publication-title: Process Biochem – volume: 5 start-page: 99781 year: 2015 end-page: 99788 article-title: Direct hydrogen production from lignocellulose by the newly isolated strain DD32 publication-title: RSC Adv – volume: 9 start-page: 172 year: 2016 article-title: Lignocellulosic saccharification by a newly isolated bacterium, M3 and cellular cellulase activities for high ratio of glucose to cellobiose publication-title: Biotechnol Biofuels – volume: 35 start-page: 13186 year: 2010 end-page: 13192 article-title: Estimation of hydrogen production in genetically modified fermentations using an artificial neural network publication-title: Int J Hydrogen Energy – volume: 44 start-page: 5821 year: 2019 end-page: 5829 article-title: Bioaugmentation with W16 to enhance thermophilic hydrogen production using corn Stover hydrolysate publication-title: Int J Hydrogen Energy – volume: 38 start-page: 7774 year: 2013 end-page: 7779 article-title: Simultaneous coproduction of hydrogen and methane from sugary wastewater by an “ACSTRH–UASBMet” system publication-title: Int J Hydrogen Energy – volume: 133 start-page: 175 year: 2013 end-page: 182 article-title: Enhanced cellulase production by in a rotating fibrous bed bioreactor publication-title: Bioresour Technol – volume: 99 start-page: 5738 year: 2008 end-page: 5748 article-title: Parameter and process significance in mechanistic modeling of cellulose hydrolysis publication-title: Bioresour Technol – volume: 213 start-page: 155 year: 2016 end-page: 161 article-title: Enzymatic saccharification of brown seaweed for production of fermentable sugars publication-title: Bioresour Technol – volume: 38 start-page: 569 year: 2006 end-page: 582 article-title: Bio‐hydrogen production from waste materials publication-title: Enzyme Microb Technol – volume: 59 start-page: 1283 year: 2003 end-page: 1284 article-title: Crystallization and preliminary crystallographic analysis of the catalytic domain cellobiohydrolase I from Talaromyces emersonii publication-title: Acta Crystallogr D Biol Crystallogr – volume: 10 year: 2017 article-title: Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by and fungal enzymes publication-title: Biotechnol Biofuels – volume: 37 start-page: 1 year: 1995 end-page: 81 article-title: Cellulose hydrolysis by bacteria and fungi publication-title: Adv Microb Physiol – volume: 33 start-page: 435 year: 1998 end-page: 440 article-title: Production of ethanol from various pure and natural cellulosic biomass by strains SS21 and SS22 publication-title: Process Biochem – volume: 11 start-page: 149 year: 1984 end-page: 153 article-title: Improvement of cellulase production by 253 publication-title: Agric Wastes – volume: 3 start-page: 92 year: 2014 article-title: Process optimization and production kinetics for cellulase production by VKF3 publication-title: SpringerPlus – volume: 82 start-page: 2379 year: 2018 end-page: 2386 article-title: Applications of fungal cellulases in biofuel production: advances and limitations publication-title: Renew Sustain Energy Rev – volume: 384 start-page: 121384 year: 2019 end-page: 121384 article-title: Optimizing the production of short and medium chain fatty acids (SCFAs and MCFAs) from waste activated sludge using different alkyl polyglucose surfactants, through bacterial metabolic analysis publication-title: J Hazard Mater – year: 2017 – volume: 35 start-page: 65 year: 2016 end-page: 72 article-title: : a flexible microbial platform for the production of alcohols publication-title: Curr Opin Chem Biol – volume: 107 start-page: 488 year: 2009 end-page: 493 article-title: Simultaneous non‐thermal saccharification of cassava pulp by multi‐enzyme activity and ethanol fermentation by publication-title: J Biosci Bioeng – volume: 55 start-page: 1 year: 1996 end-page: 33 article-title: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review publication-title: Bioresour Technol – ident: e_1_2_6_22_1 doi: 10.1016/j.cbpa.2016.08.024 – ident: e_1_2_6_48_1 doi: 10.1111/j.1432-1033.1985.tb08653.x – ident: e_1_2_6_9_1 doi: 10.1016/j.biortech.2017.08.089 – ident: e_1_2_6_8_1 doi: 10.1016/j.apenergy.2015.01.045 – ident: e_1_2_6_29_1 doi: 10.1016/j.jbiosc.2008.12.024 – ident: e_1_2_6_23_1 doi: 10.1186/s13068-016-0585-z – ident: e_1_2_6_10_1 doi: 10.1016/j.biortech.2013.02.119 – ident: e_1_2_6_14_1 doi: 10.1107/S0907444903009843 – ident: e_1_2_6_17_1 doi: 10.1016/j.biortech.2016.02.090 – ident: e_1_2_6_26_1 doi: 10.1128/AEM.01230-10 – ident: e_1_2_6_15_1 doi: 10.1186/1754-6834-6-177 – ident: e_1_2_6_43_1 doi: 10.1002/bit.260240106 – volume-title: Cellulolytic microbes in mangrove & their biotechnological application year: 2017 ident: e_1_2_6_37_1 – ident: e_1_2_6_6_1 doi: 10.1016/j.watres.2020.115475 – ident: e_1_2_6_3_1 doi: 10.1016/j.enzmictec.2005.09.015 – ident: e_1_2_6_25_1 doi: 10.1016/j.ijhydene.2013.04.065 – ident: e_1_2_6_4_1 doi: 10.1016/j.ijhydene.2010.08.137 – ident: e_1_2_6_38_1 doi: 10.1016/j.biortech.2013.01.088 – volume: 19 start-page: 228 year: 1984 ident: e_1_2_6_49_1 article-title: Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters publication-title: Process Biochem – ident: e_1_2_6_33_1 doi: 10.1039/C5RA20000H – volume: 384 start-page: 121384 year: 2019 ident: e_1_2_6_5_1 article-title: Optimizing the production of short and medium chain fatty acids (SCFAs and MCFAs) from waste activated sludge using different alkyl polyglucose surfactants, through bacterial metabolic analysis publication-title: J Hazard Mater – ident: e_1_2_6_46_1 doi: 10.1007/s12010-009-8700-2 – ident: e_1_2_6_45_1 doi: 10.1016/0960-8524(95)00122-0 – ident: e_1_2_6_47_1 doi: 10.1016/0922-338X(94)90005-1 – ident: e_1_2_6_24_1 doi: 10.1111/gcbb.12022 – ident: e_1_2_6_44_1 doi: 10.1016/S0065-2911(08)60143-5 – ident: e_1_2_6_18_1 doi: 10.1016/j.biortech.2007.10.020 – ident: e_1_2_6_2_1 doi: 10.1016/j.biortech.2018.02.105 – ident: e_1_2_6_50_1 doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G – ident: e_1_2_6_19_1 doi: 10.1016/S0065-2164(08)70203-X – ident: e_1_2_6_7_1 doi: 10.1016/j.biortech.2010.06.112 – ident: e_1_2_6_30_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_40_1 doi: 10.1186/2193-1801-3-92 – ident: e_1_2_6_41_1 doi: 10.1016/S0032-9592(97)00095-2 – ident: e_1_2_6_42_1 doi: 10.1016/j.procbio.2005.02.003 – ident: e_1_2_6_11_1 doi: 10.1016/j.biortech.2018.04.035 – ident: e_1_2_6_20_1 doi: 10.1186/s13068-017-0937-3 – ident: e_1_2_6_36_1 doi: 10.1016/S0960-8524(99)00104-2 – ident: e_1_2_6_28_1 doi: 10.1128/jb.173.13.4155-4162.1991 – ident: e_1_2_6_34_1 doi: 10.1016/j.rser.2018.04.043 – ident: e_1_2_6_39_1 doi: 10.1016/0141-4607(84)90030-1 – ident: e_1_2_6_31_1 doi: 10.1016/j.ijhydene.2019.01.045 – ident: e_1_2_6_12_1 doi: 10.4236/abb.2016.73014 – ident: e_1_2_6_13_1 doi: 10.1016/j.renene.2008.05.008 – ident: e_1_2_6_16_1 doi: 10.1016/j.rser.2017.08.074 – ident: e_1_2_6_27_1 doi: 10.1016/j.ijhydene.2008.07.107 – ident: e_1_2_6_21_1 doi: 10.1186/s13068-017-0975-x – ident: e_1_2_6_35_1 doi: 10.1016/0141-0229(80)90003-4 – ident: e_1_2_6_32_1 doi: 10.1186/s13068-014-0178-7 |
SSID | ssj0006826 |
Score | 2.3757908 |
Snippet | BACKGROUND
High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification... BACKGROUNDHigh‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification... BACKGROUND: High‐efficiency saccharification technology is one of the bottlenecks of cellulosic bio‐hydrogen production. Cellulosic feedstocks saccharification... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1623 |
SubjectTerms | Agricultural pollution Agricultural wastes Anaerobic bacteria Bacteria bioaugmentation Bioconversion Biohydrogen Biological effects Bioprocessing biotechnology biotransformation catalytic activity Cellobiose Cellulase corn cobs endo-1,4-beta-glucanase Feedback Feedback inhibition feedstocks Fungi Household wastes Hydrogen Hydrogen production Industrial applications lignin content Lignocellulose Raw materials Rice straw Ruminiclostridium thermocellum; saccharification; lignocellulose; hydrogen production Saccharification Sewage sludge Sludge Solid wastes Substrates Trichoderma viride waste wood Wood waste |
Title | Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.6682 https://www.proquest.com/docview/2526679022 https://www.proquest.com/docview/2561525787 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LJz34FtcXUTx4qdakTRs8qbiIoIdlBQ9CSdNEV912WbeInvzpzvS1KgrirSXTNk1mJl-nmW8I2U1cYWToxg4sr8LxpC2SlaVjfKPDJD7UymA28uWVOL_2Lm78mxY5qnNhSn6IJuCGllH4azRwFT8fTEhDH_Q43hciRP-Le7UQEHUn1FHQIMr4CmgCYJKaVchlB82VX9eiCcD8DFOLdaYzR27rHpbbSx73c7iJfvtG3vjPV5gnsxX-pMelwiyQlkkXycwnVsIl8n7Sz1R-N6iyklKKsVrazZGFRD9lWOgj6ecDitBxkGHkH04uOR1n1KT3qEVV0xCDNZrevyajDPSUDkt2WbwlZrVQdTdqmD8o2EA_oS8KtG6ZXHfOeqfnTlWowdFcBMwxbgIox3CrAvj68WUifR0kYN7CWBlaj7PAykBx63nGDxj-3JSWxUUMFnRI8hUylWapWSVUgg_xuQ55aK3nelpx7QPokJpxxQN-2CZ79ZRFumIxx2IaT1HJv8wiHNQIB7VNdhrRYUnd8ZPQRj3vUWW9zxHzAbYEEuBNm2w3zWB3OKQqNVmOMgJLR4G_gy4Vk_z7Q6KL094JHqz9XXSdTDPcPlMEfDbI1HiUm03AP-N4q1D0DzcCBT4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hemg50Beo21LqVj1wCQQ7cWKJCyDQQlkOaJG4oMhxbNjCJqvtRlV74qczk9fSqkgVt0SeOI49Y3-eeL4B-Jr50qrYTz1cXqUXKFcFKyvPhtbEWbpttKVo5MGp7J8HxxfhxQLstLEwNT9E53Ajy6jmazJwckhvzVlDv5tZuilljBPwM8roXW2ozubkUVgiaw8L6gKikpZXyOdb3aN_rkZziPkQqFYrzeFLuGzbWB8wudkssRLz-y_6xqd-xCtYbiAo26115jUs2PwNLD0gJnwLd3ujQpdX4yYwKWfkrmVnJRGRmNuCcn1ko3LMCD2OC3L-481AsFnBbH5NitQUTchfY9j1r2xaoKqySU0wS1VSYAvTV9OO_IOhGYwy9lOj4q3A-eHBcL_vNbkaPCNkxD3rZwh0rHA6wg1QqDIVmihDC5fWqdgFgkdORVq4ILBhxOn_pnI8rdywqEZKrMJiXuT2HTCF00goTCxi5wI_MFqYEHGHMlxoEYntHmy0Y5aYhsic8mncJjUFM0-oUxPq1B586UQnNXvHv4TW2oFPGgP-kfAQkUukEOH04HNXjKZHXapzW5QkIyl7FE552KRqlB9_SXK8P9yji_f_L_oJnveHg5Pk5Oj02wd4wek0TeX_WYPF2bS0HxEOzdL1SuvvAXDdCVk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSIg-iJ_xAHU1PvhSKLvtthufBLwgCjEEEh5Mmu1-wCnXXo5rCDz5pzvTrwOjifGtzU7b7e7M7K_Tnd8AvLWhdCoN8wCXVxlEytfJyipwsTOpzbeMdpSNfHAo906i_dP4dAHed7kwDT9EH3Ajy6j9NRn4xPrNOWnodzPLN6RM0f8uRTJMSaV3j-bcUdgimwALqgKCko5WKOSb_aV3F6M5wryNU-uFZrgC37ouNvtLfmxUeBNz8xt743--w0N40AJQ9qHRmEew4IrHcP8WLeET-Lk9KnV1Nm7TkgpGwVp2VBENibkoqdKHHVVjRthxXFLoH08OBJuVzBXnpEZt04SiNYadX9tpiYrKJg29LN2S0lqYPpv21B8MjWBk2ZVGtXsKJ8OPxzt7QVupITBCJjxwoUWY44TXCX7-xMqq2CQW7Vs6r1IfCZ54lWjho8jFCae_m8rzvA7CohIp8QwWi7Jwz4EpdCKxMKlIvY_CyGhhYkQdynChRSK2BvCum7LMtDTmVE3jImsImHlGg5rRoA7gTS86abg7_iS03s171prvZcZjxC2JQnwzgNd9MxoeDakuXFmRjKTaUejwsEv1JP_9Idn-zvE2Haz-u-grWP66O8y-fDr8vAb3OG2lqYM_67A4m1buBWKhWf6y1vlfd1gIEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioaugmentation+with+Ruminiclostridium+thermocellum+M3+to+enhance+thermophilic+hydrogen+production+from+agricultural+solid+waste&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Sheng%2C+Tao&rft.au=Meng%2C+Qingbin&rft.au=Wen%2C+Xuechen&rft.au=Sun%2C+Caiyu&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=96&rft.issue=6&rft.spage=1623&rft.epage=1631&rft_id=info:doi/10.1002%2Fjctb.6682&rft.externalDBID=10.1002%252Fjctb.6682&rft.externalDocID=JCTB6682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |