Sulfur solubility in low activity waste glass and its correlation to melter tolerance

Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by corroding components and shortening the melter life. To better predict the point at which salt accumulates on the melt surface, the development of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied glass science Vol. 10; no. 4; pp. 558 - 568
Main Authors Skidmore, Chloe H., Vienna, John D., Jin, Tongan, Kim, Dongsang, Stanfill, Bryan A., Fox, Kevin M., Kruger, Albert A.
Format Journal Article
LanguageEnglish
Published Westerville Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by corroding components and shortening the melter life. To better predict the point at which salt accumulates on the melt surface, the development of sulfate solubility models is needed. Using a sulfur saturation method, crucible scale melts for 13 LAW glasses with varying sulfur solubilities were conducted. The resulting salt and glass compositions were reported and the change in component partitioning following the saturation process was examined to better understand potential changes in overall glass composition. It was shown that both Cr2O3 and Cl experience significant losses, with ~28% of Cr2O3 partitioning into the salt phase and Cl primarily volatilizing out of the melt (~23% partitioned to salt and ~40% lost as off gas). These patterns can be accounted for during model development. Measured sulfur solubilities were also compared to previously reported data. It was found that crucible sulfur solubility ranged from 0.95 to 2.14 wt% SO3 with a high correlation ([Rfit2=0.94]) between crucible solubility and melter tolerance. These results suggest that crucible scale sulfate solubility data can be used to predict SO3 tolerance in the melter feed.
AbstractList Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by corroding components and shortening the melter life. To better predict the point at which salt accumulates on the melt surface, the development of sulfate solubility models is needed. Using a sulfur saturation method, crucible scale melts for 13 LAW glasses with varying sulfur solubilities were conducted. The resulting salt and glass compositions were reported and the change in component partitioning following the saturation process was examined to better understand potential changes in overall glass composition. It was shown that both Cr2O3 and Cl experience significant losses, with ~28% of Cr2O3 partitioning into the salt phase and Cl primarily volatilizing out of the melt (~23% partitioned to salt and ~40% lost as off gas). These patterns can be accounted for during model development. Measured sulfur solubilities were also compared to previously reported data. It was found that crucible sulfur solubility ranged from 0.95 to 2.14 wt% SO3 with a high correlation ([Rfit2=0.94]) between crucible solubility and melter tolerance. These results suggest that crucible scale sulfate solubility data can be used to predict SO3 tolerance in the melter feed.
Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by corroding components and shortening the melter life. To better predict the point at which salt accumulates on the melt surface, the development of sulfate solubility models is needed. Using a sulfur saturation method, crucible scale melts for 13 LAW glasses with varying sulfur solubilities were conducted. The resulting salt and glass compositions were reported and the change in component partitioning following the saturation process was examined to better understand potential changes in overall glass composition. It was shown that both Cr2O3 and Cl experience significant losses, with ~28% of Cr2O3 partitioning into the salt phase and Cl primarily volatilizing out of the melt (~23% partitioned to salt and ~40% lost as off gas). These patterns can be accounted for during model development. Measured sulfur solubilities were also compared to previously reported data. It was found that crucible sulfur solubility ranged from 0.95 to 2.14 wt% SO3 with a high correlation ([Rfit2=0.94]) between crucible solubility and melter tolerance. These results suggest that crucible scale sulfate solubility data can be used to predict SO3 tolerance in the melter feed.
Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by corroding components and shortening the melter life. To better predict the point at which salt accumulates on the melt surface, the development of sulfate solubility models is needed. Using a sulfur saturation method, crucible scale melts for 13 LAW glasses with varying sulfur solubilities were conducted. The resulting salt and glass compositions were reported and the change in component partitioning following the saturation process was examined to better understand potential changes in overall glass composition. It was shown that both Cr 2 O 3 and Cl experience significant losses, with ~28% of Cr 2 O 3 partitioning into the salt phase and Cl primarily volatilizing out of the melt (~23% partitioned to salt and ~40% lost as off gas). These patterns can be accounted for during model development. Measured sulfur solubilities were also compared to previously reported data. It was found that crucible sulfur solubility ranged from 0.95 to 2.14 wt% SO 3 with a high correlation ( ) between crucible solubility and melter tolerance. These results suggest that crucible scale sulfate solubility data can be used to predict SO 3 tolerance in the melter feed.
Author Jin, Tongan
Skidmore, Chloe H.
Stanfill, Bryan A.
Vienna, John D.
Kim, Dongsang
Fox, Kevin M.
Kruger, Albert A.
Author_xml – sequence: 1
  givenname: Chloe H.
  orcidid: 0000-0002-7443-5643
  surname: Skidmore
  fullname: Skidmore, Chloe H.
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: John D.
  orcidid: 0000-0002-6832-9502
  surname: Vienna
  fullname: Vienna, John D.
  email: john.vienna@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Tongan
  orcidid: 0000-0002-2216-5311
  surname: Jin
  fullname: Jin, Tongan
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Dongsang
  orcidid: 0000-0002-3669-9154
  surname: Kim
  fullname: Kim, Dongsang
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Bryan A.
  orcidid: 0000-0003-0612-5333
  surname: Stanfill
  fullname: Stanfill, Bryan A.
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Kevin M.
  orcidid: 0000-0001-9859-967X
  surname: Fox
  fullname: Fox, Kevin M.
  organization: Savannah River National Laboratory
– sequence: 7
  givenname: Albert A.
  orcidid: 0000-0001-8468-0813
  surname: Kruger
  fullname: Kruger, Albert A.
  organization: U.S. Department of Energy Office of River Protection
BookMark eNp9kE1LAzEQhoNUsNZe_AUBb8LWfOxudo-laK0UPGjPIZudLSnppiZZS_-921Y8iDiXmYHnnY_3Gg1a1wJCt5RMaB8PZqPWE8qZYBdoyEhKE8rKdPBTF_kVGoewIX3wosjLYohWb51tOo-Ds11lrIkHbFps3R4rHc3nsd-rEAGvrQoBq7bGJgasnfdgVTSuxdHhLdgIvq8seNVquEGXjbIBxt95hFZPj--z52T5Ol_MpstE81ywpEpzYDXntCi4JoLXaQMZAZYJ4KIkaVMRVus8JbUQeVNApfs3M1UoRUXGVMVH6O48d-fdRwchyo3rfNuvlIyVGU9LymhPkTOlvQvBQyO1iafbo1fGSkrk0T959E-e_Osl978kO2-2yh_-hukZ3hsLh39IuXiZzs-aL4fmgqM
CitedBy_id crossref_primary_10_1080_09506608_2023_2211469
crossref_primary_10_1021_acsami_1c10359
crossref_primary_10_1021_acs_jpcb_1c07134
crossref_primary_10_1002_ep_14505
crossref_primary_10_1080_21870764_2021_2012903
crossref_primary_10_1111_jace_17778
crossref_primary_10_5802_crgeos_111
crossref_primary_10_2139_ssrn_4113142
crossref_primary_10_1021_acs_jpcc_9b10924
crossref_primary_10_1016_j_jnoncrysol_2022_121924
crossref_primary_10_1111_jace_17057
crossref_primary_10_1016_j_measurement_2024_116266
crossref_primary_10_1557_s43580_021_00034_z
crossref_primary_10_1021_acs_jpcc_1c08654
crossref_primary_10_1111_ijag_16550
crossref_primary_10_1016_j_jhazmat_2023_132437
crossref_primary_10_1016_j_jnoncrysol_2023_122554
crossref_primary_10_1111_ijag_16540
Cites_doi 10.1016/j.mspro.2014.10.020
10.1515/9781501508370-007
10.2172/1772236
10.1002/9781118408438.ch13
10.1002/9781118407004.ch9
10.1111/jace.13125
10.1111/ijag.12366
10.2172/2335914
10.1016/j.jallcom.2016.11.110
10.1016/j.jnucmat.2017.09.016
10.2172/1423997
10.1111/j.2041-1294.2010.00023.x
10.1111/jace.15352
10.1016/j.jnoncrysol.2012.01.051
10.1016/j.jnoncrysol.2009.05.015
ContentType Journal Article
Copyright 2019 The American Ceramic Society and Wiley Periodicals, Inc
2019 American Ceramic Society and Wiley Periodicals, Inc
Copyright_xml – notice: 2019 The American Ceramic Society and Wiley Periodicals, Inc
– notice: 2019 American Ceramic Society and Wiley Periodicals, Inc
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/ijag.13272
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2041-1294
EndPage 568
ExternalDocumentID 10_1111_ijag_13272
IJAG13272
Genre article
GrantInformation_xml – fundername: U.S. Department of Energy's (DOE's) Waste Treatment and Immobilization Plant Project of the Office of River Protection
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RAX
ROL
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3672-b46e2d331883c073d4fe50e257e37904fb02dc640d776f8ebc1115a8aa1752ab3
ISSN 2041-1286
IngestDate Fri Jul 25 12:12:46 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Tue Jul 01 03:55:50 EDT 2025
Wed Jan 22 16:39:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3672-b46e2d331883c073d4fe50e257e37904fb02dc640d776f8ebc1115a8aa1752ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7443-5643
0000-0002-2216-5311
0000-0002-6832-9502
0000-0002-3669-9154
0000-0003-0612-5333
0000-0001-9859-967X
0000-0001-8468-0813
PQID 2295349121
PQPubID 996372
PageCount 11
ParticipantIDs proquest_journals_2295349121
crossref_citationtrail_10_1111_ijag_13272
crossref_primary_10_1111_ijag_13272
wiley_primary_10_1111_ijag_13272_IJAG13272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Westerville
PublicationPlace_xml – name: Westerville
PublicationTitle International journal of applied glass science
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 1
2000
2011
2010
1973; 14
2018; 101
2009
2002; 2
2007
2018
2017
2009; 355
2006
2005
2016
2015
2004
2003
2017; 496
2017; 695
2018; 10
2014; 7
2012; 358
2014; 97
e_1_2_6_10_1
Papadopoulos K (e_1_2_6_23_1) 1973; 14
e_1_2_6_19_1
Schreiber HD (e_1_2_6_11_1) 2002; 2
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Muller IS (e_1_2_6_7_1) 2015
Hrma P (e_1_2_6_28_1) 2003
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – year: 2009
– volume: 496
  start-page: 54
  year: 2017
  end-page: 65
  article-title: Effect of melter feed foaming on heat flux to the cold cap
  publication-title: J Nucl Mater
– year: 2005
– start-page: 93
  year: 2004
  end-page: 9
– start-page: 167
  year: 2011
  end-page: 213
– volume: 1
  start-page: 309
  issue: 3
  year: 2010
  end-page: 21
  article-title: Nuclear waste vitrification in the united states: recent developments and future options
  publication-title: Int J Appl Glass Sc
– volume: 14
  start-page: 60
  issue: 3
  year: 1973
  end-page: 5
  article-title: The solubility of SO in soda‐lime‐silica melts
  publication-title: Phys Chem Glasses
– year: 2007
– year: 2006
– year: 2000
– volume: 358
  start-page: 3559
  year: 2012
  end-page: 62
  article-title: Nuclear waste vitrification efficiency: cold cap reactions
  publication-title: J Non‐Cryst Solids
– volume: 7
  start-page: 148
  year: 2014
  end-page: 55
  article-title: Compositional models of glass/melt properties and their use for glass formulation
  publication-title: Procedia Mater Sci
– volume: 101
  start-page: 1880
  issue: 5
  year: 2018
  end-page: 91
  article-title: Melter feed viscosity during conversion to glass: Comparison between low‐activity waste and high‐level waste feeds
  publication-title: J Am Ceram Soc
– year: 2017
– volume: 2
  start-page: 53
  year: 2002
  end-page: 8
  article-title: Enhancing the sulfate capacity of glasses for nuclear waste immobilization
  publication-title: J Undergraduate Chem Res
– year: 2016
– year: 2018
– volume: 10
  start-page: 92
  issue: 1
  year: 2018
  end-page: 102
  article-title: A crucible salt saturation method for determining sulfur solubility in glass melt
  publication-title: Int J Appl Glass Sci
– volume: 355
  start-page: 1468
  year: 2009
  end-page: 73
  article-title: Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy
  publication-title: J Non‐Cryst Solids
– start-page: 147
  year: 2003
  end-page: 52
– volume: 97
  start-page: 3135
  issue: 10
  year: 2014
  end-page: 42
  article-title: Toward understanding the effect of low‐activity waste glass composition on sulfur solubility
  publication-title: J Am Ceram Soc
– year: 2015
– volume: 695
  start-page: 656
  year: 2017
  end-page: 67
  article-title: Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses
  publication-title: J Alloy Compd
– year: 2010
– ident: e_1_2_6_9_1
  doi: 10.1016/j.mspro.2014.10.020
– ident: e_1_2_6_22_1
  doi: 10.1515/9781501508370-007
– ident: e_1_2_6_18_1
– ident: e_1_2_6_29_1
  doi: 10.2172/1772236
– ident: e_1_2_6_12_1
  doi: 10.1002/9781118408438.ch13
– ident: e_1_2_6_14_1
– ident: e_1_2_6_27_1
  doi: 10.1002/9781118407004.ch9
– ident: e_1_2_6_17_1
– volume: 14
  start-page: 60
  issue: 3
  year: 1973
  ident: e_1_2_6_23_1
  article-title: The solubility of SO3 in soda‐lime‐silica melts
  publication-title: Phys Chem Glasses
– ident: e_1_2_6_19_1
– ident: e_1_2_6_5_1
  doi: 10.1111/jace.13125
– ident: e_1_2_6_2_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_6_1
  doi: 10.1111/ijag.12366
– ident: e_1_2_6_15_1
  doi: 10.2172/2335914
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jallcom.2016.11.110
– ident: e_1_2_6_16_1
– ident: e_1_2_6_21_1
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jnucmat.2017.09.016
– volume-title: LAW Glass Property-Composition Models for K-3 Refractory Corrosion and Sulfate Solubility: VSL-15R3270-1
  year: 2015
  ident: e_1_2_6_7_1
– ident: e_1_2_6_20_1
  doi: 10.2172/1423997
– ident: e_1_2_6_3_1
– ident: e_1_2_6_4_1
  doi: 10.1111/j.2041-1294.2010.00023.x
– ident: e_1_2_6_26_1
  doi: 10.1111/jace.15352
– start-page: 147
  volume-title: Scientific Basis for Nuclear waste management XXVI
  year: 2003
  ident: e_1_2_6_28_1
– volume: 2
  start-page: 53
  year: 2002
  ident: e_1_2_6_11_1
  article-title: Enhancing the sulfate capacity of glasses for nuclear waste immobilization
  publication-title: J Undergraduate Chem Res
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jnoncrysol.2012.01.051
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jnoncrysol.2009.05.015
SSID ssj0000388698
Score 2.277671
Snippet Hanford low‐activity waste (LAW) glasses with high sulfur concentrations are subject to salt segregation in the melter, which hinders melter operation by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 558
SubjectTerms characterization
Chromium oxides
Composition
Crucibles
Glass
Glass & glassware industry
glass forming melts‐chemical analysis
glass forming systems‐volatilization
modeling
Partitioning
properties‐borosilicate
properties‐glass forming melts
Saturation
Solubility
Sulfur
Sulfur trioxide
Vaporization
Title Sulfur solubility in low activity waste glass and its correlation to melter tolerance
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fijag.13272
https://www.proquest.com/docview/2295349121
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsoDGQJXmDKlDjO7bEaG6PqxsNS1LfIdpyuo0tQ12oSv4Ufy_ElTiaNafASWVZ0kvp8PRfn-DsIfRCKpjxgvlcGhHuUZtxjNBWQqkB8EQsWc02kfXIaH8_oZB7NB4Pfvaql7Ybvi1-3niv5H63CHOhVnZL9B806oTABY9AvXEHDcL2Xjs-2q2q73lMP0TWu-gzfqrnWDBm6KcQ1Ay3u6RDZfSYQqiGHKYFTkeelVB_MYbSSaweBi67Avdsv7LFMMBu8GsnWjbrdmh_Lsq3fPThfNbI7AfFd1Zextga4KzeeGCqDvKkXrFcXcGli_HpxxayHtRsUQeZK3e5rBjuTR3waeOAxLTl2f860QnY22-9hk_YMcGSI4K0vj0zLnr-4ieUFW-xDNm56B93k4j79VhzNptMiP5znD9AOgSSEDNHO-PPJ9Mzt4SkmnVi3W3YvbhlwVbFYJ_5mzNMlMv10SMcz-RP02CYieGxQ9RQNZP0MPerRUz5HM4Mv3OELL2sM-MItvrDGF9YowIAvDPjCPXzhTYMNvrDD1ws0OzrMD44924bDE2GcEI_TWJIyBOOfhgI8QkkrGfkSbL0Mk8ynFfdJKWLql0kSV6nkAn59xFLGIDQljIcv0bBuavkKYZKklSgp4b7MKAMzAdmJz6oShEJYxJIR-tguVCEsR71qlbIq2lxVLWqhF3WE3rt7fxpmllvv2m3Xu7D_kqtCtbAPaRaQYIQ-aR3cIaH4Ohl_0aPXd8t6gx528N9Fw816K99CxLrh7yxw_gC4QprS
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfur+solubility+in+low+activity+waste+glass+and+its+correlation+to+melter+tolerance&rft.jtitle=International+journal+of+applied+glass+science&rft.au=Skidmore%2C+Chloe+H&rft.au=Vienna%2C+John+D&rft.au=Jin%2C+Tongan&rft.au=Kim%2C+Dongsang&rft.date=2019-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2041-1286&rft.eissn=2041-1294&rft.volume=10&rft.issue=4&rft.spage=558&rft.epage=568&rft_id=info:doi/10.1111%2Fijag.13272&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1286&client=summon