Rough Topography and Fast Baroclinic Rossby Waves

Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analy...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 52; no. 2
Main Authors Davis, T. J., Radko, T., Brown, J. M., Dewar, W. K.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.01.2025
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2024GL112589

Cover

Loading…
Abstract Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale (3−30km) $(3-30\,\text{km})$ rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular. Plain Language Summary Rossby waves are planetary waves that operate on spatial scales of up to those of ocean basins and time scales of up to years. They contribute to climate regulation and communicate changes in weather patterns and ocean flows across the globe. These waves have been the subject of continuous interest since their discovery. However, they usually propagate faster than simplified calculations predict. Several hypotheses have been proposed to explain this discrepancy, attributing it, for instance, to the waves riding on background flow and to large vortices masquerading as Rossby waves. This investigation offers an alternative explanation. We explore the effect a rough ocean bottom can have on the speed of the waves and bring theoretical estimates of the wave's structure and speed into agreement with measurements. We demonstrate that a rough bottom exerts significant drag on the lower part of the wave and causes its upper portion to move faster. Using numerical simulations, we show this acceleration is significant for a wide range of oceanographically relevant parameters. Key Points Observed phase speeds of Rossby waves systematically exceed the prediction of standard linear theory Taking into account the small‐scale variability in the bottom relief brings theoretical estimates of speed close to measurements The effect is most pronounced for extra‐tropical waves with low viscosity and relatively short wavelengths
AbstractList Abstract Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale (3−30km) rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular.
Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale (3−30km) $(3-30\,\text{km})$ rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular.
Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale (3−30km) $(3-30\,\text{km})$ rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular. Plain Language Summary Rossby waves are planetary waves that operate on spatial scales of up to those of ocean basins and time scales of up to years. They contribute to climate regulation and communicate changes in weather patterns and ocean flows across the globe. These waves have been the subject of continuous interest since their discovery. However, they usually propagate faster than simplified calculations predict. Several hypotheses have been proposed to explain this discrepancy, attributing it, for instance, to the waves riding on background flow and to large vortices masquerading as Rossby waves. This investigation offers an alternative explanation. We explore the effect a rough ocean bottom can have on the speed of the waves and bring theoretical estimates of the wave's structure and speed into agreement with measurements. We demonstrate that a rough bottom exerts significant drag on the lower part of the wave and causes its upper portion to move faster. Using numerical simulations, we show this acceleration is significant for a wide range of oceanographically relevant parameters. Key Points Observed phase speeds of Rossby waves systematically exceed the prediction of standard linear theory Taking into account the small‐scale variability in the bottom relief brings theoretical estimates of speed close to measurements The effect is most pronounced for extra‐tropical waves with low viscosity and relatively short wavelengths
Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular. Rossby waves are planetary waves that operate on spatial scales of up to those of ocean basins and time scales of up to years. They contribute to climate regulation and communicate changes in weather patterns and ocean flows across the globe. These waves have been the subject of continuous interest since their discovery. However, they usually propagate faster than simplified calculations predict. Several hypotheses have been proposed to explain this discrepancy, attributing it, for instance, to the waves riding on background flow and to large vortices masquerading as Rossby waves. This investigation offers an alternative explanation. We explore the effect a rough ocean bottom can have on the speed of the waves and bring theoretical estimates of the wave's structure and speed into agreement with measurements. We demonstrate that a rough bottom exerts significant drag on the lower part of the wave and causes its upper portion to move faster. Using numerical simulations, we show this acceleration is significant for a wide range of oceanographically relevant parameters. Observed phase speeds of Rossby waves systematically exceed the prediction of standard linear theory Taking into account the small‐scale variability in the bottom relief brings theoretical estimates of speed close to measurements The effect is most pronounced for extra‐tropical waves with low viscosity and relatively short wavelengths
Author Brown, J. M.
Radko, T.
Davis, T. J.
Dewar, W. K.
Author_xml – sequence: 1
  givenname: T. J.
  orcidid: 0000-0002-3609-1819
  surname: Davis
  fullname: Davis, T. J.
  email: travis.davis@nps.edu
  organization: Naval Postgraduate School
– sequence: 2
  givenname: T.
  orcidid: 0000-0002-5682-280X
  surname: Radko
  fullname: Radko, T.
  organization: Naval Postgraduate School
– sequence: 3
  givenname: J. M.
  orcidid: 0000-0003-2716-5174
  surname: Brown
  fullname: Brown, J. M.
  organization: Naval Postgraduate School
– sequence: 4
  givenname: W. K.
  orcidid: 0000-0002-5803-5535
  surname: Dewar
  fullname: Dewar, W. K.
  organization: The Florida State University
BookMark eNp9kE9Lw0AQxRepYFu9-QECXo3O7ib756jF1kJAKBWPyyTZtikxGzetkm_vakQ8eZkZhh9v3rwJGTWusYRcUrihwPQtA5YsMkpZqvQJGVOdJLECkCMyBtBhZlKckUnX7QGAA6djQlfuuN1Fa9e6rcd210fYlNEcu0N0j94VddVURbRyXZf30Qu-2-6cnG6w7uzFT5-S5_nDevYYZ0-L5ewuiwsuJI1TXjAmKctBlanUJagkl0yUoYRR61QImmIhc5UoiqA1Y4VMUaQbCYpp4FOyHHRLh3vT-uoVfW8cVuZ74fzWoD9URW1NmYPkyLRUSiZUItrgQHKaKIaaahm0rgat1ru3o-0OZu-Ovgn2DacChAwXVaCuB6rw4V9vN79XKZivgM3fgAPOBvyjqm3_L2sWq0yo4Ih_AuxHeG0
Cites_doi 10.1175/JPO‐D‐20‐0055.1
10.1093/climsys/dzw001
10.1016/j.pocean.2011.01.002
10.1029/2008GL036642
10.1002/2017GL075430
10.1175/1520‐0485(1997)027〈1946:TSOOAT〉2.0.CO;2
10.1017/jfm.2022.944
10.1029/2000JC000607
10.1029/2020GL088162
10.1029/JC095iC04p05183
10.1175/JPO‐D‐13‐0201.1
10.1029/JB093iB11p13589
10.1126/science.272.5259.234
10.1029/2006JC003698
10.1016/S0074-6142(08)60025-X
10.1017/jfm.2023.945
10.1017/jfm.2024.470
10.1175/JPO‐D‐23‐0024.1
10.1175/1520‐0485(2003)33〈784:LEPWPI〉2.0.CO;2
10.1175/1520‐0442(2002)015〈0864:SAMOSI〉2.0.CO;2
10.1017/S0022112099004875
10.1175/1520‐0485(1999)029<2183:todrfn>2.0.co;2
10.1017/S0022112099004863
10.1175/JPO2823.1
10.1029/2005RG000172
10.1017/S0022112002002707
10.17632/bfrkmvwmc8.1
10.1357/002224092784797593
10.1029/2007GL030812
10.1175/1520‐0485(1998)028〈1739:OTFBPW〉2.0.CO;2
10.1175/JPO‐D‐17‐0024.1
10.1029/2022JC018981
10.1175/1520‐0485(1999)029〈2689:TEOBTO〉2.0.CO;2
10.1017/jfm.2023.169
ContentType Journal Article
Copyright Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Geophysical Research Letters published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Geophysical Research Letters published by Wiley Periodicals LLC on behalf of American Geophysical Union. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Geophysical Research Letters published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Geophysical Research Letters published by Wiley Periodicals LLC on behalf of American Geophysical Union. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL112589
DatabaseName Wiley Online Library Open Access (LAB)
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_db073a297887417aae671731482a9197
10_1029_2024GL112589
GRL68731
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: OCE 2241625
– fundername: Office of Naval Research
  funderid: N00014‐24‐WX‐01685
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7TG
7TN
8FD
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3671-53c22712b08d579d084b726db720849956615ac7b8481a09922c75a65f7082903
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:30:47 EDT 2025
Fri Jul 25 12:08:19 EDT 2025
Thu Jul 03 08:25:18 EDT 2025
Wed Jan 29 10:50:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3671-53c22712b08d579d084b726db720849956615ac7b8481a09922c75a65f7082903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3609-1819
0000-0002-5682-280X
0000-0003-2716-5174
0000-0002-5803-5535
OpenAccessLink https://doaj.org/article/db073a297887417aae671731482a9197
PQID 3160678298
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_db073a297887417aae671731482a9197
proquest_journals_3160678298
crossref_primary_10_1029_2024GL112589
wiley_primary_10_1029_2024GL112589_GRL68731
PublicationCentury 2000
PublicationDate 28 January 2025
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 28 January 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1990; 95
1998; 28
2002; 15
2017; 47
1999; 29
1982; 30
2017; 44
2024; 988
2006; 36
1997; 27
1999; 388
2024; 54
2024
2023a; 961
2022; 953
2007; 34
1988; 93
2003; 474
2014; 44
1992; 50
2003; 33
2023b; 977
2009; 36
2007; 112
2003; 108
2016; 1
1990
2011; 91
2020; 50
1996; 272
2020; 47
2007; 45
2022; 127
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Pedlosky J. (e_1_2_7_24_1) 1990
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 47
  issue: 11
  year: 2020
  article-title: Identifying characteristic and anomalous mantle from the complex relationship between Abyssal Hill roughness and spreading rates
  publication-title: Geophysical Research Letters
– volume: 91
  start-page: 167
  issue: 2
  year: 2011
  end-page: 216
  article-title: Global observations of nonlinear mesoscale eddies
  publication-title: Progress in Oceanography
– year: 2024
  article-title: [Collection] Rough topography and fast Rossby waves
  publication-title: Mendeley Data
– volume: 29
  start-page: 2183
  issue: 9
  year: 1999
  end-page: 2190
  article-title: The observed dispersion relationship for North Pacific Rossby wave motions
  publication-title: Journal of Physical Oceanography
– volume: 36
  issue: 4
  year: 2009
  article-title: Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean
  publication-title: Geophysical Research Letters
– volume: 95
  start-page: 5183
  issue: C4
  year: 1990
  end-page: 5217
  article-title: Observations of long Rossby waves in the northern tropical pacific
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 12
  year: 2022
  article-title: How mesoscale eddies masquerade as Rossby waves in merged altimetric products
  publication-title: Journal of Geophysical Research: Oceans
– volume: 30
  start-page: xv
  year: 1982
– volume: 50
  start-page: 2835
  issue: 10
  year: 2020
  end-page: 2847
  article-title: Baroclinic modes over rough bathymetry and the surface deformation radius
  publication-title: Journal of Physical Oceanography
– volume: 474
  start-page: 299
  year: 2003
  end-page: 318
  article-title: Nonlinear dynamics over rough topography: Homogeneous and stratified quasi‐geostrophic theory
  publication-title: Journal of Fluid Mechanics
– volume: 44
  start-page: 2938
  issue: 11
  year: 2014
  end-page: 2950
  article-title: The impact of finite‐amplitude bottom topography on internal wave generation in the Southern Ocean
  publication-title: Journal of Physical Oceanography
– volume: 50
  start-page: 367
  issue: 3
  year: 1992
  end-page: 384
  article-title: Surface‐intensified Rossby waves over rough topography
  publication-title: Journal of Marine Research
– volume: 93
  start-page: 13589
  issue: B11
  year: 1988
  end-page: 13608
  article-title: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second‐order statistics
  publication-title: Journal of Geophysical Research
– year: 1990
– volume: 112
  issue: C5
  year: 2007
  article-title: On long Baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats
  publication-title: Journal of Geophysical Research
– volume: 54
  start-page: 767
  issue: 3
  year: 2024
  end-page: 782
  article-title: Why is the westward Rossby wave propagation from the California coast “too fast”
  publication-title: Journal of Physical Oceanography
– volume: 108
  issue: C1
  year: 2003
  article-title: Global characterization of Rossby waves at several spectral bands
  publication-title: Journal of Geophysical Research
– volume: 44
  start-page: 11097
  issue: 21
  year: 2017
  end-page: 11105
  article-title: The prevalence of oceanic surface modes
  publication-title: Geophysical Research Letters
– volume: 953
  year: 2022
  article-title: Spin‐down of a baroclinic vortex by irregular small‐scale topography
  publication-title: Journal of Fluid Mechanics
– volume: 388
  start-page: 115
  year: 1999
  end-page: 145
  article-title: Planetary waves in a stratified ocean of variable depth. Part 1. Two‐layer model
  publication-title: Journal of Fluid Mechanics
– volume: 388
  start-page: 147
  year: 1999
  end-page: 169
  article-title: Planetary waves in a stratified ocean of variable depth. Part 2. Continuously stratified ocean
  publication-title: Journal of Fluid Mechanics
– volume: 33
  start-page: 784
  issue: 4
  year: 2003
  end-page: 801
  article-title: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem
  publication-title: Journal of Physical Oceanography
– volume: 961
  year: 2023a
  article-title: A generalized theory of flow forcing by rough topography
  publication-title: Journal of Fluid Mechanics
– volume: 45
  issue: 2
  year: 2007
  article-title: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections
  publication-title: Reviews of Geophysics
– volume: 36
  start-page: 104
  issue: 1
  year: 2006
  end-page: 121
  article-title: The quasi‐nondispersive regimes of long extratropical baroclinic Rossby waves over (slowly varying) topography
  publication-title: Journal of Physical Oceanography
– volume: 27
  start-page: 1946
  issue: 9
  year: 1997
  end-page: 1966
  article-title: The speed of observed and theoretical long extratropical planetary waves
  publication-title: Journal of Physical Oceanography
– volume: 272
  start-page: 234
  issue: 5259
  year: 1996
  end-page: 238
  article-title: Global observations of oceanic Rossby waves
  publication-title: Science
– volume: 988
  year: 2024
  article-title: The sandpaper theory of flow–topography interaction for multilayer shallow‐water systems
  publication-title: Journal of Fluid Mechanics
– volume: 28
  start-page: 1739
  issue: 9
  year: 1998
  end-page: 1758
  article-title: On “too fast” baroclinic planetary waves in the general circulation
  publication-title: Journal of Physical Oceanography
– volume: 34
  issue: 15
  year: 2007
  article-title: Global observations of large oceanic eddies
  publication-title: Geophysical Research Letters
– volume: 1
  issue: 1
  year: 2016
  article-title: The vertical structure of ocean eddies
  publication-title: Dynamics and Statistics of the Climate System
– volume: 15
  start-page: 864
  issue: 8
  year: 2002
  end-page: 878
  article-title: Structure and mechanisms of south Indian Ocean climate variability
  publication-title: Journal of Climate
– volume: 47
  start-page: 2157
  issue: 9
  year: 2017
  end-page: 2172
  article-title: On the topographic modulation of large‐scale eddying flows
  publication-title: Journal of Physical Oceanography
– volume: 29
  start-page: 2689
  issue: 10
  year: 1999
  end-page: 2710
  article-title: The effect of bottom topography on the speed of long extratropical planetary waves
  publication-title: Journal of Physical Oceanography
– volume: 977
  year: 2023b
  article-title: The sandpaper theory of flow–topography interaction for homogeneous shallow‐water systems
  publication-title: Journal of Fluid Mechanics
– ident: e_1_2_7_21_1
  doi: 10.1175/JPO‐D‐20‐0055.1
– ident: e_1_2_7_11_1
  doi: 10.1093/climsys/dzw001
– ident: e_1_2_7_5_1
  doi: 10.1016/j.pocean.2011.01.002
– ident: e_1_2_7_7_1
  doi: 10.1029/2008GL036642
– ident: e_1_2_7_20_1
  doi: 10.1002/2017GL075430
– ident: e_1_2_7_19_1
  doi: 10.1175/1520‐0485(1997)027〈1946:TSOOAT〉2.0.CO;2
– ident: e_1_2_7_26_1
  doi: 10.1017/jfm.2022.944
– ident: e_1_2_7_25_1
  doi: 10.1029/2000JC000607
– ident: e_1_2_7_14_1
  doi: 10.1029/2020GL088162
– ident: e_1_2_7_16_1
  doi: 10.1029/JC095iC04p05183
– ident: e_1_2_7_23_1
  doi: 10.1175/JPO‐D‐13‐0201.1
– ident: e_1_2_7_15_1
  doi: 10.1029/JB093iB11p13589
– ident: e_1_2_7_4_1
  doi: 10.1126/science.272.5259.234
– ident: e_1_2_7_8_1
  doi: 10.1029/2006JC003698
– ident: e_1_2_7_13_1
  doi: 10.1016/S0074-6142(08)60025-X
– ident: e_1_2_7_28_1
  doi: 10.1017/jfm.2023.945
– ident: e_1_2_7_29_1
  doi: 10.1017/jfm.2024.470
– ident: e_1_2_7_9_1
  doi: 10.1175/JPO‐D‐23‐0024.1
– ident: e_1_2_7_18_1
  doi: 10.1175/1520‐0485(2003)33〈784:LEPWPI〉2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.1175/1520‐0442(2002)015〈0864:SAMOSI〉2.0.CO;2
– ident: e_1_2_7_31_1
  doi: 10.1017/S0022112099004875
– ident: e_1_2_7_36_1
  doi: 10.1175/1520‐0485(1999)029<2183:todrfn>2.0.co;2
– ident: e_1_2_7_2_1
  doi: 10.1017/S0022112099004863
– ident: e_1_2_7_33_1
  doi: 10.1175/JPO2823.1
– ident: e_1_2_7_22_1
  doi: 10.1029/2005RG000172
– ident: e_1_2_7_34_1
  doi: 10.1017/S0022112002002707
– ident: e_1_2_7_10_1
  doi: 10.17632/bfrkmvwmc8.1
– ident: e_1_2_7_32_1
  doi: 10.1357/002224092784797593
– volume-title: Geophysical fluid dynamics
  year: 1990
  ident: e_1_2_7_24_1
– ident: e_1_2_7_6_1
  doi: 10.1029/2007GL030812
– ident: e_1_2_7_12_1
  doi: 10.1175/1520‐0485(1998)028〈1739:OTFBPW〉2.0.CO;2
– ident: e_1_2_7_30_1
  doi: 10.1175/JPO‐D‐17‐0024.1
– ident: e_1_2_7_3_1
  doi: 10.1029/2022JC018981
– ident: e_1_2_7_17_1
  doi: 10.1175/1520‐0485(1999)029〈2689:TEOBTO〉2.0.CO;2
– ident: e_1_2_7_27_1
  doi: 10.1017/jfm.2023.169
SSID ssj0003031
Score 2.46667
Snippet Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on...
Abstract Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Acceleration
Approximation
Baroclinic flow
Climate prediction
Exact solutions
Fluid flow
Numerical simulations
Ocean basins
Ocean bottom
Ocean floor
Oceanographic observations
Oceans
phase speed
Planetary waves
Rossby wave
Rossby waves
rough topography
sandpaper
Topography
Vertical profiles
Water flow
Wavelengths
Waves
Weather patterns
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (LAB)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EbyIn1id0oOepNim-WiOTtyGTJGx4W4laVJv3VinsP_e97JuzIvgpaQlacvLy_tI3vs9Qm45F9LE1EVpkdiIccsiJeFWOdReDlwOg_nOr2-iP2YvEz5pNtwwF2aFD7HZcMOV4eU1LnBt6gZsADEywWtnvQGYCzxTu2QPs2uRzyl730hiEM-rinmKRRmVogl8h_EP26N_qSSP3P_L3Nw2Wr3W6R6Rw8ZcDB9X83tMdlx1QvZ7vhzvElo-gLOoT0kyxHI74Wg6azCoQ13ZsKvrRdjRoKR8AmQ4hO-bZfihv119Rsbd59FTP2rKIURFKmQS8bSgVCbUxJnlUtk4Y0ZSYeECTcxQBetEF9IgQr6OEXC2kFwLXkpMoI3Tc9KqppW7IKEqubUsLqU2lomSwxDtCgbOlMnS1JYBuVtTJJ-tUC9yf1pNVb5NuYB0kFybPohV7R9M5595w_q5NSBGNFUYt8gSqbUTePSPAKRaJUoGpL0mdt4soDpPE4F6lKosIPd-Av78kbw3HIgMXnr5r95X5IBiPd84iWjWJq3F_Mtdg5GxMDeek34ArxLCag
  priority: 102
  providerName: Wiley-Blackwell
Title Rough Topography and Fast Baroclinic Rossby Waves
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL112589
https://www.proquest.com/docview/3160678298
https://doaj.org/article/db073a297887417aae671731482a9197
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4CIkL4inGY-oBTqiiTfNojoDYJjQQmjaYuFRJkx43xAYS_x477dC4wIVLlVZtk9ppbCv29wGcCSGVTZiPszJ1MReOx1rhqfZkvTyGHJbqne8fZG_E78ZivET1RTlhNTxwLbhLZ3ESGqYp642nyhgvaeOY4CuNTnWoI0ebtwimmjUYF-aaK0_zOGdKNinvCdMU7fNuH90MQdTuS8YoYPb_cDSX3dVgbzrbsNU4itFVPcAdWPGTXdjoBiLeT2yF1M1ytgfpgIh2ouH0tUGfjszERR0zm0fXBs1TKH2MBti__YyezYef7cOoczu86cUNEUJcZvi1schKxlTKbJI7obRLcm4Vkw4P2KTaVPRLTKksYeObhKBmSyWMFJWi0tkkO4C1yXTiDyHSlXCOJ5Uy1nFZCXzE-JJjGGXzLHNVC84XEilea7yLIuxTM10sS64F1ySu73sIpTpcQN0Vje6Kv3TXgpOFsIvm15kVWSrJgjKdt-AiKODXgRTdQV_m-NKj_xjRMWwyIvhN0pjlJ7A2f3v3p-h1zG0bVhl_bMP61dPoZdQO0-0LJWfLiA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6xCMEFsbwnypoDnFBE4niJj4BoCxSEqiK4WXbscGsRLUj8e2bcUJULEpfIiewkGtuz2J7vAzgWQiqXsZAWVe5TLjxPtcJbHch6BQw5HOU7393L7iO_eRbPDc8p5cJM8SFmC240M6K-pglOC9IN2gCBZGLYzjs99BdEqRdhmUumiLuB8YeZKkb9PKXM0zwtmZLNyXdsfzbf-odNitD9P_zNea81mp32Bqw3_mJyPu3gTVgIwy1Y6UQ-3k8sxROc1Xgb8j7x7SSD0WsDQp3YoU_adjxJLixaqZgBmfTx--4zebIfYfwPHttXg8tu2vAhpFUhVZ6KomJM5cxlpRdK-6zkTjHp8YJFSlFF98RWyhFEvs0IcbZSwkpRK8qgzYr_sDQcDcMOJLoW3vOsVtZ5LmuBTWyoOEZTriwKX7fg5Fsi5nUKe2HidjXTZl5yLbggcc3qEFh1fDB6ezHN2DfeoR6xTNPBRZ4ra4OkvX9CILU616oF-9_CNs0MGpsil2RImS5bcBo74NcfMZ1-T5b40t0_1T6C1e7grmd61_e3e7DGiNw3y1NW7sPS5O09HKDHMXGHcVR9AU0xxdY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9iIKZd0Aab6GBbDnBCEYnjj_g4YC0fpaqqVvRm2bHDra1IN4n_fu-5oWovk3aJnMhOouf3afv9HsCZEFK5jIW0qHKfcuF5qhXe6kDWK2DI4Sjf-XEgbyf8fiqm7YIb5cKs8CHWC24kGVFfk4AvfN2CDRBGJkbtvNdHd0GU-h3s0X4fcTjjw7UmRvW8qpineVoyJduD7zj-cnP0lkmKyP1b7uam0xqtTvcjHLTuYvJzNb-fYCfMDmG_F8vxvmIrHuCsmiPIR1RuJxnPFy0GdWJnPunaZplcWTRSMQEyGeH33WvyZP-E5jNMur_G17dpWw4hrQqp8lQUFWMqZy4rvVDaZyV3ikmPF2xShip6J7ZSjhDybUaAs5USVopaUQJtVnyB3dl8Fo4h0bXwnme1ss5zWQscYkPFMZhyZVH4ugPnbxQxixXqhYm71UybTcp14IrIte5DWNXxwfzl2bSsb7xDNWKZpnOLPFfWBklb_wRAanWuVQdO34htWgFqTJFLsqNMlx24iBPwzx8xvVFflvjSr__V-we8H950Tf9u8HACHxiV9s3ylJWnsLt8-R2-ob-xdN8jU_0FSoTFCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough+Topography+and+Fast+Baroclinic+Rossby+Waves&rft.jtitle=Geophysical+research+letters&rft.au=Davis%2C+T.+J.&rft.au=Radko%2C+T.&rft.au=Brown%2C+J.+M.&rft.au=Dewar%2C+W.+K.&rft.date=2025-01-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=2&rft_id=info:doi/10.1029%2F2024GL112589&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024GL112589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon