Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models

A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both c...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 3
Main Authors Colangelo, Gilberto, Hagelstein, Franziska, Hoferichter, Martin, Laub, Laetitia, Stoffer, Peter
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 17.03.2020
Springer Nature B.V
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π 0 , η , η′ . Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π 0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Δ a μ LSDC = 13 6 × 10 -11 . This number does not include the contribution from the charm quark, for which we find a μ c − quark = 3(1) × 10 − 11 .
AbstractList While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (g – 2)μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from πo, η, η'. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Δa$^{LSDC}_{μ}$ = 13(6) × 10-11. This number does not include the contribution from the charm quark, for which we find a$^{c–quark}_{μ}$ = 3(1) × 10–11.
A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π 0 , η , η′ . Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π 0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Δ a μ LSDC = 13 6 × 10 -11 . This number does not include the contribution from the charm quark, for which we find a μ c − quark = 3(1) × 10 − 11 .
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π 0 , η , η′ . Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π 0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by $$ \varDelta {a}_{\mu}^{\mathrm{LSDC}}=13(6) $$ Δ a μ LSDC = 13 6 × 10 -11 . This number does not include the contribution from the charm quark, for which we find $$ {a}_{\mu}^{c- quark} $$ a μ c − quark = 3(1) × 10 − 11 .
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (g − 2)μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π0, η, η′. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by ΔaμLSDC=136× 10-11. This number does not include the contribution from the charm quark, for which we find aμc−quark = 3(1) × 10−11.
ArticleNumber 101
Author Hoferichter, Martin
Hagelstein, Franziska
Colangelo, Gilberto
Laub, Laetitia
Stoffer, Peter
Author_xml – sequence: 1
  givenname: Gilberto
  surname: Colangelo
  fullname: Colangelo, Gilberto
– sequence: 2
  givenname: Franziska
  orcidid: 0000-0002-2017-7132
  surname: Hagelstein
  fullname: Hagelstein, Franziska
  email: hagelstein@itp.unibe.ch
– sequence: 3
  givenname: Martin
  orcidid: 0000-0003-1113-9377
  surname: Hoferichter
  fullname: Hoferichter, Martin
– sequence: 4
  givenname: Laetitia
  orcidid: 0000-0003-3340-5672
  surname: Laub
  fullname: Laub, Laetitia
– sequence: 5
  givenname: Peter
  surname: Stoffer
  fullname: Stoffer, Peter
BackLink https://www.osti.gov/servlets/purl/1799994$$D View this record in Osti.gov
BookMark eNp9kb9O5DAQxq0TSLBATWvdNUuRw-NkY6dEK_7caQUIQW05jpMYBXuxvUI01NQ8D89wD8GT4CVId80xzYys3zcznm-CNqyzGqF9ID-BEHb4--z4kuRTSig5AALf0DYQWmW8YNXGP_UWmoRwSwjMoCLb6GnhbGfiqjFWDjj0zsesMSFKqzRWzobopbEx4NZ5HHuNe9l4Z43Cg-n6mNWP2UexZqM39SoaZ3F0eNrht-cXTA_-vOIHE3s8SN_p7FzhK911Gt-5Rg9hF222cgh67zPvoJuT4-v5Wba4OP01P1pkKi8ZZJBDMyvyUqumnBVFw6WsqWZQQEkZrTjhkqcPMdrWvCSK0xaKWrZMyobrspb5Dvo-9nUhGhGUiVr1aWWrVRTAqhRFgn6M0NK7-5UOUdy6lU93CYKm6TzNAfollTNeQrorS9ThSCnvQvC6FUtv7qR_FEDE2i8x-iXWfqUHSAoyKkIibaf9377_k7wDBN6Zqw
CitedBy_id crossref_primary_10_1007_JHEP06_2020_020
crossref_primary_10_21468_SciPostPhys_15_4_176
crossref_primary_10_1103_PhysRevD_108_095027
crossref_primary_10_1140_epjc_s10052_021_09835_w
crossref_primary_10_1103_PhysRevD_107_115004
crossref_primary_10_1007_JHEP07_2021_118
crossref_primary_10_1088_1674_1137_ac2a25
crossref_primary_10_1103_PhysRevD_106_055017
crossref_primary_10_1007_JHEP03_2022_101
crossref_primary_10_1103_PhysRevLett_127_251801
crossref_primary_10_3389_fphy_2022_944614
crossref_primary_10_1103_PhysRevD_107_035008
crossref_primary_10_1007_JHEP10_2020_203
crossref_primary_10_1007_JHEP10_2022_032
crossref_primary_10_1088_1674_1137_ac7c63
crossref_primary_10_1103_PhysRevD_109_035010
crossref_primary_10_1088_1361_6471_ad0ffa
crossref_primary_10_1103_PhysRevD_106_073009
crossref_primary_10_1103_PhysRevD_105_075007
crossref_primary_10_1088_1748_0221_15_11_P11008
crossref_primary_10_1007_JHEP07_2021_106
crossref_primary_10_1140_epjc_s10052_022_10148_9
crossref_primary_10_1007_JHEP07_2021_107
crossref_primary_10_1103_PhysRevD_105_035017
crossref_primary_10_1103_PhysRevD_106_055023
crossref_primary_10_1103_PhysRevD_105_035015
crossref_primary_10_1103_PhysRevLett_125_091801
crossref_primary_10_1007_JHEP10_2021_240
crossref_primary_10_1007_JHEP06_2021_068
crossref_primary_10_1103_PhysRevD_106_015005
crossref_primary_10_1103_PhysRevD_108_L031702
crossref_primary_10_1088_1361_6471_ac5d0a
crossref_primary_10_1088_1742_6596_2734_1_012074
crossref_primary_10_1007_JHEP09_2022_056
crossref_primary_10_1140_epjc_s10052_020_8306_y
crossref_primary_10_1103_PhysRevD_105_035021
crossref_primary_10_1103_PhysRevD_105_053010
crossref_primary_10_1103_PhysRevD_106_095040
crossref_primary_10_1007_JHEP05_2024_096
crossref_primary_10_1007_JHEP08_2022_243
crossref_primary_10_1007_JHEP08_2022_124
crossref_primary_10_1103_PhysRevD_104_015015
crossref_primary_10_1103_PhysRevD_104_033007
crossref_primary_10_1140_epjc_s10052_022_11051_z
crossref_primary_10_1007_JHEP08_2023_170
crossref_primary_10_1007_JHEP12_2021_038
crossref_primary_10_1103_PhysRevD_105_016014
crossref_primary_10_1007_JHEP11_2021_081
crossref_primary_10_1140_epjc_s10052_022_10004_w
crossref_primary_10_1007_JHEP09_2022_181
crossref_primary_10_1007_JHEP07_2021_135
crossref_primary_10_1140_epjc_s10052_024_12497_z
crossref_primary_10_1016_j_physletb_2021_136852
crossref_primary_10_1088_1674_1137_ac9896
crossref_primary_10_1103_PhysRevD_105_016019
crossref_primary_10_1103_PhysRevD_104_055009
crossref_primary_10_1140_epjc_s10052_022_10727_w
crossref_primary_10_1088_1361_6471_ad0b33
crossref_primary_10_1140_epjc_s10052_021_09569_9
crossref_primary_10_1103_PhysRevD_104_094017
crossref_primary_10_1103_PhysRevD_108_015032
crossref_primary_10_1007_JHEP10_2022_088
crossref_primary_10_1007_JHEP11_2022_139
crossref_primary_10_1007_JHEP03_2023_198
crossref_primary_10_1103_PhysRevD_109_015031
crossref_primary_10_1140_epjc_s10052_022_10414_w
crossref_primary_10_1140_epjc_s10052_022_10893_x
crossref_primary_10_1093_ptep_ptac109
crossref_primary_10_1103_PhysRevD_105_056020
crossref_primary_10_1103_PhysRevD_103_115032
crossref_primary_10_1007_JHEP04_2023_125
crossref_primary_10_1103_PhysRevD_101_074515
crossref_primary_10_1007_JHEP07_2022_098
crossref_primary_10_1103_PhysRevD_107_034512
crossref_primary_10_1007_JHEP03_2022_042
crossref_primary_10_1007_JHEP05_2023_010
crossref_primary_10_1103_PhysRevLett_128_112002
crossref_primary_10_1103_PhysRevD_108_095056
crossref_primary_10_1007_JHEP11_2022_120
crossref_primary_10_1051_epjconf_202328901001
crossref_primary_10_1007_JHEP03_2023_194
crossref_primary_10_1140_epjc_s10052_022_10776_1
crossref_primary_10_1140_epjc_s10052_020_08550_2
crossref_primary_10_1140_epjc_s10052_022_10949_y
crossref_primary_10_1140_epja_s10050_021_00426_7
crossref_primary_10_1140_epjc_s10052_021_09900_4
crossref_primary_10_1051_epjconf_202328901004
crossref_primary_10_1051_epjconf_202328901006
crossref_primary_10_1103_PhysRevLett_131_251803
crossref_primary_10_1140_epjc_s10052_021_09670_z
crossref_primary_10_1103_PhysRevD_108_055032
crossref_primary_10_1103_PhysRevD_108_055033
crossref_primary_10_1103_PhysRevLett_127_021801
crossref_primary_10_1038_s41467_023_36366_7
crossref_primary_10_1007_JHEP11_2023_037
crossref_primary_10_1088_1748_0221_19_02_T02015
crossref_primary_10_1007_JHEP06_2022_169
crossref_primary_10_1103_PhysRevD_105_052006
crossref_primary_10_1103_PhysRevD_106_015018
crossref_primary_10_1103_PhysRevD_108_054509
crossref_primary_10_1103_PhysRevD_107_035028
crossref_primary_10_1093_ptep_ptad092
crossref_primary_10_1140_epjc_s10052_024_12692_y
crossref_primary_10_1007_JHEP02_2023_051
crossref_primary_10_1007_JHEP11_2022_109
crossref_primary_10_1140_epjc_s10052_022_10402_0
crossref_primary_10_1007_JHEP03_2022_185
crossref_primary_10_1007_JHEP05_2022_109
crossref_primary_10_1007_JHEP03_2022_183
crossref_primary_10_1103_PhysRevD_105_074013
crossref_primary_10_1103_PhysRevD_101_114015
crossref_primary_10_1007_JHEP10_2021_189
crossref_primary_10_1007_JHEP11_2023_027
crossref_primary_10_1007_JHEP10_2021_064
crossref_primary_10_1103_PhysRevLett_128_141802
crossref_primary_10_1007_JHEP02_2023_167
crossref_primary_10_1088_1475_7516_2023_02_044
crossref_primary_10_1007_JHEP01_2023_117
crossref_primary_10_1007_JHEP04_2022_129
crossref_primary_10_1007_JHEP05_2021_174
crossref_primary_10_1007_s11433_022_1927_9
crossref_primary_10_1103_PhysRevD_106_093007
crossref_primary_10_1103_PhysRevD_106_035002
crossref_primary_10_1103_PhysRevD_108_115002
crossref_primary_10_1103_PhysRevD_107_095024
crossref_primary_10_21468_SciPostPhys_11_3_049
crossref_primary_10_1088_1402_4896_acb32b
crossref_primary_10_1103_PhysRevD_105_L051702
crossref_primary_10_1103_PhysRevLett_131_161905
crossref_primary_10_1103_PhysRevD_106_035009
crossref_primary_10_1140_epjc_s10052_021_09601_y
crossref_primary_10_1140_epjc_s10052_022_10348_3
crossref_primary_10_1103_PhysRevD_104_035007
crossref_primary_10_1103_PhysRevD_106_115009
crossref_primary_10_1103_PhysRevA_103_042208
crossref_primary_10_1103_PhysRevD_107_044008
crossref_primary_10_1140_epjc_s10052_022_10920_x
crossref_primary_10_1140_epjc_s10052_022_10691_5
crossref_primary_10_1051_epjconf_202227406010
crossref_primary_10_1103_PhysRevD_108_115010
crossref_primary_10_1007_JHEP03_2022_085
crossref_primary_10_1103_PhysRevD_106_115011
crossref_primary_10_1103_PhysRevD_108_115012
crossref_primary_10_1007_JHEP04_2023_040
crossref_primary_10_1103_PhysRevD_102_114017
crossref_primary_10_1103_PhysRevD_105_095033
crossref_primary_10_1007_JHEP05_2022_098
crossref_primary_10_1103_PhysRevD_108_075014
crossref_primary_10_1140_epjc_s10052_022_10589_2
crossref_primary_10_1140_epjc_s10052_023_12195_2
crossref_primary_10_3389_fphy_2023_1143932
crossref_primary_10_1103_PhysRevD_103_055009
crossref_primary_10_1051_epjconf_202227000029
crossref_primary_10_1103_PhysRevD_103_072002
crossref_primary_10_1103_PhysRevD_107_054021
crossref_primary_10_1103_PhysRevD_109_094036
crossref_primary_10_1103_PhysRevD_106_115026
crossref_primary_10_1016_j_nuclphysbps_2023_12_001
crossref_primary_10_1140_epjc_s10052_024_12881_9
crossref_primary_10_1007_JHEP11_2023_079
crossref_primary_10_1088_1361_6471_ac3892
crossref_primary_10_1140_epjc_s10052_021_09780_8
crossref_primary_10_1140_epjc_s10052_021_09455_4
crossref_primary_10_1007_JHEP08_2021_103
crossref_primary_10_1140_epjc_s10052_020_08611_6
crossref_primary_10_1140_epjc_s10052_021_09513_x
crossref_primary_10_1007_JHEP08_2021_101
crossref_primary_10_1007_JHEP06_2022_122
crossref_primary_10_1007_JHEP07_2021_098
crossref_primary_10_21468_SciPostPhys_16_3_072
crossref_primary_10_1088_1361_6471_ad06c8
crossref_primary_10_1103_PhysRevD_107_116026
crossref_primary_10_1103_PhysRevD_106_075031
crossref_primary_10_1007_JHEP05_2020_159
crossref_primary_10_1007_JHEP08_2023_209
crossref_primary_10_1140_epjc_s10052_021_09814_1
crossref_primary_10_1007_JHEP08_2023_208
crossref_primary_10_1103_PhysRevD_107_074001
crossref_primary_10_1103_PhysRevD_108_013005
crossref_primary_10_1103_PhysRevD_106_044040
crossref_primary_10_1103_PhysRevLett_126_141801
crossref_primary_10_1103_PhysRevD_106_074509
crossref_primary_10_1103_PhysRevD_108_035043
crossref_primary_10_1007_JHEP04_2021_240
crossref_primary_10_1103_PhysRevD_102_016009
crossref_primary_10_1140_epjp_s13360_023_03992_5
crossref_primary_10_1103_PhysRevD_107_114514
crossref_primary_10_1007_JHEP08_2022_147
crossref_primary_10_1007_JHEP02_2021_182
crossref_primary_10_1103_PhysRevD_104_L011701
crossref_primary_10_1007_JHEP12_2023_129
crossref_primary_10_1007_JHEP06_2023_209
crossref_primary_10_1103_PhysRevLett_132_231903
crossref_primary_10_1140_epjc_s10052_024_12569_0
crossref_primary_10_1140_epjc_s10052_022_10541_4
crossref_primary_10_1007_JHEP09_2021_080
crossref_primary_10_1140_epjc_s10052_021_09844_9
crossref_primary_10_1088_1674_1137_accc1d
crossref_primary_10_1103_PhysRevD_105_015028
crossref_primary_10_3390_particles7020020
crossref_primary_10_1007_JHEP01_2022_025
crossref_primary_10_1103_PhysRevD_105_015011
crossref_primary_10_1103_PhysRevD_107_055034
crossref_primary_10_1103_PhysRevD_106_L031703
crossref_primary_10_1103_PhysRevD_107_055033
crossref_primary_10_1103_PhysRevLett_125_111801
crossref_primary_10_1016_j_physrep_2020_07_006
crossref_primary_10_1007_s10773_022_05252_1
crossref_primary_10_1007_JHEP03_2021_092
crossref_primary_10_1103_PhysRevLett_131_161802
crossref_primary_10_1103_PhysRevD_102_033002
crossref_primary_10_1007_JHEP04_2022_151
crossref_primary_10_1007_JHEP12_2020_155
crossref_primary_10_1007_JHEP09_2021_175
crossref_primary_10_1103_PhysRevD_107_054505
crossref_primary_10_1007_JHEP03_2022_203
crossref_primary_10_1007_JHEP01_2022_037
crossref_primary_10_1140_epjc_s10052_021_09661_0
crossref_primary_10_1103_PhysRevD_105_015002
crossref_primary_10_1103_PhysRevD_107_095017
crossref_primary_10_1103_PhysRevD_101_074019
crossref_primary_10_1103_PhysRevD_103_075028
crossref_primary_10_1142_S0217751X23500914
crossref_primary_10_1103_PhysRevD_107_095016
crossref_primary_10_1007_JHEP08_2022_295
crossref_primary_10_1007_JHEP10_2021_221
crossref_primary_10_1088_1402_4896_ac50c8
crossref_primary_10_1103_PhysRevLett_128_172004
crossref_primary_10_1088_1475_7516_2022_08_076
crossref_primary_10_1007_JHEP04_2024_092
Cites_doi 10.1016/j.physletb.2019.134994
10.1103/PhysRevD.81.094021
10.1016/0550-3213(74)90154-0
10.1103/PhysRevLett.120.072002
10.1088/1126-6708/1998/05/011
10.1016/j.physletb.2014.09.021
10.1016/0550-3213(84)90006-3
10.1051/jphysrad:01961002202012101
10.1142/S2010194514604001
10.1016/j.physletb.2012.12.009
10.1103/PhysRevD.68.033018
10.1103/PhysRevD.55.4157
10.1103/PhysRevLett.28.1421
10.1103/PhysRevD.65.074013
10.1126/science.aap7706
10.1140/epjc/s10052-013-2539-y
10.1103/PhysRevD.101.051501
10.1103/PhysRevD.100.034520
10.22323/1.317.0066
10.1063/1.4938621
10.1051/epjconf/201919901010
10.1103/PhysRevD.101.014503
10.1016/0370-1573(88)90090-7
10.1016/S0550-3213(98)00508-2
10.1016/0370-2693(90)90276-C
10.1016/j.physletb.2006.06.031
10.1103/PhysRevD.58.114006
10.1140/epjc/s10052-017-4633-z
10.1016/j.physrep.2007.07.006
10.1103/PhysRevD.70.113006
10.1103/PhysRev.173.1423
10.1016/j.ppnp.2015.06.001
10.1140/epjc/s10052-010-1471-7
10.1142/S0217751X00000082
10.1016/0550-3213(89)90346-5
10.1103/PhysRev.177.2426
10.1103/PhysRevD.85.094006
10.1140/epjc/s2004-01811-8
10.1016/0370-1573(85)90129-2
10.1088/1126-6708/2002/01/024
10.1103/PhysRevD.95.014019
10.1103/PhysRevD.67.073006
10.1007/JHEP09(2014)091
10.1103/PhysRevLett.89.041601
10.1016/j.physletb.2006.06.039
10.1016/S0370-2693(97)01049-6
10.1016/j.physletb.2014.05.043
10.1016/S0370-2693(98)01344-6
10.1088/1126-6708/2008/09/044
10.1103/PhysRevD.65.073034
10.1088/1126-6708/2001/01/028
10.1088/1126-6708/2001/06/067
10.1016/j.physrep.2009.04.003
10.1103/PhysRevLett.118.022005
10.1007/JHEP09(2015)074
10.1007/s100520100601
10.1016/j.physletb.2019.134855
10.1103/PhysRevLett.118.232001
10.1142/9789814271844_0009
10.1103/PhysRev.168.1620
10.1088/1126-6708/2003/04/055
10.1016/j.ppnp.2013.11.002
10.1103/PhysRevD.98.075011
10.1016/j.physletb.2018.12.047
10.1007/JHEP01(2019)031
10.1088/1126-6708/2004/03/035
10.1103/PhysRevD.97.114025
10.1103/PhysRev.182.1517
10.1103/PhysRevLett.121.022003
10.1103/PhysRevLett.115.222003
10.1103/PhysRevD.92.056006
10.1007/JHEP04(2017)161
10.1016/j.physletb.2019.134891
10.1103/PhysRevD.97.016006
10.1088/1126-6708/2002/11/003
10.1103/PhysRev.184.1848
10.1007/JHEP07(2019)073
10.1016/j.physletb.2003.07.038
10.1007/JHEP08(2019)137
10.1016/0370-2693(79)90554-9
10.1103/RevModPhys.68.599
10.1016/j.physletb.2006.09.056
10.1016/j.physletb.2015.05.020
10.1103/PhysRevD.96.034515
10.1140/epjc/s10052-014-3008-y
10.1140/epjc/s10052-015-3642-z
10.1103/PhysRevD.95.054026
10.1140/epjc/s10052-008-0666-7
10.1140/epjc/s10052-011-1743-x
10.1016/0550-3213(80)90310-7
10.1088/1126-6708/2007/03/018
10.1007/JHEP10(2018)141
10.1016/j.physletb.2009.01.062
10.1007/s100520000499
10.1016/S0920-5632(97)01065-7
10.1140/epjc/s10052-009-1142-8
10.1016/j.physletb.2014.06.012
10.1103/PhysRevLett.121.022002
10.1103/PhysRevD.71.114510
10.1016/0370-2693(83)90966-8
10.1016/0370-2693(93)91176-N
10.1016/0370-2693(76)90150-7
10.1103/PhysRevLett.88.071802
10.1016/0550-3213(71)90264-1
10.1103/PhysRevD.74.034008
10.1103/PhysRevD.98.113002
10.1103/PhysRevD.94.054033
10.1103/PhysRev.77.242
10.1103/PhysRevD.97.036001
10.1007/BF02894857
10.1103/PhysRevD.101.034512
10.1103/PhysRevLett.121.112002
10.1103/PhysRevD.98.030001
10.1103/PhysRevD.56.221
10.1007/JHEP02(2019)006
10.1007/978-1-4684-7571-5_9
10.1016/0003-4916(81)90086-5
10.21468/SciPostPhysProc.1.031
10.1103/PhysRevD.90.014511
10.1140/epjc/s10052-014-3180-0
10.1103/PhysRevD.79.073012
10.1007/BF02823296
10.1103/PhysRevLett.100.120801
ContentType Journal Article
Copyright The Author(s) 2021
Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
Univ. of California, San Diego, CA (United States)
CorporateAuthor_xml – name: Univ. of California, San Diego, CA (United States)
– name: Univ. of Washington, Seattle, WA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOI 10.1007/JHEP03(2020)101
DatabaseName Springer_OA刊
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 1799994
10_1007_JHEP03_2020_101
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
ABEEZ
ACULB
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c3671-131d5436ecd6544d8aab2e714162729808a815172fb860c82f14baf7aad8e6ba3
IEDL.DBID 8FG
ISSN 1029-8479
IngestDate Thu May 18 22:29:30 EDT 2023
Wed Oct 23 04:57:03 EDT 2024
Sat Oct 26 16:30:03 EDT 2024
Fri Nov 22 01:01:02 EST 2024
Sat Dec 16 12:09:40 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Precision QED
Chiral Lagrangians
Effective Field Theories
Nonperturbative Effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3671-131d5436ecd6544d8aab2e714162729808a815172fb860c82f14baf7aad8e6ba3
Notes USDOE Office of Science (SC)
FG02-00ER41132; SC0009919
ORCID 0000-0003-3340-5672
0000-0002-2017-7132
0000-0003-1113-9377
0000000333405672
0000000311139377
0000000220177132
OpenAccessLink https://www.proquest.com/docview/2378611907?pq-origsite=%requestingapplication%
PQID 2378611907
PQPubID 2034718
ParticipantIDs osti_scitechconnect_1799994
proquest_journals_2543898012
proquest_journals_2378611907
crossref_primary_10_1007_JHEP03_2020_101
springer_journals_10_1007_JHEP03_2020_101
PublicationCentury 2000
PublicationDate 3-17-2020
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 3-17-2020
  day: 17
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
References A.V. Anisovich, V.V. Anisovich and A.V. Sarantsev, Systematics of qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}states in the (n, M ) and (J, M2) planes, Phys. Rev.D 62 (2000) 051502 [hep-ph/0003113] [INSPIRE].
A. Nyffeler, Hadronic light-by-light scattering in the muon g − 2: a new short-distance constraint on pion-exchange, Phys. Rev.D 79 (2009) 073012 [arXiv:0901.1172] [INSPIRE].
TarrachRInvariant amplitudes for virtual Compton scattering off polarized nucleons free from kinematical singularities, zeros and constraintsNuovo Cim.1975A 284091975NCimA..28..409T[INSPIRE]
HoferichterMPhillipsDRSchatCRoy-Steiner equations for γγ → ππEur. Phys. J.2011C 7117432011EPJC...71.1743H[arXiv:1106.4147] [INSPIRE]
M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP03 (2004) 035 [hep-ph/0311100] [INSPIRE].
LandsbergLGElectromagnetic decays of light mesonsPhys. Rept.19851283011985PhR...128..301L[INSPIRE]
CLEO collaboration, The search for η1440→K0SK±π∓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {K}_0^S{K}^{\pm }{\pi}^{\mp } $$\end{document}in two-photon fusion at CLEO, Phys. Rev.D 71 (2005) 072001 [hep-ex/0501026] [INSPIRE].
AbbiendiGMeasuring the leading hadronic contribution to the muon g − 2 via μe scatteringEur. Phys. J.2017C 771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE]
PichAPrecision tau physicsProg. Part. Nucl. Phys.201475412014PrPNP..75...41P[arXiv:1310.7922] [INSPIRE]
ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE]
LepageGPBrodskySJExclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesonsPhys. Lett.1979B 873591979PhLB...87..359P[INSPIRE]
BrodskySJde RafaelESuggested boson-lepton pair couplings and the anomalous magnetic moment of the muonPhys. Rev.196816816201968PhRv..168.1620B[INSPIRE]
E. Ruiz Arriola and W. Broniowski, Pion transition form factor in the Regge approach and incomplete vector-meson dominance, Phys. Rev.D 81 (2010) 094021 [arXiv:1004.0837] [INSPIRE].
BraatenEQCD corrections to meson-photon transition form-factorsPhys. Rev.1983D 285241983PhRvD..28..524B[INSPIRE]
P. Masjuan, E. Ruiz Arriola and W. Broniowski, Systematics of radial and angular-momentum Regge trajectories of light non-strange qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}-states, Phys. Rev.D 85 (2012) 094006 [arXiv:1203.4782] [INSPIRE].
Belle collaboration, First study of ηc, η(1760) and X (1835) production via ηlπ+π−final states in two-photon collisions, Phys. Rev.D 86 (2012) 052002 [arXiv:1206.5087] [INSPIRE].
J. Leutgeb and A. Rebhan, Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon, arXiv:1912.01596 [INSPIRE].
HoferichterMColangeloGProcuraMStofferPVirtual photon-photon scatteringInt. J. Mod. Phys. Conf. Ser.2014351460400[arXiv:1309.6877] [INSPIRE]
Hadron Spectrum collaboration, Decay constants of the pion and its excitations on the lattice, Phys. Rev.D 90 (2014) 014511 [arXiv:1403.5575] [INSPIRE].
PACS collaboration, Hadronic vacuum polarization contribution to the muon g − 2 with 2 + 1 flavor lattice QCD on a larger than (10 fm)4lattice at the physical point, Phys. Rev.D 100 (2019) 034517 [arXiv:1902.00885] [INSPIRE].
A.A. Andrianov, D. Espriu and R. Tarrach, The extended chiral quark model and QCD, Nucl. Phys.B 533 (1998) 429 [hep-ph/9803232] [INSPIRE].
K. Melnikov and A. Vainshtein, On dispersion relations and hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:1911.05874 [INSPIRE].
V. Elias, A. Fariborz, M.A. Samuel, F. Shi and T.G. Steele, Beyond the narrow resonance approximation: decay constant and width of the first pion excitation state, Phys. Lett.B 412 (1997) 131 [hep-ph/9706472] [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev.D 67 (2003) 073006 [Erratum ibid.D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
BellJSJackiwRA PCAC puzzle: π0→ γγ in the σ modelNuovo Cim.1969A 60471969NCimA..60...47B[INSPIRE]
KataevALKrasnikovNVPivovarovAAThe use of the finite energetic sum rules for the calculation of the light quark massesPhys. Lett.1983B 123931983PhLB..123...93K[INSPIRE]
NovikovVAShifmanMAVainshteinAIVoloshinMBZakharovVIUse and misuse of QCD sum rules, factorization and related topicsNucl. Phys.1984B 2375251984NuPhB.237..525N[INSPIRE]
L. Cappiello, O. Catà, G. D’Ambrosio, D. Greynat and A. Iyer, On axials and pseudoscalars in the hadronic light-by-light contribution to the muon (g − 2), arXiv:1912.02779 [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and toαmZ2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right), $$\end{document}arXiv:1908.00921 [INSPIRE].
GreenJGryniukOvon HippelGMeyerHBPascalutsaVLattice QCD calculation of hadronic light-by-light scatteringPhys. Rev. Lett.20151152220032015PhRvL.115v2003G[arXiv:1507.01577] [INSPIRE]
ZakharovVITwo loop chiral anomaly as an infrared phenomenonPhys. Rev.1990D 4212081990PhRvD..42.1208Z[INSPIRE]
Budapest-Marseille-Wuppertal collaboration, Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett.121 (2018) 022002 [arXiv:1711.04980] [INSPIRE].
MondejarJMelnikovKThe VVA correlator at three loops in perturbative QCDPhys. Lett.2013B 71813642013PhLB..718.1364M1372.81153[arXiv:1210.0812] [INSPIRE]
GasserJHadron masses and sigma commutator in the light of chiral perturbation theoryAnnals Phys.1981136621981AnPhy.136...62G[INSPIRE]
KodairaJQCD higher order effects in polarized electroproduction: flavor singlet coefficient functionsNucl. Phys.1980B 1651291980NuPhB.165..129K[INSPIRE]
W.A. Bardeen and W.K. Tung, Invariant amplitudes for photon processes, Phys. Rev.173 (1968) 1423 [Erratum ibid.D 4 (1971) 3229] [INSPIRE].
E. Ruiz Arriola and W. Broniowski, Pion transition form factor and distribution amplitudes in large-NcRegge model, Phys. Rev.D 74 (2006) 034008 [hep-ph/0605318] [INSPIRE].
T. Blum et al., Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass, Phys. Rev. Lett.118 (2017) 022005 [arXiv:1610.04603] [INSPIRE].
BouchiatCMichelLLa résonance dans la diffusion méson π — méson π et le moment magnétique anormal du méson μ (in French)J. Phys. Radium196122121[INSPIRE]
O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev.D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].
L3 collaboration, Resonance formation in the π+π−π0final state in two photon collisions, Phys. Lett.B 413 (1997) 147 [INSPIRE].
HoferichterMHoidB-LKubisBLeupoldSSchneiderSPPion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. Lett.20181211120022018PhRvL.121k2002H[arXiv:1805.01471] [INSPIRE]
HoferichterMStofferPDispersion relations for γ∗γ∗→ ππ: helicity amplitudes, subtractions and anomalous thresholdsJHEP2019070732019JHEP...07..073H[arXiv:1905.13198] [INSPIRE]
HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H[arXiv:1808.04823] [INSPIRE]
F.W.J. Olver, Asymptotics and special functions, Academic Press, U.S.A. (1974).
S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large NcQCD, JHEP05 (1998) 011 [hep-ph/9805442] [INSPIRE].
T. Blum et al., Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment, Phys. Rev.D 96 (2017) 034515 [arXiv:1705.01067] [INSPIRE].
LepageGPBrodskySJExclusive processes in perturbative quantum chromodynamicsPhys. Rev.1980D 2221571980PhRvD..22.2157L[INSPIRE]
R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π+π−, π0π0with chiral constraints, Eur. Phys. J.C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE].
DanilkinIVanderhaeghenMDispersive analysis of the γγ∗→ ππ processPhys. Lett.2019B 7893662019PhLB..789..366D[arXiv:1810.03669] [INSPIRE]
Crystal Barrel collaboration, Study of f0decays into four neutral pions, Eur. Phys. J.C 19 (2001) 667 [INSPIRE].
M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Electroweak hadronic contributions to the muon (g − 2), JHEP11 (2002) 003 [hep-ph/0205102] [INSPIRE].
PradesJde RafaelEVainshteinAThe hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic momentsAdv. Ser. Direct. High Energy Phys.200920303[arXiv:0901.0306] [INSPIRE]
L3 collaboration, Measurement of η′ (958) formation in two photon collisions at LEP-1, Phys. Lett.B 418 (1998) 399 [INSPIRE].
P. Roig and P. Sanchez-Puertas, Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment, arXiv:1910.02881 [INSPIRE].
Col
C Bouchiat (12634_CR59) 1961; 22
12634_CR118
12634_CR119
AL Kataev (12634_CR170) 1983; B 123
JS Bell (12634_CR74) 1969; A 60
12634_CR80
VI Zakharov (12634_CR141) 1990; D 42
12634_CR81
GP Lepage (12634_CR84) 1980; D 22
S Narison (12634_CR134) 2009; B 673
C-N Yang (12634_CR146) 1950; 77
12634_CR120
12634_CR121
12634_CR89
12634_CR122
12634_CR123
12634_CR124
WA Bardeen (12634_CR75) 1969; 184
12634_CR125
12634_CR126
12634_CR127
J Prades (12634_CR67) 2009; 20
12634_CR128
12634_CR107
12634_CR108
12634_CR109
V Pauk (12634_CR36) 2014; D 90
G Colangelo (12634_CR31) 2014; 09
J Gasser (12634_CR137) 1981; 136
12634_CR71
12634_CR72
12634_CR110
12634_CR78
12634_CR79
12634_CR112
12634_CR113
G Colangelo (12634_CR7) 2019; 02
D Espriu (12634_CR77) 1982; C 16
12634_CR115
12634_CR116
12634_CR117
M Hoferichter (12634_CR57) 2019; 07
V Pauk (12634_CR143) 2014; C 74
LG Landsberg (12634_CR153) 1985; 128
GP Lepage (12634_CR83) 1979; B 87
R Tarrach (12634_CR70) 1975; A 28
B Moussallam (12634_CR55) 2013; C 73
SJ Brodsky (12634_CR60) 1968; 168
TP Gorringe (12634_CR4) 2015; 84
F Jegerlehner (12634_CR52) 2009; 477
12634_CR61
12634_CR62
G Colangelo (12634_CR33) 2015; 09
12634_CR63
12634_CR64
12634_CR65
12634_CR66
A Pich (12634_CR136) 2014; 75
12634_CR144
12634_CR68
12634_CR69
12634_CR147
12634_CR148
12634_CR149
12634_CR129
G Abbiendi (12634_CR18) 2017; C 77
V Pascalutsa (12634_CR37) 2012; D 85
I Danilkin (12634_CR56) 2019; B 789
G Ecker (12634_CR111) 1989; B 321
G Colangelo (12634_CR21) 2014; B 735
M Hoferichter (12634_CR44) 2014; C 74
RJ Crewther (12634_CR97) 1972; 28
12634_CR50
12634_CR51
12634_CR53
12634_CR130
12634_CR132
12634_CR133
12634_CR58
12634_CR135
12634_CR138
U-G Meißner (12634_CR152) 1988; 161
M Hoferichter (12634_CR54) 2011; C 71
M Hoferichter (12634_CR45) 2017; D 96
M Hoferichter (12634_CR30) 2014; 35
J Calmet (12634_CR19) 1976; B 61
12634_CR5
12634_CR6
12634_CR1
12634_CR2
J Mondejar (12634_CR93) 2013; B 718
12634_CR3
SL Adler (12634_CR94) 1969; 182
12634_CR160
12634_CR40
12634_CR161
12634_CR41
12634_CR162
12634_CR42
12634_CR163
J Green (12634_CR38) 2015; 115
12634_CR164
12634_CR165
12634_CR166
12634_CR167
12634_CR168
12634_CR48
12634_CR169
12634_CR49
M Hoferichter (12634_CR43) 2012; D 86
R Escribano (12634_CR82) 2015; C 75
R Aaron (12634_CR156) 1981; D 24
M Davier (12634_CR131) 2008; C 56
G Colangelo (12634_CR34) 2017; 118
F Jegerlehner (12634_CR142) 2017; 274
12634_CR150
12634_CR151
12634_CR154
VA Novikov (12634_CR114) 1984; B 237
12634_CR155
12634_CR157
12634_CR158
AV Manohar (12634_CR86) 1990; B 244
12634_CR159
12634_CR39
S Laporta (12634_CR88) 1993; B 301
AD Dolgov (12634_CR140) 1971; B 27
M Hoferichter (12634_CR8) 2019; 08
E Braaten (12634_CR87) 1983; D 28
A Kurz (12634_CR20) 2014; B 734
M Hoferichter (12634_CR46) 2018; 121
SL Adler (12634_CR73) 1969; 177
G Colangelo (12634_CR32) 2014; B 738
12634_CR23
12634_CR100
12634_CR24
M Hoferichter (12634_CR47) 2018; 10
12634_CR101
D Hanneke (12634_CR22) 2008; 100
12634_CR25
12634_CR102
CM Carloni Calame (12634_CR17) 2015; B 746
12634_CR26
12634_CR103
12634_CR27
12634_CR28
12634_CR105
12634_CR29
12634_CR106
TD Cohen (12634_CR139) 1996; 68
J Kodaira (12634_CR76) 1980; B 165
12634_CR90
12634_CR91
12634_CR92
12634_CR171
12634_CR95
LD Landau (12634_CR145) 1948; 60
12634_CR9
G Colangelo (12634_CR35) 2017; 04
12634_CR96
12634_CR10
12634_CR98
12634_CR11
D Giusti (12634_CR12) 2018; D 98
12634_CR99
12634_CR13
12634_CR14
12634_CR15
12634_CR16
SJ Brodsky (12634_CR85) 1981; D 24
G D’Ambrosio (12634_CR104) 2019; B 797
References_xml – ident: 12634_CR61
  doi: 10.1016/j.physletb.2019.134994
– ident: 12634_CR107
  doi: 10.1103/PhysRevD.81.094021
– ident: 12634_CR98
  doi: 10.1016/0550-3213(74)90154-0
– ident: 12634_CR112
– ident: 12634_CR40
  doi: 10.1103/PhysRevLett.120.072002
– ident: 12634_CR99
  doi: 10.1088/1126-6708/1998/05/011
– volume: B 738
  start-page: 6
  year: 2014
  ident: 12634_CR32
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2014.09.021
  contributor:
    fullname: G Colangelo
– volume: B 237
  start-page: 525
  year: 1984
  ident: 12634_CR114
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(84)90006-3
  contributor:
    fullname: VA Novikov
– volume: D 85
  start-page: 116001
  year: 2012
  ident: 12634_CR37
  publication-title: Phys. Rev.
  contributor:
    fullname: V Pascalutsa
– ident: 12634_CR129
– volume: 22
  start-page: 121
  year: 1961
  ident: 12634_CR59
  publication-title: J. Phys. Radium
  doi: 10.1051/jphysrad:01961002202012101
  contributor:
    fullname: C Bouchiat
– volume: 35
  start-page: 1460400
  year: 2014
  ident: 12634_CR30
  publication-title: Int. J. Mod. Phys. Conf. Ser.
  doi: 10.1142/S2010194514604001
  contributor:
    fullname: M Hoferichter
– volume: B 718
  start-page: 1364
  year: 2013
  ident: 12634_CR93
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2012.12.009
  contributor:
    fullname: J Mondejar
– ident: 12634_CR161
– ident: 12634_CR89
  doi: 10.1103/PhysRevD.68.033018
– ident: 12634_CR160
  doi: 10.1103/PhysRevD.55.4157
– volume: 28
  start-page: 1421
  year: 1972
  ident: 12634_CR97
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.28.1421
  contributor:
    fullname: RJ Crewther
– ident: 12634_CR169
  doi: 10.1103/PhysRevD.65.074013
– ident: 12634_CR24
  doi: 10.1126/science.aap7706
– volume: C 73
  start-page: 2539
  year: 2013
  ident: 12634_CR55
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-013-2539-y
  contributor:
    fullname: B Moussallam
– ident: 12634_CR68
  doi: 10.1103/PhysRevD.101.051501
– ident: 12634_CR48
  doi: 10.1103/PhysRevD.100.034520
– ident: 12634_CR41
  doi: 10.22323/1.317.0066
– ident: 12634_CR71
  doi: 10.1063/1.4938621
– ident: 12634_CR6
  doi: 10.1051/epjconf/201919901010
– ident: 12634_CR150
– ident: 12634_CR16
  doi: 10.1103/PhysRevD.101.014503
– ident: 12634_CR115
– volume: 161
  start-page: 213
  year: 1988
  ident: 12634_CR152
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(88)90090-7
  contributor:
    fullname: U-G Meißner
– ident: 12634_CR168
  doi: 10.1016/S0550-3213(98)00508-2
– volume: B 244
  start-page: 101
  year: 1990
  ident: 12634_CR86
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(90)90276-C
  contributor:
    fullname: AV Manohar
– ident: 12634_CR96
  doi: 10.1016/j.physletb.2006.06.031
– ident: 12634_CR123
  doi: 10.1103/PhysRevD.58.114006
– volume: C 77
  start-page: 139
  year: 2017
  ident: 12634_CR18
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-017-4633-z
  contributor:
    fullname: G Abbiendi
– volume: D 22
  start-page: 2157
  year: 1980
  ident: 12634_CR84
  publication-title: Phys. Rev.
  contributor:
    fullname: GP Lepage
– ident: 12634_CR3
– ident: 12634_CR113
  doi: 10.1016/j.physrep.2007.07.006
– volume: D 86
  start-page: 116009
  year: 2012
  ident: 12634_CR43
  publication-title: Phys. Rev.
  contributor:
    fullname: M Hoferichter
– ident: 12634_CR62
  doi: 10.1103/PhysRevD.70.113006
– ident: 12634_CR109
– ident: 12634_CR126
– ident: 12634_CR69
  doi: 10.1103/PhysRev.173.1423
– volume: 84
  start-page: 73
  year: 2015
  ident: 12634_CR4
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2015.06.001
  contributor:
    fullname: TP Gorringe
– ident: 12634_CR53
  doi: 10.1140/epjc/s10052-010-1471-7
– ident: 12634_CR124
  doi: 10.1142/S0217751X00000082
– volume: B 321
  start-page: 311
  year: 1989
  ident: 12634_CR111
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(89)90346-5
  contributor:
    fullname: G Ecker
– volume: 177
  start-page: 2426
  year: 1969
  ident: 12634_CR73
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.177.2426
  contributor:
    fullname: SL Adler
– ident: 12634_CR118
– ident: 12634_CR108
  doi: 10.1103/PhysRevD.85.094006
– ident: 12634_CR157
  doi: 10.1140/epjc/s2004-01811-8
– ident: 12634_CR147
– volume: 128
  start-page: 301
  year: 1985
  ident: 12634_CR153
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(85)90129-2
  contributor:
    fullname: LG Landsberg
– ident: 12634_CR133
– ident: 12634_CR102
  doi: 10.1088/1126-6708/2002/01/024
– ident: 12634_CR39
  doi: 10.1103/PhysRevD.95.014019
– ident: 12634_CR66
  doi: 10.1103/PhysRevD.67.073006
– volume: D 42
  start-page: 1208
  year: 1990
  ident: 12634_CR141
  publication-title: Phys. Rev.
  contributor:
    fullname: VI Zakharov
– volume: 09
  start-page: 091
  year: 2014
  ident: 12634_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP09(2014)091
  contributor:
    fullname: G Colangelo
– ident: 12634_CR121
  doi: 10.1103/PhysRevLett.89.041601
– ident: 12634_CR127
– ident: 12634_CR92
  doi: 10.1016/j.physletb.2006.06.039
– ident: 12634_CR166
  doi: 10.1016/S0370-2693(97)01049-6
– volume: B 734
  start-page: 144
  year: 2014
  ident: 12634_CR20
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2014.05.043
  contributor:
    fullname: A Kurz
– ident: 12634_CR100
  doi: 10.1016/S0370-2693(98)01344-6
– ident: 12634_CR144
– ident: 12634_CR132
  doi: 10.1088/1126-6708/2008/09/044
– ident: 12634_CR138
– ident: 12634_CR51
  doi: 10.1103/PhysRevD.65.073034
– ident: 12634_CR103
  doi: 10.1088/1126-6708/2001/01/028
– volume: 60
  start-page: 207
  year: 1948
  ident: 12634_CR145
  publication-title: Dokl. Akad. Nauk SSSR
  contributor:
    fullname: LD Landau
– ident: 12634_CR171
  doi: 10.1088/1126-6708/2001/06/067
– volume: 477
  start-page: 1
  year: 2009
  ident: 12634_CR52
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2009.04.003
  contributor:
    fullname: F Jegerlehner
– ident: 12634_CR27
  doi: 10.1103/PhysRevLett.118.022005
– volume: 09
  start-page: 074
  year: 2015
  ident: 12634_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)074
  contributor:
    fullname: G Colangelo
– ident: 12634_CR158
  doi: 10.1007/s100520100601
– ident: 12634_CR50
  doi: 10.1016/j.physletb.2019.134855
– volume: 118
  start-page: 232001
  year: 2017
  ident: 12634_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.232001
  contributor:
    fullname: G Colangelo
– ident: 12634_CR130
– ident: 12634_CR155
– volume: 20
  start-page: 303
  year: 2009
  ident: 12634_CR67
  publication-title: Adv. Ser. Direct. High Energy Phys.
  doi: 10.1142/9789814271844_0009
  contributor:
    fullname: J Prades
– volume: 168
  start-page: 1620
  year: 1968
  ident: 12634_CR60
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.168.1620
  contributor:
    fullname: SJ Brodsky
– volume: D 98
  start-page: 114504
  year: 2018
  ident: 12634_CR12
  publication-title: Phys. Rev.
  contributor:
    fullname: D Giusti
– ident: 12634_CR101
  doi: 10.1088/1126-6708/2003/04/055
– ident: 12634_CR149
– volume: 75
  start-page: 41
  year: 2014
  ident: 12634_CR136
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2013.11.002
  contributor:
    fullname: A Pich
– ident: 12634_CR25
  doi: 10.1103/PhysRevD.98.075011
– volume: B 789
  start-page: 366
  year: 2019
  ident: 12634_CR56
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2018.12.047
  contributor:
    fullname: I Danilkin
– ident: 12634_CR128
  doi: 10.1007/JHEP01(2019)031
– ident: 12634_CR64
  doi: 10.1088/1126-6708/2004/03/035
– ident: 12634_CR5
  doi: 10.1103/PhysRevD.97.114025
– volume: 182
  start-page: 1517
  year: 1969
  ident: 12634_CR94
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.182.1517
  contributor:
    fullname: SL Adler
– volume: D 28
  start-page: 524
  year: 1983
  ident: 12634_CR87
  publication-title: Phys. Rev.
  contributor:
    fullname: E Braaten
– ident: 12634_CR11
  doi: 10.1103/PhysRevLett.121.022003
– ident: 12634_CR116
– volume: 115
  start-page: 222003
  year: 2015
  ident: 12634_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.222003
  contributor:
    fullname: J Green
– ident: 12634_CR72
  doi: 10.1103/PhysRevD.92.056006
– volume: 04
  start-page: 161
  year: 2017
  ident: 12634_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)161
  contributor:
    fullname: G Colangelo
– volume: B 797
  start-page: 134891
  year: 2019
  ident: 12634_CR104
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2019.134891
  contributor:
    fullname: G D’Ambrosio
– ident: 12634_CR125
  doi: 10.1103/PhysRevD.97.016006
– ident: 12634_CR151
– volume: C 16
  start-page: 77
  year: 1982
  ident: 12634_CR77
  publication-title: Z. Phys.
  contributor:
    fullname: D Espriu
– ident: 12634_CR65
  doi: 10.1088/1126-6708/2002/11/003
– volume: 184
  start-page: 1848
  year: 1969
  ident: 12634_CR75
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.184.1848
  contributor:
    fullname: WA Bardeen
– volume: 07
  start-page: 073
  year: 2019
  ident: 12634_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)073
  contributor:
    fullname: M Hoferichter
– ident: 12634_CR154
– ident: 12634_CR63
  doi: 10.1016/j.physletb.2003.07.038
– ident: 12634_CR2
– volume: 08
  start-page: 137
  year: 2019
  ident: 12634_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)137
  contributor:
    fullname: M Hoferichter
– volume: B 87
  start-page: 359
  year: 1979
  ident: 12634_CR83
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(79)90554-9
  contributor:
    fullname: GP Lepage
– volume: 68
  start-page: 599
  year: 1996
  ident: 12634_CR139
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.68.599
  contributor:
    fullname: TD Cohen
– ident: 12634_CR79
– ident: 12634_CR164
  doi: 10.1016/j.physletb.2006.09.056
– volume: B 746
  start-page: 325
  year: 2015
  ident: 12634_CR17
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2015.05.020
  contributor:
    fullname: CM Carloni Calame
– ident: 12634_CR28
  doi: 10.1103/PhysRevD.96.034515
– ident: 12634_CR15
– ident: 12634_CR119
– volume: D 96
  start-page: 114016
  year: 2017
  ident: 12634_CR45
  publication-title: Phys. Rev.
  contributor:
    fullname: M Hoferichter
– volume: C 74
  start-page: 3008
  year: 2014
  ident: 12634_CR143
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-014-3008-y
  contributor:
    fullname: V Pauk
– ident: 12634_CR163
– volume: C 75
  start-page: 414
  year: 2015
  ident: 12634_CR82
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-015-3642-z
  contributor:
    fullname: R Escribano
– ident: 12634_CR42
– ident: 12634_CR49
  doi: 10.1103/PhysRevD.95.054026
– volume: C 56
  start-page: 305
  year: 2008
  ident: 12634_CR131
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-008-0666-7
  contributor:
    fullname: M Davier
– volume: C 71
  start-page: 1743
  year: 2011
  ident: 12634_CR54
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-011-1743-x
  contributor:
    fullname: M Hoferichter
– volume: B 165
  start-page: 129
  year: 1980
  ident: 12634_CR76
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(80)90310-7
  contributor:
    fullname: J Kodaira
– ident: 12634_CR148
  doi: 10.1088/1126-6708/2007/03/018
– volume: 10
  start-page: 141
  year: 2018
  ident: 12634_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)141
  contributor:
    fullname: M Hoferichter
– volume: B 673
  start-page: 30
  year: 2009
  ident: 12634_CR134
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2009.01.062
  contributor:
    fullname: S Narison
– volume: D 90
  start-page: 113012
  year: 2014
  ident: 12634_CR36
  publication-title: Phys. Rev.
  contributor:
    fullname: V Pauk
– ident: 12634_CR80
  doi: 10.1007/s100520000499
– ident: 12634_CR78
  doi: 10.1016/S0920-5632(97)01065-7
– ident: 12634_CR122
– ident: 12634_CR135
  doi: 10.1140/epjc/s10052-009-1142-8
– volume: B 735
  start-page: 90
  year: 2014
  ident: 12634_CR21
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2014.06.012
  contributor:
    fullname: G Colangelo
– ident: 12634_CR91
– ident: 12634_CR10
  doi: 10.1103/PhysRevLett.121.022002
– ident: 12634_CR110
  doi: 10.1103/PhysRevD.71.114510
– volume: B 123
  start-page: 93
  year: 1983
  ident: 12634_CR170
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(83)90966-8
  contributor:
    fullname: AL Kataev
– volume: B 301
  start-page: 440
  year: 1993
  ident: 12634_CR88
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(93)91176-N
  contributor:
    fullname: S Laporta
– volume: B 61
  start-page: 283
  year: 1976
  ident: 12634_CR19
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(76)90150-7
  contributor:
    fullname: J Calmet
– ident: 12634_CR120
  doi: 10.1103/PhysRevLett.88.071802
– volume: B 27
  start-page: 525
  year: 1971
  ident: 12634_CR140
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(71)90264-1
  contributor:
    fullname: AD Dolgov
– ident: 12634_CR106
  doi: 10.1103/PhysRevD.74.034008
– ident: 12634_CR26
  doi: 10.1103/PhysRevD.98.113002
– ident: 12634_CR81
  doi: 10.1103/PhysRevD.94.054033
– volume: 77
  start-page: 242
  year: 1950
  ident: 12634_CR146
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.77.242
  contributor:
    fullname: C-N Yang
– ident: 12634_CR23
  doi: 10.1103/PhysRevD.97.036001
– volume: D 24
  start-page: 1207
  year: 1981
  ident: 12634_CR156
  publication-title: Phys. Rev.
  contributor:
    fullname: R Aaron
– volume: A 28
  start-page: 409
  year: 1975
  ident: 12634_CR70
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02894857
  contributor:
    fullname: R Tarrach
– ident: 12634_CR14
  doi: 10.1103/PhysRevD.101.034512
– volume: 121
  start-page: 112002
  year: 2018
  ident: 12634_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.112002
  contributor:
    fullname: M Hoferichter
– ident: 12634_CR58
– ident: 12634_CR90
  doi: 10.1103/PhysRevD.98.030001
– ident: 12634_CR13
– ident: 12634_CR167
  doi: 10.1103/PhysRevD.56.221
– ident: 12634_CR117
– volume: 02
  start-page: 006
  year: 2019
  ident: 12634_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)006
  contributor:
    fullname: G Colangelo
– ident: 12634_CR9
– ident: 12634_CR95
  doi: 10.1007/978-1-4684-7571-5_9
– volume: 136
  start-page: 62
  year: 1981
  ident: 12634_CR137
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(81)90086-5
  contributor:
    fullname: J Gasser
– ident: 12634_CR29
  doi: 10.21468/SciPostPhysProc.1.031
– ident: 12634_CR165
  doi: 10.1103/PhysRevD.90.014511
– volume: C 74
  start-page: 3180
  year: 2014
  ident: 12634_CR44
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjc/s10052-014-3180-0
  contributor:
    fullname: M Hoferichter
– ident: 12634_CR105
  doi: 10.1103/PhysRevD.79.073012
– ident: 12634_CR1
– volume: A 60
  start-page: 47
  year: 1969
  ident: 12634_CR74
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02823296
  contributor:
    fullname: JS Bell
– volume: D 24
  start-page: 1808
  year: 1981
  ident: 12634_CR85
  publication-title: Phys. Rev.
  contributor:
    fullname: SJ Brodsky
– volume: 274
  start-page: 1
  year: 2017
  ident: 12634_CR142
  publication-title: Springer Tracts Mod. Phys.
  contributor:
    fullname: F Jegerlehner
– ident: 12634_CR159
– ident: 12634_CR162
– volume: 100
  start-page: 120801
  year: 2008
  ident: 12634_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.120801
  contributor:
    fullname: D Hanneke
SSID ssj0015190
Score 2.7258744
Snippet A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation...
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Charm (particle physics)
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Constraints
Elementary Particles
Experiments
Form factors
High energy physics
Light
Magnetic moments
Mathematical analysis
Phenomenology
Physics
Physics and Astronomy
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Tensors
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVhSqGb0iedvLiLLmYWKrIky_KyhIQhtKGUBrIzenkCDTOldhbZdN11vyffkI_ol-RejZ2SPhbdCWSD0fH1PZbOPZex1xGDGROR5UYkxXXrArfeay5EbL10uqxqqh1-f2IWp_r4rDzbYuJu62L1-c14Ipk_1GOt2_Hi8INQM_xXF_OCCrYeIHNQJOI6oPqG4dwA-YgYDXz-vOle7pmsMYbu8crfjkJzhjl6wh4P1BDebrB8yrbS6hl7mCWaoXvOvr1bU2-hy0h9rKA7R97MI7E_hA0C0Tzq9tB3gDQUkNbBuYvZ-BYuslmIv-J5AFmdPrS5gn4NsyX8_P4D5PzmGmhbFi5IHc5PAnxMy2WC3Cyne8FOjw4_HSz40D2BB2WqgheqiKVWJoVoSq2jdc7LVBXIwCQyaiuss7helWy9NSJY2Rbau7ZyLtpkvFMv2WS1XqVXDJD1SEx0tk6t1m2KLkrhtQlRhLJVsZ6y2biuzZeNSUYz2iFvIGgIApKTTdkOrXuD-Z1MagOpeULfkC9dXesp2x3haIZY6hqpKmsKBLb6-3RJDdwp0U7ZfETw1_Q_nmP7P67dYY9oSMqzotplk_7rZdpDKtL7_fz23QKwA9l-
  priority: 102
  providerName: Springer Nature
Title Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models
URI https://link.springer.com/article/10.1007/JHEP03(2020)101
https://www.proquest.com/docview/2378611907
https://www.proquest.com/docview/2543898012
https://www.osti.gov/servlets/purl/1799994
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9MwGLagExKXiU9RNiofOLQHa47j2O4JjaqlmqCaJirtFvkr3WFqNpIdduHMmd_Db-BH8Et4XzdhAgEXK5EjJfJr-3lsv3keQl4HGMwARIYpHnMmK-uZcU4yzkPlhJWFnuK_wx9WarmWJ-fFebfh1nRplf2cmCbqUHvcIz8SuTYqA_jSb66uGbpG4elqZ6Fxn-xlQmu0bjCLd79OEYCd8F7Oh-ujk-X8lOdjWO7zSda5wPRINKhhRP3GMv84GE14s3hE9juiSI93kX1M7sXtE_IgJWz65in5_L5Gp6GbgK5WtLkAFs0CckEIIvVI-tD7oW0okFIKJI9e2JBkcOllkg5xtyxd0JSr3ple0bam4w398eUrFZPv3yhu0tJLzBVnK0_P4mYTabLOaZ6R9WL-cbZknZcC87nSGcvyLBQyV9EHVUgZjLVORJ0BHxPArw031kB7aVE5o7g3osqks5W2NpionM2fk8G23sYXhAIHEgB7ZhorKasYbBDcSeUD90WVh-mQjPt2La92khllL468C0GJIcDksiE5wHYvAe1RstZjbo9vS1Spm07lkBz24Si7kdWUd_3g79UF2rkj7A7JpI_gXfU_vuPl_990QB7ik5h6lulDMmg_3cRXwEVaN0odbkT23s5Xp2dwNxMSSzUbpdU9lGtx_BO_e-O6
link.rule.ids 230,315,781,785,865,886,12770,21393,27929,27930,33378,33749,41124,41125,41528,42193,42194,42597,43605,43810,51581,52238,52239,74040,74307
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFL2CqRBsEE8xbQEvWMwsrDqOEzsrBGiqoUxHVdVK3UV-ZbqoJoWki25Ys-Z7-AY-gi_B1-NQgYBdJCtK5Gv7nNgn5wC8cmEyByBStGQ-p6LRlipjBGXMNYZrUcgK_x0-XJbzU3FwVpylDbcuySqHNTEu1K61uEe-x3OpyizAl3x9-ZFiahSerqYIjduwFa2qRrD1drY8Ov51jhD4CRsMfZjcO5jPjlg-CR_8bJqlHJgBi0ZtmFO_8cw_jkYj4uw_gPuJKpI3m9o-hFt-_QjuRMmm7R7D50WLWUNXDnOtSHceeDR1yAZDGYlF2ofpD31HAi0lgeaRc-2iES65iOYh5prGCxLV6in2ivQtmazIjy9fCZ9-_0Zwm5ZcoFqcLi059quVJzE8p3sCp_uzk3dzmtIUqM1LmdEsz1wh8tJbVxZCOKW14V5mgZHxwLAVU1qF_pK8MapkVvEmE0Y3UmunfGl0_hRG63btnwEJLIgH4FOVb4RovNOOMyNK65gtmtxVY5gM_Vpfbkwz6sEeeVOCGkuA8rIx7GC_1wHv0bTWorrH9jX61FWVGMPuUI46za2uvhkJf28uMNAdgXcM06GCN83_eI_t_z_pJdydnxwu6sX75YcduId3oRAtk7sw6j9d-eeBmfTmRRp-PwH4POLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLVgKhAbxFMdWsALFjMLq47jOM4K8ZjRUMpoVFGpu8jP6aKaFJIu2LBmzffwDXwEX8K9GYcKBOwiWXnI1_Y59j25h5BnHiYzAJFmioecyWgc09ZKxrmPVhhZlBX-O_xuqRYn8vC0OE36pzbJKoc1sV-ofePwjPxA5KVWGcBXeRCTLGL1ev784gNDBynMtCY7jetkB1CRw0Zs5-VsuTr-lVMArsKH4j7wlMPFbMXzCWz--TRLnjADLo0amF-_cc4_0qQ9-szvkNuJNtIX2zjfJdfC5h650cs3XXuffD5q0Hfo0qPHFW3PgFMzj8wQQkodUkB0guhaChSVAuWjZ8b3RXHpeV9IxH5i_QXtlevJAot2DZ2s6Y8vX6mYfv9G8ciWnqNynC0dPQ7rdaC9kU77gJzMZ-9fLVhyVmAuV2XGsjzzhcxVcF4VUnptjBWhzICdCWDbmmujob9KEa1W3GkRM2lNLI3xOihr8odktGk2YZdQYEQCQFBXIUoZgzdecCuV89wVMffVmEyGfq0vtgU06qFU8jYENYYApWZjsof9XgP2YwFbh0of19VYs66q5JjsD-Go0zxr66tR8ffmAs3dEYTHZDpE8Kr5H9_x6P9vekpuwsirj94s3-6RW3gTatKycp-Muo-X4TGQlM4-SaPvJ4Lk5yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+short-distance+constraints+for+the+hadronic+light-by-light+contribution+to+%28g+%E2%88%92+2%29%CE%BC+with+large-Nc+Regge+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Colangelo+Gilberto&rft.au=Hagelstein+Franziska&rft.au=Hoferichter+Martin&rft.au=Laub+Laetitia&rft.date=2020-03-17&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=3&rft_id=info:doi/10.1007%2FJHEP03%282020%29101&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon