Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models
A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both c...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
17.03.2020
Springer Nature B.V Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (
g −
2)
μ
also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from
π
0
,
η
,
η′
. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the
π
0
the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by
Δ
a
μ
LSDC
=
13
6
×
10
-11
. This number does not include the contribution from the charm quark, for which we find
a
μ
c
−
quark
= 3(1)
×
10
−
11
. |
---|---|
AbstractList | While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (g – 2)μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from πo, η, η'. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Δa$^{LSDC}_{μ}$ = 13(6) × 10-11. This number does not include the contribution from the charm quark, for which we find a$^{c–quark}_{μ}$ = 3(1) × 10–11. A bstract While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π 0 , η , η′ . Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π 0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Δ a μ LSDC = 13 6 × 10 -11 . This number does not include the contribution from the charm quark, for which we find a μ c − quark = 3(1) × 10 − 11 . While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon ( g − 2) μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π 0 , η , η′ . Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π 0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by $$ \varDelta {a}_{\mu}^{\mathrm{LSDC}}=13(6) $$ Δ a μ LSDC = 13 6 × 10 -11 . This number does not include the contribution from the charm quark, for which we find $$ {a}_{\mu}^{c- quark} $$ a μ c − quark = 3(1) × 10 − 11 . While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (g − 2)μ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from π0, η, η′. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the π0 the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by ΔaμLSDC=136× 10-11. This number does not include the contribution from the charm quark, for which we find aμc−quark = 3(1) × 10−11. |
ArticleNumber | 101 |
Author | Hoferichter, Martin Hagelstein, Franziska Colangelo, Gilberto Laub, Laetitia Stoffer, Peter |
Author_xml | – sequence: 1 givenname: Gilberto surname: Colangelo fullname: Colangelo, Gilberto – sequence: 2 givenname: Franziska orcidid: 0000-0002-2017-7132 surname: Hagelstein fullname: Hagelstein, Franziska email: hagelstein@itp.unibe.ch – sequence: 3 givenname: Martin orcidid: 0000-0003-1113-9377 surname: Hoferichter fullname: Hoferichter, Martin – sequence: 4 givenname: Laetitia orcidid: 0000-0003-3340-5672 surname: Laub fullname: Laub, Laetitia – sequence: 5 givenname: Peter surname: Stoffer fullname: Stoffer, Peter |
BackLink | https://www.osti.gov/servlets/purl/1799994$$D View this record in Osti.gov |
BookMark | eNp9kb9O5DAQxq0TSLBATWvdNUuRw-NkY6dEK_7caQUIQW05jpMYBXuxvUI01NQ8D89wD8GT4CVId80xzYys3zcznm-CNqyzGqF9ID-BEHb4--z4kuRTSig5AALf0DYQWmW8YNXGP_UWmoRwSwjMoCLb6GnhbGfiqjFWDjj0zsesMSFKqzRWzobopbEx4NZ5HHuNe9l4Z43Cg-n6mNWP2UexZqM39SoaZ3F0eNrht-cXTA_-vOIHE3s8SN_p7FzhK911Gt-5Rg9hF222cgh67zPvoJuT4-v5Wba4OP01P1pkKi8ZZJBDMyvyUqumnBVFw6WsqWZQQEkZrTjhkqcPMdrWvCSK0xaKWrZMyobrspb5Dvo-9nUhGhGUiVr1aWWrVRTAqhRFgn6M0NK7-5UOUdy6lU93CYKm6TzNAfollTNeQrorS9ThSCnvQvC6FUtv7qR_FEDE2i8x-iXWfqUHSAoyKkIibaf9377_k7wDBN6Zqw |
CitedBy_id | crossref_primary_10_1007_JHEP06_2020_020 crossref_primary_10_21468_SciPostPhys_15_4_176 crossref_primary_10_1103_PhysRevD_108_095027 crossref_primary_10_1140_epjc_s10052_021_09835_w crossref_primary_10_1103_PhysRevD_107_115004 crossref_primary_10_1007_JHEP07_2021_118 crossref_primary_10_1088_1674_1137_ac2a25 crossref_primary_10_1103_PhysRevD_106_055017 crossref_primary_10_1007_JHEP03_2022_101 crossref_primary_10_1103_PhysRevLett_127_251801 crossref_primary_10_3389_fphy_2022_944614 crossref_primary_10_1103_PhysRevD_107_035008 crossref_primary_10_1007_JHEP10_2020_203 crossref_primary_10_1007_JHEP10_2022_032 crossref_primary_10_1088_1674_1137_ac7c63 crossref_primary_10_1103_PhysRevD_109_035010 crossref_primary_10_1088_1361_6471_ad0ffa crossref_primary_10_1103_PhysRevD_106_073009 crossref_primary_10_1103_PhysRevD_105_075007 crossref_primary_10_1088_1748_0221_15_11_P11008 crossref_primary_10_1007_JHEP07_2021_106 crossref_primary_10_1140_epjc_s10052_022_10148_9 crossref_primary_10_1007_JHEP07_2021_107 crossref_primary_10_1103_PhysRevD_105_035017 crossref_primary_10_1103_PhysRevD_106_055023 crossref_primary_10_1103_PhysRevD_105_035015 crossref_primary_10_1103_PhysRevLett_125_091801 crossref_primary_10_1007_JHEP10_2021_240 crossref_primary_10_1007_JHEP06_2021_068 crossref_primary_10_1103_PhysRevD_106_015005 crossref_primary_10_1103_PhysRevD_108_L031702 crossref_primary_10_1088_1361_6471_ac5d0a crossref_primary_10_1088_1742_6596_2734_1_012074 crossref_primary_10_1007_JHEP09_2022_056 crossref_primary_10_1140_epjc_s10052_020_8306_y crossref_primary_10_1103_PhysRevD_105_035021 crossref_primary_10_1103_PhysRevD_105_053010 crossref_primary_10_1103_PhysRevD_106_095040 crossref_primary_10_1007_JHEP05_2024_096 crossref_primary_10_1007_JHEP08_2022_243 crossref_primary_10_1007_JHEP08_2022_124 crossref_primary_10_1103_PhysRevD_104_015015 crossref_primary_10_1103_PhysRevD_104_033007 crossref_primary_10_1140_epjc_s10052_022_11051_z crossref_primary_10_1007_JHEP08_2023_170 crossref_primary_10_1007_JHEP12_2021_038 crossref_primary_10_1103_PhysRevD_105_016014 crossref_primary_10_1007_JHEP11_2021_081 crossref_primary_10_1140_epjc_s10052_022_10004_w crossref_primary_10_1007_JHEP09_2022_181 crossref_primary_10_1007_JHEP07_2021_135 crossref_primary_10_1140_epjc_s10052_024_12497_z crossref_primary_10_1016_j_physletb_2021_136852 crossref_primary_10_1088_1674_1137_ac9896 crossref_primary_10_1103_PhysRevD_105_016019 crossref_primary_10_1103_PhysRevD_104_055009 crossref_primary_10_1140_epjc_s10052_022_10727_w crossref_primary_10_1088_1361_6471_ad0b33 crossref_primary_10_1140_epjc_s10052_021_09569_9 crossref_primary_10_1103_PhysRevD_104_094017 crossref_primary_10_1103_PhysRevD_108_015032 crossref_primary_10_1007_JHEP10_2022_088 crossref_primary_10_1007_JHEP11_2022_139 crossref_primary_10_1007_JHEP03_2023_198 crossref_primary_10_1103_PhysRevD_109_015031 crossref_primary_10_1140_epjc_s10052_022_10414_w crossref_primary_10_1140_epjc_s10052_022_10893_x crossref_primary_10_1093_ptep_ptac109 crossref_primary_10_1103_PhysRevD_105_056020 crossref_primary_10_1103_PhysRevD_103_115032 crossref_primary_10_1007_JHEP04_2023_125 crossref_primary_10_1103_PhysRevD_101_074515 crossref_primary_10_1007_JHEP07_2022_098 crossref_primary_10_1103_PhysRevD_107_034512 crossref_primary_10_1007_JHEP03_2022_042 crossref_primary_10_1007_JHEP05_2023_010 crossref_primary_10_1103_PhysRevLett_128_112002 crossref_primary_10_1103_PhysRevD_108_095056 crossref_primary_10_1007_JHEP11_2022_120 crossref_primary_10_1051_epjconf_202328901001 crossref_primary_10_1007_JHEP03_2023_194 crossref_primary_10_1140_epjc_s10052_022_10776_1 crossref_primary_10_1140_epjc_s10052_020_08550_2 crossref_primary_10_1140_epjc_s10052_022_10949_y crossref_primary_10_1140_epja_s10050_021_00426_7 crossref_primary_10_1140_epjc_s10052_021_09900_4 crossref_primary_10_1051_epjconf_202328901004 crossref_primary_10_1051_epjconf_202328901006 crossref_primary_10_1103_PhysRevLett_131_251803 crossref_primary_10_1140_epjc_s10052_021_09670_z crossref_primary_10_1103_PhysRevD_108_055032 crossref_primary_10_1103_PhysRevD_108_055033 crossref_primary_10_1103_PhysRevLett_127_021801 crossref_primary_10_1038_s41467_023_36366_7 crossref_primary_10_1007_JHEP11_2023_037 crossref_primary_10_1088_1748_0221_19_02_T02015 crossref_primary_10_1007_JHEP06_2022_169 crossref_primary_10_1103_PhysRevD_105_052006 crossref_primary_10_1103_PhysRevD_106_015018 crossref_primary_10_1103_PhysRevD_108_054509 crossref_primary_10_1103_PhysRevD_107_035028 crossref_primary_10_1093_ptep_ptad092 crossref_primary_10_1140_epjc_s10052_024_12692_y crossref_primary_10_1007_JHEP02_2023_051 crossref_primary_10_1007_JHEP11_2022_109 crossref_primary_10_1140_epjc_s10052_022_10402_0 crossref_primary_10_1007_JHEP03_2022_185 crossref_primary_10_1007_JHEP05_2022_109 crossref_primary_10_1007_JHEP03_2022_183 crossref_primary_10_1103_PhysRevD_105_074013 crossref_primary_10_1103_PhysRevD_101_114015 crossref_primary_10_1007_JHEP10_2021_189 crossref_primary_10_1007_JHEP11_2023_027 crossref_primary_10_1007_JHEP10_2021_064 crossref_primary_10_1103_PhysRevLett_128_141802 crossref_primary_10_1007_JHEP02_2023_167 crossref_primary_10_1088_1475_7516_2023_02_044 crossref_primary_10_1007_JHEP01_2023_117 crossref_primary_10_1007_JHEP04_2022_129 crossref_primary_10_1007_JHEP05_2021_174 crossref_primary_10_1007_s11433_022_1927_9 crossref_primary_10_1103_PhysRevD_106_093007 crossref_primary_10_1103_PhysRevD_106_035002 crossref_primary_10_1103_PhysRevD_108_115002 crossref_primary_10_1103_PhysRevD_107_095024 crossref_primary_10_21468_SciPostPhys_11_3_049 crossref_primary_10_1088_1402_4896_acb32b crossref_primary_10_1103_PhysRevD_105_L051702 crossref_primary_10_1103_PhysRevLett_131_161905 crossref_primary_10_1103_PhysRevD_106_035009 crossref_primary_10_1140_epjc_s10052_021_09601_y crossref_primary_10_1140_epjc_s10052_022_10348_3 crossref_primary_10_1103_PhysRevD_104_035007 crossref_primary_10_1103_PhysRevD_106_115009 crossref_primary_10_1103_PhysRevA_103_042208 crossref_primary_10_1103_PhysRevD_107_044008 crossref_primary_10_1140_epjc_s10052_022_10920_x crossref_primary_10_1140_epjc_s10052_022_10691_5 crossref_primary_10_1051_epjconf_202227406010 crossref_primary_10_1103_PhysRevD_108_115010 crossref_primary_10_1007_JHEP03_2022_085 crossref_primary_10_1103_PhysRevD_106_115011 crossref_primary_10_1103_PhysRevD_108_115012 crossref_primary_10_1007_JHEP04_2023_040 crossref_primary_10_1103_PhysRevD_102_114017 crossref_primary_10_1103_PhysRevD_105_095033 crossref_primary_10_1007_JHEP05_2022_098 crossref_primary_10_1103_PhysRevD_108_075014 crossref_primary_10_1140_epjc_s10052_022_10589_2 crossref_primary_10_1140_epjc_s10052_023_12195_2 crossref_primary_10_3389_fphy_2023_1143932 crossref_primary_10_1103_PhysRevD_103_055009 crossref_primary_10_1051_epjconf_202227000029 crossref_primary_10_1103_PhysRevD_103_072002 crossref_primary_10_1103_PhysRevD_107_054021 crossref_primary_10_1103_PhysRevD_109_094036 crossref_primary_10_1103_PhysRevD_106_115026 crossref_primary_10_1016_j_nuclphysbps_2023_12_001 crossref_primary_10_1140_epjc_s10052_024_12881_9 crossref_primary_10_1007_JHEP11_2023_079 crossref_primary_10_1088_1361_6471_ac3892 crossref_primary_10_1140_epjc_s10052_021_09780_8 crossref_primary_10_1140_epjc_s10052_021_09455_4 crossref_primary_10_1007_JHEP08_2021_103 crossref_primary_10_1140_epjc_s10052_020_08611_6 crossref_primary_10_1140_epjc_s10052_021_09513_x crossref_primary_10_1007_JHEP08_2021_101 crossref_primary_10_1007_JHEP06_2022_122 crossref_primary_10_1007_JHEP07_2021_098 crossref_primary_10_21468_SciPostPhys_16_3_072 crossref_primary_10_1088_1361_6471_ad06c8 crossref_primary_10_1103_PhysRevD_107_116026 crossref_primary_10_1103_PhysRevD_106_075031 crossref_primary_10_1007_JHEP05_2020_159 crossref_primary_10_1007_JHEP08_2023_209 crossref_primary_10_1140_epjc_s10052_021_09814_1 crossref_primary_10_1007_JHEP08_2023_208 crossref_primary_10_1103_PhysRevD_107_074001 crossref_primary_10_1103_PhysRevD_108_013005 crossref_primary_10_1103_PhysRevD_106_044040 crossref_primary_10_1103_PhysRevLett_126_141801 crossref_primary_10_1103_PhysRevD_106_074509 crossref_primary_10_1103_PhysRevD_108_035043 crossref_primary_10_1007_JHEP04_2021_240 crossref_primary_10_1103_PhysRevD_102_016009 crossref_primary_10_1140_epjp_s13360_023_03992_5 crossref_primary_10_1103_PhysRevD_107_114514 crossref_primary_10_1007_JHEP08_2022_147 crossref_primary_10_1007_JHEP02_2021_182 crossref_primary_10_1103_PhysRevD_104_L011701 crossref_primary_10_1007_JHEP12_2023_129 crossref_primary_10_1007_JHEP06_2023_209 crossref_primary_10_1103_PhysRevLett_132_231903 crossref_primary_10_1140_epjc_s10052_024_12569_0 crossref_primary_10_1140_epjc_s10052_022_10541_4 crossref_primary_10_1007_JHEP09_2021_080 crossref_primary_10_1140_epjc_s10052_021_09844_9 crossref_primary_10_1088_1674_1137_accc1d crossref_primary_10_1103_PhysRevD_105_015028 crossref_primary_10_3390_particles7020020 crossref_primary_10_1007_JHEP01_2022_025 crossref_primary_10_1103_PhysRevD_105_015011 crossref_primary_10_1103_PhysRevD_107_055034 crossref_primary_10_1103_PhysRevD_106_L031703 crossref_primary_10_1103_PhysRevD_107_055033 crossref_primary_10_1103_PhysRevLett_125_111801 crossref_primary_10_1016_j_physrep_2020_07_006 crossref_primary_10_1007_s10773_022_05252_1 crossref_primary_10_1007_JHEP03_2021_092 crossref_primary_10_1103_PhysRevLett_131_161802 crossref_primary_10_1103_PhysRevD_102_033002 crossref_primary_10_1007_JHEP04_2022_151 crossref_primary_10_1007_JHEP12_2020_155 crossref_primary_10_1007_JHEP09_2021_175 crossref_primary_10_1103_PhysRevD_107_054505 crossref_primary_10_1007_JHEP03_2022_203 crossref_primary_10_1007_JHEP01_2022_037 crossref_primary_10_1140_epjc_s10052_021_09661_0 crossref_primary_10_1103_PhysRevD_105_015002 crossref_primary_10_1103_PhysRevD_107_095017 crossref_primary_10_1103_PhysRevD_101_074019 crossref_primary_10_1103_PhysRevD_103_075028 crossref_primary_10_1142_S0217751X23500914 crossref_primary_10_1103_PhysRevD_107_095016 crossref_primary_10_1007_JHEP08_2022_295 crossref_primary_10_1007_JHEP10_2021_221 crossref_primary_10_1088_1402_4896_ac50c8 crossref_primary_10_1103_PhysRevLett_128_172004 crossref_primary_10_1088_1475_7516_2022_08_076 crossref_primary_10_1007_JHEP04_2024_092 |
Cites_doi | 10.1016/j.physletb.2019.134994 10.1103/PhysRevD.81.094021 10.1016/0550-3213(74)90154-0 10.1103/PhysRevLett.120.072002 10.1088/1126-6708/1998/05/011 10.1016/j.physletb.2014.09.021 10.1016/0550-3213(84)90006-3 10.1051/jphysrad:01961002202012101 10.1142/S2010194514604001 10.1016/j.physletb.2012.12.009 10.1103/PhysRevD.68.033018 10.1103/PhysRevD.55.4157 10.1103/PhysRevLett.28.1421 10.1103/PhysRevD.65.074013 10.1126/science.aap7706 10.1140/epjc/s10052-013-2539-y 10.1103/PhysRevD.101.051501 10.1103/PhysRevD.100.034520 10.22323/1.317.0066 10.1063/1.4938621 10.1051/epjconf/201919901010 10.1103/PhysRevD.101.014503 10.1016/0370-1573(88)90090-7 10.1016/S0550-3213(98)00508-2 10.1016/0370-2693(90)90276-C 10.1016/j.physletb.2006.06.031 10.1103/PhysRevD.58.114006 10.1140/epjc/s10052-017-4633-z 10.1016/j.physrep.2007.07.006 10.1103/PhysRevD.70.113006 10.1103/PhysRev.173.1423 10.1016/j.ppnp.2015.06.001 10.1140/epjc/s10052-010-1471-7 10.1142/S0217751X00000082 10.1016/0550-3213(89)90346-5 10.1103/PhysRev.177.2426 10.1103/PhysRevD.85.094006 10.1140/epjc/s2004-01811-8 10.1016/0370-1573(85)90129-2 10.1088/1126-6708/2002/01/024 10.1103/PhysRevD.95.014019 10.1103/PhysRevD.67.073006 10.1007/JHEP09(2014)091 10.1103/PhysRevLett.89.041601 10.1016/j.physletb.2006.06.039 10.1016/S0370-2693(97)01049-6 10.1016/j.physletb.2014.05.043 10.1016/S0370-2693(98)01344-6 10.1088/1126-6708/2008/09/044 10.1103/PhysRevD.65.073034 10.1088/1126-6708/2001/01/028 10.1088/1126-6708/2001/06/067 10.1016/j.physrep.2009.04.003 10.1103/PhysRevLett.118.022005 10.1007/JHEP09(2015)074 10.1007/s100520100601 10.1016/j.physletb.2019.134855 10.1103/PhysRevLett.118.232001 10.1142/9789814271844_0009 10.1103/PhysRev.168.1620 10.1088/1126-6708/2003/04/055 10.1016/j.ppnp.2013.11.002 10.1103/PhysRevD.98.075011 10.1016/j.physletb.2018.12.047 10.1007/JHEP01(2019)031 10.1088/1126-6708/2004/03/035 10.1103/PhysRevD.97.114025 10.1103/PhysRev.182.1517 10.1103/PhysRevLett.121.022003 10.1103/PhysRevLett.115.222003 10.1103/PhysRevD.92.056006 10.1007/JHEP04(2017)161 10.1016/j.physletb.2019.134891 10.1103/PhysRevD.97.016006 10.1088/1126-6708/2002/11/003 10.1103/PhysRev.184.1848 10.1007/JHEP07(2019)073 10.1016/j.physletb.2003.07.038 10.1007/JHEP08(2019)137 10.1016/0370-2693(79)90554-9 10.1103/RevModPhys.68.599 10.1016/j.physletb.2006.09.056 10.1016/j.physletb.2015.05.020 10.1103/PhysRevD.96.034515 10.1140/epjc/s10052-014-3008-y 10.1140/epjc/s10052-015-3642-z 10.1103/PhysRevD.95.054026 10.1140/epjc/s10052-008-0666-7 10.1140/epjc/s10052-011-1743-x 10.1016/0550-3213(80)90310-7 10.1088/1126-6708/2007/03/018 10.1007/JHEP10(2018)141 10.1016/j.physletb.2009.01.062 10.1007/s100520000499 10.1016/S0920-5632(97)01065-7 10.1140/epjc/s10052-009-1142-8 10.1016/j.physletb.2014.06.012 10.1103/PhysRevLett.121.022002 10.1103/PhysRevD.71.114510 10.1016/0370-2693(83)90966-8 10.1016/0370-2693(93)91176-N 10.1016/0370-2693(76)90150-7 10.1103/PhysRevLett.88.071802 10.1016/0550-3213(71)90264-1 10.1103/PhysRevD.74.034008 10.1103/PhysRevD.98.113002 10.1103/PhysRevD.94.054033 10.1103/PhysRev.77.242 10.1103/PhysRevD.97.036001 10.1007/BF02894857 10.1103/PhysRevD.101.034512 10.1103/PhysRevLett.121.112002 10.1103/PhysRevD.98.030001 10.1103/PhysRevD.56.221 10.1007/JHEP02(2019)006 10.1007/978-1-4684-7571-5_9 10.1016/0003-4916(81)90086-5 10.21468/SciPostPhysProc.1.031 10.1103/PhysRevD.90.014511 10.1140/epjc/s10052-014-3180-0 10.1103/PhysRevD.79.073012 10.1007/BF02823296 10.1103/PhysRevLett.100.120801 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) Univ. of California, San Diego, CA (United States) |
CorporateAuthor_xml | – name: Univ. of California, San Diego, CA (United States) – name: Univ. of Washington, Seattle, WA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS OIOZB OTOTI |
DOI | 10.1007/JHEP03(2020)101 |
DatabaseName | Springer_OA刊 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
ExternalDocumentID | 1799994 10_1007_JHEP03_2020_101 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ACACY ACGFS ACHIP ACREN ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFNRJ AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX ABEEZ ACULB CITATION ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS OIOZB OTOTI |
ID | FETCH-LOGICAL-c3671-131d5436ecd6544d8aab2e714162729808a815172fb860c82f14baf7aad8e6ba3 |
IEDL.DBID | 8FG |
ISSN | 1029-8479 |
IngestDate | Thu May 18 22:29:30 EDT 2023 Wed Oct 23 04:57:03 EDT 2024 Sat Oct 26 16:30:03 EDT 2024 Fri Nov 22 01:01:02 EST 2024 Sat Dec 16 12:09:40 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Precision QED Chiral Lagrangians Effective Field Theories Nonperturbative Effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3671-131d5436ecd6544d8aab2e714162729808a815172fb860c82f14baf7aad8e6ba3 |
Notes | USDOE Office of Science (SC) FG02-00ER41132; SC0009919 |
ORCID | 0000-0003-3340-5672 0000-0002-2017-7132 0000-0003-1113-9377 0000000333405672 0000000311139377 0000000220177132 |
OpenAccessLink | https://www.proquest.com/docview/2378611907?pq-origsite=%requestingapplication% |
PQID | 2378611907 |
PQPubID | 2034718 |
ParticipantIDs | osti_scitechconnect_1799994 proquest_journals_2543898012 proquest_journals_2378611907 crossref_primary_10_1007_JHEP03_2020_101 springer_journals_10_1007_JHEP03_2020_101 |
PublicationCentury | 2000 |
PublicationDate | 3-17-2020 |
PublicationDateYYYYMMDD | 2020-03-17 |
PublicationDate_xml | – month: 03 year: 2020 text: 3-17-2020 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature |
References | A.V. Anisovich, V.V. Anisovich and A.V. Sarantsev, Systematics of qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}states in the (n, M ) and (J, M2) planes, Phys. Rev.D 62 (2000) 051502 [hep-ph/0003113] [INSPIRE]. A. Nyffeler, Hadronic light-by-light scattering in the muon g − 2: a new short-distance constraint on pion-exchange, Phys. Rev.D 79 (2009) 073012 [arXiv:0901.1172] [INSPIRE]. TarrachRInvariant amplitudes for virtual Compton scattering off polarized nucleons free from kinematical singularities, zeros and constraintsNuovo Cim.1975A 284091975NCimA..28..409T[INSPIRE] HoferichterMPhillipsDRSchatCRoy-Steiner equations for γγ → ππEur. Phys. J.2011C 7117432011EPJC...71.1743H[arXiv:1106.4147] [INSPIRE] M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP03 (2004) 035 [hep-ph/0311100] [INSPIRE]. LandsbergLGElectromagnetic decays of light mesonsPhys. Rept.19851283011985PhR...128..301L[INSPIRE] CLEO collaboration, The search for η1440→K0SK±π∓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {K}_0^S{K}^{\pm }{\pi}^{\mp } $$\end{document}in two-photon fusion at CLEO, Phys. Rev.D 71 (2005) 072001 [hep-ex/0501026] [INSPIRE]. AbbiendiGMeasuring the leading hadronic contribution to the muon g − 2 via μe scatteringEur. Phys. J.2017C 771392017EPJC...77..139A[arXiv:1609.08987] [INSPIRE] PichAPrecision tau physicsProg. Part. Nucl. Phys.201475412014PrPNP..75...41P[arXiv:1310.7922] [INSPIRE] ColangeloGHoferichterMProcuraMStofferPDispersive approach to hadronic light-by-light scatteringJHEP2014090912014JHEP...09..091C1388.81508[arXiv:1402.7081] [INSPIRE] LepageGPBrodskySJExclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesonsPhys. Lett.1979B 873591979PhLB...87..359P[INSPIRE] BrodskySJde RafaelESuggested boson-lepton pair couplings and the anomalous magnetic moment of the muonPhys. Rev.196816816201968PhRv..168.1620B[INSPIRE] E. Ruiz Arriola and W. Broniowski, Pion transition form factor in the Regge approach and incomplete vector-meson dominance, Phys. Rev.D 81 (2010) 094021 [arXiv:1004.0837] [INSPIRE]. BraatenEQCD corrections to meson-photon transition form-factorsPhys. Rev.1983D 285241983PhRvD..28..524B[INSPIRE] P. Masjuan, E. Ruiz Arriola and W. Broniowski, Systematics of radial and angular-momentum Regge trajectories of light non-strange qq¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{q} $$\end{document}-states, Phys. Rev.D 85 (2012) 094006 [arXiv:1203.4782] [INSPIRE]. Belle collaboration, First study of ηc, η(1760) and X (1835) production via ηlπ+π−final states in two-photon collisions, Phys. Rev.D 86 (2012) 052002 [arXiv:1206.5087] [INSPIRE]. J. Leutgeb and A. Rebhan, Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon, arXiv:1912.01596 [INSPIRE]. HoferichterMColangeloGProcuraMStofferPVirtual photon-photon scatteringInt. J. Mod. Phys. Conf. Ser.2014351460400[arXiv:1309.6877] [INSPIRE] Hadron Spectrum collaboration, Decay constants of the pion and its excitations on the lattice, Phys. Rev.D 90 (2014) 014511 [arXiv:1403.5575] [INSPIRE]. PACS collaboration, Hadronic vacuum polarization contribution to the muon g − 2 with 2 + 1 flavor lattice QCD on a larger than (10 fm)4lattice at the physical point, Phys. Rev.D 100 (2019) 034517 [arXiv:1902.00885] [INSPIRE]. A.A. Andrianov, D. Espriu and R. Tarrach, The extended chiral quark model and QCD, Nucl. Phys.B 533 (1998) 429 [hep-ph/9803232] [INSPIRE]. K. Melnikov and A. Vainshtein, On dispersion relations and hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:1911.05874 [INSPIRE]. V. Elias, A. Fariborz, M.A. Samuel, F. Shi and T.G. Steele, Beyond the narrow resonance approximation: decay constant and width of the first pion excitation state, Phys. Lett.B 412 (1997) 131 [hep-ph/9706472] [INSPIRE]. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev.D 67 (2003) 073006 [Erratum ibid.D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE]. BellJSJackiwRA PCAC puzzle: π0→ γγ in the σ modelNuovo Cim.1969A 60471969NCimA..60...47B[INSPIRE] KataevALKrasnikovNVPivovarovAAThe use of the finite energetic sum rules for the calculation of the light quark massesPhys. Lett.1983B 123931983PhLB..123...93K[INSPIRE] NovikovVAShifmanMAVainshteinAIVoloshinMBZakharovVIUse and misuse of QCD sum rules, factorization and related topicsNucl. Phys.1984B 2375251984NuPhB.237..525N[INSPIRE] L. Cappiello, O. Catà, G. D’Ambrosio, D. Greynat and A. Iyer, On axials and pseudoscalars in the hadronic light-by-light contribution to the muon (g − 2), arXiv:1912.02779 [INSPIRE]. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and toαmZ2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \left({m}_Z^2\right), $$\end{document}arXiv:1908.00921 [INSPIRE]. GreenJGryniukOvon HippelGMeyerHBPascalutsaVLattice QCD calculation of hadronic light-by-light scatteringPhys. Rev. Lett.20151152220032015PhRvL.115v2003G[arXiv:1507.01577] [INSPIRE] ZakharovVITwo loop chiral anomaly as an infrared phenomenonPhys. Rev.1990D 4212081990PhRvD..42.1208Z[INSPIRE] Budapest-Marseille-Wuppertal collaboration, Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles, Phys. Rev. Lett.121 (2018) 022002 [arXiv:1711.04980] [INSPIRE]. MondejarJMelnikovKThe VVA correlator at three loops in perturbative QCDPhys. Lett.2013B 71813642013PhLB..718.1364M1372.81153[arXiv:1210.0812] [INSPIRE] GasserJHadron masses and sigma commutator in the light of chiral perturbation theoryAnnals Phys.1981136621981AnPhy.136...62G[INSPIRE] KodairaJQCD higher order effects in polarized electroproduction: flavor singlet coefficient functionsNucl. Phys.1980B 1651291980NuPhB.165..129K[INSPIRE] W.A. Bardeen and W.K. Tung, Invariant amplitudes for photon processes, Phys. Rev.173 (1968) 1423 [Erratum ibid.D 4 (1971) 3229] [INSPIRE]. E. Ruiz Arriola and W. Broniowski, Pion transition form factor and distribution amplitudes in large-NcRegge model, Phys. Rev.D 74 (2006) 034008 [hep-ph/0605318] [INSPIRE]. T. Blum et al., Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass, Phys. Rev. Lett.118 (2017) 022005 [arXiv:1610.04603] [INSPIRE]. BouchiatCMichelLLa résonance dans la diffusion méson π — méson π et le moment magnétique anormal du méson μ (in French)J. Phys. Radium196122121[INSPIRE] O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev.D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE]. L3 collaboration, Resonance formation in the π+π−π0final state in two photon collisions, Phys. Lett.B 413 (1997) 147 [INSPIRE]. HoferichterMHoidB-LKubisBLeupoldSSchneiderSPPion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muonPhys. Rev. Lett.20181211120022018PhRvL.121k2002H[arXiv:1805.01471] [INSPIRE] HoferichterMStofferPDispersion relations for γ∗γ∗→ ππ: helicity amplitudes, subtractions and anomalous thresholdsJHEP2019070732019JHEP...07..073H[arXiv:1905.13198] [INSPIRE] HoferichterMHoidB-LKubisBLeupoldSSchneiderSPDispersion relation for hadronic light-by-light scattering: pion poleJHEP2018101412018JHEP...10..141H[arXiv:1808.04823] [INSPIRE] F.W.J. Olver, Asymptotics and special functions, Academic Press, U.S.A. (1974). S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large NcQCD, JHEP05 (1998) 011 [hep-ph/9805442] [INSPIRE]. T. Blum et al., Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment, Phys. Rev.D 96 (2017) 034515 [arXiv:1705.01067] [INSPIRE]. LepageGPBrodskySJExclusive processes in perturbative quantum chromodynamicsPhys. Rev.1980D 2221571980PhRvD..22.2157L[INSPIRE] R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π+π−, π0π0with chiral constraints, Eur. Phys. J.C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE]. DanilkinIVanderhaeghenMDispersive analysis of the γγ∗→ ππ processPhys. Lett.2019B 7893662019PhLB..789..366D[arXiv:1810.03669] [INSPIRE] Crystal Barrel collaboration, Study of f0decays into four neutral pions, Eur. Phys. J.C 19 (2001) 667 [INSPIRE]. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Electroweak hadronic contributions to the muon (g − 2), JHEP11 (2002) 003 [hep-ph/0205102] [INSPIRE]. PradesJde RafaelEVainshteinAThe hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic momentsAdv. Ser. Direct. High Energy Phys.200920303[arXiv:0901.0306] [INSPIRE] L3 collaboration, Measurement of η′ (958) formation in two photon collisions at LEP-1, Phys. Lett.B 418 (1998) 399 [INSPIRE]. P. Roig and P. Sanchez-Puertas, Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment, arXiv:1910.02881 [INSPIRE]. Col C Bouchiat (12634_CR59) 1961; 22 12634_CR118 12634_CR119 AL Kataev (12634_CR170) 1983; B 123 JS Bell (12634_CR74) 1969; A 60 12634_CR80 VI Zakharov (12634_CR141) 1990; D 42 12634_CR81 GP Lepage (12634_CR84) 1980; D 22 S Narison (12634_CR134) 2009; B 673 C-N Yang (12634_CR146) 1950; 77 12634_CR120 12634_CR121 12634_CR89 12634_CR122 12634_CR123 12634_CR124 WA Bardeen (12634_CR75) 1969; 184 12634_CR125 12634_CR126 12634_CR127 J Prades (12634_CR67) 2009; 20 12634_CR128 12634_CR107 12634_CR108 12634_CR109 V Pauk (12634_CR36) 2014; D 90 G Colangelo (12634_CR31) 2014; 09 J Gasser (12634_CR137) 1981; 136 12634_CR71 12634_CR72 12634_CR110 12634_CR78 12634_CR79 12634_CR112 12634_CR113 G Colangelo (12634_CR7) 2019; 02 D Espriu (12634_CR77) 1982; C 16 12634_CR115 12634_CR116 12634_CR117 M Hoferichter (12634_CR57) 2019; 07 V Pauk (12634_CR143) 2014; C 74 LG Landsberg (12634_CR153) 1985; 128 GP Lepage (12634_CR83) 1979; B 87 R Tarrach (12634_CR70) 1975; A 28 B Moussallam (12634_CR55) 2013; C 73 SJ Brodsky (12634_CR60) 1968; 168 TP Gorringe (12634_CR4) 2015; 84 F Jegerlehner (12634_CR52) 2009; 477 12634_CR61 12634_CR62 G Colangelo (12634_CR33) 2015; 09 12634_CR63 12634_CR64 12634_CR65 12634_CR66 A Pich (12634_CR136) 2014; 75 12634_CR144 12634_CR68 12634_CR69 12634_CR147 12634_CR148 12634_CR149 12634_CR129 G Abbiendi (12634_CR18) 2017; C 77 V Pascalutsa (12634_CR37) 2012; D 85 I Danilkin (12634_CR56) 2019; B 789 G Ecker (12634_CR111) 1989; B 321 G Colangelo (12634_CR21) 2014; B 735 M Hoferichter (12634_CR44) 2014; C 74 RJ Crewther (12634_CR97) 1972; 28 12634_CR50 12634_CR51 12634_CR53 12634_CR130 12634_CR132 12634_CR133 12634_CR58 12634_CR135 12634_CR138 U-G Meißner (12634_CR152) 1988; 161 M Hoferichter (12634_CR54) 2011; C 71 M Hoferichter (12634_CR45) 2017; D 96 M Hoferichter (12634_CR30) 2014; 35 J Calmet (12634_CR19) 1976; B 61 12634_CR5 12634_CR6 12634_CR1 12634_CR2 J Mondejar (12634_CR93) 2013; B 718 12634_CR3 SL Adler (12634_CR94) 1969; 182 12634_CR160 12634_CR40 12634_CR161 12634_CR41 12634_CR162 12634_CR42 12634_CR163 J Green (12634_CR38) 2015; 115 12634_CR164 12634_CR165 12634_CR166 12634_CR167 12634_CR168 12634_CR48 12634_CR169 12634_CR49 M Hoferichter (12634_CR43) 2012; D 86 R Escribano (12634_CR82) 2015; C 75 R Aaron (12634_CR156) 1981; D 24 M Davier (12634_CR131) 2008; C 56 G Colangelo (12634_CR34) 2017; 118 F Jegerlehner (12634_CR142) 2017; 274 12634_CR150 12634_CR151 12634_CR154 VA Novikov (12634_CR114) 1984; B 237 12634_CR155 12634_CR157 12634_CR158 AV Manohar (12634_CR86) 1990; B 244 12634_CR159 12634_CR39 S Laporta (12634_CR88) 1993; B 301 AD Dolgov (12634_CR140) 1971; B 27 M Hoferichter (12634_CR8) 2019; 08 E Braaten (12634_CR87) 1983; D 28 A Kurz (12634_CR20) 2014; B 734 M Hoferichter (12634_CR46) 2018; 121 SL Adler (12634_CR73) 1969; 177 G Colangelo (12634_CR32) 2014; B 738 12634_CR23 12634_CR100 12634_CR24 M Hoferichter (12634_CR47) 2018; 10 12634_CR101 D Hanneke (12634_CR22) 2008; 100 12634_CR25 12634_CR102 CM Carloni Calame (12634_CR17) 2015; B 746 12634_CR26 12634_CR103 12634_CR27 12634_CR28 12634_CR105 12634_CR29 12634_CR106 TD Cohen (12634_CR139) 1996; 68 J Kodaira (12634_CR76) 1980; B 165 12634_CR90 12634_CR91 12634_CR92 12634_CR171 12634_CR95 LD Landau (12634_CR145) 1948; 60 12634_CR9 G Colangelo (12634_CR35) 2017; 04 12634_CR96 12634_CR10 12634_CR98 12634_CR11 D Giusti (12634_CR12) 2018; D 98 12634_CR99 12634_CR13 12634_CR14 12634_CR15 12634_CR16 SJ Brodsky (12634_CR85) 1981; D 24 G D’Ambrosio (12634_CR104) 2019; B 797 |
References_xml | – ident: 12634_CR61 doi: 10.1016/j.physletb.2019.134994 – ident: 12634_CR107 doi: 10.1103/PhysRevD.81.094021 – ident: 12634_CR98 doi: 10.1016/0550-3213(74)90154-0 – ident: 12634_CR112 – ident: 12634_CR40 doi: 10.1103/PhysRevLett.120.072002 – ident: 12634_CR99 doi: 10.1088/1126-6708/1998/05/011 – volume: B 738 start-page: 6 year: 2014 ident: 12634_CR32 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2014.09.021 contributor: fullname: G Colangelo – volume: B 237 start-page: 525 year: 1984 ident: 12634_CR114 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(84)90006-3 contributor: fullname: VA Novikov – volume: D 85 start-page: 116001 year: 2012 ident: 12634_CR37 publication-title: Phys. Rev. contributor: fullname: V Pascalutsa – ident: 12634_CR129 – volume: 22 start-page: 121 year: 1961 ident: 12634_CR59 publication-title: J. Phys. Radium doi: 10.1051/jphysrad:01961002202012101 contributor: fullname: C Bouchiat – volume: 35 start-page: 1460400 year: 2014 ident: 12634_CR30 publication-title: Int. J. Mod. Phys. Conf. Ser. doi: 10.1142/S2010194514604001 contributor: fullname: M Hoferichter – volume: B 718 start-page: 1364 year: 2013 ident: 12634_CR93 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2012.12.009 contributor: fullname: J Mondejar – ident: 12634_CR161 – ident: 12634_CR89 doi: 10.1103/PhysRevD.68.033018 – ident: 12634_CR160 doi: 10.1103/PhysRevD.55.4157 – volume: 28 start-page: 1421 year: 1972 ident: 12634_CR97 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.28.1421 contributor: fullname: RJ Crewther – ident: 12634_CR169 doi: 10.1103/PhysRevD.65.074013 – ident: 12634_CR24 doi: 10.1126/science.aap7706 – volume: C 73 start-page: 2539 year: 2013 ident: 12634_CR55 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-013-2539-y contributor: fullname: B Moussallam – ident: 12634_CR68 doi: 10.1103/PhysRevD.101.051501 – ident: 12634_CR48 doi: 10.1103/PhysRevD.100.034520 – ident: 12634_CR41 doi: 10.22323/1.317.0066 – ident: 12634_CR71 doi: 10.1063/1.4938621 – ident: 12634_CR6 doi: 10.1051/epjconf/201919901010 – ident: 12634_CR150 – ident: 12634_CR16 doi: 10.1103/PhysRevD.101.014503 – ident: 12634_CR115 – volume: 161 start-page: 213 year: 1988 ident: 12634_CR152 publication-title: Phys. Rept. doi: 10.1016/0370-1573(88)90090-7 contributor: fullname: U-G Meißner – ident: 12634_CR168 doi: 10.1016/S0550-3213(98)00508-2 – volume: B 244 start-page: 101 year: 1990 ident: 12634_CR86 publication-title: Phys. Lett. doi: 10.1016/0370-2693(90)90276-C contributor: fullname: AV Manohar – ident: 12634_CR96 doi: 10.1016/j.physletb.2006.06.031 – ident: 12634_CR123 doi: 10.1103/PhysRevD.58.114006 – volume: C 77 start-page: 139 year: 2017 ident: 12634_CR18 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-017-4633-z contributor: fullname: G Abbiendi – volume: D 22 start-page: 2157 year: 1980 ident: 12634_CR84 publication-title: Phys. Rev. contributor: fullname: GP Lepage – ident: 12634_CR3 – ident: 12634_CR113 doi: 10.1016/j.physrep.2007.07.006 – volume: D 86 start-page: 116009 year: 2012 ident: 12634_CR43 publication-title: Phys. Rev. contributor: fullname: M Hoferichter – ident: 12634_CR62 doi: 10.1103/PhysRevD.70.113006 – ident: 12634_CR109 – ident: 12634_CR126 – ident: 12634_CR69 doi: 10.1103/PhysRev.173.1423 – volume: 84 start-page: 73 year: 2015 ident: 12634_CR4 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2015.06.001 contributor: fullname: TP Gorringe – ident: 12634_CR53 doi: 10.1140/epjc/s10052-010-1471-7 – ident: 12634_CR124 doi: 10.1142/S0217751X00000082 – volume: B 321 start-page: 311 year: 1989 ident: 12634_CR111 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(89)90346-5 contributor: fullname: G Ecker – volume: 177 start-page: 2426 year: 1969 ident: 12634_CR73 publication-title: Phys. Rev. doi: 10.1103/PhysRev.177.2426 contributor: fullname: SL Adler – ident: 12634_CR118 – ident: 12634_CR108 doi: 10.1103/PhysRevD.85.094006 – ident: 12634_CR157 doi: 10.1140/epjc/s2004-01811-8 – ident: 12634_CR147 – volume: 128 start-page: 301 year: 1985 ident: 12634_CR153 publication-title: Phys. Rept. doi: 10.1016/0370-1573(85)90129-2 contributor: fullname: LG Landsberg – ident: 12634_CR133 – ident: 12634_CR102 doi: 10.1088/1126-6708/2002/01/024 – ident: 12634_CR39 doi: 10.1103/PhysRevD.95.014019 – ident: 12634_CR66 doi: 10.1103/PhysRevD.67.073006 – volume: D 42 start-page: 1208 year: 1990 ident: 12634_CR141 publication-title: Phys. Rev. contributor: fullname: VI Zakharov – volume: 09 start-page: 091 year: 2014 ident: 12634_CR31 publication-title: JHEP doi: 10.1007/JHEP09(2014)091 contributor: fullname: G Colangelo – ident: 12634_CR121 doi: 10.1103/PhysRevLett.89.041601 – ident: 12634_CR127 – ident: 12634_CR92 doi: 10.1016/j.physletb.2006.06.039 – ident: 12634_CR166 doi: 10.1016/S0370-2693(97)01049-6 – volume: B 734 start-page: 144 year: 2014 ident: 12634_CR20 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2014.05.043 contributor: fullname: A Kurz – ident: 12634_CR100 doi: 10.1016/S0370-2693(98)01344-6 – ident: 12634_CR144 – ident: 12634_CR132 doi: 10.1088/1126-6708/2008/09/044 – ident: 12634_CR138 – ident: 12634_CR51 doi: 10.1103/PhysRevD.65.073034 – ident: 12634_CR103 doi: 10.1088/1126-6708/2001/01/028 – volume: 60 start-page: 207 year: 1948 ident: 12634_CR145 publication-title: Dokl. Akad. Nauk SSSR contributor: fullname: LD Landau – ident: 12634_CR171 doi: 10.1088/1126-6708/2001/06/067 – volume: 477 start-page: 1 year: 2009 ident: 12634_CR52 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2009.04.003 contributor: fullname: F Jegerlehner – ident: 12634_CR27 doi: 10.1103/PhysRevLett.118.022005 – volume: 09 start-page: 074 year: 2015 ident: 12634_CR33 publication-title: JHEP doi: 10.1007/JHEP09(2015)074 contributor: fullname: G Colangelo – ident: 12634_CR158 doi: 10.1007/s100520100601 – ident: 12634_CR50 doi: 10.1016/j.physletb.2019.134855 – volume: 118 start-page: 232001 year: 2017 ident: 12634_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.232001 contributor: fullname: G Colangelo – ident: 12634_CR130 – ident: 12634_CR155 – volume: 20 start-page: 303 year: 2009 ident: 12634_CR67 publication-title: Adv. Ser. Direct. High Energy Phys. doi: 10.1142/9789814271844_0009 contributor: fullname: J Prades – volume: 168 start-page: 1620 year: 1968 ident: 12634_CR60 publication-title: Phys. Rev. doi: 10.1103/PhysRev.168.1620 contributor: fullname: SJ Brodsky – volume: D 98 start-page: 114504 year: 2018 ident: 12634_CR12 publication-title: Phys. Rev. contributor: fullname: D Giusti – ident: 12634_CR101 doi: 10.1088/1126-6708/2003/04/055 – ident: 12634_CR149 – volume: 75 start-page: 41 year: 2014 ident: 12634_CR136 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2013.11.002 contributor: fullname: A Pich – ident: 12634_CR25 doi: 10.1103/PhysRevD.98.075011 – volume: B 789 start-page: 366 year: 2019 ident: 12634_CR56 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2018.12.047 contributor: fullname: I Danilkin – ident: 12634_CR128 doi: 10.1007/JHEP01(2019)031 – ident: 12634_CR64 doi: 10.1088/1126-6708/2004/03/035 – ident: 12634_CR5 doi: 10.1103/PhysRevD.97.114025 – volume: 182 start-page: 1517 year: 1969 ident: 12634_CR94 publication-title: Phys. Rev. doi: 10.1103/PhysRev.182.1517 contributor: fullname: SL Adler – volume: D 28 start-page: 524 year: 1983 ident: 12634_CR87 publication-title: Phys. Rev. contributor: fullname: E Braaten – ident: 12634_CR11 doi: 10.1103/PhysRevLett.121.022003 – ident: 12634_CR116 – volume: 115 start-page: 222003 year: 2015 ident: 12634_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.222003 contributor: fullname: J Green – ident: 12634_CR72 doi: 10.1103/PhysRevD.92.056006 – volume: 04 start-page: 161 year: 2017 ident: 12634_CR35 publication-title: JHEP doi: 10.1007/JHEP04(2017)161 contributor: fullname: G Colangelo – volume: B 797 start-page: 134891 year: 2019 ident: 12634_CR104 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2019.134891 contributor: fullname: G D’Ambrosio – ident: 12634_CR125 doi: 10.1103/PhysRevD.97.016006 – ident: 12634_CR151 – volume: C 16 start-page: 77 year: 1982 ident: 12634_CR77 publication-title: Z. Phys. contributor: fullname: D Espriu – ident: 12634_CR65 doi: 10.1088/1126-6708/2002/11/003 – volume: 184 start-page: 1848 year: 1969 ident: 12634_CR75 publication-title: Phys. Rev. doi: 10.1103/PhysRev.184.1848 contributor: fullname: WA Bardeen – volume: 07 start-page: 073 year: 2019 ident: 12634_CR57 publication-title: JHEP doi: 10.1007/JHEP07(2019)073 contributor: fullname: M Hoferichter – ident: 12634_CR154 – ident: 12634_CR63 doi: 10.1016/j.physletb.2003.07.038 – ident: 12634_CR2 – volume: 08 start-page: 137 year: 2019 ident: 12634_CR8 publication-title: JHEP doi: 10.1007/JHEP08(2019)137 contributor: fullname: M Hoferichter – volume: B 87 start-page: 359 year: 1979 ident: 12634_CR83 publication-title: Phys. Lett. doi: 10.1016/0370-2693(79)90554-9 contributor: fullname: GP Lepage – volume: 68 start-page: 599 year: 1996 ident: 12634_CR139 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.68.599 contributor: fullname: TD Cohen – ident: 12634_CR79 – ident: 12634_CR164 doi: 10.1016/j.physletb.2006.09.056 – volume: B 746 start-page: 325 year: 2015 ident: 12634_CR17 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2015.05.020 contributor: fullname: CM Carloni Calame – ident: 12634_CR28 doi: 10.1103/PhysRevD.96.034515 – ident: 12634_CR15 – ident: 12634_CR119 – volume: D 96 start-page: 114016 year: 2017 ident: 12634_CR45 publication-title: Phys. Rev. contributor: fullname: M Hoferichter – volume: C 74 start-page: 3008 year: 2014 ident: 12634_CR143 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-014-3008-y contributor: fullname: V Pauk – ident: 12634_CR163 – volume: C 75 start-page: 414 year: 2015 ident: 12634_CR82 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-015-3642-z contributor: fullname: R Escribano – ident: 12634_CR42 – ident: 12634_CR49 doi: 10.1103/PhysRevD.95.054026 – volume: C 56 start-page: 305 year: 2008 ident: 12634_CR131 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-008-0666-7 contributor: fullname: M Davier – volume: C 71 start-page: 1743 year: 2011 ident: 12634_CR54 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-011-1743-x contributor: fullname: M Hoferichter – volume: B 165 start-page: 129 year: 1980 ident: 12634_CR76 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(80)90310-7 contributor: fullname: J Kodaira – ident: 12634_CR148 doi: 10.1088/1126-6708/2007/03/018 – volume: 10 start-page: 141 year: 2018 ident: 12634_CR47 publication-title: JHEP doi: 10.1007/JHEP10(2018)141 contributor: fullname: M Hoferichter – volume: B 673 start-page: 30 year: 2009 ident: 12634_CR134 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2009.01.062 contributor: fullname: S Narison – volume: D 90 start-page: 113012 year: 2014 ident: 12634_CR36 publication-title: Phys. Rev. contributor: fullname: V Pauk – ident: 12634_CR80 doi: 10.1007/s100520000499 – ident: 12634_CR78 doi: 10.1016/S0920-5632(97)01065-7 – ident: 12634_CR122 – ident: 12634_CR135 doi: 10.1140/epjc/s10052-009-1142-8 – volume: B 735 start-page: 90 year: 2014 ident: 12634_CR21 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2014.06.012 contributor: fullname: G Colangelo – ident: 12634_CR91 – ident: 12634_CR10 doi: 10.1103/PhysRevLett.121.022002 – ident: 12634_CR110 doi: 10.1103/PhysRevD.71.114510 – volume: B 123 start-page: 93 year: 1983 ident: 12634_CR170 publication-title: Phys. Lett. doi: 10.1016/0370-2693(83)90966-8 contributor: fullname: AL Kataev – volume: B 301 start-page: 440 year: 1993 ident: 12634_CR88 publication-title: Phys. Lett. doi: 10.1016/0370-2693(93)91176-N contributor: fullname: S Laporta – volume: B 61 start-page: 283 year: 1976 ident: 12634_CR19 publication-title: Phys. Lett. doi: 10.1016/0370-2693(76)90150-7 contributor: fullname: J Calmet – ident: 12634_CR120 doi: 10.1103/PhysRevLett.88.071802 – volume: B 27 start-page: 525 year: 1971 ident: 12634_CR140 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(71)90264-1 contributor: fullname: AD Dolgov – ident: 12634_CR106 doi: 10.1103/PhysRevD.74.034008 – ident: 12634_CR26 doi: 10.1103/PhysRevD.98.113002 – ident: 12634_CR81 doi: 10.1103/PhysRevD.94.054033 – volume: 77 start-page: 242 year: 1950 ident: 12634_CR146 publication-title: Phys. Rev. doi: 10.1103/PhysRev.77.242 contributor: fullname: C-N Yang – ident: 12634_CR23 doi: 10.1103/PhysRevD.97.036001 – volume: D 24 start-page: 1207 year: 1981 ident: 12634_CR156 publication-title: Phys. Rev. contributor: fullname: R Aaron – volume: A 28 start-page: 409 year: 1975 ident: 12634_CR70 publication-title: Nuovo Cim. doi: 10.1007/BF02894857 contributor: fullname: R Tarrach – ident: 12634_CR14 doi: 10.1103/PhysRevD.101.034512 – volume: 121 start-page: 112002 year: 2018 ident: 12634_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.112002 contributor: fullname: M Hoferichter – ident: 12634_CR58 – ident: 12634_CR90 doi: 10.1103/PhysRevD.98.030001 – ident: 12634_CR13 – ident: 12634_CR167 doi: 10.1103/PhysRevD.56.221 – ident: 12634_CR117 – volume: 02 start-page: 006 year: 2019 ident: 12634_CR7 publication-title: JHEP doi: 10.1007/JHEP02(2019)006 contributor: fullname: G Colangelo – ident: 12634_CR9 – ident: 12634_CR95 doi: 10.1007/978-1-4684-7571-5_9 – volume: 136 start-page: 62 year: 1981 ident: 12634_CR137 publication-title: Annals Phys. doi: 10.1016/0003-4916(81)90086-5 contributor: fullname: J Gasser – ident: 12634_CR29 doi: 10.21468/SciPostPhysProc.1.031 – ident: 12634_CR165 doi: 10.1103/PhysRevD.90.014511 – volume: C 74 start-page: 3180 year: 2014 ident: 12634_CR44 publication-title: Eur. Phys. J. doi: 10.1140/epjc/s10052-014-3180-0 contributor: fullname: M Hoferichter – ident: 12634_CR105 doi: 10.1103/PhysRevD.79.073012 – ident: 12634_CR1 – volume: A 60 start-page: 47 year: 1969 ident: 12634_CR74 publication-title: Nuovo Cim. doi: 10.1007/BF02823296 contributor: fullname: JS Bell – volume: D 24 start-page: 1808 year: 1981 ident: 12634_CR85 publication-title: Phys. Rev. contributor: fullname: SJ Brodsky – volume: 274 start-page: 1 year: 2017 ident: 12634_CR142 publication-title: Springer Tracts Mod. Phys. contributor: fullname: F Jegerlehner – ident: 12634_CR159 – ident: 12634_CR162 – volume: 100 start-page: 120801 year: 2008 ident: 12634_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.120801 contributor: fullname: D Hanneke |
SSID | ssj0015190 |
Score | 2.7258744 |
Snippet | A
bstract
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation... While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Charm (particle physics) Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Constraints Elementary Particles Experiments Form factors High energy physics Light Magnetic moments Mathematical analysis Phenomenology Physics Physics and Astronomy Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory String Theory Tensors |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVhSqGb0iedvLiLLmYWKrIky_KyhIQhtKGUBrIzenkCDTOldhbZdN11vyffkI_ol-RejZ2SPhbdCWSD0fH1PZbOPZex1xGDGROR5UYkxXXrArfeay5EbL10uqxqqh1-f2IWp_r4rDzbYuJu62L1-c14Ipk_1GOt2_Hi8INQM_xXF_OCCrYeIHNQJOI6oPqG4dwA-YgYDXz-vOle7pmsMYbu8crfjkJzhjl6wh4P1BDebrB8yrbS6hl7mCWaoXvOvr1bU2-hy0h9rKA7R97MI7E_hA0C0Tzq9tB3gDQUkNbBuYvZ-BYuslmIv-J5AFmdPrS5gn4NsyX8_P4D5PzmGmhbFi5IHc5PAnxMy2WC3Cyne8FOjw4_HSz40D2BB2WqgheqiKVWJoVoSq2jdc7LVBXIwCQyaiuss7helWy9NSJY2Rbau7ZyLtpkvFMv2WS1XqVXDJD1SEx0tk6t1m2KLkrhtQlRhLJVsZ6y2biuzZeNSUYz2iFvIGgIApKTTdkOrXuD-Z1MagOpeULfkC9dXesp2x3haIZY6hqpKmsKBLb6-3RJDdwp0U7ZfETw1_Q_nmP7P67dYY9oSMqzotplk_7rZdpDKtL7_fz23QKwA9l- priority: 102 providerName: Springer Nature |
Title | Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models |
URI | https://link.springer.com/article/10.1007/JHEP03(2020)101 https://www.proquest.com/docview/2378611907 https://www.proquest.com/docview/2543898012 https://www.osti.gov/servlets/purl/1799994 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9MwGLagExKXiU9RNiofOLQHa47j2O4JjaqlmqCaJirtFvkr3WFqNpIdduHMmd_Db-BH8Et4XzdhAgEXK5EjJfJr-3lsv3keQl4HGMwARIYpHnMmK-uZcU4yzkPlhJWFnuK_wx9WarmWJ-fFebfh1nRplf2cmCbqUHvcIz8SuTYqA_jSb66uGbpG4elqZ6Fxn-xlQmu0bjCLd79OEYCd8F7Oh-ujk-X8lOdjWO7zSda5wPRINKhhRP3GMv84GE14s3hE9juiSI93kX1M7sXtE_IgJWz65in5_L5Gp6GbgK5WtLkAFs0CckEIIvVI-tD7oW0okFIKJI9e2JBkcOllkg5xtyxd0JSr3ple0bam4w398eUrFZPv3yhu0tJLzBVnK0_P4mYTabLOaZ6R9WL-cbZknZcC87nSGcvyLBQyV9EHVUgZjLVORJ0BHxPArw031kB7aVE5o7g3osqks5W2NpionM2fk8G23sYXhAIHEgB7ZhorKasYbBDcSeUD90WVh-mQjPt2La92khllL468C0GJIcDksiE5wHYvAe1RstZjbo9vS1Spm07lkBz24Si7kdWUd_3g79UF2rkj7A7JpI_gXfU_vuPl_990QB7ik5h6lulDMmg_3cRXwEVaN0odbkT23s5Xp2dwNxMSSzUbpdU9lGtx_BO_e-O6 |
link.rule.ids | 230,315,781,785,865,886,12770,21393,27929,27930,33378,33749,41124,41125,41528,42193,42194,42597,43605,43810,51581,52238,52239,74040,74307 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFL2CqRBsEE8xbQEvWMwsrDqOEzsrBGiqoUxHVdVK3UV-ZbqoJoWki25Ys-Z7-AY-gi_B1-NQgYBdJCtK5Gv7nNgn5wC8cmEyByBStGQ-p6LRlipjBGXMNYZrUcgK_x0-XJbzU3FwVpylDbcuySqHNTEu1K61uEe-x3OpyizAl3x9-ZFiahSerqYIjduwFa2qRrD1drY8Ov51jhD4CRsMfZjcO5jPjlg-CR_8bJqlHJgBi0ZtmFO_8cw_jkYj4uw_gPuJKpI3m9o-hFt-_QjuRMmm7R7D50WLWUNXDnOtSHceeDR1yAZDGYlF2ofpD31HAi0lgeaRc-2iES65iOYh5prGCxLV6in2ivQtmazIjy9fCZ9-_0Zwm5ZcoFqcLi059quVJzE8p3sCp_uzk3dzmtIUqM1LmdEsz1wh8tJbVxZCOKW14V5mgZHxwLAVU1qF_pK8MapkVvEmE0Y3UmunfGl0_hRG63btnwEJLIgH4FOVb4RovNOOMyNK65gtmtxVY5gM_Vpfbkwz6sEeeVOCGkuA8rIx7GC_1wHv0bTWorrH9jX61FWVGMPuUI46za2uvhkJf28uMNAdgXcM06GCN83_eI_t_z_pJdydnxwu6sX75YcduId3oRAtk7sw6j9d-eeBmfTmRRp-PwH4POLs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLVgKhAbxFMdWsALFjMLq47jOM4K8ZjRUMpoVFGpu8jP6aKaFJIu2LBmzffwDXwEX8K9GYcKBOwiWXnI1_Y59j25h5BnHiYzAJFmioecyWgc09ZKxrmPVhhZlBX-O_xuqRYn8vC0OE36pzbJKoc1sV-ofePwjPxA5KVWGcBXeRCTLGL1ev784gNDBynMtCY7jetkB1CRw0Zs5-VsuTr-lVMArsKH4j7wlMPFbMXzCWz--TRLnjADLo0amF-_cc4_0qQ9-szvkNuJNtIX2zjfJdfC5h650cs3XXuffD5q0Hfo0qPHFW3PgFMzj8wQQkodUkB0guhaChSVAuWjZ8b3RXHpeV9IxH5i_QXtlevJAot2DZ2s6Y8vX6mYfv9G8ciWnqNynC0dPQ7rdaC9kU77gJzMZ-9fLVhyVmAuV2XGsjzzhcxVcF4VUnptjBWhzICdCWDbmmujob9KEa1W3GkRM2lNLI3xOihr8odktGk2YZdQYEQCQFBXIUoZgzdecCuV89wVMffVmEyGfq0vtgU06qFU8jYENYYApWZjsof9XgP2YwFbh0of19VYs66q5JjsD-Go0zxr66tR8ffmAs3dEYTHZDpE8Kr5H9_x6P9vekpuwsirj94s3-6RW3gTatKycp-Muo-X4TGQlM4-SaPvJ4Lk5yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+short-distance+constraints+for+the+hadronic+light-by-light+contribution+to+%28g+%E2%88%92+2%29%CE%BC+with+large-Nc+Regge+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Colangelo+Gilberto&rft.au=Hagelstein+Franziska&rft.au=Hoferichter+Martin&rft.au=Laub+Laetitia&rft.date=2020-03-17&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=3&rft_id=info:doi/10.1007%2FJHEP03%282020%29101&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |