A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation informatio...
Saved in:
Published in | Applied soft computing Vol. 43; pp. 117 - 130 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2016.01.044 |
Cover
Loading…
Abstract | The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation information. Therefore, the proposed method selects the subset of features with reduced redundancy.
•A hybrid feature selection method based on particle swarm optimization is proposed.•Our method uses a novel local search to enhance the search process near global optima.•The method efficiently finds the discriminative features with reduced correlations.•The size of final feature set is determined using a subset size detection scheme.•Our method is compared with well-known and state-of-the-art feature selection methods.
Feature selection has been widely used in data mining and machine learning tasks to make a model with a small number of features which improves the classifier's accuracy. In this paper, a novel hybrid feature selection algorithm based on particle swarm optimization is proposed. The proposed method called HPSO-LS uses a local search strategy which is embedded in the particle swarm optimization to select the less correlated and salient feature subset. The goal of the local search technique is to guide the search process of the particle swarm optimization to select distinct features by considering their correlation information. Moreover, the proposed method utilizes a subset size determination scheme to select a subset of features with reduced size. The performance of the proposed method has been evaluated on 13 benchmark classification problems and compared with five state-of-the-art feature selection methods. Moreover, HPSO-LS has been compared with four well-known filter-based methods including information gain, term variance, fisher score and mRMR and five well-known wrapper-based methods including genetic algorithm, particle swarm optimization, simulated annealing and ant colony optimization. The results demonstrated that the proposed method improves the classification accuracy compared with those of the filter based and wrapper-based feature selection methods. Furthermore, several performed statistical tests show that the proposed method's superiority over the other methods is statistically significant. |
---|---|
AbstractList | The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation information. Therefore, the proposed method selects the subset of features with reduced redundancy.
•A hybrid feature selection method based on particle swarm optimization is proposed.•Our method uses a novel local search to enhance the search process near global optima.•The method efficiently finds the discriminative features with reduced correlations.•The size of final feature set is determined using a subset size detection scheme.•Our method is compared with well-known and state-of-the-art feature selection methods.
Feature selection has been widely used in data mining and machine learning tasks to make a model with a small number of features which improves the classifier's accuracy. In this paper, a novel hybrid feature selection algorithm based on particle swarm optimization is proposed. The proposed method called HPSO-LS uses a local search strategy which is embedded in the particle swarm optimization to select the less correlated and salient feature subset. The goal of the local search technique is to guide the search process of the particle swarm optimization to select distinct features by considering their correlation information. Moreover, the proposed method utilizes a subset size determination scheme to select a subset of features with reduced size. The performance of the proposed method has been evaluated on 13 benchmark classification problems and compared with five state-of-the-art feature selection methods. Moreover, HPSO-LS has been compared with four well-known filter-based methods including information gain, term variance, fisher score and mRMR and five well-known wrapper-based methods including genetic algorithm, particle swarm optimization, simulated annealing and ant colony optimization. The results demonstrated that the proposed method improves the classification accuracy compared with those of the filter based and wrapper-based feature selection methods. Furthermore, several performed statistical tests show that the proposed method's superiority over the other methods is statistically significant. |
Author | Moradi, Parham Gholampour, Mozhgan |
Author_xml | – sequence: 1 givenname: Parham surname: Moradi fullname: Moradi, Parham email: p.moradi@uok.ac.ir – sequence: 2 givenname: Mozhgan surname: Gholampour fullname: Gholampour, Mozhgan email: mjgn.gholampour@gmail.com |
BookMark | eNp9kM1qAyEURqWk0CTtC3TlC8xUkxlHoZsQ-geBbtq1OHonMUw0qEmZPn1N2lUXWXnh-87FeyZo5LwDhO4pKSmh7GFbquh1OctzSWhJquoKjSlvZoVgnI7yXDNeVKJiN2gS45bkopjxMXILvBnaYA3eq5Cs7gHHLxV22O-T3dlvlax3uPMBd6DSIeT40EZIOEIP-hy2A7YuwTrkrltjhZ0_Qo97r1WfayroDY4pp7AebtF1p_oId3_vFH0-P30sX4vV-8vbcrEq9JyxVHRAaAO10kJooSrWEi5Ia4xRHKqmVqZqOioEA8OFYqzuBNSEQGPmQHhN-XyKZr97dfAxBujkPtidCoOkRJ6Mya08GZMnY5JQmY1liP-DtE1nAfn3tr-MPv6ikI86WggyagtOg7Eha5LG20v4D4_zjFk |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2946223 crossref_primary_10_1016_j_eswa_2021_114737 crossref_primary_10_1080_21681163_2020_1870001 crossref_primary_10_1016_j_neucom_2024_127729 crossref_primary_10_1007_s40747_023_01269_z crossref_primary_10_1093_comjnl_bxab089 crossref_primary_10_1186_s12859_021_04443_7 crossref_primary_10_3233_JIFS_191765 crossref_primary_10_3390_su142114101 crossref_primary_10_1016_j_swevo_2020_100663 crossref_primary_10_1007_s11042_023_16830_8 crossref_primary_10_3390_computation9060068 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1016_j_eswa_2025_127012 crossref_primary_10_1007_s00607_020_00891_w crossref_primary_10_7717_peerj_cs_2001 crossref_primary_10_1109_TETCI_2024_3425285 crossref_primary_10_1016_j_patcog_2020_107804 crossref_primary_10_3390_e21060602 crossref_primary_10_1109_TEVC_2021_3134804 crossref_primary_10_1016_j_jestch_2023_101453 crossref_primary_10_1016_j_eswa_2025_126737 crossref_primary_10_1007_s11277_023_10527_9 crossref_primary_10_1007_s40995_022_01395_2 crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_1016_j_knosys_2023_111102 crossref_primary_10_1016_j_swevo_2024_101743 crossref_primary_10_3390_fi12110180 crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_3390_app112412073 crossref_primary_10_1016_j_asoc_2021_107926 crossref_primary_10_1016_j_compbiomed_2021_104558 crossref_primary_10_1142_S0218488522500209 crossref_primary_10_1109_TCBB_2020_2974953 crossref_primary_10_1016_j_neucom_2023_127111 crossref_primary_10_1016_j_swevo_2021_100925 crossref_primary_10_1016_j_eswa_2018_09_015 crossref_primary_10_1007_s13369_020_04741_x crossref_primary_10_3390_app10041496 crossref_primary_10_1007_s12065_019_00279_6 crossref_primary_10_1155_2019_9132315 crossref_primary_10_1109_TNSE_2018_2856522 crossref_primary_10_1016_j_eswa_2024_123985 crossref_primary_10_1007_s12652_020_02803_4 crossref_primary_10_1016_j_knosys_2018_05_009 crossref_primary_10_32604_cmc_2023_033509 crossref_primary_10_1016_j_knosys_2022_109874 crossref_primary_10_1016_j_eswa_2020_113276 crossref_primary_10_1109_ACCESS_2018_2883537 crossref_primary_10_1016_j_ifacol_2018_09_311 crossref_primary_10_1109_ACCESS_2019_2942413 crossref_primary_10_1007_s12652_019_01364_5 crossref_primary_10_1080_00949655_2020_1822358 crossref_primary_10_1109_TCYB_2020_3042243 crossref_primary_10_1016_j_asoc_2020_106794 crossref_primary_10_1007_s40747_024_01763_y crossref_primary_10_1007_s11042_023_16035_z crossref_primary_10_1109_ACCESS_2019_2944641 crossref_primary_10_1016_j_jbi_2020_103466 crossref_primary_10_1016_j_eswa_2021_114778 crossref_primary_10_25092_baunfbed_1469682 crossref_primary_10_3390_math10152742 crossref_primary_10_1016_j_swevo_2023_101278 crossref_primary_10_1016_j_asoc_2019_105957 crossref_primary_10_1016_j_future_2020_08_019 crossref_primary_10_3233_JIFS_200937 crossref_primary_10_1016_j_eswa_2022_116550 crossref_primary_10_15672_hujms_1346686 crossref_primary_10_3390_app122211795 crossref_primary_10_1007_s00521_023_08936_9 crossref_primary_10_1016_j_eswa_2020_113572 crossref_primary_10_1155_2021_2213194 crossref_primary_10_36548_jscp_2020_4_001 crossref_primary_10_1016_j_jocs_2023_101942 crossref_primary_10_1016_j_asoc_2018_01_032 crossref_primary_10_1051_matecconf_201925502004 crossref_primary_10_1109_ACCESS_2021_3108097 crossref_primary_10_3390_s16081204 crossref_primary_10_1016_j_future_2018_10_008 crossref_primary_10_1080_24751839_2018_1423792 crossref_primary_10_1007_s10710_019_09358_0 crossref_primary_10_1007_s11227_019_02888_5 crossref_primary_10_1007_s12652_019_01570_1 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1016_j_ejor_2024_12_036 crossref_primary_10_3390_math10132351 crossref_primary_10_1007_s00521_020_05483_5 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_1111_exsy_12786 crossref_primary_10_1038_s41598_022_18993_0 crossref_primary_10_1016_j_heliyon_2021_e07356 crossref_primary_10_1016_j_knosys_2021_106894 crossref_primary_10_1093_comjnl_bxac114 crossref_primary_10_3390_en12040689 crossref_primary_10_1016_j_neucom_2019_01_011 crossref_primary_10_1016_j_eswa_2023_122701 crossref_primary_10_1080_09540091_2019_1609419 crossref_primary_10_3390_a16090413 crossref_primary_10_1016_j_eswa_2023_122147 crossref_primary_10_4018_IJWP_2019070101 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_3233_JIFS_202647 crossref_primary_10_3390_s21051816 crossref_primary_10_1155_2022_1825341 crossref_primary_10_1109_JSAC_2019_2904359 crossref_primary_10_1007_s00521_020_05665_1 crossref_primary_10_1007_s13042_020_01174_8 crossref_primary_10_1109_ACCESS_2019_2922987 crossref_primary_10_1007_s12293_022_00354_z crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1016_j_dsm_2023_10_003 crossref_primary_10_4018_IJAMC_2022010104 crossref_primary_10_1016_j_asoc_2017_04_061 crossref_primary_10_1109_ACCESS_2021_3097206 crossref_primary_10_1016_j_knosys_2018_05_042 crossref_primary_10_1093_jcde_qwac120 crossref_primary_10_1016_j_asoc_2023_110828 crossref_primary_10_1002_clen_201700162 crossref_primary_10_3390_e24070890 crossref_primary_10_1016_j_asoc_2017_08_051 crossref_primary_10_1016_j_eswa_2024_123337 crossref_primary_10_3390_math10030464 crossref_primary_10_1007_s12652_024_04853_4 crossref_primary_10_1002_cpe_8153 crossref_primary_10_4018_IJIIT_289966 crossref_primary_10_1007_s00521_016_2817_3 crossref_primary_10_1016_j_neucom_2017_04_053 crossref_primary_10_1109_ACCESS_2023_3298955 crossref_primary_10_1016_j_asoc_2019_04_037 crossref_primary_10_1016_j_anucene_2018_07_011 crossref_primary_10_1016_j_jksuci_2023_101704 crossref_primary_10_1038_s41598_019_54987_1 crossref_primary_10_1007_s11042_025_20643_2 crossref_primary_10_1016_j_ins_2016_08_047 crossref_primary_10_4018_IJCAC_2017010104 crossref_primary_10_1007_s12652_019_01624_4 crossref_primary_10_1109_TII_2021_3067719 crossref_primary_10_1155_2019_9517568 crossref_primary_10_1007_s11042_020_09013_2 crossref_primary_10_1016_j_asoc_2023_111141 crossref_primary_10_1007_s12559_020_09739_z crossref_primary_10_1016_j_asoc_2017_04_042 crossref_primary_10_1016_j_eswa_2019_03_039 crossref_primary_10_1016_j_asoc_2020_107026 crossref_primary_10_1109_ACCESS_2019_2900078 crossref_primary_10_1109_TCYB_2022_3163577 crossref_primary_10_3390_sym13101812 crossref_primary_10_1155_2019_6086089 crossref_primary_10_1038_s41598_024_71726_3 crossref_primary_10_1016_j_eswa_2022_118762 crossref_primary_10_1088_1742_6596_1192_1_012038 crossref_primary_10_1186_s12911_021_01696_3 crossref_primary_10_1007_s00779_018_1156_z crossref_primary_10_1016_j_jksuci_2018_12_001 crossref_primary_10_1186_s12859_022_04962_x crossref_primary_10_1109_TSMC_2024_3446624 crossref_primary_10_1109_TEVC_2022_3149601 crossref_primary_10_1155_2022_2856818 crossref_primary_10_1109_TEVC_2020_2968743 crossref_primary_10_1016_j_eswa_2021_115756 crossref_primary_10_1016_j_patrec_2017_12_025 crossref_primary_10_1109_ACCESS_2020_3029728 crossref_primary_10_1007_s42979_021_00687_5 crossref_primary_10_1038_s41598_025_88277_w crossref_primary_10_1109_ACCESS_2022_3174854 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1016_j_jksuci_2021_04_010 crossref_primary_10_1007_s11227_023_05145_y crossref_primary_10_1016_j_eswa_2024_125084 crossref_primary_10_1109_ACCESS_2019_2906757 crossref_primary_10_1007_s42979_024_03396_x crossref_primary_10_1016_j_asoc_2021_107302 crossref_primary_10_1109_TCSS_2020_3007769 crossref_primary_10_1142_S0219467822500450 crossref_primary_10_1007_s42452_020_2426_8 crossref_primary_10_3390_biomimetics8030310 crossref_primary_10_1007_s13369_021_05478_x crossref_primary_10_3233_IDA_173735 crossref_primary_10_1016_j_chemolab_2018_10_009 crossref_primary_10_1007_s10207_023_00684_0 crossref_primary_10_1186_s12859_022_04848_y crossref_primary_10_1038_s41598_017_00416_0 crossref_primary_10_1016_j_asoc_2021_107599 crossref_primary_10_1016_j_asoc_2017_05_049 crossref_primary_10_1007_s10489_018_1261_8 crossref_primary_10_1016_j_asoc_2018_06_019 crossref_primary_10_1007_s00521_019_04171_3 crossref_primary_10_1016_j_asoc_2020_106402 crossref_primary_10_1016_j_engappai_2017_12_014 crossref_primary_10_1016_j_future_2024_02_017 crossref_primary_10_1007_s12559_022_10022_6 crossref_primary_10_1016_j_asoc_2018_07_040 crossref_primary_10_1016_j_jksuci_2019_11_007 crossref_primary_10_1109_ACCESS_2019_2919956 crossref_primary_10_3390_rs12091449 crossref_primary_10_1016_j_knosys_2022_108640 crossref_primary_10_1016_j_physa_2017_08_048 crossref_primary_10_1109_ACCESS_2020_2988157 crossref_primary_10_1016_j_inffus_2018_03_003 crossref_primary_10_1016_j_eswa_2020_113176 crossref_primary_10_3390_molecules23071569 crossref_primary_10_1109_ACCESS_2019_2897325 crossref_primary_10_1016_j_swevo_2025_101846 crossref_primary_10_1007_s00521_023_08400_8 crossref_primary_10_3390_app11146516 crossref_primary_10_1080_0952813X_2022_2067248 crossref_primary_10_1007_s00521_021_06705_0 crossref_primary_10_1007_s12559_019_09668_6 crossref_primary_10_1007_s00521_024_10611_6 crossref_primary_10_1016_j_asoc_2020_106994 crossref_primary_10_1016_j_bbe_2018_08_004 crossref_primary_10_32604_cmc_2023_033039 crossref_primary_10_1109_ACCESS_2021_3076130 crossref_primary_10_1007_s00521_022_07836_8 crossref_primary_10_1016_j_ins_2023_120011 crossref_primary_10_1016_j_eswa_2020_113185 crossref_primary_10_3390_rs15041096 crossref_primary_10_3390_pr12020313 crossref_primary_10_1007_s11227_021_03697_5 crossref_primary_10_1007_s00521_022_07678_4 crossref_primary_10_1109_ACCESS_2019_2953298 crossref_primary_10_1109_TAI_2022_3144651 crossref_primary_10_1007_s11063_024_11440_3 crossref_primary_10_1007_s11063_023_11159_7 crossref_primary_10_1016_j_asoc_2021_107698 crossref_primary_10_1007_s00500_018_3282_y crossref_primary_10_1007_s10489_021_02233_5 crossref_primary_10_3390_s22041396 crossref_primary_10_1007_s10489_017_0924_1 crossref_primary_10_32604_cmc_2024_057874 crossref_primary_10_1109_ACCESS_2021_3112169 crossref_primary_10_1080_0305215X_2018_1525709 crossref_primary_10_1016_j_eswa_2020_113873 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1111_exsy_13002 crossref_primary_10_1007_s11277_021_09196_3 crossref_primary_10_1186_s12859_019_3161_2 crossref_primary_10_1007_s00521_016_2528_9 crossref_primary_10_1109_ACCESS_2020_3000040 crossref_primary_10_1016_j_compbiomed_2021_105051 crossref_primary_10_1016_j_asoc_2023_110549 crossref_primary_10_1109_ACCESS_2019_2909945 crossref_primary_10_1016_j_swevo_2022_101165 crossref_primary_10_1080_19393555_2020_1767240 |
Cites_doi | 10.1166/jbic.2012.1002 10.1016/j.asoc.2007.10.012 10.1016/j.patrec.2006.09.003 10.1016/j.eswa.2011.09.073 10.1109/5254.671091 10.1016/j.asoc.2013.09.018 10.1016/j.eswa.2007.01.014 10.1016/j.patcog.2011.12.008 10.1166/jbic.2012.1009 10.1016/j.asoc.2012.03.027 10.1016/j.asoc.2012.11.042 10.1109/TPAMI.2007.1093 10.1016/j.asoc.2009.11.014 10.1016/j.engappai.2015.05.005 10.1016/j.ins.2010.05.037 10.1093/bioinformatics/btm344 10.1016/S1672-6529(11)60020-6 10.1016/j.engappai.2008.04.003 10.1016/S1088-467X(97)00008-5 10.1016/j.asoc.2013.03.021 10.1016/j.eswa.2008.08.022 10.1109/TKDE.2005.66 10.1016/S1672-0229(08)60050-9 10.1016/j.eswa.2011.04.165 10.1016/j.eswa.2011.04.057 10.1016/j.engappai.2014.03.007 10.1166/jbic.2013.1043 10.1016/S0167-8655(02)00081-8 10.1016/j.eswa.2006.04.010 10.1214/aoms/1177731944 10.1016/j.patcog.2005.09.002 10.1016/j.patrec.2007.05.011 10.1109/TPAMI.2005.159 10.1016/j.patrec.2005.12.018 10.1016/j.neucom.2011.03.034 10.1016/j.asoc.2007.10.007 10.1016/j.engappai.2012.12.009 10.1016/j.cmpb.2013.10.007 10.1016/j.knosys.2015.04.007 10.1016/j.patcog.2012.04.015 10.1016/j.patcog.2015.03.020 10.1016/j.patcog.2009.06.009 10.1016/j.aei.2005.01.004 10.1016/j.neucom.2015.05.022 10.1016/j.eswa.2007.08.088 10.1016/j.ejor.2006.02.040 10.1109/TSMCB.2012.2227469 10.1504/IJBIC.2012.047181 10.1016/j.eswa.2007.11.062 10.1016/j.asoc.2010.08.020 10.1016/j.patrec.2008.02.006 10.1016/j.swevo.2011.06.001 10.1016/j.eswa.2009.02.055 10.1016/j.cmpb.2010.12.004 10.1504/IJBIC.2012.048065 10.1111/j.2517-6161.1974.tb00994.x 10.1023/A:1012487302797 10.1016/j.knosys.2011.04.014 10.1016/j.knosys.2011.04.006 10.1023/B:AMAI.0000018580.96245.c6 10.1016/j.neucom.2010.04.003 10.1016/j.ejor.2004.09.010 10.1016/j.amc.2008.05.115 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2016.01.044 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 130 |
ExternalDocumentID | 10_1016_j_asoc_2016_01_044 S1568494616300321 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-fe017e5ac99c9a46b0890bddda8e475ad47f1996ed89a665f9e500e7d3e085183 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:49:55 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Local search Feature selection Particle swarm optimization Correlation information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-fe017e5ac99c9a46b0890bddda8e475ad47f1996ed89a665f9e500e7d3e085183 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2016_01_044 crossref_citationtrail_10_1016_j_asoc_2016_01_044 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_01_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huan, Lei (bib0770) 2005; 17 Sikora, Piramuthu (bib0950) 2007; 180 Canuto, Vale, Feitos, Signoretti (bib0655) 2012; 12 Inbarani, Azar, Jothi (bib1015) 2014; 113 Liu, Wang, Chen, Dong, Zhu, Wang (bib0815) 2011; 8 García-Gonzalo, Fernández-Martínez (bib0835) 2012; 1 Hamdani, Won, Alimi, Karray (bib0790) 2011; 11 Lin, Tseng, Chou, Chen (bib0870) 2008; 34 Boubezoul, Paris (bib1035) 2012; 45 Ali, Sabat (bib0840) 2012; 1 Talbi, Jourdan, Garcia-Nieto, Alba (bib0895) 2008 Uğuz (bib0570) 2011; 24 Ke, Feng, Ren (bib0635) 2008; 29 Sun (bib0645) 2007; 29 Huang, Dun (bib0830) 2008; 8 Peng, Long, Ding (bib0940) 2005; 27 Salehi Maleh, Soleymani, Rasouli Nezhad, Ghadimi (bib0845) 2013; 2 Liu, Motoda (bib0625) 2007 Tabakhi, Najafi, Ranjbar, Moradi (bib0595) 2015 Friedman (bib1085) 1940; 11 Muni, Pal, Das (bib0700) 2006; 36 Gheyas, Smith (bib0620) 2010; 43 Xue, Zhang, Browne (bib1005) 2013; 43 Yang, Honavar (bib0955) 1998; 13 Ramezani, Moradi, Tab (bib0610) 2013 Xue, Zhang, Browne (bib1010) 2014; 18 Tabakhi, Moradi (bib0665) 2015; 48 Kabir, Shahjahan, Murase (bib0750) 2012; 39 Xue, Zhang, Browne (bib0825) 2014 Yu, Liu (bib0910) 2003 Liu, Yu (bib0550) 2005; 17 Moradi, Rostami (bib0670) 2015; 44 Lipo, Nina, Feng (bib0720) 2008; 19 Wang, Yang, Teng, Xia, Jensen (bib0650) 2007; 28 Chakraborty, Pal (bib0735) 2004; 15 Resnick, Iacovou, Suchak, Bergstrom, Riedl (bib1055) 1994 Kuri-Morales, Rodríguez-Erazo (bib0615) 2009; 22 Lin, Lee, Chen, Tseng (bib0880) 2008; 8 Farmer, Bapna, Jain (bib0960) 2004 Chuang, Yang, Li (bib0805) 2011; 11 Xiaofei, Deng Cai, Niyogi1 (bib0930) 2005; 18 Gasca, Sánchez, Alonso (bib0685) 2006; 39 Guyon (bib0560) 2003; 3 Jiang, Bo, Song, Bao (bib1020) 2012 Priya, Lakshmi (bib0855) 2012; 4 Abe (bib0680) 2005 Stone (bib1060) 1974; 36 Yang, Liu, Liu, Zhu, Zhang (bib0565) 2011; 24 Saeys, Inza, Larrañaga (bib0775) 2007; 23 Newman, Blake, Merz (bib1065) 1998 Kennedy, Eberhart (bib1040) 1997; 4105 Guyon, Weston, Barnhill, Vapnik (bib0785) 2002; 46 Mauricio Schiezaro, Pedrini (bib0975) 2013; 47 Huang, Tsai (bib0600) 2009; 36 Aghdam, Ghasem-Aghaee, Basiri (bib0865) 2009; 36 Panda, Naik, Panigrahi (bib0885) 2011; 1 Ferreira, Figueiredo (bib0945) 2012; 45 Kabir, Shahjahan, Murase (bib1050) 2011; 74 Lai, Reinders, Wessels (bib0760) 2006; 27 Forsati, Moayedikia, Keikha (bib0970) 2012; 43 (bib1080) 1977 Moradi, Rostami (bib0675) 2015; 84 Chang, Lin, Liu (bib1025) 2012; 107 Unler, Murat, Chinnam (bib0555) 2011; 181 Yan, Yuan (bib0580) 2004 Bergh (bib1045) 2002 Escalante, Montes, Sucar (bib0905) 2009; 10 Kennedy, Eberhart (bib0990) 1995 Rostami, Moradi (bib0795) 2014 Chuang, Yang, Wu, Yang (bib1070) 2011; 38 Skalak (bib0965) 1994 Hall (bib0630) 2000 Kabir, Islam, Murase (bib0780) 2010; 73 Chang (bib0890) 2009; 5 Meiri, Zahavi (bib0875) 2006; 171 Clerc, Kennedy (bib0810) 2002; 6 Dash, Liu (bib0765) 1997; 1 Marinakis, Marinaki, Doumpos, Zopounidis (bib0605) 2009; 36 Mitchell (bib0915) 1997 Huang, Cai, Xu (bib0740) 2007; 28 Theodoridis, Koutroumbas (bib0920) 2008 Fu, Glover, April (bib1030) 2005 Raileanu, Stoffel (bib0925) 2004; 41 Lin, Ying, Chen, Lee (bib0900) 2008; 35 Elbeltagi, Hegazy, Grierson (bib1000) 2005; 19 Abdelsalam, Mohamed (bib0860) 2012; 4 Kanan, Faez (bib0575) 2008; 205 Sanjay Singla, Rai, Priti (bib0980) 2011; 37 Chun-Nan, Hung-Ju, Dietrich (bib0695) 2002; 32 Sivagaminathan, Ramakrishnan (bib0710) 2007; 33 Verikas, Bacauskiene (bib0715) 2002; 23 Keikhab (bib0755) 2012; 43 Yu, Wu, Wang, Chen (bib1075) 2010 Yang (bib0725) 1998; 13 Tabakhi, Moradi, Akhlaghian (bib0660) 2014; 32 Chuang, Tsai, Yang (bib0800) 2011; 38 Cui, Zeng, Yin (bib0850) 2010; 16 Guan, Liu, Qi (bib0690) 2004 Yu, Gu, Liu, Shen, Zhao (bib0585) 2009; 7 Bhimsen Tudu, Kamal, Mandal, Niladri (bib0985) 2011 Vieira, Mendonça, Farinha, Sousa (bib0820) 2013; 13 Romero, Sopena (bib0705) 2008; 19 Ghosh, Datta, Ghosh (bib0730) 2013; 13 Eberhart, Kennedy (bib0995) 1995 Zibakhsh, Abadeh (bib0590) 2013; 26 Yang, Honavar (bib0640) 1998; 13 Gu, Li, Han (bib0935) 2011 Il-Seok, Jin-Seon, Byung-Ro (bib0745) 2004; 26 Kabir (10.1016/j.asoc.2016.01.044_bib1050) 2011; 74 Uğuz (10.1016/j.asoc.2016.01.044_bib0570) 2011; 24 Forsati (10.1016/j.asoc.2016.01.044_bib0970) 2012; 43 Aghdam (10.1016/j.asoc.2016.01.044_bib0865) 2009; 36 Liu (10.1016/j.asoc.2016.01.044_bib0815) 2011; 8 Inbarani (10.1016/j.asoc.2016.01.044_bib1015) 2014; 113 Huang (10.1016/j.asoc.2016.01.044_bib0600) 2009; 36 Clerc (10.1016/j.asoc.2016.01.044_bib0810) 2002; 6 Bergh (10.1016/j.asoc.2016.01.044_bib1045) 2002 Stone (10.1016/j.asoc.2016.01.044_bib1060) 1974; 36 Tabakhi (10.1016/j.asoc.2016.01.044_bib0595) 2015 Xiaofei (10.1016/j.asoc.2016.01.044_bib0930) 2005; 18 Liu (10.1016/j.asoc.2016.01.044_bib0625) 2007 Marinakis (10.1016/j.asoc.2016.01.044_bib0605) 2009; 36 Boubezoul (10.1016/j.asoc.2016.01.044_bib1035) 2012; 45 Resnick (10.1016/j.asoc.2016.01.044_bib1055) 1994 Chakraborty (10.1016/j.asoc.2016.01.044_bib0735) 2004; 15 Il-Seok (10.1016/j.asoc.2016.01.044_bib0745) 2004; 26 Jiang (10.1016/j.asoc.2016.01.044_bib1020) 2012 Chang (10.1016/j.asoc.2016.01.044_bib1025) 2012; 107 Lin (10.1016/j.asoc.2016.01.044_bib0880) 2008; 8 Kabir (10.1016/j.asoc.2016.01.044_bib0780) 2010; 73 Zibakhsh (10.1016/j.asoc.2016.01.044_bib0590) 2013; 26 Abdelsalam (10.1016/j.asoc.2016.01.044_bib0860) 2012; 4 Fu (10.1016/j.asoc.2016.01.044_bib1030) 2005 Bhimsen Tudu (10.1016/j.asoc.2016.01.044_bib0985) 2011 Yang (10.1016/j.asoc.2016.01.044_bib0725) 1998; 13 Mitchell (10.1016/j.asoc.2016.01.044_bib0915) 1997 Guyon (10.1016/j.asoc.2016.01.044_bib0560) 2003; 3 Panda (10.1016/j.asoc.2016.01.044_bib0885) 2011; 1 (10.1016/j.asoc.2016.01.044_bib1080) 1977 Priya (10.1016/j.asoc.2016.01.044_bib0855) 2012; 4 Chuang (10.1016/j.asoc.2016.01.044_bib1070) 2011; 38 Yang (10.1016/j.asoc.2016.01.044_bib0955) 1998; 13 Chang (10.1016/j.asoc.2016.01.044_bib0890) 2009; 5 Newman (10.1016/j.asoc.2016.01.044_bib1065) 1998 Canuto (10.1016/j.asoc.2016.01.044_bib0655) 2012; 12 Xue (10.1016/j.asoc.2016.01.044_bib1005) 2013; 43 Ramezani (10.1016/j.asoc.2016.01.044_bib0610) 2013 Kennedy (10.1016/j.asoc.2016.01.044_bib1040) 1997; 4105 Lin (10.1016/j.asoc.2016.01.044_bib0900) 2008; 35 Kennedy (10.1016/j.asoc.2016.01.044_bib0990) 1995 Chuang (10.1016/j.asoc.2016.01.044_bib0800) 2011; 38 Xue (10.1016/j.asoc.2016.01.044_bib1010) 2014; 18 Muni (10.1016/j.asoc.2016.01.044_bib0700) 2006; 36 Verikas (10.1016/j.asoc.2016.01.044_bib0715) 2002; 23 Chuang (10.1016/j.asoc.2016.01.044_bib0805) 2011; 11 Yu (10.1016/j.asoc.2016.01.044_bib0585) 2009; 7 Yang (10.1016/j.asoc.2016.01.044_bib0565) 2011; 24 Sikora (10.1016/j.asoc.2016.01.044_bib0950) 2007; 180 Peng (10.1016/j.asoc.2016.01.044_bib0940) 2005; 27 Ghosh (10.1016/j.asoc.2016.01.044_bib0730) 2013; 13 Lai (10.1016/j.asoc.2016.01.044_bib0760) 2006; 27 Raileanu (10.1016/j.asoc.2016.01.044_bib0925) 2004; 41 Dash (10.1016/j.asoc.2016.01.044_bib0765) 1997; 1 Romero (10.1016/j.asoc.2016.01.044_bib0705) 2008; 19 Kanan (10.1016/j.asoc.2016.01.044_bib0575) 2008; 205 Huang (10.1016/j.asoc.2016.01.044_bib0740) 2007; 28 Xue (10.1016/j.asoc.2016.01.044_bib0825) 2014 Lin (10.1016/j.asoc.2016.01.044_bib0870) 2008; 34 Yang (10.1016/j.asoc.2016.01.044_bib0640) 1998; 13 Wang (10.1016/j.asoc.2016.01.044_bib0650) 2007; 28 Theodoridis (10.1016/j.asoc.2016.01.044_bib0920) 2008 Yu (10.1016/j.asoc.2016.01.044_bib0910) 2003 Eberhart (10.1016/j.asoc.2016.01.044_bib0995) 1995 Farmer (10.1016/j.asoc.2016.01.044_bib0960) 2004 Gheyas (10.1016/j.asoc.2016.01.044_bib0620) 2010; 43 Hamdani (10.1016/j.asoc.2016.01.044_bib0790) 2011; 11 Huan (10.1016/j.asoc.2016.01.044_bib0770) 2005; 17 Moradi (10.1016/j.asoc.2016.01.044_bib0675) 2015; 84 Abe (10.1016/j.asoc.2016.01.044_bib0680) 2005 Gu (10.1016/j.asoc.2016.01.044_bib0935) 2011 Sivagaminathan (10.1016/j.asoc.2016.01.044_bib0710) 2007; 33 Huang (10.1016/j.asoc.2016.01.044_bib0830) 2008; 8 Sanjay Singla (10.1016/j.asoc.2016.01.044_bib0980) 2011; 37 Lipo (10.1016/j.asoc.2016.01.044_bib0720) 2008; 19 Cui (10.1016/j.asoc.2016.01.044_bib0850) 2010; 16 Ferreira (10.1016/j.asoc.2016.01.044_bib0945) 2012; 45 García-Gonzalo (10.1016/j.asoc.2016.01.044_bib0835) 2012; 1 Salehi Maleh (10.1016/j.asoc.2016.01.044_bib0845) 2013; 2 Gasca (10.1016/j.asoc.2016.01.044_bib0685) 2006; 39 Kuri-Morales (10.1016/j.asoc.2016.01.044_bib0615) 2009; 22 Keikhab (10.1016/j.asoc.2016.01.044_bib0755) 2012; 43 Escalante (10.1016/j.asoc.2016.01.044_bib0905) 2009; 10 Ke (10.1016/j.asoc.2016.01.044_bib0635) 2008; 29 Friedman (10.1016/j.asoc.2016.01.044_bib1085) 1940; 11 Guan (10.1016/j.asoc.2016.01.044_bib0690) 2004 Kabir (10.1016/j.asoc.2016.01.044_bib0750) 2012; 39 Liu (10.1016/j.asoc.2016.01.044_bib0550) 2005; 17 Rostami (10.1016/j.asoc.2016.01.044_bib0795) 2014 Tabakhi (10.1016/j.asoc.2016.01.044_bib0660) 2014; 32 Meiri (10.1016/j.asoc.2016.01.044_bib0875) 2006; 171 Vieira (10.1016/j.asoc.2016.01.044_bib0820) 2013; 13 Saeys (10.1016/j.asoc.2016.01.044_bib0775) 2007; 23 Mauricio Schiezaro (10.1016/j.asoc.2016.01.044_bib0975) 2013; 47 Yu (10.1016/j.asoc.2016.01.044_bib1075) 2010 Yan (10.1016/j.asoc.2016.01.044_bib0580) 2004 Moradi (10.1016/j.asoc.2016.01.044_bib0670) 2015; 44 Chun-Nan (10.1016/j.asoc.2016.01.044_bib0695) 2002; 32 Ali (10.1016/j.asoc.2016.01.044_bib0840) 2012; 1 Guyon (10.1016/j.asoc.2016.01.044_bib0785) 2002; 46 Sun (10.1016/j.asoc.2016.01.044_bib0645) 2007; 29 Tabakhi (10.1016/j.asoc.2016.01.044_bib0665) 2015; 48 Hall (10.1016/j.asoc.2016.01.044_bib0630) 2000 Talbi (10.1016/j.asoc.2016.01.044_bib0895) 2008 Unler (10.1016/j.asoc.2016.01.044_bib0555) 2011; 181 Elbeltagi (10.1016/j.asoc.2016.01.044_bib1000) 2005; 19 Skalak (10.1016/j.asoc.2016.01.044_bib0965) 1994 |
References_xml | – volume: 1 start-page: 95 year: 2012 end-page: 105 ident: bib0840 article-title: Particle swarm optimization based universal solver for global optimization publication-title: J. Bioinformatics Intell. Control – volume: 36 start-page: 6843 year: 2009 end-page: 6853 ident: bib0865 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. – start-page: 287 year: 2004 end-page: 290 ident: bib0960 article-title: Large scale feature selection using modified random mutation hill climbing publication-title: In: 17th International Conference on Pattern Recognition – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: bib1060 article-title: Cross validation choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. B – volume: 39 start-page: 3747 year: 2012 end-page: 3763 ident: bib0750 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. – volume: 45 start-page: 3048 year: 2012 end-page: 3060 ident: bib0945 article-title: An unsupervised approach to feature discretization and selection publication-title: Pattern Recogn. – volume: 43 start-page: 5 year: 2010 end-page: 13 ident: bib0620 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recogn. – start-page: 45 year: 2008 end-page: 52 ident: bib0895 article-title: Comparison of population based metaheuristics for feature selection: application to microarray data classification publication-title: In: Computer Systems and Applications, 2008. AICCSA 2008 IEEE/ACS International Conference on – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: bib0900 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. – start-page: 856 year: 2003 end-page: 863 ident: bib0910 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: In: Proceedings of the 20th International Conference on Machine Learning – volume: 33 start-page: 49 year: 2007 end-page: 60 ident: bib0710 article-title: A hybrid approach for feature subset selection using neural networks and ant colony optimization publication-title: Expert Syst. Appl. – volume: 19 start-page: 431 year: 2008 end-page: 441 ident: bib0705 article-title: Performing feature selection with multilayer perceptrons, neural networks publication-title: IEEE Trans. – volume: 29 start-page: 1351 year: 2008 end-page: 1357 ident: bib0635 article-title: An efficient ant colony optimization approach to attribute reduction in rough set theory publication-title: Pattern Recogn. Lett. – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: bib0550 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Know. Data Eng. – start-page: 15 year: 2004 end-page: 44 ident: bib0690 article-title: An incremental approach to contribution-based feature selection publication-title: J. Intell. Syst. – year: 2008 ident: bib0920 article-title: Pattern Recognition – volume: 4105 start-page: 4104 year: 1997 end-page: 4108 ident: bib1040 article-title: A discrete binary version of the particle swarm algorithm publication-title: In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on – start-page: 221 year: 2004 end-page: 226 ident: bib0580 article-title: Ant colony optimization for feature selection in face recognition publication-title: In: Biometric Authentication – volume: 11 start-page: 2501 year: 2011 end-page: 2509 ident: bib0790 article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate publication-title: Appl. Soft Comput. – volume: 15 start-page: 110 year: 2004 end-page: 123 ident: bib0735 article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, neural networks publication-title: IEEE Trans. – volume: 47 start-page: 2013 year: 2013 ident: bib0975 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. – volume: 27 start-page: 1067 year: 2006 end-page: 1076 ident: bib0760 article-title: Random subspace method for multivariate feature selection publication-title: Pattern Recogn. Lett. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0810 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, evolutionary computation publication-title: IEEE Trans. – volume: 22 start-page: 57 year: 2009 end-page: 65 ident: bib0615 article-title: A search space reduction methodology for data mining in large databases publication-title: Eng. Appl. Artif. Intell. – volume: 13 start-page: 3494 year: 2013 end-page: 3504 ident: bib0820 article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients publication-title: Appl. Soft Comput. – volume: 26 start-page: 1424 year: 2004 end-page: 1437 ident: bib0745 article-title: Hybrid genetic algorithms for feature selection, pattern analysis and machine intelligence publication-title: IEEE Trans. – volume: 28 start-page: 459 year: 2007 end-page: 471 ident: bib0650 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recogn. Lett. – volume: 11 start-page: 239 year: 2011 end-page: 248 ident: bib0805 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. – year: 2014 ident: bib0825 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. – start-page: 607 year: 2012 end-page: 614 ident: bib1020 article-title: Hybrid algorithm based on particle swarm optimization and artificial fish swarm algorithm publication-title: Advances in Neural Networks–ISNN 2012 – start-page: 1942 year: 1995 end-page: 1948 ident: bib0990 article-title: Particle swarm optimization publication-title: In: Proceedings IEEE International Conference on Neural Networks – volume: 113 start-page: 175 year: 2014 end-page: 185 ident: bib1015 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Meth. Prog. Biomed. – start-page: 163 year: 2005 end-page: 168 ident: bib0680 article-title: Modified backward feature selection by cross validation publication-title: Proceedings of the European Symposium on Artificial Neural Networks – year: 1997 ident: bib0915 article-title: Machine Learning – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: bib0765 article-title: Feature selection for classification publication-title: Intell. Data Anal. – volume: 5 start-page: 5069 year: 2009 end-page: 5079 ident: bib0890 article-title: A performance comparison between genetic algorithms and particle swarm optimization applied in constructing equity portfolios publication-title: Int. J. Innovative Comput. Inform. Control – volume: 26 start-page: 1274 year: 2013 end-page: 1281 ident: bib0590 article-title: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function publication-title: Eng. Appl. Artif. Intell. – volume: 171 start-page: 842 year: 2006 end-page: 858 ident: bib0875 article-title: Using simulated annealing to optimize the feature selection problem in marketing applications publication-title: Eur. J. Oper. Res. – year: 2015 ident: bib0595 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing – start-page: 39 year: 1995 end-page: 43 ident: bib0995 article-title: A new optimizer using particle swarm theory publication-title: in: Micro Machine and Human Science, 1995 MHS ‘95., Proceedings of the Sixth International Symposium on – volume: 4 start-page: 206 year: 2012 end-page: 216 ident: bib0855 article-title: Particle swarm optimisation applied to real time control of spherical tank system publication-title: Int. J. Bio-Inspired Comput. – volume: 19 start-page: 43 year: 2005 end-page: 53 ident: bib1000 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Adv. Eng. Inform. – volume: 73 start-page: 3273 year: 2010 end-page: 3283 ident: bib0780 article-title: A new wrapper feature selection approach using neural network publication-title: Neurocomputer – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0940 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 151 year: 2011 end-page: 158 ident: bib0985 article-title: Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system publication-title: SEMCCO’11 Proceedings of the Second international conference on Swarm, Evolutionary, and Memetic Computing, Part I (Berlin, Heidelberg) – start-page: 1 year: 2002 ident: bib1045 article-title: An Analysis of Particle Swarm Optimizers – volume: 23 start-page: 1323 year: 2002 end-page: 1335 ident: bib0715 article-title: Feature selection with neural networks publication-title: Pattern Recogn. Lett. – volume: 4 start-page: 100 year: 2012 end-page: 110 ident: bib0860 article-title: Optimal sequencing of design projects’ activities using discrete particle swarm optimisation publication-title: Int. J. Bio-Inspired Comput. – volume: 12 start-page: 2517 year: 2012 end-page: 2529 ident: bib0655 article-title: ReinSel: a class-based mechanism for feature selection in ensemble of classifiers publication-title: Appl. Soft Comput. – start-page: 112 year: 2014 end-page: 116 ident: bib0795 article-title: A clustering based genetic algorithm for feature selection publication-title: In: Information and Knowledge Technology (IKT), 2014 6th Conference on, IEEE – volume: 34 start-page: 1491 year: 2008 end-page: 1499 ident: bib0870 article-title: A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks publication-title: Expert Syst. Appl. – year: 2007 ident: bib0625 article-title: Computational Methods of Feature Selection – volume: 37 start-page: 15 year: 2011 end-page: 26 ident: bib0980 article-title: A hybrid PSO approach to automate test data generation for data flow coverage with dominance concepts publication-title: Int. J. Adv. Sci. Technol. – volume: 38 start-page: 12699 year: 2011 end-page: 12707 ident: bib0800 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: bib0830 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: bib1085 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – start-page: 293 year: 1994 end-page: 301 ident: bib0965 article-title: Prototype and feature selection by sampling and random mutation hill climbing algorithms publication-title: In: 11th International Conference on Machine Learning – volume: 13 start-page: 44 year: 1998 end-page: 49 ident: bib0640 article-title: Feature subset selection using a genetic algorithm, intelligent systems and their applications publication-title: IEEE – volume: 24 start-page: 1024 year: 2011 end-page: 1032 ident: bib0570 article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm publication-title: Know. -Based Syst. – volume: 43 start-page: 1656 year: 2013 end-page: 1671 ident: bib1005 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cyb. – year: 1977 ident: bib1080 publication-title: Machine Recognition of Patterns – volume: 180 start-page: 723 year: 2007 end-page: 737 ident: bib0950 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: Eur. J. Oper. Res. – volume: 41 start-page: 77 year: 2004 end-page: 93 ident: bib0925 article-title: Theoretical comparison between the Gini index and information gain criteria publication-title: Ann. Math. Artif. Intell. – volume: 205 start-page: 716 year: 2008 end-page: 725 ident: bib0575 article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system publication-title: Appl. Math. Comput. – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib0775 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: bib0770 article-title: Toward integrating feature selection algorithms for classification and clustering, Knowledge and Data Engineering publication-title: IEEE Trans. – volume: 16 start-page: 585 year: 2010 end-page: 610 ident: bib0850 article-title: PID-controlled particle swarm optimization publication-title: J. Multiple-Valued Logic Soft Comput. – volume: 48 start-page: 2798 year: 2015 end-page: 2811 ident: bib0665 article-title: Relevance–redundancy feature selection based on ant colony optimization publication-title: Pattern Recogn. – start-page: 13 year: 2005 ident: bib1030 article-title: Simulation optimization: a review, new developments, and applications publication-title: In: Simulation Conference, 2005 Proceedings of the Winter – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib0785 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 45 start-page: 3676 year: 2012 end-page: 3686 ident: bib1035 article-title: Application of global optimization methods to model and feature selection publication-title: Pattern Recogn. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0560 article-title: Andr, #233, Elisseeff, An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 3 year: 2012 end-page: 16 ident: bib0835 article-title: A brief historical review of particle swarm optimization (PSO) publication-title: J. Bioinformatics Intell. Control – volume: 84 start-page: 144 year: 2015 end-page: 161 ident: bib0675 article-title: Integration of graph clustering with ant colony optimization for feature selection publication-title: Know. -Based Syst. – volume: 1 start-page: 138 year: 2011 end-page: 146 ident: bib0885 article-title: Face recognition using bacterial foraging strategy publication-title: Swarm Evol. Comput. – volume: 43 start-page: 13 year: 2012 end-page: 16 ident: bib0755 article-title: Article a novel approach for feature selection based on the Bee colony optimization publication-title: Int. J. Comput. Appl. – volume: 24 start-page: 904 year: 2011 end-page: 914 ident: bib0565 article-title: A new feature selection algorithm based on binomial hypothesis testing for spam filtering publication-title: Know. -Based Syst. – start-page: 522 year: 2010 end-page: 527 ident: bib1075 article-title: A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model publication-title: High Performance Computing and Applications – volume: 10 start-page: 405 year: 2009 end-page: 440 ident: bib0905 article-title: Particle swarm model selection publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: bib1010 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. – volume: 181 start-page: 4625 year: 2011 end-page: 4641 ident: bib0555 article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification publication-title: Inform. Sci. – volume: 13 start-page: 44 year: 1998 end-page: 49 ident: bib0725 article-title: Feature subset selection using a genetic algorithm publication-title: IEEE, Intell. Syst. Appl. – volume: 8 start-page: 1505 year: 2008 end-page: 1512 ident: bib0880 article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach publication-title: Appl. Soft Comput. – volume: 38 start-page: 13367 year: 2011 end-page: 13377 ident: bib1070 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. – volume: 32 start-page: 112 year: 2014 end-page: 123 ident: bib0660 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng. Appl. Artif. Intell. – start-page: 225 year: 2013 end-page: 230 ident: bib0610 article-title: Improve performance of collaborative filtering systems using backward feature selection publication-title: In: Information and Knowledge Technology (IKT), 2013 5th Conference on, IEEE – start-page: 175 year: 1994 end-page: 186 ident: bib1055 article-title: GroupLens. An open architecture for collaborative filtering of netnews publication-title: In Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW’94) – year: 2011 ident: bib0935 article-title: Generalized fisher score for feature selection publication-title: In: Proceedings of the International Conference on Uncertainty in Artificial Intelligence – volume: 36 start-page: 1529 year: 2009 end-page: 1539 ident: bib0600 article-title: A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting publication-title: Expert Syst. Appl. – volume: 43 year: 2012 ident: bib0970 article-title: A novel approach for feature selection based on the bee colony optimization publication-title: Int. J. Comput. Appl. – volume: 44 start-page: 33 year: 2015 end-page: 45 ident: bib0670 article-title: A graph theoretic approach for unsupervised feature selection publication-title: Eng. Appl. Artif. Intell. – volume: 36 start-page: 10604 year: 2009 end-page: 10611 ident: bib0605 article-title: Ant colony and particle swarm optimization for financial classification problems publication-title: Expert Syst. Appl. – volume: 13 start-page: 1969 year: 2013 end-page: 1977 ident: bib0730 article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data publication-title: Appl. Soft Comput. – volume: 107 start-page: 382 year: 2012 end-page: 392 ident: bib1025 article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications publication-title: Comput. Meth. Prog. Biomed. – volume: 7 start-page: 200 year: 2009 end-page: 208 ident: bib0585 article-title: A modified ant Colony optimization algorithm for tumor marker gene selection, genomics publication-title: Proteomics Bioinformatics – volume: 2 start-page: 119 year: 2013 end-page: 124 ident: bib0845 article-title: Using particle swarm optimization algorithm based on multi-objective function in reconfigured system for optimal placement of distributed generation publication-title: J. Bioinformatics Intell. Control – volume: 18 start-page: 507 year: 2005 end-page: 514 ident: bib0930 article-title: Laplacian score for feature selection publication-title: Adv. Neural Inf. Process. Syst. – start-page: 359 year: 2000 end-page: 366 ident: bib0630 article-title: Correlation-based feature selection for discrete and numeric class machine learning publication-title: In: Proceedings of the Seventeenth International Conference on Machine Learning – volume: 28 start-page: 1825 year: 2007 end-page: 1844 ident: bib0740 article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information publication-title: Pattern Recogn. Lett. – volume: 8 start-page: 191 year: 2011 end-page: 200 ident: bib0815 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. – volume: 36 start-page: 106 year: 2006 end-page: 117 ident: bib0700 article-title: Genetic programming for simultaneous feature selection and classifier design, systems, man, and cybernetics, part B: cybernetics publication-title: IEEE Trans. – volume: 74 start-page: 2914 year: 2011 end-page: 2928 ident: bib1050 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing – volume: 19 start-page: 1267 year: 2008 end-page: 1278 ident: bib0720 article-title: A general wrapper approach to selection of class-dependent features, neural networks publication-title: IEEE Trans. – volume: 29 start-page: 1035 year: 2007 end-page: 1051 ident: bib0645 article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 313 year: 2006 end-page: 315 ident: bib0685 article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method publication-title: Pattern Recogn. – volume: 13 start-page: 44 year: 1998 end-page: 49 ident: bib0955 article-title: Feature subset selection using a genetic algorithm publication-title: IEEE Intell. Syst. Appl. – volume: 32 start-page: 207 year: 2002 end-page: 212 ident: bib0695 article-title: The ANNIGMA-wrapper approach to fast feature selection for neural nets, systems, man, and cybernetics, part B: cybernetics publication-title: IEEE Trans. – year: 1998 ident: bib1065 article-title: UCI Repository of Machine Learning Databases – volume: 1 start-page: 3 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0835 article-title: A brief historical review of particle swarm optimization (PSO) publication-title: J. Bioinformatics Intell. Control doi: 10.1166/jbic.2012.1002 – volume: 8 start-page: 1505 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0880 article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.012 – volume: 28 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0650 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2006.09.003 – year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0920 – volume: 39 start-page: 3747 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0750 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.073 – volume: 47 start-page: 2013 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0975 article-title: Data feature selection based on artificial bee colony algorithm publication-title: EURASIP J. Image Video Process. – volume: 13 start-page: 44 year: 1998 ident: 10.1016/j.asoc.2016.01.044_bib0955 article-title: Feature subset selection using a genetic algorithm publication-title: IEEE Intell. Syst. Appl. doi: 10.1109/5254.671091 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.asoc.2016.01.044_bib1010 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 34 start-page: 1491 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0870 article-title: A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.014 – volume: 45 start-page: 3048 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0945 article-title: An unsupervised approach to feature discretization and selection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.12.008 – volume: 1 start-page: 95 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0840 article-title: Particle swarm optimization based universal solver for global optimization publication-title: J. Bioinformatics Intell. Control doi: 10.1166/jbic.2012.1009 – volume: 12 start-page: 2517 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0655 article-title: ReinSel: a class-based mechanism for feature selection in ensemble of classifiers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.027 – volume: 19 start-page: 1267 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0720 article-title: A general wrapper approach to selection of class-dependent features, neural networks publication-title: IEEE Trans. – volume: 13 start-page: 1969 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0730 article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.042 – volume: 29 start-page: 1035 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0645 article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1093 – volume: 11 start-page: 239 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0805 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.014 – volume: 44 start-page: 33 year: 2015 ident: 10.1016/j.asoc.2016.01.044_bib0670 article-title: A graph theoretic approach for unsupervised feature selection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.05.005 – volume: 15 start-page: 110 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0735 article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, neural networks publication-title: IEEE Trans. – start-page: 221 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0580 article-title: Ant colony optimization for feature selection in face recognition – start-page: 293 year: 1994 ident: 10.1016/j.asoc.2016.01.044_bib0965 article-title: Prototype and feature selection by sampling and random mutation hill climbing algorithms – volume: 181 start-page: 4625 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0555 article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.05.037 – volume: 13 start-page: 44 year: 1998 ident: 10.1016/j.asoc.2016.01.044_bib0725 article-title: Feature subset selection using a genetic algorithm publication-title: IEEE, Intell. Syst. Appl. doi: 10.1109/5254.671091 – volume: 23 start-page: 2507 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0775 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 6 start-page: 58 year: 2002 ident: 10.1016/j.asoc.2016.01.044_bib0810 article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, evolutionary computation publication-title: IEEE Trans. – start-page: 225 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0610 article-title: Improve performance of collaborative filtering systems using backward feature selection – volume: 8 start-page: 191 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0815 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(11)60020-6 – start-page: 13 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib1030 article-title: Simulation optimization: a review, new developments, and applications – volume: 22 start-page: 57 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0615 article-title: A search space reduction methodology for data mining in large databases publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2008.04.003 – year: 1977 ident: 10.1016/j.asoc.2016.01.044_bib1080 – volume: 5 start-page: 5069 issue: December year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0890 article-title: A performance comparison between genetic algorithms and particle swarm optimization applied in constructing equity portfolios publication-title: Int. J. Innovative Comput. Inform. Control – volume: 1 start-page: 131 year: 1997 ident: 10.1016/j.asoc.2016.01.044_bib0765 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.1016/S1088-467X(97)00008-5 – start-page: 607 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib1020 article-title: Hybrid algorithm based on particle swarm optimization and artificial fish swarm algorithm – volume: 13 start-page: 3494 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0820 article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.03.021 – volume: 26 start-page: 1424 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0745 article-title: Hybrid genetic algorithms for feature selection, pattern analysis and machine intelligence publication-title: IEEE Trans. – volume: 36 start-page: 6843 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0865 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.08.022 – volume: 17 start-page: 491 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib0550 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Know. Data Eng. doi: 10.1109/TKDE.2005.66 – start-page: 39 year: 1995 ident: 10.1016/j.asoc.2016.01.044_bib0995 article-title: A new optimizer using particle swarm theory – volume: 7 start-page: 200 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0585 article-title: A modified ant Colony optimization algorithm for tumor marker gene selection, genomics publication-title: Proteomics Bioinformatics doi: 10.1016/S1672-0229(08)60050-9 – volume: 38 start-page: 13367 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib1070 article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.165 – start-page: 287 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0960 article-title: Large scale feature selection using modified random mutation hill climbing – volume: 38 start-page: 12699 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0800 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.057 – volume: 32 start-page: 112 year: 2014 ident: 10.1016/j.asoc.2016.01.044_bib0660 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.03.007 – start-page: 1 year: 2002 ident: 10.1016/j.asoc.2016.01.044_bib1045 – volume: 2 start-page: 119 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0845 article-title: Using particle swarm optimization algorithm based on multi-objective function in reconfigured system for optimal placement of distributed generation publication-title: J. Bioinformatics Intell. Control doi: 10.1166/jbic.2013.1043 – year: 1998 ident: 10.1016/j.asoc.2016.01.044_bib1065 – volume: 23 start-page: 1323 year: 2002 ident: 10.1016/j.asoc.2016.01.044_bib0715 article-title: Feature selection with neural networks publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(02)00081-8 – volume: 43 start-page: 13 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0755 article-title: Article a novel approach for feature selection based on the Bee colony optimization publication-title: Int. J. Comput. Appl. – volume: 33 start-page: 49 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0710 article-title: A hybrid approach for feature subset selection using neural networks and ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.04.010 – year: 2014 ident: 10.1016/j.asoc.2016.01.044_bib0825 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 11 start-page: 86 year: 1940 ident: 10.1016/j.asoc.2016.01.044_bib1085 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – start-page: 359 year: 2000 ident: 10.1016/j.asoc.2016.01.044_bib0630 article-title: Correlation-based feature selection for discrete and numeric class machine learning – volume: 39 start-page: 313 year: 2006 ident: 10.1016/j.asoc.2016.01.044_bib0685 article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.09.002 – volume: 43 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0970 article-title: A novel approach for feature selection based on the bee colony optimization publication-title: Int. J. Comput. Appl. – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.asoc.2016.01.044_bib0560 article-title: Andr, #233, Elisseeff, An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 1825 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0740 article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2007.05.011 – start-page: 856 year: 2003 ident: 10.1016/j.asoc.2016.01.044_bib0910 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib0940 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 27 start-page: 1067 year: 2006 ident: 10.1016/j.asoc.2016.01.044_bib0760 article-title: Random subspace method for multivariate feature selection publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.12.018 – volume: 74 start-page: 2914 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib1050 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.034 – volume: 8 start-page: 1381 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0830 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – volume: 13 start-page: 44 year: 1998 ident: 10.1016/j.asoc.2016.01.044_bib0640 article-title: Feature subset selection using a genetic algorithm, intelligent systems and their applications publication-title: IEEE – volume: 26 start-page: 1274 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib0590 article-title: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.12.009 – volume: 113 start-page: 175 year: 2014 ident: 10.1016/j.asoc.2016.01.044_bib1015 article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2013.10.007 – volume: 19 start-page: 431 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0705 article-title: Performing feature selection with multilayer perceptrons, neural networks publication-title: IEEE Trans. – start-page: 112 year: 2014 ident: 10.1016/j.asoc.2016.01.044_bib0795 article-title: A clustering based genetic algorithm for feature selection – volume: 84 start-page: 144 year: 2015 ident: 10.1016/j.asoc.2016.01.044_bib0675 article-title: Integration of graph clustering with ant colony optimization for feature selection publication-title: Know. -Based Syst. doi: 10.1016/j.knosys.2015.04.007 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2016.01.044_bib0990 article-title: Particle swarm optimization – volume: 45 start-page: 3676 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib1035 article-title: Application of global optimization methods to model and feature selection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2012.04.015 – volume: 48 start-page: 2798 year: 2015 ident: 10.1016/j.asoc.2016.01.044_bib0665 article-title: Relevance–redundancy feature selection based on ant colony optimization publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2015.03.020 – volume: 43 start-page: 5 year: 2010 ident: 10.1016/j.asoc.2016.01.044_bib0620 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2009.06.009 – start-page: 163 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib0680 article-title: Modified backward feature selection by cross validation – volume: 19 start-page: 43 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib1000 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2005.01.004 – year: 2015 ident: 10.1016/j.asoc.2016.01.044_bib0595 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.022 – volume: 35 start-page: 1817 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0900 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.088 – volume: 4105 start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2016.01.044_bib1040 article-title: A discrete binary version of the particle swarm algorithm publication-title: In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on – start-page: 45 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0895 article-title: Comparison of population based metaheuristics for feature selection: application to microarray data classification – volume: 180 start-page: 723 year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0950 article-title: Framework for efficient feature selection in genetic algorithm based data mining publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.02.040 – volume: 43 start-page: 1656 year: 2013 ident: 10.1016/j.asoc.2016.01.044_bib1005 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cyb. doi: 10.1109/TSMCB.2012.2227469 – start-page: 522 year: 2010 ident: 10.1016/j.asoc.2016.01.044_bib1075 article-title: A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model – volume: 4 start-page: 100 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0860 article-title: Optimal sequencing of design projects’ activities using discrete particle swarm optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2012.047181 – volume: 18 start-page: 507 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib0930 article-title: Laplacian score for feature selection publication-title: Adv. Neural Inf. Process. Syst. – year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0935 article-title: Generalized fisher score for feature selection – volume: 36 start-page: 1529 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0600 article-title: A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.11.062 – volume: 11 start-page: 2501 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0790 article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.08.020 – volume: 16 start-page: 585 year: 2010 ident: 10.1016/j.asoc.2016.01.044_bib0850 article-title: PID-controlled particle swarm optimization publication-title: J. Multiple-Valued Logic Soft Comput. – volume: 29 start-page: 1351 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0635 article-title: An efficient ant colony optimization approach to attribute reduction in rough set theory publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.02.006 – volume: 1 start-page: 138 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0885 article-title: Face recognition using bacterial foraging strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.06.001 – volume: 36 start-page: 10604 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0605 article-title: Ant colony and particle swarm optimization for financial classification problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.055 – volume: 17 start-page: 491 year: 2005 ident: 10.1016/j.asoc.2016.01.044_bib0770 article-title: Toward integrating feature selection algorithms for classification and clustering, Knowledge and Data Engineering publication-title: IEEE Trans. – volume: 107 start-page: 382 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib1025 article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2010.12.004 – volume: 4 start-page: 206 year: 2012 ident: 10.1016/j.asoc.2016.01.044_bib0855 article-title: Particle swarm optimisation applied to real time control of spherical tank system publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2012.048065 – volume: 36 start-page: 111 year: 1974 ident: 10.1016/j.asoc.2016.01.044_bib1060 article-title: Cross validation choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1974.tb00994.x – start-page: 175 year: 1994 ident: 10.1016/j.asoc.2016.01.044_bib1055 article-title: GroupLens. An open architecture for collaborative filtering of netnews – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.asoc.2016.01.044_bib0785 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 32 start-page: 207 year: 2002 ident: 10.1016/j.asoc.2016.01.044_bib0695 article-title: The ANNIGMA-wrapper approach to fast feature selection for neural nets, systems, man, and cybernetics, part B: cybernetics publication-title: IEEE Trans. – volume: 10 start-page: 405 year: 2009 ident: 10.1016/j.asoc.2016.01.044_bib0905 article-title: Particle swarm model selection publication-title: J. Mach. Learn. Res. – start-page: 151 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0985 article-title: Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system – volume: 24 start-page: 1024 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0570 article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm publication-title: Know. -Based Syst. doi: 10.1016/j.knosys.2011.04.014 – start-page: 15 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0690 article-title: An incremental approach to contribution-based feature selection publication-title: J. Intell. Syst. – volume: 24 start-page: 904 year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0565 article-title: A new feature selection algorithm based on binomial hypothesis testing for spam filtering publication-title: Know. -Based Syst. doi: 10.1016/j.knosys.2011.04.006 – volume: 36 start-page: 106 year: 2006 ident: 10.1016/j.asoc.2016.01.044_bib0700 article-title: Genetic programming for simultaneous feature selection and classifier design, systems, man, and cybernetics, part B: cybernetics publication-title: IEEE Trans. – year: 1997 ident: 10.1016/j.asoc.2016.01.044_bib0915 – volume: 37 start-page: 15 issue: December year: 2011 ident: 10.1016/j.asoc.2016.01.044_bib0980 article-title: A hybrid PSO approach to automate test data generation for data flow coverage with dominance concepts publication-title: Int. J. Adv. Sci. Technol. – year: 2007 ident: 10.1016/j.asoc.2016.01.044_bib0625 – volume: 41 start-page: 77 year: 2004 ident: 10.1016/j.asoc.2016.01.044_bib0925 article-title: Theoretical comparison between the Gini index and information gain criteria publication-title: Ann. Math. Artif. Intell. doi: 10.1023/B:AMAI.0000018580.96245.c6 – volume: 73 start-page: 3273 year: 2010 ident: 10.1016/j.asoc.2016.01.044_bib0780 article-title: A new wrapper feature selection approach using neural network publication-title: Neurocomputer doi: 10.1016/j.neucom.2010.04.003 – volume: 171 start-page: 842 year: 2006 ident: 10.1016/j.asoc.2016.01.044_bib0875 article-title: Using simulated annealing to optimize the feature selection problem in marketing applications publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2004.09.010 – volume: 205 start-page: 716 year: 2008 ident: 10.1016/j.asoc.2016.01.044_bib0575 article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.05.115 |
SSID | ssj0016928 |
Score | 2.602957 |
Snippet | The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117 |
SubjectTerms | Correlation information Feature selection Local search Particle swarm optimization |
Title | A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy |
URI | https://dx.doi.org/10.1016/j.asoc.2016.01.044 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQXHZhYxsCBtU7cJuyxo3jxMeqoirjQxOsErfIsZ81pjat2gLqhb8dv8SphoQ47BQlsSXr-X3Z-r3fY-y0dESCJnqRNJk_oJSGR1pKE2lROpW7Xu4s3UNeXcvRWPy8S--22KCthSFYZfD9jU-vvXX40g3S7M7v77u3_uSRCyUkJ9aopC4mFyIjLf_xvIF5cKnq_qo0OKLRoXCmwXhpLwGCd8maulOIt4PTPwFn-InthkwR-s1i9tgWVp_Zx7YLAwSj_MKqPvxZU90VzMPCYfmkF1OYeW8wDWWW4HNTcFizeMLSOwtcwbJugUM_yzW0tBE-koGGavaIE6jjHDS2AMuGxnb9lY2HZ78Hoyh0UYhMIuUqcuiNDlNtlDJKC1nGuYpLa63OUWSptiJzBEVGmyu_TalTmMYxZjZBSsfyZJ9tV7MKDxjYNMaeLZ2UqARHfzI0ScINupRnXAt1yHgrvsIEinHqdDEpWizZ34JEXpDIi5gXXuSH7Ptmzrwh2Hh3dNruSvFKTQofAd6Zd_Sf876xD_TWYMOO2fZq8YAnPgtZlZ1azTpspz-4ufxFz_OL0fULRZ7gCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoCFN-LNDWwoatI4bjxWCFReXQCJzXLsswBBWtEC6r_HlzgIJMTAGvsk67PvYefuO8aOCkckaLwXCdP3F5TCJJEWwkSaF07mrpc7S--Q1yMxvOMX99l9i500tTCUVhlsf23TK2sdvnQDmt3J42P3xt88ci65SIg1KqVi8g6xU2Vt1hmcXw5HXz8ThKxarNL8iARC7Uyd5qU9CJThJSr2Ts5_90_ffM7ZClsKwSIM6vWsshaWa2y5acQAQS_XWTmAhzmVXsEkrB2mH_r1BcbeILyESkvw4Sk4rIg8YertBc5gWnXBocFiDg1zhHdmoKEcv-MzVK4OanWAac1kO99gd2entyfDKDRSiEwqxCxy6PUOM22kNFJzUcS5jAtrrc7RA6Yt7zvKRkabS79TmZOYxTH2bYoUkeXpJmuX4xK3GNgsxp4tnBAoeYL-cmjSNDHosqSfaC63WdLAp0xgGadmF8-qSSd7UgS5IshVnCgP-TY7_pKZ1Bwbf87Oml1RP06K8k7gD7mdf8odsoXh7fWVujofXe6yRRqpU8X2WHv2-ob7PiiZFQfh0H0C8SLhJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+for+feature+subset+selection+by+integrating+a+novel+local+search+strategy&rft.jtitle=Applied+soft+computing&rft.au=Moradi%2C+Parham&rft.au=Gholampour%2C+Mozhgan&rft.date=2016-06-01&rft.issn=1568-4946&rft.volume=43&rft.spage=117&rft.epage=130&rft_id=info:doi/10.1016%2Fj.asoc.2016.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_01_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |