A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy

The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation informatio...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 43; pp. 117 - 130
Main Authors Moradi, Parham, Gholampour, Mozhgan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.01.044

Cover

Loading…
Abstract The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation information. Therefore, the proposed method selects the subset of features with reduced redundancy. •A hybrid feature selection method based on particle swarm optimization is proposed.•Our method uses a novel local search to enhance the search process near global optima.•The method efficiently finds the discriminative features with reduced correlations.•The size of final feature set is determined using a subset size detection scheme.•Our method is compared with well-known and state-of-the-art feature selection methods. Feature selection has been widely used in data mining and machine learning tasks to make a model with a small number of features which improves the classifier's accuracy. In this paper, a novel hybrid feature selection algorithm based on particle swarm optimization is proposed. The proposed method called HPSO-LS uses a local search strategy which is embedded in the particle swarm optimization to select the less correlated and salient feature subset. The goal of the local search technique is to guide the search process of the particle swarm optimization to select distinct features by considering their correlation information. Moreover, the proposed method utilizes a subset size determination scheme to select a subset of features with reduced size. The performance of the proposed method has been evaluated on 13 benchmark classification problems and compared with five state-of-the-art feature selection methods. Moreover, HPSO-LS has been compared with four well-known filter-based methods including information gain, term variance, fisher score and mRMR and five well-known wrapper-based methods including genetic algorithm, particle swarm optimization, simulated annealing and ant colony optimization. The results demonstrated that the proposed method improves the classification accuracy compared with those of the filter based and wrapper-based feature selection methods. Furthermore, several performed statistical tests show that the proposed method's superiority over the other methods is statistically significant.
AbstractList The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature subset. The goal of the local search technique is to guide the PSO search process to select distinct features by using their correlation information. Therefore, the proposed method selects the subset of features with reduced redundancy. •A hybrid feature selection method based on particle swarm optimization is proposed.•Our method uses a novel local search to enhance the search process near global optima.•The method efficiently finds the discriminative features with reduced correlations.•The size of final feature set is determined using a subset size detection scheme.•Our method is compared with well-known and state-of-the-art feature selection methods. Feature selection has been widely used in data mining and machine learning tasks to make a model with a small number of features which improves the classifier's accuracy. In this paper, a novel hybrid feature selection algorithm based on particle swarm optimization is proposed. The proposed method called HPSO-LS uses a local search strategy which is embedded in the particle swarm optimization to select the less correlated and salient feature subset. The goal of the local search technique is to guide the search process of the particle swarm optimization to select distinct features by considering their correlation information. Moreover, the proposed method utilizes a subset size determination scheme to select a subset of features with reduced size. The performance of the proposed method has been evaluated on 13 benchmark classification problems and compared with five state-of-the-art feature selection methods. Moreover, HPSO-LS has been compared with four well-known filter-based methods including information gain, term variance, fisher score and mRMR and five well-known wrapper-based methods including genetic algorithm, particle swarm optimization, simulated annealing and ant colony optimization. The results demonstrated that the proposed method improves the classification accuracy compared with those of the filter based and wrapper-based feature selection methods. Furthermore, several performed statistical tests show that the proposed method's superiority over the other methods is statistically significant.
Author Moradi, Parham
Gholampour, Mozhgan
Author_xml – sequence: 1
  givenname: Parham
  surname: Moradi
  fullname: Moradi, Parham
  email: p.moradi@uok.ac.ir
– sequence: 2
  givenname: Mozhgan
  surname: Gholampour
  fullname: Gholampour, Mozhgan
  email: mjgn.gholampour@gmail.com
BookMark eNp9kM1qAyEURqWk0CTtC3TlC8xUkxlHoZsQ-geBbtq1OHonMUw0qEmZPn1N2lUXWXnh-87FeyZo5LwDhO4pKSmh7GFbquh1OctzSWhJquoKjSlvZoVgnI7yXDNeVKJiN2gS45bkopjxMXILvBnaYA3eq5Cs7gHHLxV22O-T3dlvlax3uPMBd6DSIeT40EZIOEIP-hy2A7YuwTrkrltjhZ0_Qo97r1WfayroDY4pp7AebtF1p_oId3_vFH0-P30sX4vV-8vbcrEq9JyxVHRAaAO10kJooSrWEi5Ia4xRHKqmVqZqOioEA8OFYqzuBNSEQGPmQHhN-XyKZr97dfAxBujkPtidCoOkRJ6Mya08GZMnY5JQmY1liP-DtE1nAfn3tr-MPv6ikI86WggyagtOg7Eha5LG20v4D4_zjFk
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2946223
crossref_primary_10_1016_j_eswa_2021_114737
crossref_primary_10_1080_21681163_2020_1870001
crossref_primary_10_1016_j_neucom_2024_127729
crossref_primary_10_1007_s40747_023_01269_z
crossref_primary_10_1093_comjnl_bxab089
crossref_primary_10_1186_s12859_021_04443_7
crossref_primary_10_3233_JIFS_191765
crossref_primary_10_3390_su142114101
crossref_primary_10_1016_j_swevo_2020_100663
crossref_primary_10_1007_s11042_023_16830_8
crossref_primary_10_3390_computation9060068
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1016_j_eswa_2025_127012
crossref_primary_10_1007_s00607_020_00891_w
crossref_primary_10_7717_peerj_cs_2001
crossref_primary_10_1109_TETCI_2024_3425285
crossref_primary_10_1016_j_patcog_2020_107804
crossref_primary_10_3390_e21060602
crossref_primary_10_1109_TEVC_2021_3134804
crossref_primary_10_1016_j_jestch_2023_101453
crossref_primary_10_1016_j_eswa_2025_126737
crossref_primary_10_1007_s11277_023_10527_9
crossref_primary_10_1007_s40995_022_01395_2
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_1016_j_knosys_2023_111102
crossref_primary_10_1016_j_swevo_2024_101743
crossref_primary_10_3390_fi12110180
crossref_primary_10_1016_j_eswa_2024_123871
crossref_primary_10_3390_app112412073
crossref_primary_10_1016_j_asoc_2021_107926
crossref_primary_10_1016_j_compbiomed_2021_104558
crossref_primary_10_1142_S0218488522500209
crossref_primary_10_1109_TCBB_2020_2974953
crossref_primary_10_1016_j_neucom_2023_127111
crossref_primary_10_1016_j_swevo_2021_100925
crossref_primary_10_1016_j_eswa_2018_09_015
crossref_primary_10_1007_s13369_020_04741_x
crossref_primary_10_3390_app10041496
crossref_primary_10_1007_s12065_019_00279_6
crossref_primary_10_1155_2019_9132315
crossref_primary_10_1109_TNSE_2018_2856522
crossref_primary_10_1016_j_eswa_2024_123985
crossref_primary_10_1007_s12652_020_02803_4
crossref_primary_10_1016_j_knosys_2018_05_009
crossref_primary_10_32604_cmc_2023_033509
crossref_primary_10_1016_j_knosys_2022_109874
crossref_primary_10_1016_j_eswa_2020_113276
crossref_primary_10_1109_ACCESS_2018_2883537
crossref_primary_10_1016_j_ifacol_2018_09_311
crossref_primary_10_1109_ACCESS_2019_2942413
crossref_primary_10_1007_s12652_019_01364_5
crossref_primary_10_1080_00949655_2020_1822358
crossref_primary_10_1109_TCYB_2020_3042243
crossref_primary_10_1016_j_asoc_2020_106794
crossref_primary_10_1007_s40747_024_01763_y
crossref_primary_10_1007_s11042_023_16035_z
crossref_primary_10_1109_ACCESS_2019_2944641
crossref_primary_10_1016_j_jbi_2020_103466
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_25092_baunfbed_1469682
crossref_primary_10_3390_math10152742
crossref_primary_10_1016_j_swevo_2023_101278
crossref_primary_10_1016_j_asoc_2019_105957
crossref_primary_10_1016_j_future_2020_08_019
crossref_primary_10_3233_JIFS_200937
crossref_primary_10_1016_j_eswa_2022_116550
crossref_primary_10_15672_hujms_1346686
crossref_primary_10_3390_app122211795
crossref_primary_10_1007_s00521_023_08936_9
crossref_primary_10_1016_j_eswa_2020_113572
crossref_primary_10_1155_2021_2213194
crossref_primary_10_36548_jscp_2020_4_001
crossref_primary_10_1016_j_jocs_2023_101942
crossref_primary_10_1016_j_asoc_2018_01_032
crossref_primary_10_1051_matecconf_201925502004
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_3390_s16081204
crossref_primary_10_1016_j_future_2018_10_008
crossref_primary_10_1080_24751839_2018_1423792
crossref_primary_10_1007_s10710_019_09358_0
crossref_primary_10_1007_s11227_019_02888_5
crossref_primary_10_1007_s12652_019_01570_1
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1016_j_ejor_2024_12_036
crossref_primary_10_3390_math10132351
crossref_primary_10_1007_s00521_020_05483_5
crossref_primary_10_1016_j_ygeno_2020_07_027
crossref_primary_10_1111_exsy_12786
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1016_j_heliyon_2021_e07356
crossref_primary_10_1016_j_knosys_2021_106894
crossref_primary_10_1093_comjnl_bxac114
crossref_primary_10_3390_en12040689
crossref_primary_10_1016_j_neucom_2019_01_011
crossref_primary_10_1016_j_eswa_2023_122701
crossref_primary_10_1080_09540091_2019_1609419
crossref_primary_10_3390_a16090413
crossref_primary_10_1016_j_eswa_2023_122147
crossref_primary_10_4018_IJWP_2019070101
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_3233_JIFS_202647
crossref_primary_10_3390_s21051816
crossref_primary_10_1155_2022_1825341
crossref_primary_10_1109_JSAC_2019_2904359
crossref_primary_10_1007_s00521_020_05665_1
crossref_primary_10_1007_s13042_020_01174_8
crossref_primary_10_1109_ACCESS_2019_2922987
crossref_primary_10_1007_s12293_022_00354_z
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1016_j_dsm_2023_10_003
crossref_primary_10_4018_IJAMC_2022010104
crossref_primary_10_1016_j_asoc_2017_04_061
crossref_primary_10_1109_ACCESS_2021_3097206
crossref_primary_10_1016_j_knosys_2018_05_042
crossref_primary_10_1093_jcde_qwac120
crossref_primary_10_1016_j_asoc_2023_110828
crossref_primary_10_1002_clen_201700162
crossref_primary_10_3390_e24070890
crossref_primary_10_1016_j_asoc_2017_08_051
crossref_primary_10_1016_j_eswa_2024_123337
crossref_primary_10_3390_math10030464
crossref_primary_10_1007_s12652_024_04853_4
crossref_primary_10_1002_cpe_8153
crossref_primary_10_4018_IJIIT_289966
crossref_primary_10_1007_s00521_016_2817_3
crossref_primary_10_1016_j_neucom_2017_04_053
crossref_primary_10_1109_ACCESS_2023_3298955
crossref_primary_10_1016_j_asoc_2019_04_037
crossref_primary_10_1016_j_anucene_2018_07_011
crossref_primary_10_1016_j_jksuci_2023_101704
crossref_primary_10_1038_s41598_019_54987_1
crossref_primary_10_1007_s11042_025_20643_2
crossref_primary_10_1016_j_ins_2016_08_047
crossref_primary_10_4018_IJCAC_2017010104
crossref_primary_10_1007_s12652_019_01624_4
crossref_primary_10_1109_TII_2021_3067719
crossref_primary_10_1155_2019_9517568
crossref_primary_10_1007_s11042_020_09013_2
crossref_primary_10_1016_j_asoc_2023_111141
crossref_primary_10_1007_s12559_020_09739_z
crossref_primary_10_1016_j_asoc_2017_04_042
crossref_primary_10_1016_j_eswa_2019_03_039
crossref_primary_10_1016_j_asoc_2020_107026
crossref_primary_10_1109_ACCESS_2019_2900078
crossref_primary_10_1109_TCYB_2022_3163577
crossref_primary_10_3390_sym13101812
crossref_primary_10_1155_2019_6086089
crossref_primary_10_1038_s41598_024_71726_3
crossref_primary_10_1016_j_eswa_2022_118762
crossref_primary_10_1088_1742_6596_1192_1_012038
crossref_primary_10_1186_s12911_021_01696_3
crossref_primary_10_1007_s00779_018_1156_z
crossref_primary_10_1016_j_jksuci_2018_12_001
crossref_primary_10_1186_s12859_022_04962_x
crossref_primary_10_1109_TSMC_2024_3446624
crossref_primary_10_1109_TEVC_2022_3149601
crossref_primary_10_1155_2022_2856818
crossref_primary_10_1109_TEVC_2020_2968743
crossref_primary_10_1016_j_eswa_2021_115756
crossref_primary_10_1016_j_patrec_2017_12_025
crossref_primary_10_1109_ACCESS_2020_3029728
crossref_primary_10_1007_s42979_021_00687_5
crossref_primary_10_1038_s41598_025_88277_w
crossref_primary_10_1109_ACCESS_2022_3174854
crossref_primary_10_1016_j_compbiomed_2022_106520
crossref_primary_10_1016_j_jksuci_2021_04_010
crossref_primary_10_1007_s11227_023_05145_y
crossref_primary_10_1016_j_eswa_2024_125084
crossref_primary_10_1109_ACCESS_2019_2906757
crossref_primary_10_1007_s42979_024_03396_x
crossref_primary_10_1016_j_asoc_2021_107302
crossref_primary_10_1109_TCSS_2020_3007769
crossref_primary_10_1142_S0219467822500450
crossref_primary_10_1007_s42452_020_2426_8
crossref_primary_10_3390_biomimetics8030310
crossref_primary_10_1007_s13369_021_05478_x
crossref_primary_10_3233_IDA_173735
crossref_primary_10_1016_j_chemolab_2018_10_009
crossref_primary_10_1007_s10207_023_00684_0
crossref_primary_10_1186_s12859_022_04848_y
crossref_primary_10_1038_s41598_017_00416_0
crossref_primary_10_1016_j_asoc_2021_107599
crossref_primary_10_1016_j_asoc_2017_05_049
crossref_primary_10_1007_s10489_018_1261_8
crossref_primary_10_1016_j_asoc_2018_06_019
crossref_primary_10_1007_s00521_019_04171_3
crossref_primary_10_1016_j_asoc_2020_106402
crossref_primary_10_1016_j_engappai_2017_12_014
crossref_primary_10_1016_j_future_2024_02_017
crossref_primary_10_1007_s12559_022_10022_6
crossref_primary_10_1016_j_asoc_2018_07_040
crossref_primary_10_1016_j_jksuci_2019_11_007
crossref_primary_10_1109_ACCESS_2019_2919956
crossref_primary_10_3390_rs12091449
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1016_j_physa_2017_08_048
crossref_primary_10_1109_ACCESS_2020_2988157
crossref_primary_10_1016_j_inffus_2018_03_003
crossref_primary_10_1016_j_eswa_2020_113176
crossref_primary_10_3390_molecules23071569
crossref_primary_10_1109_ACCESS_2019_2897325
crossref_primary_10_1016_j_swevo_2025_101846
crossref_primary_10_1007_s00521_023_08400_8
crossref_primary_10_3390_app11146516
crossref_primary_10_1080_0952813X_2022_2067248
crossref_primary_10_1007_s00521_021_06705_0
crossref_primary_10_1007_s12559_019_09668_6
crossref_primary_10_1007_s00521_024_10611_6
crossref_primary_10_1016_j_asoc_2020_106994
crossref_primary_10_1016_j_bbe_2018_08_004
crossref_primary_10_32604_cmc_2023_033039
crossref_primary_10_1109_ACCESS_2021_3076130
crossref_primary_10_1007_s00521_022_07836_8
crossref_primary_10_1016_j_ins_2023_120011
crossref_primary_10_1016_j_eswa_2020_113185
crossref_primary_10_3390_rs15041096
crossref_primary_10_3390_pr12020313
crossref_primary_10_1007_s11227_021_03697_5
crossref_primary_10_1007_s00521_022_07678_4
crossref_primary_10_1109_ACCESS_2019_2953298
crossref_primary_10_1109_TAI_2022_3144651
crossref_primary_10_1007_s11063_024_11440_3
crossref_primary_10_1007_s11063_023_11159_7
crossref_primary_10_1016_j_asoc_2021_107698
crossref_primary_10_1007_s00500_018_3282_y
crossref_primary_10_1007_s10489_021_02233_5
crossref_primary_10_3390_s22041396
crossref_primary_10_1007_s10489_017_0924_1
crossref_primary_10_32604_cmc_2024_057874
crossref_primary_10_1109_ACCESS_2021_3112169
crossref_primary_10_1080_0305215X_2018_1525709
crossref_primary_10_1016_j_eswa_2020_113873
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1007_s11277_021_09196_3
crossref_primary_10_1186_s12859_019_3161_2
crossref_primary_10_1007_s00521_016_2528_9
crossref_primary_10_1109_ACCESS_2020_3000040
crossref_primary_10_1016_j_compbiomed_2021_105051
crossref_primary_10_1016_j_asoc_2023_110549
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_1016_j_swevo_2022_101165
crossref_primary_10_1080_19393555_2020_1767240
Cites_doi 10.1166/jbic.2012.1002
10.1016/j.asoc.2007.10.012
10.1016/j.patrec.2006.09.003
10.1016/j.eswa.2011.09.073
10.1109/5254.671091
10.1016/j.asoc.2013.09.018
10.1016/j.eswa.2007.01.014
10.1016/j.patcog.2011.12.008
10.1166/jbic.2012.1009
10.1016/j.asoc.2012.03.027
10.1016/j.asoc.2012.11.042
10.1109/TPAMI.2007.1093
10.1016/j.asoc.2009.11.014
10.1016/j.engappai.2015.05.005
10.1016/j.ins.2010.05.037
10.1093/bioinformatics/btm344
10.1016/S1672-6529(11)60020-6
10.1016/j.engappai.2008.04.003
10.1016/S1088-467X(97)00008-5
10.1016/j.asoc.2013.03.021
10.1016/j.eswa.2008.08.022
10.1109/TKDE.2005.66
10.1016/S1672-0229(08)60050-9
10.1016/j.eswa.2011.04.165
10.1016/j.eswa.2011.04.057
10.1016/j.engappai.2014.03.007
10.1166/jbic.2013.1043
10.1016/S0167-8655(02)00081-8
10.1016/j.eswa.2006.04.010
10.1214/aoms/1177731944
10.1016/j.patcog.2005.09.002
10.1016/j.patrec.2007.05.011
10.1109/TPAMI.2005.159
10.1016/j.patrec.2005.12.018
10.1016/j.neucom.2011.03.034
10.1016/j.asoc.2007.10.007
10.1016/j.engappai.2012.12.009
10.1016/j.cmpb.2013.10.007
10.1016/j.knosys.2015.04.007
10.1016/j.patcog.2012.04.015
10.1016/j.patcog.2015.03.020
10.1016/j.patcog.2009.06.009
10.1016/j.aei.2005.01.004
10.1016/j.neucom.2015.05.022
10.1016/j.eswa.2007.08.088
10.1016/j.ejor.2006.02.040
10.1109/TSMCB.2012.2227469
10.1504/IJBIC.2012.047181
10.1016/j.eswa.2007.11.062
10.1016/j.asoc.2010.08.020
10.1016/j.patrec.2008.02.006
10.1016/j.swevo.2011.06.001
10.1016/j.eswa.2009.02.055
10.1016/j.cmpb.2010.12.004
10.1504/IJBIC.2012.048065
10.1111/j.2517-6161.1974.tb00994.x
10.1023/A:1012487302797
10.1016/j.knosys.2011.04.014
10.1016/j.knosys.2011.04.006
10.1023/B:AMAI.0000018580.96245.c6
10.1016/j.neucom.2010.04.003
10.1016/j.ejor.2004.09.010
10.1016/j.amc.2008.05.115
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.01.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 130
ExternalDocumentID 10_1016_j_asoc_2016_01_044
S1568494616300321
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-fe017e5ac99c9a46b0890bddda8e475ad47f1996ed89a665f9e500e7d3e085183
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:49:55 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Local search
Feature selection
Particle swarm optimization
Correlation information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-fe017e5ac99c9a46b0890bddda8e475ad47f1996ed89a665f9e500e7d3e085183
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_01_044
crossref_citationtrail_10_1016_j_asoc_2016_01_044
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_01_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huan, Lei (bib0770) 2005; 17
Sikora, Piramuthu (bib0950) 2007; 180
Canuto, Vale, Feitos, Signoretti (bib0655) 2012; 12
Inbarani, Azar, Jothi (bib1015) 2014; 113
Liu, Wang, Chen, Dong, Zhu, Wang (bib0815) 2011; 8
García-Gonzalo, Fernández-Martínez (bib0835) 2012; 1
Hamdani, Won, Alimi, Karray (bib0790) 2011; 11
Lin, Tseng, Chou, Chen (bib0870) 2008; 34
Boubezoul, Paris (bib1035) 2012; 45
Ali, Sabat (bib0840) 2012; 1
Talbi, Jourdan, Garcia-Nieto, Alba (bib0895) 2008
Uğuz (bib0570) 2011; 24
Ke, Feng, Ren (bib0635) 2008; 29
Sun (bib0645) 2007; 29
Huang, Dun (bib0830) 2008; 8
Peng, Long, Ding (bib0940) 2005; 27
Salehi Maleh, Soleymani, Rasouli Nezhad, Ghadimi (bib0845) 2013; 2
Liu, Motoda (bib0625) 2007
Tabakhi, Najafi, Ranjbar, Moradi (bib0595) 2015
Friedman (bib1085) 1940; 11
Muni, Pal, Das (bib0700) 2006; 36
Gheyas, Smith (bib0620) 2010; 43
Xue, Zhang, Browne (bib1005) 2013; 43
Yang, Honavar (bib0955) 1998; 13
Ramezani, Moradi, Tab (bib0610) 2013
Xue, Zhang, Browne (bib1010) 2014; 18
Tabakhi, Moradi (bib0665) 2015; 48
Kabir, Shahjahan, Murase (bib0750) 2012; 39
Xue, Zhang, Browne (bib0825) 2014
Yu, Liu (bib0910) 2003
Liu, Yu (bib0550) 2005; 17
Moradi, Rostami (bib0670) 2015; 44
Lipo, Nina, Feng (bib0720) 2008; 19
Wang, Yang, Teng, Xia, Jensen (bib0650) 2007; 28
Chakraborty, Pal (bib0735) 2004; 15
Resnick, Iacovou, Suchak, Bergstrom, Riedl (bib1055) 1994
Kuri-Morales, Rodríguez-Erazo (bib0615) 2009; 22
Lin, Lee, Chen, Tseng (bib0880) 2008; 8
Farmer, Bapna, Jain (bib0960) 2004
Chuang, Yang, Li (bib0805) 2011; 11
Xiaofei, Deng Cai, Niyogi1 (bib0930) 2005; 18
Gasca, Sánchez, Alonso (bib0685) 2006; 39
Guyon (bib0560) 2003; 3
Jiang, Bo, Song, Bao (bib1020) 2012
Priya, Lakshmi (bib0855) 2012; 4
Abe (bib0680) 2005
Stone (bib1060) 1974; 36
Yang, Liu, Liu, Zhu, Zhang (bib0565) 2011; 24
Saeys, Inza, Larrañaga (bib0775) 2007; 23
Newman, Blake, Merz (bib1065) 1998
Kennedy, Eberhart (bib1040) 1997; 4105
Guyon, Weston, Barnhill, Vapnik (bib0785) 2002; 46
Mauricio Schiezaro, Pedrini (bib0975) 2013; 47
Huang, Tsai (bib0600) 2009; 36
Aghdam, Ghasem-Aghaee, Basiri (bib0865) 2009; 36
Panda, Naik, Panigrahi (bib0885) 2011; 1
Ferreira, Figueiredo (bib0945) 2012; 45
Kabir, Shahjahan, Murase (bib1050) 2011; 74
Lai, Reinders, Wessels (bib0760) 2006; 27
Forsati, Moayedikia, Keikha (bib0970) 2012; 43
(bib1080) 1977
Moradi, Rostami (bib0675) 2015; 84
Chang, Lin, Liu (bib1025) 2012; 107
Unler, Murat, Chinnam (bib0555) 2011; 181
Yan, Yuan (bib0580) 2004
Bergh (bib1045) 2002
Escalante, Montes, Sucar (bib0905) 2009; 10
Kennedy, Eberhart (bib0990) 1995
Rostami, Moradi (bib0795) 2014
Chuang, Yang, Wu, Yang (bib1070) 2011; 38
Skalak (bib0965) 1994
Hall (bib0630) 2000
Kabir, Islam, Murase (bib0780) 2010; 73
Chang (bib0890) 2009; 5
Meiri, Zahavi (bib0875) 2006; 171
Clerc, Kennedy (bib0810) 2002; 6
Dash, Liu (bib0765) 1997; 1
Marinakis, Marinaki, Doumpos, Zopounidis (bib0605) 2009; 36
Mitchell (bib0915) 1997
Huang, Cai, Xu (bib0740) 2007; 28
Theodoridis, Koutroumbas (bib0920) 2008
Fu, Glover, April (bib1030) 2005
Raileanu, Stoffel (bib0925) 2004; 41
Lin, Ying, Chen, Lee (bib0900) 2008; 35
Elbeltagi, Hegazy, Grierson (bib1000) 2005; 19
Abdelsalam, Mohamed (bib0860) 2012; 4
Kanan, Faez (bib0575) 2008; 205
Sanjay Singla, Rai, Priti (bib0980) 2011; 37
Chun-Nan, Hung-Ju, Dietrich (bib0695) 2002; 32
Sivagaminathan, Ramakrishnan (bib0710) 2007; 33
Verikas, Bacauskiene (bib0715) 2002; 23
Keikhab (bib0755) 2012; 43
Yu, Wu, Wang, Chen (bib1075) 2010
Yang (bib0725) 1998; 13
Tabakhi, Moradi, Akhlaghian (bib0660) 2014; 32
Chuang, Tsai, Yang (bib0800) 2011; 38
Cui, Zeng, Yin (bib0850) 2010; 16
Guan, Liu, Qi (bib0690) 2004
Yu, Gu, Liu, Shen, Zhao (bib0585) 2009; 7
Bhimsen Tudu, Kamal, Mandal, Niladri (bib0985) 2011
Vieira, Mendonça, Farinha, Sousa (bib0820) 2013; 13
Romero, Sopena (bib0705) 2008; 19
Ghosh, Datta, Ghosh (bib0730) 2013; 13
Eberhart, Kennedy (bib0995) 1995
Zibakhsh, Abadeh (bib0590) 2013; 26
Yang, Honavar (bib0640) 1998; 13
Gu, Li, Han (bib0935) 2011
Il-Seok, Jin-Seon, Byung-Ro (bib0745) 2004; 26
Kabir (10.1016/j.asoc.2016.01.044_bib1050) 2011; 74
Uğuz (10.1016/j.asoc.2016.01.044_bib0570) 2011; 24
Forsati (10.1016/j.asoc.2016.01.044_bib0970) 2012; 43
Aghdam (10.1016/j.asoc.2016.01.044_bib0865) 2009; 36
Liu (10.1016/j.asoc.2016.01.044_bib0815) 2011; 8
Inbarani (10.1016/j.asoc.2016.01.044_bib1015) 2014; 113
Huang (10.1016/j.asoc.2016.01.044_bib0600) 2009; 36
Clerc (10.1016/j.asoc.2016.01.044_bib0810) 2002; 6
Bergh (10.1016/j.asoc.2016.01.044_bib1045) 2002
Stone (10.1016/j.asoc.2016.01.044_bib1060) 1974; 36
Tabakhi (10.1016/j.asoc.2016.01.044_bib0595) 2015
Xiaofei (10.1016/j.asoc.2016.01.044_bib0930) 2005; 18
Liu (10.1016/j.asoc.2016.01.044_bib0625) 2007
Marinakis (10.1016/j.asoc.2016.01.044_bib0605) 2009; 36
Boubezoul (10.1016/j.asoc.2016.01.044_bib1035) 2012; 45
Resnick (10.1016/j.asoc.2016.01.044_bib1055) 1994
Chakraborty (10.1016/j.asoc.2016.01.044_bib0735) 2004; 15
Il-Seok (10.1016/j.asoc.2016.01.044_bib0745) 2004; 26
Jiang (10.1016/j.asoc.2016.01.044_bib1020) 2012
Chang (10.1016/j.asoc.2016.01.044_bib1025) 2012; 107
Lin (10.1016/j.asoc.2016.01.044_bib0880) 2008; 8
Kabir (10.1016/j.asoc.2016.01.044_bib0780) 2010; 73
Zibakhsh (10.1016/j.asoc.2016.01.044_bib0590) 2013; 26
Abdelsalam (10.1016/j.asoc.2016.01.044_bib0860) 2012; 4
Fu (10.1016/j.asoc.2016.01.044_bib1030) 2005
Bhimsen Tudu (10.1016/j.asoc.2016.01.044_bib0985) 2011
Yang (10.1016/j.asoc.2016.01.044_bib0725) 1998; 13
Mitchell (10.1016/j.asoc.2016.01.044_bib0915) 1997
Guyon (10.1016/j.asoc.2016.01.044_bib0560) 2003; 3
Panda (10.1016/j.asoc.2016.01.044_bib0885) 2011; 1
(10.1016/j.asoc.2016.01.044_bib1080) 1977
Priya (10.1016/j.asoc.2016.01.044_bib0855) 2012; 4
Chuang (10.1016/j.asoc.2016.01.044_bib1070) 2011; 38
Yang (10.1016/j.asoc.2016.01.044_bib0955) 1998; 13
Chang (10.1016/j.asoc.2016.01.044_bib0890) 2009; 5
Newman (10.1016/j.asoc.2016.01.044_bib1065) 1998
Canuto (10.1016/j.asoc.2016.01.044_bib0655) 2012; 12
Xue (10.1016/j.asoc.2016.01.044_bib1005) 2013; 43
Ramezani (10.1016/j.asoc.2016.01.044_bib0610) 2013
Kennedy (10.1016/j.asoc.2016.01.044_bib1040) 1997; 4105
Lin (10.1016/j.asoc.2016.01.044_bib0900) 2008; 35
Kennedy (10.1016/j.asoc.2016.01.044_bib0990) 1995
Chuang (10.1016/j.asoc.2016.01.044_bib0800) 2011; 38
Xue (10.1016/j.asoc.2016.01.044_bib1010) 2014; 18
Muni (10.1016/j.asoc.2016.01.044_bib0700) 2006; 36
Verikas (10.1016/j.asoc.2016.01.044_bib0715) 2002; 23
Chuang (10.1016/j.asoc.2016.01.044_bib0805) 2011; 11
Yu (10.1016/j.asoc.2016.01.044_bib0585) 2009; 7
Yang (10.1016/j.asoc.2016.01.044_bib0565) 2011; 24
Sikora (10.1016/j.asoc.2016.01.044_bib0950) 2007; 180
Peng (10.1016/j.asoc.2016.01.044_bib0940) 2005; 27
Ghosh (10.1016/j.asoc.2016.01.044_bib0730) 2013; 13
Lai (10.1016/j.asoc.2016.01.044_bib0760) 2006; 27
Raileanu (10.1016/j.asoc.2016.01.044_bib0925) 2004; 41
Dash (10.1016/j.asoc.2016.01.044_bib0765) 1997; 1
Romero (10.1016/j.asoc.2016.01.044_bib0705) 2008; 19
Kanan (10.1016/j.asoc.2016.01.044_bib0575) 2008; 205
Huang (10.1016/j.asoc.2016.01.044_bib0740) 2007; 28
Xue (10.1016/j.asoc.2016.01.044_bib0825) 2014
Lin (10.1016/j.asoc.2016.01.044_bib0870) 2008; 34
Yang (10.1016/j.asoc.2016.01.044_bib0640) 1998; 13
Wang (10.1016/j.asoc.2016.01.044_bib0650) 2007; 28
Theodoridis (10.1016/j.asoc.2016.01.044_bib0920) 2008
Yu (10.1016/j.asoc.2016.01.044_bib0910) 2003
Eberhart (10.1016/j.asoc.2016.01.044_bib0995) 1995
Farmer (10.1016/j.asoc.2016.01.044_bib0960) 2004
Gheyas (10.1016/j.asoc.2016.01.044_bib0620) 2010; 43
Hamdani (10.1016/j.asoc.2016.01.044_bib0790) 2011; 11
Huan (10.1016/j.asoc.2016.01.044_bib0770) 2005; 17
Moradi (10.1016/j.asoc.2016.01.044_bib0675) 2015; 84
Abe (10.1016/j.asoc.2016.01.044_bib0680) 2005
Gu (10.1016/j.asoc.2016.01.044_bib0935) 2011
Sivagaminathan (10.1016/j.asoc.2016.01.044_bib0710) 2007; 33
Huang (10.1016/j.asoc.2016.01.044_bib0830) 2008; 8
Sanjay Singla (10.1016/j.asoc.2016.01.044_bib0980) 2011; 37
Lipo (10.1016/j.asoc.2016.01.044_bib0720) 2008; 19
Cui (10.1016/j.asoc.2016.01.044_bib0850) 2010; 16
Ferreira (10.1016/j.asoc.2016.01.044_bib0945) 2012; 45
García-Gonzalo (10.1016/j.asoc.2016.01.044_bib0835) 2012; 1
Salehi Maleh (10.1016/j.asoc.2016.01.044_bib0845) 2013; 2
Gasca (10.1016/j.asoc.2016.01.044_bib0685) 2006; 39
Kuri-Morales (10.1016/j.asoc.2016.01.044_bib0615) 2009; 22
Keikhab (10.1016/j.asoc.2016.01.044_bib0755) 2012; 43
Escalante (10.1016/j.asoc.2016.01.044_bib0905) 2009; 10
Ke (10.1016/j.asoc.2016.01.044_bib0635) 2008; 29
Friedman (10.1016/j.asoc.2016.01.044_bib1085) 1940; 11
Guan (10.1016/j.asoc.2016.01.044_bib0690) 2004
Kabir (10.1016/j.asoc.2016.01.044_bib0750) 2012; 39
Liu (10.1016/j.asoc.2016.01.044_bib0550) 2005; 17
Rostami (10.1016/j.asoc.2016.01.044_bib0795) 2014
Tabakhi (10.1016/j.asoc.2016.01.044_bib0660) 2014; 32
Meiri (10.1016/j.asoc.2016.01.044_bib0875) 2006; 171
Vieira (10.1016/j.asoc.2016.01.044_bib0820) 2013; 13
Saeys (10.1016/j.asoc.2016.01.044_bib0775) 2007; 23
Mauricio Schiezaro (10.1016/j.asoc.2016.01.044_bib0975) 2013; 47
Yu (10.1016/j.asoc.2016.01.044_bib1075) 2010
Yan (10.1016/j.asoc.2016.01.044_bib0580) 2004
Moradi (10.1016/j.asoc.2016.01.044_bib0670) 2015; 44
Chun-Nan (10.1016/j.asoc.2016.01.044_bib0695) 2002; 32
Ali (10.1016/j.asoc.2016.01.044_bib0840) 2012; 1
Guyon (10.1016/j.asoc.2016.01.044_bib0785) 2002; 46
Sun (10.1016/j.asoc.2016.01.044_bib0645) 2007; 29
Tabakhi (10.1016/j.asoc.2016.01.044_bib0665) 2015; 48
Hall (10.1016/j.asoc.2016.01.044_bib0630) 2000
Talbi (10.1016/j.asoc.2016.01.044_bib0895) 2008
Unler (10.1016/j.asoc.2016.01.044_bib0555) 2011; 181
Elbeltagi (10.1016/j.asoc.2016.01.044_bib1000) 2005; 19
Skalak (10.1016/j.asoc.2016.01.044_bib0965) 1994
References_xml – volume: 1
  start-page: 95
  year: 2012
  end-page: 105
  ident: bib0840
  article-title: Particle swarm optimization based universal solver for global optimization
  publication-title: J. Bioinformatics Intell. Control
– volume: 36
  start-page: 6843
  year: 2009
  end-page: 6853
  ident: bib0865
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst. Appl.
– start-page: 287
  year: 2004
  end-page: 290
  ident: bib0960
  article-title: Large scale feature selection using modified random mutation hill climbing
  publication-title: In: 17th International Conference on Pattern Recognition
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: bib1060
  article-title: Cross validation choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. B
– volume: 39
  start-page: 3747
  year: 2012
  end-page: 3763
  ident: bib0750
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 3048
  year: 2012
  end-page: 3060
  ident: bib0945
  article-title: An unsupervised approach to feature discretization and selection
  publication-title: Pattern Recogn.
– volume: 43
  start-page: 5
  year: 2010
  end-page: 13
  ident: bib0620
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recogn.
– start-page: 45
  year: 2008
  end-page: 52
  ident: bib0895
  article-title: Comparison of population based metaheuristics for feature selection: application to microarray data classification
  publication-title: In: Computer Systems and Applications, 2008. AICCSA 2008 IEEE/ACS International Conference on
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: bib0900
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib0910
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: In: Proceedings of the 20th International Conference on Machine Learning
– volume: 33
  start-page: 49
  year: 2007
  end-page: 60
  ident: bib0710
  article-title: A hybrid approach for feature subset selection using neural networks and ant colony optimization
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 431
  year: 2008
  end-page: 441
  ident: bib0705
  article-title: Performing feature selection with multilayer perceptrons, neural networks
  publication-title: IEEE Trans.
– volume: 29
  start-page: 1351
  year: 2008
  end-page: 1357
  ident: bib0635
  article-title: An efficient ant colony optimization approach to attribute reduction in rough set theory
  publication-title: Pattern Recogn. Lett.
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: bib0550
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Know. Data Eng.
– start-page: 15
  year: 2004
  end-page: 44
  ident: bib0690
  article-title: An incremental approach to contribution-based feature selection
  publication-title: J. Intell. Syst.
– year: 2008
  ident: bib0920
  article-title: Pattern Recognition
– volume: 4105
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib1040
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on
– start-page: 221
  year: 2004
  end-page: 226
  ident: bib0580
  article-title: Ant colony optimization for feature selection in face recognition
  publication-title: In: Biometric Authentication
– volume: 11
  start-page: 2501
  year: 2011
  end-page: 2509
  ident: bib0790
  article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 110
  year: 2004
  end-page: 123
  ident: bib0735
  article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, neural networks
  publication-title: IEEE Trans.
– volume: 47
  start-page: 2013
  year: 2013
  ident: bib0975
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
– volume: 27
  start-page: 1067
  year: 2006
  end-page: 1076
  ident: bib0760
  article-title: Random subspace method for multivariate feature selection
  publication-title: Pattern Recogn. Lett.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0810
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, evolutionary computation
  publication-title: IEEE Trans.
– volume: 22
  start-page: 57
  year: 2009
  end-page: 65
  ident: bib0615
  article-title: A search space reduction methodology for data mining in large databases
  publication-title: Eng. Appl. Artif. Intell.
– volume: 13
  start-page: 3494
  year: 2013
  end-page: 3504
  ident: bib0820
  article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: bib0745
  article-title: Hybrid genetic algorithms for feature selection, pattern analysis and machine intelligence
  publication-title: IEEE Trans.
– volume: 28
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0650
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recogn. Lett.
– volume: 11
  start-page: 239
  year: 2011
  end-page: 248
  ident: bib0805
  article-title: Chaotic maps based on binary particle swarm optimization for feature selection
  publication-title: Appl. Soft Comput.
– year: 2014
  ident: bib0825
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– start-page: 607
  year: 2012
  end-page: 614
  ident: bib1020
  article-title: Hybrid algorithm based on particle swarm optimization and artificial fish swarm algorithm
  publication-title: Advances in Neural Networks–ISNN 2012
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0990
  article-title: Particle swarm optimization
  publication-title: In: Proceedings IEEE International Conference on Neural Networks
– volume: 113
  start-page: 175
  year: 2014
  end-page: 185
  ident: bib1015
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Meth. Prog. Biomed.
– start-page: 163
  year: 2005
  end-page: 168
  ident: bib0680
  article-title: Modified backward feature selection by cross validation
  publication-title: Proceedings of the European Symposium on Artificial Neural Networks
– year: 1997
  ident: bib0915
  article-title: Machine Learning
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: bib0765
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
– volume: 5
  start-page: 5069
  year: 2009
  end-page: 5079
  ident: bib0890
  article-title: A performance comparison between genetic algorithms and particle swarm optimization applied in constructing equity portfolios
  publication-title: Int. J. Innovative Comput. Inform. Control
– volume: 26
  start-page: 1274
  year: 2013
  end-page: 1281
  ident: bib0590
  article-title: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function
  publication-title: Eng. Appl. Artif. Intell.
– volume: 171
  start-page: 842
  year: 2006
  end-page: 858
  ident: bib0875
  article-title: Using simulated annealing to optimize the feature selection problem in marketing applications
  publication-title: Eur. J. Oper. Res.
– year: 2015
  ident: bib0595
  article-title: Gene selection for microarray data classification using a novel ant colony optimization
  publication-title: Neurocomputing
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib0995
  article-title: A new optimizer using particle swarm theory
  publication-title: in: Micro Machine and Human Science, 1995 MHS ‘95., Proceedings of the Sixth International Symposium on
– volume: 4
  start-page: 206
  year: 2012
  end-page: 216
  ident: bib0855
  article-title: Particle swarm optimisation applied to real time control of spherical tank system
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 19
  start-page: 43
  year: 2005
  end-page: 53
  ident: bib1000
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Inform.
– volume: 73
  start-page: 3273
  year: 2010
  end-page: 3283
  ident: bib0780
  article-title: A new wrapper feature selection approach using neural network
  publication-title: Neurocomputer
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0940
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 151
  year: 2011
  end-page: 158
  ident: bib0985
  article-title: Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system
  publication-title: SEMCCO’11 Proceedings of the Second international conference on Swarm, Evolutionary, and Memetic Computing, Part I (Berlin, Heidelberg)
– start-page: 1
  year: 2002
  ident: bib1045
  article-title: An Analysis of Particle Swarm Optimizers
– volume: 23
  start-page: 1323
  year: 2002
  end-page: 1335
  ident: bib0715
  article-title: Feature selection with neural networks
  publication-title: Pattern Recogn. Lett.
– volume: 4
  start-page: 100
  year: 2012
  end-page: 110
  ident: bib0860
  article-title: Optimal sequencing of design projects’ activities using discrete particle swarm optimisation
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 12
  start-page: 2517
  year: 2012
  end-page: 2529
  ident: bib0655
  article-title: ReinSel: a class-based mechanism for feature selection in ensemble of classifiers
  publication-title: Appl. Soft Comput.
– start-page: 112
  year: 2014
  end-page: 116
  ident: bib0795
  article-title: A clustering based genetic algorithm for feature selection
  publication-title: In: Information and Knowledge Technology (IKT), 2014 6th Conference on, IEEE
– volume: 34
  start-page: 1491
  year: 2008
  end-page: 1499
  ident: bib0870
  article-title: A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks
  publication-title: Expert Syst. Appl.
– year: 2007
  ident: bib0625
  article-title: Computational Methods of Feature Selection
– volume: 37
  start-page: 15
  year: 2011
  end-page: 26
  ident: bib0980
  article-title: A hybrid PSO approach to automate test data generation for data flow coverage with dominance concepts
  publication-title: Int. J. Adv. Sci. Technol.
– volume: 38
  start-page: 12699
  year: 2011
  end-page: 12707
  ident: bib0800
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: bib0830
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bib1085
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– start-page: 293
  year: 1994
  end-page: 301
  ident: bib0965
  article-title: Prototype and feature selection by sampling and random mutation hill climbing algorithms
  publication-title: In: 11th International Conference on Machine Learning
– volume: 13
  start-page: 44
  year: 1998
  end-page: 49
  ident: bib0640
  article-title: Feature subset selection using a genetic algorithm, intelligent systems and their applications
  publication-title: IEEE
– volume: 24
  start-page: 1024
  year: 2011
  end-page: 1032
  ident: bib0570
  article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
  publication-title: Know. -Based Syst.
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: bib1005
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cyb.
– year: 1977
  ident: bib1080
  publication-title: Machine Recognition of Patterns
– volume: 180
  start-page: 723
  year: 2007
  end-page: 737
  ident: bib0950
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: Eur. J. Oper. Res.
– volume: 41
  start-page: 77
  year: 2004
  end-page: 93
  ident: bib0925
  article-title: Theoretical comparison between the Gini index and information gain criteria
  publication-title: Ann. Math. Artif. Intell.
– volume: 205
  start-page: 716
  year: 2008
  end-page: 725
  ident: bib0575
  article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib0775
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: bib0770
  article-title: Toward integrating feature selection algorithms for classification and clustering, Knowledge and Data Engineering
  publication-title: IEEE Trans.
– volume: 16
  start-page: 585
  year: 2010
  end-page: 610
  ident: bib0850
  article-title: PID-controlled particle swarm optimization
  publication-title: J. Multiple-Valued Logic Soft Comput.
– volume: 48
  start-page: 2798
  year: 2015
  end-page: 2811
  ident: bib0665
  article-title: Relevance–redundancy feature selection based on ant colony optimization
  publication-title: Pattern Recogn.
– start-page: 13
  year: 2005
  ident: bib1030
  article-title: Simulation optimization: a review, new developments, and applications
  publication-title: In: Simulation Conference, 2005 Proceedings of the Winter
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0785
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 45
  start-page: 3676
  year: 2012
  end-page: 3686
  ident: bib1035
  article-title: Application of global optimization methods to model and feature selection
  publication-title: Pattern Recogn.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0560
  article-title: Andr, #233, Elisseeff, An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 3
  year: 2012
  end-page: 16
  ident: bib0835
  article-title: A brief historical review of particle swarm optimization (PSO)
  publication-title: J. Bioinformatics Intell. Control
– volume: 84
  start-page: 144
  year: 2015
  end-page: 161
  ident: bib0675
  article-title: Integration of graph clustering with ant colony optimization for feature selection
  publication-title: Know. -Based Syst.
– volume: 1
  start-page: 138
  year: 2011
  end-page: 146
  ident: bib0885
  article-title: Face recognition using bacterial foraging strategy
  publication-title: Swarm Evol. Comput.
– volume: 43
  start-page: 13
  year: 2012
  end-page: 16
  ident: bib0755
  article-title: Article a novel approach for feature selection based on the Bee colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 24
  start-page: 904
  year: 2011
  end-page: 914
  ident: bib0565
  article-title: A new feature selection algorithm based on binomial hypothesis testing for spam filtering
  publication-title: Know. -Based Syst.
– start-page: 522
  year: 2010
  end-page: 527
  ident: bib1075
  article-title: A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model
  publication-title: High Performance Computing and Applications
– volume: 10
  start-page: 405
  year: 2009
  end-page: 440
  ident: bib0905
  article-title: Particle swarm model selection
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib1010
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– volume: 181
  start-page: 4625
  year: 2011
  end-page: 4641
  ident: bib0555
  article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
  publication-title: Inform. Sci.
– volume: 13
  start-page: 44
  year: 1998
  end-page: 49
  ident: bib0725
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE, Intell. Syst. Appl.
– volume: 8
  start-page: 1505
  year: 2008
  end-page: 1512
  ident: bib0880
  article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 13367
  year: 2011
  end-page: 13377
  ident: bib1070
  article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 112
  year: 2014
  end-page: 123
  ident: bib0660
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 225
  year: 2013
  end-page: 230
  ident: bib0610
  article-title: Improve performance of collaborative filtering systems using backward feature selection
  publication-title: In: Information and Knowledge Technology (IKT), 2013 5th Conference on, IEEE
– start-page: 175
  year: 1994
  end-page: 186
  ident: bib1055
  article-title: GroupLens. An open architecture for collaborative filtering of netnews
  publication-title: In Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW’94)
– year: 2011
  ident: bib0935
  article-title: Generalized fisher score for feature selection
  publication-title: In: Proceedings of the International Conference on Uncertainty in Artificial Intelligence
– volume: 36
  start-page: 1529
  year: 2009
  end-page: 1539
  ident: bib0600
  article-title: A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting
  publication-title: Expert Syst. Appl.
– volume: 43
  year: 2012
  ident: bib0970
  article-title: A novel approach for feature selection based on the bee colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 44
  start-page: 33
  year: 2015
  end-page: 45
  ident: bib0670
  article-title: A graph theoretic approach for unsupervised feature selection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 36
  start-page: 10604
  year: 2009
  end-page: 10611
  ident: bib0605
  article-title: Ant colony and particle swarm optimization for financial classification problems
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 1969
  year: 2013
  end-page: 1977
  ident: bib0730
  article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data
  publication-title: Appl. Soft Comput.
– volume: 107
  start-page: 382
  year: 2012
  end-page: 392
  ident: bib1025
  article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications
  publication-title: Comput. Meth. Prog. Biomed.
– volume: 7
  start-page: 200
  year: 2009
  end-page: 208
  ident: bib0585
  article-title: A modified ant Colony optimization algorithm for tumor marker gene selection, genomics
  publication-title: Proteomics Bioinformatics
– volume: 2
  start-page: 119
  year: 2013
  end-page: 124
  ident: bib0845
  article-title: Using particle swarm optimization algorithm based on multi-objective function in reconfigured system for optimal placement of distributed generation
  publication-title: J. Bioinformatics Intell. Control
– volume: 18
  start-page: 507
  year: 2005
  end-page: 514
  ident: bib0930
  article-title: Laplacian score for feature selection
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 359
  year: 2000
  end-page: 366
  ident: bib0630
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
  publication-title: In: Proceedings of the Seventeenth International Conference on Machine Learning
– volume: 28
  start-page: 1825
  year: 2007
  end-page: 1844
  ident: bib0740
  article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information
  publication-title: Pattern Recogn. Lett.
– volume: 8
  start-page: 191
  year: 2011
  end-page: 200
  ident: bib0815
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
– volume: 36
  start-page: 106
  year: 2006
  end-page: 117
  ident: bib0700
  article-title: Genetic programming for simultaneous feature selection and classifier design, systems, man, and cybernetics, part B: cybernetics
  publication-title: IEEE Trans.
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: bib1050
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– volume: 19
  start-page: 1267
  year: 2008
  end-page: 1278
  ident: bib0720
  article-title: A general wrapper approach to selection of class-dependent features, neural networks
  publication-title: IEEE Trans.
– volume: 29
  start-page: 1035
  year: 2007
  end-page: 1051
  ident: bib0645
  article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 313
  year: 2006
  end-page: 315
  ident: bib0685
  article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method
  publication-title: Pattern Recogn.
– volume: 13
  start-page: 44
  year: 1998
  end-page: 49
  ident: bib0955
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE Intell. Syst. Appl.
– volume: 32
  start-page: 207
  year: 2002
  end-page: 212
  ident: bib0695
  article-title: The ANNIGMA-wrapper approach to fast feature selection for neural nets, systems, man, and cybernetics, part B: cybernetics
  publication-title: IEEE Trans.
– year: 1998
  ident: bib1065
  article-title: UCI Repository of Machine Learning Databases
– volume: 1
  start-page: 3
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0835
  article-title: A brief historical review of particle swarm optimization (PSO)
  publication-title: J. Bioinformatics Intell. Control
  doi: 10.1166/jbic.2012.1002
– volume: 8
  start-page: 1505
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0880
  article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.012
– volume: 28
  start-page: 459
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0650
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2006.09.003
– year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0920
– volume: 39
  start-page: 3747
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0750
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.073
– volume: 47
  start-page: 2013
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0975
  article-title: Data feature selection based on artificial bee colony algorithm
  publication-title: EURASIP J. Image Video Process.
– volume: 13
  start-page: 44
  year: 1998
  ident: 10.1016/j.asoc.2016.01.044_bib0955
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE Intell. Syst. Appl.
  doi: 10.1109/5254.671091
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.asoc.2016.01.044_bib1010
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 34
  start-page: 1491
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0870
  article-title: A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.014
– volume: 45
  start-page: 3048
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0945
  article-title: An unsupervised approach to feature discretization and selection
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.12.008
– volume: 1
  start-page: 95
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0840
  article-title: Particle swarm optimization based universal solver for global optimization
  publication-title: J. Bioinformatics Intell. Control
  doi: 10.1166/jbic.2012.1009
– volume: 12
  start-page: 2517
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0655
  article-title: ReinSel: a class-based mechanism for feature selection in ensemble of classifiers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.027
– volume: 19
  start-page: 1267
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0720
  article-title: A general wrapper approach to selection of class-dependent features, neural networks
  publication-title: IEEE Trans.
– volume: 13
  start-page: 1969
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0730
  article-title: Self-adaptive differential evolution for feature selection in hyperspectral image data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.042
– volume: 29
  start-page: 1035
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0645
  article-title: Iterative RELIEF for feature weighting: algorithms, theories, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1093
– volume: 11
  start-page: 239
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0805
  article-title: Chaotic maps based on binary particle swarm optimization for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.014
– volume: 44
  start-page: 33
  year: 2015
  ident: 10.1016/j.asoc.2016.01.044_bib0670
  article-title: A graph theoretic approach for unsupervised feature selection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.05.005
– volume: 15
  start-page: 110
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0735
  article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, neural networks
  publication-title: IEEE Trans.
– start-page: 221
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0580
  article-title: Ant colony optimization for feature selection in face recognition
– start-page: 293
  year: 1994
  ident: 10.1016/j.asoc.2016.01.044_bib0965
  article-title: Prototype and feature selection by sampling and random mutation hill climbing algorithms
– volume: 181
  start-page: 4625
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0555
  article-title: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.05.037
– volume: 13
  start-page: 44
  year: 1998
  ident: 10.1016/j.asoc.2016.01.044_bib0725
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE, Intell. Syst. Appl.
  doi: 10.1109/5254.671091
– volume: 23
  start-page: 2507
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0775
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 6
  start-page: 58
  year: 2002
  ident: 10.1016/j.asoc.2016.01.044_bib0810
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space, evolutionary computation
  publication-title: IEEE Trans.
– start-page: 225
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0610
  article-title: Improve performance of collaborative filtering systems using backward feature selection
– volume: 8
  start-page: 191
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0815
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(11)60020-6
– start-page: 13
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib1030
  article-title: Simulation optimization: a review, new developments, and applications
– volume: 22
  start-page: 57
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0615
  article-title: A search space reduction methodology for data mining in large databases
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.04.003
– year: 1977
  ident: 10.1016/j.asoc.2016.01.044_bib1080
– volume: 5
  start-page: 5069
  issue: December
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0890
  article-title: A performance comparison between genetic algorithms and particle swarm optimization applied in constructing equity portfolios
  publication-title: Int. J. Innovative Comput. Inform. Control
– volume: 1
  start-page: 131
  year: 1997
  ident: 10.1016/j.asoc.2016.01.044_bib0765
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.1016/S1088-467X(97)00008-5
– start-page: 607
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib1020
  article-title: Hybrid algorithm based on particle swarm optimization and artificial fish swarm algorithm
– volume: 13
  start-page: 3494
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0820
  article-title: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.03.021
– volume: 26
  start-page: 1424
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0745
  article-title: Hybrid genetic algorithms for feature selection, pattern analysis and machine intelligence
  publication-title: IEEE Trans.
– volume: 36
  start-page: 6843
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0865
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.022
– volume: 17
  start-page: 491
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib0550
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Know. Data Eng.
  doi: 10.1109/TKDE.2005.66
– start-page: 39
  year: 1995
  ident: 10.1016/j.asoc.2016.01.044_bib0995
  article-title: A new optimizer using particle swarm theory
– volume: 7
  start-page: 200
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0585
  article-title: A modified ant Colony optimization algorithm for tumor marker gene selection, genomics
  publication-title: Proteomics Bioinformatics
  doi: 10.1016/S1672-0229(08)60050-9
– volume: 38
  start-page: 13367
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib1070
  article-title: Gene selection and classification using Taguchi chaotic binary particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.165
– start-page: 287
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0960
  article-title: Large scale feature selection using modified random mutation hill climbing
– volume: 38
  start-page: 12699
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0800
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.057
– volume: 32
  start-page: 112
  year: 2014
  ident: 10.1016/j.asoc.2016.01.044_bib0660
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.03.007
– start-page: 1
  year: 2002
  ident: 10.1016/j.asoc.2016.01.044_bib1045
– volume: 2
  start-page: 119
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0845
  article-title: Using particle swarm optimization algorithm based on multi-objective function in reconfigured system for optimal placement of distributed generation
  publication-title: J. Bioinformatics Intell. Control
  doi: 10.1166/jbic.2013.1043
– year: 1998
  ident: 10.1016/j.asoc.2016.01.044_bib1065
– volume: 23
  start-page: 1323
  year: 2002
  ident: 10.1016/j.asoc.2016.01.044_bib0715
  article-title: Feature selection with neural networks
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(02)00081-8
– volume: 43
  start-page: 13
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0755
  article-title: Article a novel approach for feature selection based on the Bee colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 33
  start-page: 49
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0710
  article-title: A hybrid approach for feature subset selection using neural networks and ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.04.010
– year: 2014
  ident: 10.1016/j.asoc.2016.01.044_bib0825
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 11
  start-page: 86
  year: 1940
  ident: 10.1016/j.asoc.2016.01.044_bib1085
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– start-page: 359
  year: 2000
  ident: 10.1016/j.asoc.2016.01.044_bib0630
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
– volume: 39
  start-page: 313
  year: 2006
  ident: 10.1016/j.asoc.2016.01.044_bib0685
  article-title: Eliminating redundancy and irrelevance using a new MLP-based feature selection method
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.09.002
– volume: 43
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0970
  article-title: A novel approach for feature selection based on the bee colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.asoc.2016.01.044_bib0560
  article-title: Andr, #233, Elisseeff, An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 1825
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0740
  article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2007.05.011
– start-page: 856
  year: 2003
  ident: 10.1016/j.asoc.2016.01.044_bib0910
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib0940
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 27
  start-page: 1067
  year: 2006
  ident: 10.1016/j.asoc.2016.01.044_bib0760
  article-title: Random subspace method for multivariate feature selection
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.12.018
– volume: 74
  start-page: 2914
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib1050
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– volume: 8
  start-page: 1381
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0830
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– volume: 13
  start-page: 44
  year: 1998
  ident: 10.1016/j.asoc.2016.01.044_bib0640
  article-title: Feature subset selection using a genetic algorithm, intelligent systems and their applications
  publication-title: IEEE
– volume: 26
  start-page: 1274
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib0590
  article-title: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.12.009
– volume: 113
  start-page: 175
  year: 2014
  ident: 10.1016/j.asoc.2016.01.044_bib1015
  article-title: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2013.10.007
– volume: 19
  start-page: 431
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0705
  article-title: Performing feature selection with multilayer perceptrons, neural networks
  publication-title: IEEE Trans.
– start-page: 112
  year: 2014
  ident: 10.1016/j.asoc.2016.01.044_bib0795
  article-title: A clustering based genetic algorithm for feature selection
– volume: 84
  start-page: 144
  year: 2015
  ident: 10.1016/j.asoc.2016.01.044_bib0675
  article-title: Integration of graph clustering with ant colony optimization for feature selection
  publication-title: Know. -Based Syst.
  doi: 10.1016/j.knosys.2015.04.007
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2016.01.044_bib0990
  article-title: Particle swarm optimization
– volume: 45
  start-page: 3676
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib1035
  article-title: Application of global optimization methods to model and feature selection
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2012.04.015
– volume: 48
  start-page: 2798
  year: 2015
  ident: 10.1016/j.asoc.2016.01.044_bib0665
  article-title: Relevance–redundancy feature selection based on ant colony optimization
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2015.03.020
– volume: 43
  start-page: 5
  year: 2010
  ident: 10.1016/j.asoc.2016.01.044_bib0620
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.06.009
– start-page: 163
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib0680
  article-title: Modified backward feature selection by cross validation
– volume: 19
  start-page: 43
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib1000
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2005.01.004
– year: 2015
  ident: 10.1016/j.asoc.2016.01.044_bib0595
  article-title: Gene selection for microarray data classification using a novel ant colony optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.022
– volume: 35
  start-page: 1817
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0900
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.088
– volume: 4105
  start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2016.01.044_bib1040
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on
– start-page: 45
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0895
  article-title: Comparison of population based metaheuristics for feature selection: application to microarray data classification
– volume: 180
  start-page: 723
  year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0950
  article-title: Framework for efficient feature selection in genetic algorithm based data mining
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.02.040
– volume: 43
  start-page: 1656
  year: 2013
  ident: 10.1016/j.asoc.2016.01.044_bib1005
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cyb.
  doi: 10.1109/TSMCB.2012.2227469
– start-page: 522
  year: 2010
  ident: 10.1016/j.asoc.2016.01.044_bib1075
  article-title: A hybrid particle swarm optimization algorithm based on space transformation search and a modified velocity model
– volume: 4
  start-page: 100
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0860
  article-title: Optimal sequencing of design projects’ activities using discrete particle swarm optimisation
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2012.047181
– volume: 18
  start-page: 507
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib0930
  article-title: Laplacian score for feature selection
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0935
  article-title: Generalized fisher score for feature selection
– volume: 36
  start-page: 1529
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0600
  article-title: A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.062
– volume: 11
  start-page: 2501
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0790
  article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.08.020
– volume: 16
  start-page: 585
  year: 2010
  ident: 10.1016/j.asoc.2016.01.044_bib0850
  article-title: PID-controlled particle swarm optimization
  publication-title: J. Multiple-Valued Logic Soft Comput.
– volume: 29
  start-page: 1351
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0635
  article-title: An efficient ant colony optimization approach to attribute reduction in rough set theory
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.02.006
– volume: 1
  start-page: 138
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0885
  article-title: Face recognition using bacterial foraging strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.06.001
– volume: 36
  start-page: 10604
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0605
  article-title: Ant colony and particle swarm optimization for financial classification problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.055
– volume: 17
  start-page: 491
  year: 2005
  ident: 10.1016/j.asoc.2016.01.044_bib0770
  article-title: Toward integrating feature selection algorithms for classification and clustering, Knowledge and Data Engineering
  publication-title: IEEE Trans.
– volume: 107
  start-page: 382
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib1025
  article-title: An attribute weight assignment and particle swarm optimization algorithm for medical database classifications
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2010.12.004
– volume: 4
  start-page: 206
  year: 2012
  ident: 10.1016/j.asoc.2016.01.044_bib0855
  article-title: Particle swarm optimisation applied to real time control of spherical tank system
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2012.048065
– volume: 36
  start-page: 111
  year: 1974
  ident: 10.1016/j.asoc.2016.01.044_bib1060
  article-title: Cross validation choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– start-page: 175
  year: 1994
  ident: 10.1016/j.asoc.2016.01.044_bib1055
  article-title: GroupLens. An open architecture for collaborative filtering of netnews
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.asoc.2016.01.044_bib0785
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 32
  start-page: 207
  year: 2002
  ident: 10.1016/j.asoc.2016.01.044_bib0695
  article-title: The ANNIGMA-wrapper approach to fast feature selection for neural nets, systems, man, and cybernetics, part B: cybernetics
  publication-title: IEEE Trans.
– volume: 10
  start-page: 405
  year: 2009
  ident: 10.1016/j.asoc.2016.01.044_bib0905
  article-title: Particle swarm model selection
  publication-title: J. Mach. Learn. Res.
– start-page: 151
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0985
  article-title: Comparative performance study of genetic algorithm and particle swarm optimization applied on off-grid renewable hybrid energy system
– volume: 24
  start-page: 1024
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0570
  article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
  publication-title: Know. -Based Syst.
  doi: 10.1016/j.knosys.2011.04.014
– start-page: 15
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0690
  article-title: An incremental approach to contribution-based feature selection
  publication-title: J. Intell. Syst.
– volume: 24
  start-page: 904
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0565
  article-title: A new feature selection algorithm based on binomial hypothesis testing for spam filtering
  publication-title: Know. -Based Syst.
  doi: 10.1016/j.knosys.2011.04.006
– volume: 36
  start-page: 106
  year: 2006
  ident: 10.1016/j.asoc.2016.01.044_bib0700
  article-title: Genetic programming for simultaneous feature selection and classifier design, systems, man, and cybernetics, part B: cybernetics
  publication-title: IEEE Trans.
– year: 1997
  ident: 10.1016/j.asoc.2016.01.044_bib0915
– volume: 37
  start-page: 15
  issue: December
  year: 2011
  ident: 10.1016/j.asoc.2016.01.044_bib0980
  article-title: A hybrid PSO approach to automate test data generation for data flow coverage with dominance concepts
  publication-title: Int. J. Adv. Sci. Technol.
– year: 2007
  ident: 10.1016/j.asoc.2016.01.044_bib0625
– volume: 41
  start-page: 77
  year: 2004
  ident: 10.1016/j.asoc.2016.01.044_bib0925
  article-title: Theoretical comparison between the Gini index and information gain criteria
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/B:AMAI.0000018580.96245.c6
– volume: 73
  start-page: 3273
  year: 2010
  ident: 10.1016/j.asoc.2016.01.044_bib0780
  article-title: A new wrapper feature selection approach using neural network
  publication-title: Neurocomputer
  doi: 10.1016/j.neucom.2010.04.003
– volume: 171
  start-page: 842
  year: 2006
  ident: 10.1016/j.asoc.2016.01.044_bib0875
  article-title: Using simulated annealing to optimize the feature selection problem in marketing applications
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.09.010
– volume: 205
  start-page: 716
  year: 2008
  ident: 10.1016/j.asoc.2016.01.044_bib0575
  article-title: An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.05.115
SSID ssj0016928
Score 2.602957
Snippet The proposed method uses a local search technique which is embedded in particle swarm optimization (PSO) to select the reduced sized and salient feature...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Correlation information
Feature selection
Local search
Particle swarm optimization
Title A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
URI https://dx.doi.org/10.1016/j.asoc.2016.01.044
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQXHZhYxsCBtU7cJuyxo3jxMeqoirjQxOsErfIsZ81pjat2gLqhb8dv8SphoQ47BQlsSXr-X3Z-r3fY-y0dESCJnqRNJk_oJSGR1pKE2lROpW7Xu4s3UNeXcvRWPy8S--22KCthSFYZfD9jU-vvXX40g3S7M7v77u3_uSRCyUkJ9aopC4mFyIjLf_xvIF5cKnq_qo0OKLRoXCmwXhpLwGCd8maulOIt4PTPwFn-InthkwR-s1i9tgWVp_Zx7YLAwSj_MKqPvxZU90VzMPCYfmkF1OYeW8wDWWW4HNTcFizeMLSOwtcwbJugUM_yzW0tBE-koGGavaIE6jjHDS2AMuGxnb9lY2HZ78Hoyh0UYhMIuUqcuiNDlNtlDJKC1nGuYpLa63OUWSptiJzBEVGmyu_TalTmMYxZjZBSsfyZJ9tV7MKDxjYNMaeLZ2UqARHfzI0ScINupRnXAt1yHgrvsIEinHqdDEpWizZ34JEXpDIi5gXXuSH7Ptmzrwh2Hh3dNruSvFKTQofAd6Zd_Sf876xD_TWYMOO2fZq8YAnPgtZlZ1azTpspz-4ufxFz_OL0fULRZ7gCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoCFN-LNDWwoatI4bjxWCFReXQCJzXLsswBBWtEC6r_HlzgIJMTAGvsk67PvYefuO8aOCkckaLwXCdP3F5TCJJEWwkSaF07mrpc7S--Q1yMxvOMX99l9i500tTCUVhlsf23TK2sdvnQDmt3J42P3xt88ci65SIg1KqVi8g6xU2Vt1hmcXw5HXz8ThKxarNL8iARC7Uyd5qU9CJThJSr2Ts5_90_ffM7ZClsKwSIM6vWsshaWa2y5acQAQS_XWTmAhzmVXsEkrB2mH_r1BcbeILyESkvw4Sk4rIg8YertBc5gWnXBocFiDg1zhHdmoKEcv-MzVK4OanWAac1kO99gd2entyfDKDRSiEwqxCxy6PUOM22kNFJzUcS5jAtrrc7RA6Yt7zvKRkabS79TmZOYxTH2bYoUkeXpJmuX4xK3GNgsxp4tnBAoeYL-cmjSNDHosqSfaC63WdLAp0xgGadmF8-qSSd7UgS5IshVnCgP-TY7_pKZ1Bwbf87Oml1RP06K8k7gD7mdf8odsoXh7fWVujofXe6yRRqpU8X2WHv2-ob7PiiZFQfh0H0C8SLhJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+for+feature+subset+selection+by+integrating+a+novel+local+search+strategy&rft.jtitle=Applied+soft+computing&rft.au=Moradi%2C+Parham&rft.au=Gholampour%2C+Mozhgan&rft.date=2016-06-01&rft.issn=1568-4946&rft.volume=43&rft.spage=117&rft.epage=130&rft_id=info:doi/10.1016%2Fj.asoc.2016.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_01_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon