Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine
The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems...
Saved in:
Published in | Information processing in agriculture Vol. 9; no. 3; pp. 431 - 442 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards. |
---|---|
AbstractList | The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards. |
Author | Ge, Luzhen Zou, Kunlin Tan, Yuzhi Li, Wei Yu, Xiaowei Zhang, Chunlong Zhou, Hang |
Author_xml | – sequence: 1 givenname: Luzhen surname: Ge fullname: Ge, Luzhen – sequence: 2 givenname: Kunlin surname: Zou fullname: Zou, Kunlin – sequence: 3 givenname: Hang surname: Zhou fullname: Zhou, Hang – sequence: 4 givenname: Xiaowei surname: Yu fullname: Yu, Xiaowei – sequence: 5 givenname: Yuzhi surname: Tan fullname: Tan, Yuzhi – sequence: 6 givenname: Chunlong surname: Zhang fullname: Zhang, Chunlong – sequence: 7 givenname: Wei surname: Li fullname: Li, Wei |
BookMark | eNpNkctqHTEMhk1IoGmSF-jKLzBTyfaZmbMMoZdAoJt0bTS2nOPD3LB9CnmGvnRnmgtZSXxInxD_Z3E-zRML8QWhRsDm67GO00K1AoU1mBoQz8SlUmgqja0-_9B_Ejc5HwEA20YbgEvx9_GQmKWPI085zhMNkpZlYFk2PKcnmrJ0A-UcQ3RU1hFJk5fPkQcvOZc4vsLhaU6xHEbZU2YvVzSehhKrwFROibMMp_y2nU_LMqci_7Arc5IjuUOc-FpcBBoy37zWK_H7-7fHu5_Vw68f93e3D5XTTVOq4LB3pvVolGq9g7DvHKm2I417RNOg8qD3PTgV9spRo7lvTeBdswuABr2-EvcvXj_T0S5pfSE925mi_Q_Wpy2lEt3Alohb15kAXQ-mQ007hQo9b_d63JnVpV5cLs05Jw7vPgS7pWOPdkvHbulYMHZNR_8DpiKIrQ |
CitedBy_id | crossref_primary_10_1002_widm_1489 |
Cites_doi | 10.1016/j.compag.2015.01.010 10.1016/S0262-8856(98)00074-2 10.1016/j.biosystemseng.2016.02.004 10.1016/j.eswa.2017.06.044 10.1186/1471-2105-14-238 10.3390/s19020428 10.1016/j.compag.2019.05.016 10.1016/j.eswa.2018.07.048 10.3390/s17122738 10.1016/j.isprsjprs.2019.12.011 10.1016/j.compag.2018.11.026 10.1080/01431161.2020.1811917 10.1016/j.robot.2008.08.005 10.1002/rob.21726 10.3390/rs12213592 10.3390/s16122136 10.1145/1961189.1961199 10.1145/355744.355745 10.1016/j.compag.2016.08.024 10.1016/j.biosystemseng.2016.01.013 10.1016/j.compag.2016.09.014 10.3390/s18030763 10.3390/rs12152481 10.1016/j.compag.2015.10.022 10.1186/s13007-017-0243-x 10.1016/j.scienta.2020.109791 10.1016/j.biosystemseng.2018.09.004 10.1016/j.compag.2014.04.011 10.1016/j.compag.2017.02.017 10.1109/LRA.2017.2651952 10.1016/j.biosystemseng.2019.06.019 10.1016/j.compag.2014.02.013 10.1016/j.compag.2017.08.007 10.1007/s10514-013-9327-2 10.1109/WACV.2012.6163017 10.1109/34.765655 10.1016/j.biosystemseng.2016.01.007 10.1016/j.compind.2018.03.024 10.1016/j.compag.2019.01.009 10.3390/s17112564 10.1016/j.compag.2017.09.019 10.1007/BF01890115 10.1007/BF00058655 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.inpa.2021.04.011 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2214-3173 |
EndPage | 442 |
ExternalDocumentID | oai_doaj_org_article_aae7c84f08b04813a52121dea278b154 10_1016_j_inpa_2021_04_011 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO AAYXX ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ |
ID | FETCH-LOGICAL-c366t-fc1bc47d14227dc0f98ca278a319114612d039b0c2f92ca63eb74fe565f0141d3 |
IEDL.DBID | DOA |
ISSN | 2214-3173 |
IngestDate | Tue Oct 22 15:12:59 EDT 2024 Fri Aug 23 00:44:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-fc1bc47d14227dc0f98ca278a319114612d039b0c2f92ca63eb74fe565f0141d3 |
OpenAccessLink | https://doaj.org/article/aae7c84f08b04813a52121dea278b154 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aae7c84f08b04813a52121dea278b154 crossref_primary_10_1016_j_inpa_2021_04_011 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-00 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Information processing in agriculture |
PublicationYear | 2022 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | 10.1016/j.inpa.2021.04.011_b0130 Wang (10.1016/j.inpa.2021.04.011_b0165) 2017; 17 Zhang (10.1016/j.inpa.2021.04.011_b0190) 2021; 278 Ramos (10.1016/j.inpa.2021.04.011_b0110) 2018; 99 Underwood (10.1016/j.inpa.2021.04.011_b0170) 2016; 130 Sa (10.1016/j.inpa.2021.04.011_b0090) 2017; 2 Xiong (10.1016/j.inpa.2021.04.011_b0155) 2019; 157 Lin (10.1016/j.inpa.2021.04.011_b0175) 2019; 186 Day (10.1016/j.inpa.2021.04.011_b0235) 1984; 1 Karkee (10.1016/j.inpa.2021.04.011_b0020) 2014; 103 Zhang (10.1016/j.inpa.2021.04.011_b0075) 2020; 12 Johnson (10.1016/j.inpa.2021.04.011_b0205) 1998; 16 Mack (10.1016/j.inpa.2021.04.011_b0145) 2017; 135 Wang (10.1016/j.inpa.2021.04.011_b0035) 2017; 17 Tao (10.1016/j.inpa.2021.04.011_b0065) 2017; 142 Sun (10.1016/j.inpa.2021.04.011_b0195) 2020; 160 Kusumam (10.1016/j.inpa.2021.04.011_b0180) 2017; 34 Eizentals (10.1016/j.inpa.2021.04.011_b0100) 2016; 128 Rist (10.1016/j.inpa.2021.04.011_b0120) 2018; 18 Jafari (10.1016/j.inpa.2021.04.011_b0045) 2011 Tsoulias (10.1016/j.inpa.2021.04.011_b0070) 2020; 12 Wang (10.1016/j.inpa.2021.04.011_b0040) 2016; 145 Zhou (10.1016/j.inpa.2021.04.011_b0080) 2021; 42 Chang (10.1016/j.inpa.2021.04.011_b0215) 2011; 2 Friedman (10.1016/j.inpa.2021.04.011_b0220) 1977; 3 Karkee (10.1016/j.inpa.2021.04.011_b0015) 2015; 58 Paulus (10.1016/j.inpa.2021.04.011_b0140) 2013; 14 Ji (10.1016/j.inpa.2021.04.011_b0005) 2017; 14 Mehta (10.1016/j.inpa.2021.04.011_b0105) 2017; 142 Gené-Mola (10.1016/j.inpa.2021.04.011_b0055) 2019; 162 Gongal (10.1016/j.inpa.2021.04.011_b0060) 2016; 120 Tu (10.1016/j.inpa.2021.04.011_b0185) 2018; 175 Johnson (10.1016/j.inpa.2021.04.011_b0210) 1999; 21 He (10.1016/j.inpa.2021.04.011_b0150) 2017; 13 Barnea (10.1016/j.inpa.2021.04.011_b0095) 2016; 146 Rusu (10.1016/j.inpa.2021.04.011_b0230) 2008; 56 Si (10.1016/j.inpa.2021.04.011_b0025) 2015; 112 Nyarko (10.1016/j.inpa.2021.04.011_b0160) 2018; 114 Lin (10.1016/j.inpa.2021.04.011_b0050) 2019; 19 Nguyen (10.1016/j.inpa.2021.04.011_b0010) 2016; 146 Breiman (10.1016/j.inpa.2021.04.011_b0240) 1996; 24 Milella (10.1016/j.inpa.2021.04.011_b0125) 2019; 156 Avendano (10.1016/j.inpa.2021.04.011_b0115) 2017; 88 Rose (10.1016/j.inpa.2021.04.011_b0135) 2016; 16 Pomerleau (10.1016/j.inpa.2021.04.011_b0225) 2013; 34 Feng (10.1016/j.inpa.2021.04.011_b0085) 2014; 7 Bac (10.1016/j.inpa.2021.04.011_b0030) 2014; 105 |
References_xml | – volume: 112 start-page: 68 year: 2015 ident: 10.1016/j.inpa.2021.04.011_b0025 article-title: Location of apples in trees using stereoscopic vision publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.01.010 contributor: fullname: Si – volume: 16 start-page: 635 issue: 9-10 year: 1998 ident: 10.1016/j.inpa.2021.04.011_b0205 article-title: Surface matching for object recognition in complex three-dimensional scenes publication-title: Image Vis Comput doi: 10.1016/S0262-8856(98)00074-2 contributor: fullname: Johnson – volume: 58 start-page: 565 issue: 3 year: 2015 ident: 10.1016/j.inpa.2021.04.011_b0015 article-title: A method for three-dimensional reconstruction of apple trees for automated pruning publication-title: Trans ASABE contributor: fullname: Karkee – volume: 145 start-page: 39 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0040 article-title: Localisation of litchi in an unstructured environment using binocular stereo vision publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.02.004 contributor: fullname: Wang – volume: 88 start-page: 178 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0115 article-title: A system for classifying vegetative structures on coffee branches based on videos recorded in the field by a mobile device publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.06.044 contributor: fullname: Avendano – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.inpa.2021.04.011_b0140 article-title: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping publication-title: BMC Bioinf doi: 10.1186/1471-2105-14-238 contributor: fullname: Paulus – volume: 19 start-page: 428 issue: 2 year: 2019 ident: 10.1016/j.inpa.2021.04.011_b0050 article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field publication-title: Sensors doi: 10.3390/s19020428 contributor: fullname: Lin – volume: 162 start-page: 689 year: 2019 ident: 10.1016/j.inpa.2021.04.011_b0055 article-title: Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.016 contributor: fullname: Gené-Mola – volume: 114 start-page: 454 year: 2018 ident: 10.1016/j.inpa.2021.04.011_b0160 article-title: A nearest neighbor approach for fruit recognition in RGB-D images based on detection of convex surfaces publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.048 contributor: fullname: Nyarko – volume: 17 start-page: 2738 issue: 12 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0165 article-title: On-tree mango fruit size estimation using RGB-D images publication-title: Sensors doi: 10.3390/s17122738 contributor: fullname: Wang – volume: 160 start-page: 195 year: 2020 ident: 10.1016/j.inpa.2021.04.011_b0195 article-title: Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.12.011 contributor: fullname: Sun – volume: 156 start-page: 293 year: 2019 ident: 10.1016/j.inpa.2021.04.011_b0125 article-title: In-field high throughput grapevine phenotyping with a consumer-grade depth camera publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.11.026 contributor: fullname: Milella – volume: 7 start-page: 19 issue: 2 year: 2014 ident: 10.1016/j.inpa.2021.04.011_b0085 article-title: Design of structured-light vision system for tomato harvesting robot publication-title: Int J Agric Biol Eng contributor: fullname: Feng – volume: 42 start-page: 738 issue: 2 year: 2021 ident: 10.1016/j.inpa.2021.04.011_b0080 article-title: Research on volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and clustering segmentation publication-title: Int J Remote Sens doi: 10.1080/01431161.2020.1811917 contributor: fullname: Zhou – volume: 56 start-page: 927 issue: 11 year: 2008 ident: 10.1016/j.inpa.2021.04.011_b0230 article-title: Towards 3D point cloud based object maps for household environments publication-title: Rob Auton Syst doi: 10.1016/j.robot.2008.08.005 contributor: fullname: Rusu – volume: 34 start-page: 1505 issue: 8 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0180 article-title: 3D-vision based detection, localization, and sizing of broccoli heads in the field publication-title: J Field Rob doi: 10.1002/rob.21726 contributor: fullname: Kusumam – volume: 12 start-page: 3592 issue: 21 year: 2020 ident: 10.1016/j.inpa.2021.04.011_b0075 article-title: Apple tree branch information extraction from terrestrial laser scanning and backpack-LiDAR publication-title: Remote Sens doi: 10.3390/rs12213592 contributor: fullname: Zhang – volume: 16 start-page: 2136 issue: 12 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0135 article-title: Towards automated large-scale 3D phenotyping of vineyards under field conditions publication-title: Sensors doi: 10.3390/s16122136 contributor: fullname: Rose – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.inpa.2021.04.011_b0215 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST) doi: 10.1145/1961189.1961199 contributor: fullname: Chang – volume: 3 start-page: 209 issue: 3 year: 1977 ident: 10.1016/j.inpa.2021.04.011_b0220 article-title: An algorithm for finding best matches in logarithmic time publication-title: ACM Trans Math Softw doi: 10.1145/355744.355745 contributor: fullname: Friedman – volume: 128 start-page: 127 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0100 article-title: 3D pose estimation of green pepper fruit for automated harvesting publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.08.024 contributor: fullname: Eizentals – volume: 146 start-page: 57 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0095 article-title: Colour-agnostic shape-based 3D fruit detection for crop harvesting robots publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.01.013 contributor: fullname: Barnea – volume: 130 start-page: 83 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0170 article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.09.014 contributor: fullname: Underwood – volume: 18 start-page: 763 issue: 3 year: 2018 ident: 10.1016/j.inpa.2021.04.011_b0120 article-title: High-precision phenotyping of grape bunch architecture using fast 3D sensor and automation publication-title: Sensors doi: 10.3390/s18030763 contributor: fullname: Rist – volume: 12 start-page: 2481 issue: 15 year: 2020 ident: 10.1016/j.inpa.2021.04.011_b0070 article-title: Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner publication-title: Remote Sens doi: 10.3390/rs12152481 contributor: fullname: Tsoulias – volume: 120 start-page: 26 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0060 article-title: Apple crop-load estimation with over-the-row machine vision system publication-title: Comput Electron Agric doi: 10.1016/j.compag.2015.10.022 contributor: fullname: Gongal – volume: 14 issue: 3 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0005 article-title: Branch localization method based on the skeleton feature extraction and stereo matching for apple harvesting robot publication-title: Int J Adv Rob Syst contributor: fullname: Ji – volume: 13 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0150 article-title: A novel 3D imaging system for strawberry phenotyping publication-title: Plant Methods doi: 10.1186/s13007-017-0243-x contributor: fullname: He – volume: 278 start-page: 109791 year: 2021 ident: 10.1016/j.inpa.2021.04.011_b0190 article-title: A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud publication-title: Sci Hortic doi: 10.1016/j.scienta.2020.109791 contributor: fullname: Zhang – volume: 175 start-page: 156 year: 2018 ident: 10.1016/j.inpa.2021.04.011_b0185 article-title: Detection of passion fruits and maturity classification using Red-Green-Blue Depth images publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2018.09.004 contributor: fullname: Tu – volume: 105 start-page: 111 year: 2014 ident: 10.1016/j.inpa.2021.04.011_b0030 article-title: Stem localization of sweet-pepper plants using the support wire as a visual cue publication-title: Comput Electron Agric doi: 10.1016/j.compag.2014.04.011 contributor: fullname: Bac – volume: 135 start-page: 300 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0145 article-title: High-precision 3D detection and reconstruction of grapes from laser range data for efficient phenotyping based on supervised learning publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.02.017 contributor: fullname: Mack – volume: 2 start-page: 765 issue: 2 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0090 article-title: Peduncle detection of sweet pepper for autonomous crop harvesting—combined Color and 3-D Information publication-title: IEEE Rob Autom Lett doi: 10.1109/LRA.2017.2651952 contributor: fullname: Sa – volume: 186 start-page: 34 year: 2019 ident: 10.1016/j.inpa.2021.04.011_b0175 article-title: In-field citrus detection and localisation based on RGB-D image analysis publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2019.06.019 contributor: fullname: Lin – volume: 103 start-page: 127 year: 2014 ident: 10.1016/j.inpa.2021.04.011_b0020 article-title: Identification of pruning branches in tall spindle apple trees for automated pruning publication-title: Comput Electron Agric doi: 10.1016/j.compag.2014.02.013 contributor: fullname: Karkee – start-page: 14133 year: 2011 ident: 10.1016/j.inpa.2021.04.011_b0045 article-title: A novel algorithm to recognize and locate pomegranate on the tree for a harvesting robot using a stereo vision system publication-title: Proc Precis Agric contributor: fullname: Jafari – volume: 142 start-page: 139 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0105 article-title: Multiple camera fruit localization using a particle filter publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.08.007 contributor: fullname: Mehta – volume: 34 start-page: 133 issue: 3 year: 2013 ident: 10.1016/j.inpa.2021.04.011_b0225 article-title: Comparing ICP variants on real-world data sets publication-title: Autonomous Robots doi: 10.1007/s10514-013-9327-2 contributor: fullname: Pomerleau – ident: 10.1016/j.inpa.2021.04.011_b0130 doi: 10.1109/WACV.2012.6163017 – volume: 21 start-page: 433 issue: 5 year: 1999 ident: 10.1016/j.inpa.2021.04.011_b0210 article-title: Using spin images for efficient object recognition in cluttered 3D scenes publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.765655 contributor: fullname: Johnson – volume: 146 start-page: 33 year: 2016 ident: 10.1016/j.inpa.2021.04.011_b0010 article-title: Detection of red and bicoloured apples on tree with an RGB-D camera publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2016.01.007 contributor: fullname: Nguyen – volume: 99 start-page: 83 year: 2018 ident: 10.1016/j.inpa.2021.04.011_b0110 article-title: Measurement of the ripening rate on coffee branches by using 3d images in outdoor environments publication-title: Comput Ind doi: 10.1016/j.compind.2018.03.024 contributor: fullname: Ramos – volume: 157 start-page: 392 year: 2019 ident: 10.1016/j.inpa.2021.04.011_b0155 article-title: Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.01.009 contributor: fullname: Xiong – volume: 17 start-page: 2564 issue: 11 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0035 article-title: Recognition and matching of clustered mature litchi fruits using binocular charge-coupled device (CCD) color cameras publication-title: Sensors doi: 10.3390/s17112564 contributor: fullname: Wang – volume: 142 start-page: 388 year: 2017 ident: 10.1016/j.inpa.2021.04.011_b0065 article-title: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.09.019 contributor: fullname: Tao – volume: 1 start-page: 7 issue: 1 year: 1984 ident: 10.1016/j.inpa.2021.04.011_b0235 article-title: Efficient algorithms for agglomerative hierarchical clustering methods publication-title: J Classif doi: 10.1007/BF01890115 contributor: fullname: Day – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.inpa.2021.04.011_b0240 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 contributor: fullname: Breiman |
SSID | ssj0001763400 |
Score | 2.3293471 |
SecondaryResourceType | review_article |
Snippet | The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 431 |
SubjectTerms | 3D point cloud Feature fusion Organs classification SVM Yield estimation |
Title | Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine |
URI | https://doaj.org/article/aae7c84f08b04813a52121dea278b154 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB7YUISTOLEzloqqQqIsrVSxRH6WIppWTYrEb-BP43NSVCYWViuJou_OvrP93XcI3YRScUUTGqSGm4AqKwOpU5DHsySzmmXct297GqaDMX2cJJOtVl_ACavlgWvg7oQwTHFqCZcgbRILKDYNtRER49LFf7_6kmxrM-VPV9y0ob7-JIpC6hYaFjcVMzW5a1YsQXQoCr3OaRj-ikpb4v0-yvQP0UGTHuJu_VtHaMcUx2i_O101EhnmBH2NHPwGa5DlryU1MNxCGwz3y9h3aSqxgqQYWEAeeCwKjT-Bq4ZBVGPeDL5PF6tZ9TrHEMo0dkOeXhhY49U-S2zX5ebtcr2ETB1_-FN-PPccTHOKxv2HUW8QNC0VAhWnaRVY5YxDmYaTH6YVsRlXgKRwMxHqk8NIkziTREU2i5RIYyMZtcZlfRYYoTo-Q61iUZhzhBOVEkl1IpjbkhjNhbFw6cuss5DbBPE2ut1Ami9r5Yx8Qyl7y8EAORggJzR3Bmije0D950lQvfYDDra88YX8L1-4-I-PXKK9CEocPI_sCrWq1dpcu8Sjkh3vYx20O-xNnl--AYpl2Ig |
link.rule.ids | 315,783,787,867,2109,27937,27938 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+apple+tree+organs+classification+and+yield+estimation+algorithm+based+on+multi-features+fusion+and+support+vector+machine&rft.jtitle=Information+processing+in+agriculture&rft.au=Ge%2C+Luzhen&rft.au=Zou%2C+Kunlin&rft.au=Zhou%2C+Hang&rft.au=Yu%2C+Xiaowei&rft.date=2022-09-01&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=9&rft.issue=3&rft.spage=431&rft.epage=442&rft_id=info:doi/10.1016%2Fj.inpa.2021.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inpa_2021_04_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon |