Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine

The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in agriculture Vol. 9; no. 3; pp. 431 - 442
Main Authors Ge, Luzhen, Zou, Kunlin, Zhou, Hang, Yu, Xiaowei, Tan, Yuzhi, Zhang, Chunlong, Li, Wei
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards.
AbstractList The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and estimation of fruit yield. However, there are some problems of dense foliage, partial occlusion and clustering of apple fruits. All of the problems above would contribute to the difficulties of organs classification and yield estimation of the apple trees. In this paper a method based on Color and Shape Multi-features Fusion and Support Vector Machine (SVM) for 3D apple tree organs classification and yield estimation was proposed. The method was designed for dwarf and densely planted apple trees at the early and late maturity stages. 196-dimensional feature vectors composed with Red Green Blue (RGB), Hue Saturation Value (HSV), Curvatures, Fast Point Feature Histogram (FPFH), and Spin Image were extracted firstly. And then the SVM based on linear kernel function was trained, after that the trained SVM was used for apple tree organs classification. Then the position weighted smoothing algorithm was used for classified apple tree organs smoothing. Then the agglomerative hierarchical clustering algorithm was used to recognize single apple fruit for yield estimation. On the same training and test set the experimental results showed that the SVM based on linear kernel function outperformed the KNN algorithm and Ensemble algorithm. The Recall, Precision and F1 score of the proposed method for yield estimation were 93.75%, 96.15% and 94.93% respectively. In summary, to solve the problems of apple tree organs classification and yield estimation in natural apple orchard, a novelty method based on multi-features fusion and SVM was proposed and achieve good performance. Moreover, the proposed method could provide technical support for automatic apple picking, automatic pruning of fruit trees, and automatic information acquisition and management in orchards.
Author Ge, Luzhen
Zou, Kunlin
Tan, Yuzhi
Li, Wei
Yu, Xiaowei
Zhang, Chunlong
Zhou, Hang
Author_xml – sequence: 1
  givenname: Luzhen
  surname: Ge
  fullname: Ge, Luzhen
– sequence: 2
  givenname: Kunlin
  surname: Zou
  fullname: Zou, Kunlin
– sequence: 3
  givenname: Hang
  surname: Zhou
  fullname: Zhou, Hang
– sequence: 4
  givenname: Xiaowei
  surname: Yu
  fullname: Yu, Xiaowei
– sequence: 5
  givenname: Yuzhi
  surname: Tan
  fullname: Tan, Yuzhi
– sequence: 6
  givenname: Chunlong
  surname: Zhang
  fullname: Zhang, Chunlong
– sequence: 7
  givenname: Wei
  surname: Li
  fullname: Li, Wei
BookMark eNpNkctqHTEMhk1IoGmSF-jKLzBTyfaZmbMMoZdAoJt0bTS2nOPD3LB9CnmGvnRnmgtZSXxInxD_Z3E-zRML8QWhRsDm67GO00K1AoU1mBoQz8SlUmgqja0-_9B_Ejc5HwEA20YbgEvx9_GQmKWPI085zhMNkpZlYFk2PKcnmrJ0A-UcQ3RU1hFJk5fPkQcvOZc4vsLhaU6xHEbZU2YvVzSehhKrwFROibMMp_y2nU_LMqci_7Arc5IjuUOc-FpcBBoy37zWK_H7-7fHu5_Vw68f93e3D5XTTVOq4LB3pvVolGq9g7DvHKm2I417RNOg8qD3PTgV9spRo7lvTeBdswuABr2-EvcvXj_T0S5pfSE925mi_Q_Wpy2lEt3Alohb15kAXQ-mQ007hQo9b_d63JnVpV5cLs05Jw7vPgS7pWOPdkvHbulYMHZNR_8DpiKIrQ
CitedBy_id crossref_primary_10_1002_widm_1489
Cites_doi 10.1016/j.compag.2015.01.010
10.1016/S0262-8856(98)00074-2
10.1016/j.biosystemseng.2016.02.004
10.1016/j.eswa.2017.06.044
10.1186/1471-2105-14-238
10.3390/s19020428
10.1016/j.compag.2019.05.016
10.1016/j.eswa.2018.07.048
10.3390/s17122738
10.1016/j.isprsjprs.2019.12.011
10.1016/j.compag.2018.11.026
10.1080/01431161.2020.1811917
10.1016/j.robot.2008.08.005
10.1002/rob.21726
10.3390/rs12213592
10.3390/s16122136
10.1145/1961189.1961199
10.1145/355744.355745
10.1016/j.compag.2016.08.024
10.1016/j.biosystemseng.2016.01.013
10.1016/j.compag.2016.09.014
10.3390/s18030763
10.3390/rs12152481
10.1016/j.compag.2015.10.022
10.1186/s13007-017-0243-x
10.1016/j.scienta.2020.109791
10.1016/j.biosystemseng.2018.09.004
10.1016/j.compag.2014.04.011
10.1016/j.compag.2017.02.017
10.1109/LRA.2017.2651952
10.1016/j.biosystemseng.2019.06.019
10.1016/j.compag.2014.02.013
10.1016/j.compag.2017.08.007
10.1007/s10514-013-9327-2
10.1109/WACV.2012.6163017
10.1109/34.765655
10.1016/j.biosystemseng.2016.01.007
10.1016/j.compind.2018.03.024
10.1016/j.compag.2019.01.009
10.3390/s17112564
10.1016/j.compag.2017.09.019
10.1007/BF01890115
10.1007/BF00058655
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.inpa.2021.04.011
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2214-3173
EndPage 442
ExternalDocumentID oai_doaj_org_article_aae7c84f08b04813a52121dea278b154
10_1016_j_inpa_2021_04_011
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
AAYXX
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
ID FETCH-LOGICAL-c366t-fc1bc47d14227dc0f98ca278a319114612d039b0c2f92ca63eb74fe565f0141d3
IEDL.DBID DOA
ISSN 2214-3173
IngestDate Tue Oct 22 15:12:59 EDT 2024
Fri Aug 23 00:44:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-fc1bc47d14227dc0f98ca278a319114612d039b0c2f92ca63eb74fe565f0141d3
OpenAccessLink https://doaj.org/article/aae7c84f08b04813a52121dea278b154
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_aae7c84f08b04813a52121dea278b154
crossref_primary_10_1016_j_inpa_2021_04_011
PublicationCentury 2000
PublicationDate 2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-00
PublicationDecade 2020
PublicationTitle Information processing in agriculture
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
References 10.1016/j.inpa.2021.04.011_b0130
Wang (10.1016/j.inpa.2021.04.011_b0165) 2017; 17
Zhang (10.1016/j.inpa.2021.04.011_b0190) 2021; 278
Ramos (10.1016/j.inpa.2021.04.011_b0110) 2018; 99
Underwood (10.1016/j.inpa.2021.04.011_b0170) 2016; 130
Sa (10.1016/j.inpa.2021.04.011_b0090) 2017; 2
Xiong (10.1016/j.inpa.2021.04.011_b0155) 2019; 157
Lin (10.1016/j.inpa.2021.04.011_b0175) 2019; 186
Day (10.1016/j.inpa.2021.04.011_b0235) 1984; 1
Karkee (10.1016/j.inpa.2021.04.011_b0020) 2014; 103
Zhang (10.1016/j.inpa.2021.04.011_b0075) 2020; 12
Johnson (10.1016/j.inpa.2021.04.011_b0205) 1998; 16
Mack (10.1016/j.inpa.2021.04.011_b0145) 2017; 135
Wang (10.1016/j.inpa.2021.04.011_b0035) 2017; 17
Tao (10.1016/j.inpa.2021.04.011_b0065) 2017; 142
Sun (10.1016/j.inpa.2021.04.011_b0195) 2020; 160
Kusumam (10.1016/j.inpa.2021.04.011_b0180) 2017; 34
Eizentals (10.1016/j.inpa.2021.04.011_b0100) 2016; 128
Rist (10.1016/j.inpa.2021.04.011_b0120) 2018; 18
Jafari (10.1016/j.inpa.2021.04.011_b0045) 2011
Tsoulias (10.1016/j.inpa.2021.04.011_b0070) 2020; 12
Wang (10.1016/j.inpa.2021.04.011_b0040) 2016; 145
Zhou (10.1016/j.inpa.2021.04.011_b0080) 2021; 42
Chang (10.1016/j.inpa.2021.04.011_b0215) 2011; 2
Friedman (10.1016/j.inpa.2021.04.011_b0220) 1977; 3
Karkee (10.1016/j.inpa.2021.04.011_b0015) 2015; 58
Paulus (10.1016/j.inpa.2021.04.011_b0140) 2013; 14
Ji (10.1016/j.inpa.2021.04.011_b0005) 2017; 14
Mehta (10.1016/j.inpa.2021.04.011_b0105) 2017; 142
Gené-Mola (10.1016/j.inpa.2021.04.011_b0055) 2019; 162
Gongal (10.1016/j.inpa.2021.04.011_b0060) 2016; 120
Tu (10.1016/j.inpa.2021.04.011_b0185) 2018; 175
Johnson (10.1016/j.inpa.2021.04.011_b0210) 1999; 21
He (10.1016/j.inpa.2021.04.011_b0150) 2017; 13
Barnea (10.1016/j.inpa.2021.04.011_b0095) 2016; 146
Rusu (10.1016/j.inpa.2021.04.011_b0230) 2008; 56
Si (10.1016/j.inpa.2021.04.011_b0025) 2015; 112
Nyarko (10.1016/j.inpa.2021.04.011_b0160) 2018; 114
Lin (10.1016/j.inpa.2021.04.011_b0050) 2019; 19
Nguyen (10.1016/j.inpa.2021.04.011_b0010) 2016; 146
Breiman (10.1016/j.inpa.2021.04.011_b0240) 1996; 24
Milella (10.1016/j.inpa.2021.04.011_b0125) 2019; 156
Avendano (10.1016/j.inpa.2021.04.011_b0115) 2017; 88
Rose (10.1016/j.inpa.2021.04.011_b0135) 2016; 16
Pomerleau (10.1016/j.inpa.2021.04.011_b0225) 2013; 34
Feng (10.1016/j.inpa.2021.04.011_b0085) 2014; 7
Bac (10.1016/j.inpa.2021.04.011_b0030) 2014; 105
References_xml – volume: 112
  start-page: 68
  year: 2015
  ident: 10.1016/j.inpa.2021.04.011_b0025
  article-title: Location of apples in trees using stereoscopic vision
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.01.010
  contributor:
    fullname: Si
– volume: 16
  start-page: 635
  issue: 9-10
  year: 1998
  ident: 10.1016/j.inpa.2021.04.011_b0205
  article-title: Surface matching for object recognition in complex three-dimensional scenes
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(98)00074-2
  contributor:
    fullname: Johnson
– volume: 58
  start-page: 565
  issue: 3
  year: 2015
  ident: 10.1016/j.inpa.2021.04.011_b0015
  article-title: A method for three-dimensional reconstruction of apple trees for automated pruning
  publication-title: Trans ASABE
  contributor:
    fullname: Karkee
– volume: 145
  start-page: 39
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0040
  article-title: Localisation of litchi in an unstructured environment using binocular stereo vision
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.02.004
  contributor:
    fullname: Wang
– volume: 88
  start-page: 178
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0115
  article-title: A system for classifying vegetative structures on coffee branches based on videos recorded in the field by a mobile device
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.06.044
  contributor:
    fullname: Avendano
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.inpa.2021.04.011_b0140
  article-title: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-14-238
  contributor:
    fullname: Paulus
– volume: 19
  start-page: 428
  issue: 2
  year: 2019
  ident: 10.1016/j.inpa.2021.04.011_b0050
  article-title: Guava detection and pose estimation using a low-cost RGB-D sensor in the field
  publication-title: Sensors
  doi: 10.3390/s19020428
  contributor:
    fullname: Lin
– volume: 162
  start-page: 689
  year: 2019
  ident: 10.1016/j.inpa.2021.04.011_b0055
  article-title: Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.016
  contributor:
    fullname: Gené-Mola
– volume: 114
  start-page: 454
  year: 2018
  ident: 10.1016/j.inpa.2021.04.011_b0160
  article-title: A nearest neighbor approach for fruit recognition in RGB-D images based on detection of convex surfaces
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.048
  contributor:
    fullname: Nyarko
– volume: 17
  start-page: 2738
  issue: 12
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0165
  article-title: On-tree mango fruit size estimation using RGB-D images
  publication-title: Sensors
  doi: 10.3390/s17122738
  contributor:
    fullname: Wang
– volume: 160
  start-page: 195
  year: 2020
  ident: 10.1016/j.inpa.2021.04.011_b0195
  article-title: Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.12.011
  contributor:
    fullname: Sun
– volume: 156
  start-page: 293
  year: 2019
  ident: 10.1016/j.inpa.2021.04.011_b0125
  article-title: In-field high throughput grapevine phenotyping with a consumer-grade depth camera
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.11.026
  contributor:
    fullname: Milella
– volume: 7
  start-page: 19
  issue: 2
  year: 2014
  ident: 10.1016/j.inpa.2021.04.011_b0085
  article-title: Design of structured-light vision system for tomato harvesting robot
  publication-title: Int J Agric Biol Eng
  contributor:
    fullname: Feng
– volume: 42
  start-page: 738
  issue: 2
  year: 2021
  ident: 10.1016/j.inpa.2021.04.011_b0080
  article-title: Research on volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and clustering segmentation
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2020.1811917
  contributor:
    fullname: Zhou
– volume: 56
  start-page: 927
  issue: 11
  year: 2008
  ident: 10.1016/j.inpa.2021.04.011_b0230
  article-title: Towards 3D point cloud based object maps for household environments
  publication-title: Rob Auton Syst
  doi: 10.1016/j.robot.2008.08.005
  contributor:
    fullname: Rusu
– volume: 34
  start-page: 1505
  issue: 8
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0180
  article-title: 3D-vision based detection, localization, and sizing of broccoli heads in the field
  publication-title: J Field Rob
  doi: 10.1002/rob.21726
  contributor:
    fullname: Kusumam
– volume: 12
  start-page: 3592
  issue: 21
  year: 2020
  ident: 10.1016/j.inpa.2021.04.011_b0075
  article-title: Apple tree branch information extraction from terrestrial laser scanning and backpack-LiDAR
  publication-title: Remote Sens
  doi: 10.3390/rs12213592
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 2136
  issue: 12
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0135
  article-title: Towards automated large-scale 3D phenotyping of vineyards under field conditions
  publication-title: Sensors
  doi: 10.3390/s16122136
  contributor:
    fullname: Rose
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.inpa.2021.04.011_b0215
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST)
  doi: 10.1145/1961189.1961199
  contributor:
    fullname: Chang
– volume: 3
  start-page: 209
  issue: 3
  year: 1977
  ident: 10.1016/j.inpa.2021.04.011_b0220
  article-title: An algorithm for finding best matches in logarithmic time
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
  contributor:
    fullname: Friedman
– volume: 128
  start-page: 127
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0100
  article-title: 3D pose estimation of green pepper fruit for automated harvesting
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.08.024
  contributor:
    fullname: Eizentals
– volume: 146
  start-page: 57
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0095
  article-title: Colour-agnostic shape-based 3D fruit detection for crop harvesting robots
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.01.013
  contributor:
    fullname: Barnea
– volume: 130
  start-page: 83
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0170
  article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.09.014
  contributor:
    fullname: Underwood
– volume: 18
  start-page: 763
  issue: 3
  year: 2018
  ident: 10.1016/j.inpa.2021.04.011_b0120
  article-title: High-precision phenotyping of grape bunch architecture using fast 3D sensor and automation
  publication-title: Sensors
  doi: 10.3390/s18030763
  contributor:
    fullname: Rist
– volume: 12
  start-page: 2481
  issue: 15
  year: 2020
  ident: 10.1016/j.inpa.2021.04.011_b0070
  article-title: Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner
  publication-title: Remote Sens
  doi: 10.3390/rs12152481
  contributor:
    fullname: Tsoulias
– volume: 120
  start-page: 26
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0060
  article-title: Apple crop-load estimation with over-the-row machine vision system
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2015.10.022
  contributor:
    fullname: Gongal
– volume: 14
  issue: 3
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0005
  article-title: Branch localization method based on the skeleton feature extraction and stereo matching for apple harvesting robot
  publication-title: Int J Adv Rob Syst
  contributor:
    fullname: Ji
– volume: 13
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0150
  article-title: A novel 3D imaging system for strawberry phenotyping
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0243-x
  contributor:
    fullname: He
– volume: 278
  start-page: 109791
  year: 2021
  ident: 10.1016/j.inpa.2021.04.011_b0190
  article-title: A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2020.109791
  contributor:
    fullname: Zhang
– volume: 175
  start-page: 156
  year: 2018
  ident: 10.1016/j.inpa.2021.04.011_b0185
  article-title: Detection of passion fruits and maturity classification using Red-Green-Blue Depth images
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2018.09.004
  contributor:
    fullname: Tu
– volume: 105
  start-page: 111
  year: 2014
  ident: 10.1016/j.inpa.2021.04.011_b0030
  article-title: Stem localization of sweet-pepper plants using the support wire as a visual cue
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2014.04.011
  contributor:
    fullname: Bac
– volume: 135
  start-page: 300
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0145
  article-title: High-precision 3D detection and reconstruction of grapes from laser range data for efficient phenotyping based on supervised learning
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.02.017
  contributor:
    fullname: Mack
– volume: 2
  start-page: 765
  issue: 2
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0090
  article-title: Peduncle detection of sweet pepper for autonomous crop harvesting—combined Color and 3-D Information
  publication-title: IEEE Rob Autom Lett
  doi: 10.1109/LRA.2017.2651952
  contributor:
    fullname: Sa
– volume: 186
  start-page: 34
  year: 2019
  ident: 10.1016/j.inpa.2021.04.011_b0175
  article-title: In-field citrus detection and localisation based on RGB-D image analysis
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2019.06.019
  contributor:
    fullname: Lin
– volume: 103
  start-page: 127
  year: 2014
  ident: 10.1016/j.inpa.2021.04.011_b0020
  article-title: Identification of pruning branches in tall spindle apple trees for automated pruning
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2014.02.013
  contributor:
    fullname: Karkee
– start-page: 14133
  year: 2011
  ident: 10.1016/j.inpa.2021.04.011_b0045
  article-title: A novel algorithm to recognize and locate pomegranate on the tree for a harvesting robot using a stereo vision system
  publication-title: Proc Precis Agric
  contributor:
    fullname: Jafari
– volume: 142
  start-page: 139
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0105
  article-title: Multiple camera fruit localization using a particle filter
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.08.007
  contributor:
    fullname: Mehta
– volume: 34
  start-page: 133
  issue: 3
  year: 2013
  ident: 10.1016/j.inpa.2021.04.011_b0225
  article-title: Comparing ICP variants on real-world data sets
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-013-9327-2
  contributor:
    fullname: Pomerleau
– ident: 10.1016/j.inpa.2021.04.011_b0130
  doi: 10.1109/WACV.2012.6163017
– volume: 21
  start-page: 433
  issue: 5
  year: 1999
  ident: 10.1016/j.inpa.2021.04.011_b0210
  article-title: Using spin images for efficient object recognition in cluttered 3D scenes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.765655
  contributor:
    fullname: Johnson
– volume: 146
  start-page: 33
  year: 2016
  ident: 10.1016/j.inpa.2021.04.011_b0010
  article-title: Detection of red and bicoloured apples on tree with an RGB-D camera
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.01.007
  contributor:
    fullname: Nguyen
– volume: 99
  start-page: 83
  year: 2018
  ident: 10.1016/j.inpa.2021.04.011_b0110
  article-title: Measurement of the ripening rate on coffee branches by using 3d images in outdoor environments
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2018.03.024
  contributor:
    fullname: Ramos
– volume: 157
  start-page: 392
  year: 2019
  ident: 10.1016/j.inpa.2021.04.011_b0155
  article-title: Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.01.009
  contributor:
    fullname: Xiong
– volume: 17
  start-page: 2564
  issue: 11
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0035
  article-title: Recognition and matching of clustered mature litchi fruits using binocular charge-coupled device (CCD) color cameras
  publication-title: Sensors
  doi: 10.3390/s17112564
  contributor:
    fullname: Wang
– volume: 142
  start-page: 388
  year: 2017
  ident: 10.1016/j.inpa.2021.04.011_b0065
  article-title: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.09.019
  contributor:
    fullname: Tao
– volume: 1
  start-page: 7
  issue: 1
  year: 1984
  ident: 10.1016/j.inpa.2021.04.011_b0235
  article-title: Efficient algorithms for agglomerative hierarchical clustering methods
  publication-title: J Classif
  doi: 10.1007/BF01890115
  contributor:
    fullname: Day
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.inpa.2021.04.011_b0240
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
  contributor:
    fullname: Breiman
SSID ssj0001763400
Score 2.3293471
SecondaryResourceType review_article
Snippet The automatic classification of apple tree organs is of great significance for automatic pruning of apple trees, automatic picking of apple fruits, and...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 431
SubjectTerms 3D point cloud
Feature fusion
Organs classification
SVM
Yield estimation
Title Three dimensional apple tree organs classification and yield estimation algorithm based on multi-features fusion and support vector machine
URI https://doaj.org/article/aae7c84f08b04813a52121dea278b154
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB7YUISTOLEzloqqQqIsrVSxRH6WIppWTYrEb-BP43NSVCYWViuJou_OvrP93XcI3YRScUUTGqSGm4AqKwOpU5DHsySzmmXct297GqaDMX2cJJOtVl_ACavlgWvg7oQwTHFqCZcgbRILKDYNtRER49LFf7_6kmxrM-VPV9y0ob7-JIpC6hYaFjcVMzW5a1YsQXQoCr3OaRj-ikpb4v0-yvQP0UGTHuJu_VtHaMcUx2i_O101EhnmBH2NHPwGa5DlryU1MNxCGwz3y9h3aSqxgqQYWEAeeCwKjT-Bq4ZBVGPeDL5PF6tZ9TrHEMo0dkOeXhhY49U-S2zX5ebtcr2ETB1_-FN-PPccTHOKxv2HUW8QNC0VAhWnaRVY5YxDmYaTH6YVsRlXgKRwMxHqk8NIkziTREU2i5RIYyMZtcZlfRYYoTo-Q61iUZhzhBOVEkl1IpjbkhjNhbFw6cuss5DbBPE2ut1Ami9r5Yx8Qyl7y8EAORggJzR3Bmije0D950lQvfYDDra88YX8L1-4-I-PXKK9CEocPI_sCrWq1dpcu8Sjkh3vYx20O-xNnl--AYpl2Ig
link.rule.ids 315,783,787,867,2109,27937,27938
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+apple+tree+organs+classification+and+yield+estimation+algorithm+based+on+multi-features+fusion+and+support+vector+machine&rft.jtitle=Information+processing+in+agriculture&rft.au=Ge%2C+Luzhen&rft.au=Zou%2C+Kunlin&rft.au=Zhou%2C+Hang&rft.au=Yu%2C+Xiaowei&rft.date=2022-09-01&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=9&rft.issue=3&rft.spage=431&rft.epage=442&rft_id=info:doi/10.1016%2Fj.inpa.2021.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inpa_2021_04_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon