Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data
In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness...
Saved in:
Published in | Superlattices and microstructures Vol. 152; p. 106853 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness, doping and defect densities on the photovoltaic performance have been investigated in details employing the solar cell capacitance simulator (SCAPS-1D) software. It is found that the power conversion efficiency (PCE) of the PEDOT:PSS/n-Si heterojunction solar cells significantly increases with use of these BSF layers. The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with VOC = 0.89 V, JSC = 44.02 mA/cm2 and FF = 78.92%, respectively due to the use of CdS BSF layer. On the other hand, the PCE of the solar cell is found to be 38% with VOC = 0.84 V, JSC = 53.22 mA/cm2 and FF = 85.11%, respectively as a result of longer wavelength absorption in In3Se4 BSF layer. These entire theoretical predictions indicate the promising applications of CdS and In3Se4 compounds as BSF layers in PEDOT:PSS/n-Si heterojunction solar cells to harness solar energy in near future.
[Display omitted]
•Design guideline to fabricate high-efficiency PEDOT:PSS/n-Si solar cells using CdS and In3Se4 BSF layers.•The simulation reveals that CdS and In3Se4 BSF layers have significant effects on the performance of the solar cells.•The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with use of CdS BSF layer.•The PCE of the PEDOT:PSS/n-Si solar cell further increases to 38% with use of In3Se4 BSF layer. |
---|---|
AbstractList | In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness, doping and defect densities on the photovoltaic performance have been investigated in details employing the solar cell capacitance simulator (SCAPS-1D) software. It is found that the power conversion efficiency (PCE) of the PEDOT:PSS/n-Si heterojunction solar cells significantly increases with use of these BSF layers. The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with VOC = 0.89 V, JSC = 44.02 mA/cm2 and FF = 78.92%, respectively due to the use of CdS BSF layer. On the other hand, the PCE of the solar cell is found to be 38% with VOC = 0.84 V, JSC = 53.22 mA/cm2 and FF = 85.11%, respectively as a result of longer wavelength absorption in In3Se4 BSF layer. These entire theoretical predictions indicate the promising applications of CdS and In3Se4 compounds as BSF layers in PEDOT:PSS/n-Si heterojunction solar cells to harness solar energy in near future.
[Display omitted]
•Design guideline to fabricate high-efficiency PEDOT:PSS/n-Si solar cells using CdS and In3Se4 BSF layers.•The simulation reveals that CdS and In3Se4 BSF layers have significant effects on the performance of the solar cells.•The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with use of CdS BSF layer.•The PCE of the PEDOT:PSS/n-Si solar cell further increases to 38% with use of In3Se4 BSF layer. |
ArticleNumber | 106853 |
Author | Hossain, Jaker Kuddus, Abdul Rashid, Md. Abdur Mostaque, Shaikh Khaled Shirai, Hajime Mondal, Bipanko Kumar |
Author_xml | – sequence: 1 givenname: Bipanko Kumar surname: Mondal fullname: Mondal, Bipanko Kumar organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh – sequence: 2 givenname: Shaikh Khaled surname: Mostaque fullname: Mostaque, Shaikh Khaled organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh – sequence: 3 givenname: Md. Abdur surname: Rashid fullname: Rashid, Md. Abdur organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh – sequence: 4 givenname: Abdul surname: Kuddus fullname: Kuddus, Abdul organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh – sequence: 5 givenname: Hajime surname: Shirai fullname: Shirai, Hajime organization: Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan – sequence: 6 givenname: Jaker surname: Hossain fullname: Hossain, Jaker email: jak_apee@ru.ac.bd organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh |
BookMark | eNp9kMFOGzEQQK2KSg20P9CTf2CDvd7YLOICIbRISCAtPVtjeywcOevINgj-gM9mt-mpB04jjfSeZt4xORrTiIT85GzJGZen22XZ78KyZS2fFvJsJb6QBWe9bIRU6ogsmOr6RjIhv5HjUraMsb7jakHeN96jrTR5unYDhdHR21EM2NGr4YZGeMNcaBppfUK6f0o1vaRYIVi6x-xT3sFocYYfNtf3j-cPw3A6NkOgJUXI1GKM5ZwOYfccoYZJY6Cgm334OgnCDscKkTqo8J189RAL_vg3T8ifm83j-ndzd__rdn1511ghZW28UcJ1RnLBGXMAyhjrvVJupXgHPePcAJcWhemxw9bYjvfMWbVyrRFKOnFCzg5em1MpGb22of49rmYIUXOm56J6q-eiei6qD0UntP0P3U8vQH77HLo4QDg99RIw62IDTtVcyFN47VL4DP8AsvaSrA |
CitedBy_id | crossref_primary_10_1002_eng2_12849 crossref_primary_10_1016_j_rinma_2023_100521 crossref_primary_10_1016_j_egyr_2024_08_045 crossref_primary_10_1016_j_seta_2025_104264 crossref_primary_10_1088_1361_6641_ac30e9 crossref_primary_10_1016_j_heliyon_2022_e09120 crossref_primary_10_1016_j_solener_2024_112870 crossref_primary_10_1088_1402_4896_ad3685 crossref_primary_10_1016_j_cap_2022_03_017 crossref_primary_10_1016_j_optcom_2025_131558 crossref_primary_10_1016_j_solener_2023_112076 crossref_primary_10_1002_ente_202301329 crossref_primary_10_1016_j_jalmes_2023_100041 crossref_primary_10_1016_j_solener_2021_04_062 crossref_primary_10_1021_acs_jpcc_4c03301 crossref_primary_10_1021_acs_jpcc_3c07469 crossref_primary_10_3762_bjnano_16_11 crossref_primary_10_1016_j_rinp_2022_105701 crossref_primary_10_1088_1402_4896_acd485 crossref_primary_10_2139_ssrn_4169553 crossref_primary_10_3390_coatings13061123 crossref_primary_10_15251_CL_2024_213_229 crossref_primary_10_1080_15435075_2021_2011291 crossref_primary_10_1364_OME_510358 crossref_primary_10_1088_1402_4896_ad0945 crossref_primary_10_1016_j_optcom_2025_131761 crossref_primary_10_1016_j_physb_2023_415524 crossref_primary_10_1364_OME_439629 crossref_primary_10_1088_2399_6528_ac1bc0 crossref_primary_10_1016_j_matpr_2022_12_114 crossref_primary_10_1016_j_rio_2023_100364 crossref_primary_10_1016_j_solmat_2024_112891 crossref_primary_10_1049_ote2_12118 crossref_primary_10_1088_1402_4896_ad21c6 crossref_primary_10_1007_s12633_022_02163_y crossref_primary_10_1364_OPTCON_527415 crossref_primary_10_1364_OPTCON_542953 crossref_primary_10_1007_s12633_024_02940_x crossref_primary_10_3390_nano14201630 crossref_primary_10_1021_acsomega_4c02375 crossref_primary_10_1002_adts_202401028 crossref_primary_10_1088_2631_8695_acd98a crossref_primary_10_1016_j_ijleo_2021_168278 crossref_primary_10_1039_D4YA00323C crossref_primary_10_1007_s10854_023_11812_w crossref_primary_10_1364_OPTCON_477319 crossref_primary_10_1016_j_rio_2022_100250 crossref_primary_10_1002_pssa_202300839 crossref_primary_10_1016_j_heliyon_2023_e15716 crossref_primary_10_1142_S0217979224503612 crossref_primary_10_1002_nano_202200228 |
Cites_doi | 10.1063/1.4979345 10.1039/C4EE02282C 10.1063/1.1492016 10.1088/2053-1591/ab5ac1 10.1002/pssa.201900921 10.1063/1.4827303 10.1063/1.369528 10.1088/0022-3727/13/5/018 10.1021/am504150n 10.1002/pssa.201532951 10.1039/C9TC04635F 10.1063/1.345414 10.7567/JJAP.55.031601 10.1002/aenm.201702921 10.1063/1.4857655 10.1002/adma.201102712 10.1016/j.solmat.2017.10.016 10.1039/C3CE41815D 10.1021/acsnano.7b03090 10.1021/acsomega.9b02210 10.1016/j.ijleo.2013.06.034 10.1002/adom.201500390 10.1021/acsnano.5b00886 10.1016/j.spmi.2015.02.020 10.1007/s00339-020-3331-0 10.1088/1361-6641/aaa917 10.1002/solr.201700191 10.1088/2053-1591/ab5ac7 10.1002/adma.201606321 10.1063/1.3153979 10.1002/admi.201900367 10.1016/j.spmi.2019.106168 10.1021/acsami.6b10272 10.1016/S1386-9477(02)00364-8 10.1063/1.4958845 10.1016/j.nanoen.2017.02.024 10.1063/1.5010937 10.1021/acsami.5b10959 10.1088/1402-4896/ab49e8 10.1021/acsnano.5b05732 10.1016/j.solener.2020.07.003 10.1002/aenm.201500744 10.1002/pip.524 10.1002/aenm.201300923 10.1103/PhysRevLett.78.5014 10.1063/1.4709615 10.1063/1.4951003 10.1063/1.4985812 10.1007/s10854-020-03196-y 10.1038/ncomms14962 10.1038/nenergy.2017.32 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.106853 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_106853 S0749603621000513 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-fb73d4b613100daa7bbcff77d5714a9011ba16ce3b9e4e2bc4190dc75d2b376d3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 01:35:16 EDT 2025 Fri Feb 23 02:47:47 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | PEDOT:PSS/n-Si solar Cells CdS and In3Se4 BSF SCAPS-1D simulation Bulk defects Photovoltaics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-fb73d4b613100daa7bbcff77d5714a9011ba16ce3b9e4e2bc4190dc75d2b376d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2021_106853 crossref_primary_10_1016_j_spmi_2021_106853 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_106853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Reichel, Würfel, Winkler, Schleiermacher, Kohlstädt, Unmüssig, Messmer, Hermle, Glunz (bib23) 2018; 123 Funda, Ohki, Liu, Hossain, Ishimaru, Ueno, Shira (bib7) 2016; 120 Watahiki, Kobayashi, Morioka, Nishimura, Niinobe, Nishimura, Tokioka, Yamamuka (bib50) 2016; 119 Devkota, Liu, Ohki, Hossain, Ueno, Shirai (bib5) 2016; 9 Simya, Mahaboobbatcha, Balachander (bib41) 2015; 82 S. K. Mostaque, B. K. Mondal, J. Hossain, Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell, (submitted to Progress in photovoltaics). Lu, Bowden, Das, Birkemire (bib51) 2007; 91 Zhang, Zu, Lee, Liao, Zhao, Sun (bib21) 2014; 4 Asahi, Teranishi, Kusaki, Kaizu, Kita (bib57) 2017; 8 Schmeits, Mani (bib31) 1999; 85 Hossain, Ohki, Ichikawa, Fujiyama, Ueno, Fujii, Hanajiri, Shirai (bib2) 2016; 55 Han, Liu, Yuan, Dong, Li, Ma, Lee, Sun (bib22) 2017; 11 Ho, Chu (bib45) 2015; 3 Lin, He, Yin, Xu, Wang, Ding, Cheng, Papandrea, Huang, Duan (bib39) 2015; 9 Brown, Green (bib28) 2002; 14 Zhang, Cui, Zhu, Zu, Liao, Lee, Sun (bib17) 2015; 8 Liu, Zhang, Wu, Cui, Wang, Ding, Lee, Sun (bib20) 2017; 34 Kasahara, Hossain, Harada, Ichikawa, Ishikawa, Shirai (bib11) 2018; 181 Ohki, Ichikawa, Hossain, Fujii, Hanajiri, Ishikawa, Ueno, Shirai (bib24) 2016; 213 Brown, Green (bib30) 2002; 92 Rahman, Hossain, Kuddus, Tabassum, Rubel, Shirai, Ismail (bib32) 2020; 126 Han, Gu, Yang, Chen, Zou (bib38) 2019; 7 Tong, Yang, Wang, Liu, Chen, Ke, Sui, Tang, Yu, Ge, Zeng, Gao, Ye (bib15) 2018; 8 Prakoso, Rusli, Li, Lu, Jiang (bib44) 2018; 33 Schmidt, Titova, Zielke (bib4) 2013; 103 Liu, Ishikawa, Funada, Ohki, Ueno, Shirai (bib8) 2015; 5 Burgelman, Verschraegen, Degrave, Nollet (bib40) 2004; 12 Cai, Wang, Jin, Yao, Lin, Meng, Ai, Liang, Huang, Zhang, Altermatt, Shen (bib33) 2019; 6 Moon, Ali, Rahman, Kuddus, Hossain, Ismail (bib48) 2020; 95 Moon, Ali, Rahman, Hossain, Ismail (bib49) 2020; 217 Movla (bib42) 2014; 125 Zhang, Liu, Lee, Sun (bib16) 2014; 104 Han, Chen, Yang, Cheng, Jack, Drennan, Zou (bib34) 2013; 103 Hossain, Mondal, Mostaque, Ahmed, Shirai (bib52) 2020; 7 Avasthi, Lee, Loo, Sturm (bib1) 2011; 23 Green (bib47) 1990; 67 J. Hossain, M. M. A. Moon, B. K. Mondal, M. A. Halim, Design Guidelines for a Novel High-Purity Germanium (HPGe) Based High Efficiency Liu, Ono, Tang, Ishikawa, Ueno, Shirai (bib3) 2012; 100 Han, Chen, Sun, Yang, Cheng, Li, Lu, Gibbs, Snyder, Jack, Drennan, Zou (bib35) 2014; 16 Mondal, Newaz, Rashid, Hossain, Mostaque, Rahman, Rubel, Hossain (bib37) 2019; 4 Hossain, Julkarnain, Mondal, Newaz, Khan (bib36) 2019; 6 Kuddus, Rahman, Ahmmed, Hossain, Ismail (bib43) 2019; 132 Fang, Ni, Wang, Xiang, Sun, Zhang, Wang, Yang, Yang (bib13) 2020; 31 Vos (bib27) 1980; 13 Hossain, Liu, Miura, Kasahara, Harada, Ishikawa, Ueno, Shirai (bib6) 2016; 8 Zielke, Gogolin, Halbich, Marquardt, Lövenich, Sauer, Schmidt, Large‐area (bib10) 2018; 2 Luque, Martí (bib29) 1997; 78 Heterojunction Solar Cells, arXiv:2009.13948 [physics.app-ph]. Yoshikawa, Kawasaki, Yoshida, Irie, Konishi, Nakano, Uto, Adachi, Kanematsu, Uzu, Yamamoto (bib26) 2017; 2 Liu, Zhang, Xia, Zhang, Liu, Liang, Li, Song, Yu, Lee, Sun (bib19) 2016; 10 Hossain, Kasahara, Harada, Saiful Islam, Ishikawa, Ueno, Hanajiri, Nakajima, Fujii, Tokuda, Shirai (bib18) 2017; 122 Mclntosh, Johnson (bib53) 2009; 105 Benseddik, Belkacemi, Boukabrine, Ameur, Mazari, Boumesjed, Benyahya, Benamara (bib54) 2020 Ahmmed, Aktar, Hossain, Ismail (bib56) 2020; 207 Mukherjee, Singh, Gopinathan, Murugan, Gawali, Saha, Biswas, Lodha, Kumar (bib12) 2014; 6 He, Gao, Yang, Yu, Yu, Zhang, Sheng, Ye, Amine, Cui (bib9) 2017; 29 Yang, Liu, Chen, Wang, Liang, Mei, Kuznetsov, Du (bib25) 2016; 8 Chen, Chen, Shen, Ge, Guo, Li, Liu, Xu, Mai (bib14) 2017; 110 Ohki (10.1016/j.spmi.2021.106853_bib24) 2016; 213 Lu (10.1016/j.spmi.2021.106853_bib51) 2007; 91 10.1016/j.spmi.2021.106853_bib55 Tong (10.1016/j.spmi.2021.106853_bib15) 2018; 8 Hossain (10.1016/j.spmi.2021.106853_bib36) 2019; 6 Hossain (10.1016/j.spmi.2021.106853_bib52) 2020; 7 Han (10.1016/j.spmi.2021.106853_bib34) 2013; 103 Zhang (10.1016/j.spmi.2021.106853_bib21) 2014; 4 Han (10.1016/j.spmi.2021.106853_bib38) 2019; 7 Asahi (10.1016/j.spmi.2021.106853_bib57) 2017; 8 Movla (10.1016/j.spmi.2021.106853_bib42) 2014; 125 Watahiki (10.1016/j.spmi.2021.106853_bib50) 2016; 119 Mclntosh (10.1016/j.spmi.2021.106853_bib53) 2009; 105 Luque (10.1016/j.spmi.2021.106853_bib29) 1997; 78 Mukherjee (10.1016/j.spmi.2021.106853_bib12) 2014; 6 Hossain (10.1016/j.spmi.2021.106853_bib6) 2016; 8 Kasahara (10.1016/j.spmi.2021.106853_bib11) 2018; 181 Brown (10.1016/j.spmi.2021.106853_bib30) 2002; 92 Liu (10.1016/j.spmi.2021.106853_bib19) 2016; 10 Funda (10.1016/j.spmi.2021.106853_bib7) 2016; 120 Zhang (10.1016/j.spmi.2021.106853_bib16) 2014; 104 Hossain (10.1016/j.spmi.2021.106853_bib18) 2017; 122 Green (10.1016/j.spmi.2021.106853_bib47) 1990; 67 Vos (10.1016/j.spmi.2021.106853_bib27) 1980; 13 Zhang (10.1016/j.spmi.2021.106853_bib17) 2015; 8 Lin (10.1016/j.spmi.2021.106853_bib39) 2015; 9 Liu (10.1016/j.spmi.2021.106853_bib3) 2012; 100 Schmidt (10.1016/j.spmi.2021.106853_bib4) 2013; 103 Kuddus (10.1016/j.spmi.2021.106853_bib43) 2019; 132 Han (10.1016/j.spmi.2021.106853_bib35) 2014; 16 Moon (10.1016/j.spmi.2021.106853_bib49) 2020; 217 Liu (10.1016/j.spmi.2021.106853_bib8) 2015; 5 Han (10.1016/j.spmi.2021.106853_bib22) 2017; 11 Yang (10.1016/j.spmi.2021.106853_bib25) 2016; 8 Chen (10.1016/j.spmi.2021.106853_bib14) 2017; 110 Avasthi (10.1016/j.spmi.2021.106853_bib1) 2011; 23 Brown (10.1016/j.spmi.2021.106853_bib28) 2002; 14 Devkota (10.1016/j.spmi.2021.106853_bib5) 2016; 9 Schmeits (10.1016/j.spmi.2021.106853_bib31) 1999; 85 Liu (10.1016/j.spmi.2021.106853_bib20) 2017; 34 Prakoso (10.1016/j.spmi.2021.106853_bib44) 2018; 33 Burgelman (10.1016/j.spmi.2021.106853_bib40) 2004; 12 Hossain (10.1016/j.spmi.2021.106853_bib2) 2016; 55 He (10.1016/j.spmi.2021.106853_bib9) 2017; 29 Cai (10.1016/j.spmi.2021.106853_bib33) 2019; 6 Ho (10.1016/j.spmi.2021.106853_bib45) 2015; 3 Benseddik (10.1016/j.spmi.2021.106853_bib54) 2020 Simya (10.1016/j.spmi.2021.106853_bib41) 2015; 82 Yoshikawa (10.1016/j.spmi.2021.106853_bib26) 2017; 2 Moon (10.1016/j.spmi.2021.106853_bib48) 2020; 95 Rahman (10.1016/j.spmi.2021.106853_bib32) 2020; 126 Zielke (10.1016/j.spmi.2021.106853_bib10) 2018; 2 10.1016/j.spmi.2021.106853_bib46 Ahmmed (10.1016/j.spmi.2021.106853_bib56) 2020; 207 Mondal (10.1016/j.spmi.2021.106853_bib37) 2019; 4 Reichel (10.1016/j.spmi.2021.106853_bib23) 2018; 123 Fang (10.1016/j.spmi.2021.106853_bib13) 2020; 31 |
References_xml | – volume: 34 start-page: 257 year: 2017 end-page: 263 ident: bib20 article-title: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage publication-title: Nanomater. Energy – volume: 181 start-page: 60 year: 2018 end-page: 70 ident: bib11 article-title: Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) publication-title: Sol. Energy Mater. Sol. Cells – volume: 92 start-page: 1329 year: 2002 end-page: 1336 ident: bib30 article-title: Impurity photovoltaic effect: fundamental energy conversion efficiency limits publication-title: J. Appl. Phys. – volume: 105 start-page: 124520 year: 2009 ident: bib53 article-title: Recombination at textured silicon surfaces passivated with silicon dioxide publication-title: J. Appl. Phys. – volume: 82 start-page: 248 year: 2015 end-page: 261 ident: bib41 article-title: A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program publication-title: Superlattice. Microst. – volume: 8 start-page: 297 year: 2015 end-page: 302 ident: bib17 article-title: High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact publication-title: Energy Environ. Sci. – volume: 104 year: 2014 ident: bib16 article-title: The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly- (styrenesulfonate)/Si organic-inorganic hybrid solar cells publication-title: Appl. Phys. Lett. – volume: 119 start-page: 204501 year: 2016 ident: bib50 article-title: Analysis of short circuit current loss in rear emitter crystalline Si solar cell publication-title: J. Appl. Phys – volume: 2 start-page: 1700191 year: 2018 ident: bib10 article-title: PSS/c‐Si heterojunction solar cells with screen‐printed metal contacts publication-title: Sol. RRL – volume: 132 start-page: 106168 year: 2019 ident: bib43 article-title: Role of facile synthesized V publication-title: Superlattice. Microst. – volume: 110 start-page: 133504 year: 2017 ident: bib14 article-title: Magnesium thin film as a doping-free back surface field layer for hybrid solar cells publication-title: Appl. Phys. Lett. – volume: 123 year: 2018 ident: bib23 article-title: Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells publication-title: J. Appl. Phys. – volume: 207 start-page: 693 year: 2020 end-page: 702 ident: bib56 article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL publication-title: Sol. Energy – volume: 10 start-page: 704 year: 2016 end-page: 712 ident: bib19 article-title: High performance nanostructured silicon−organic quasi p−n junction solar cells via low-temperature deposited hole and electron selective layer publication-title: ACS Nano – reference: S. K. Mostaque, B. K. Mondal, J. Hossain, Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell, (submitted to Progress in photovoltaics). – volume: 6 start-page: 17792 year: 2014 end-page: 17803 ident: bib12 article-title: Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1750 year: 2015 end-page: 1758 ident: bib45 article-title: Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals publication-title: Adv. Optical Mater – volume: 11 start-page: 7215 year: 2017 end-page: 7222 ident: bib22 article-title: Naphthalene diimide-based n-type polymers: efficient rear interlayers for high performance silicon-organic heterojunction solar cells publication-title: ACS Nano – volume: 213 start-page: 1922 year: 2016 end-page: 1925 ident: bib24 article-title: Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells publication-title: Phys. Status Solidi A – volume: 8 start-page: 1702921 year: 2018 ident: bib15 article-title: Dual functional electron-selective contacts based on silicon oxide/magnesium: tailoring heterointerface band structures while maintaining surface passivation publication-title: Adv. Energy Mater. – volume: 103 start-page: 263105 year: 2013 ident: bib34 article-title: Thermal stability and oxidation of layer-structured rhombohedral In publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4398 year: 2015 end-page: 4405 ident: bib39 article-title: Cosolvent approach for solution processable electronic thin films publication-title: ACS Nano – volume: 126 start-page: 145 year: 2020 ident: bib32 article-title: A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells publication-title: Appl. Phys. A – volume: 125 start-page: 67 year: 2014 end-page: 70 ident: bib42 article-title: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis publication-title: Optik – volume: 31 start-page: 6398 year: 2020 end-page: 6405 ident: bib13 article-title: The ideal doping concentration of silicon wafer for single junction hybrid n-Si/PEDOT: PSS solar cells with 3.2% elevated PCE and V publication-title: J. Mater. Sci. Mater. Electron. – volume: 85 start-page: 2207 year: 1999 end-page: 2212 ident: bib31 article-title: Impurity photovoltaic effect in c -Si solar cells. A numerical study publication-title: J. Appl. Phys. – volume: 29 start-page: 1606321 year: 2017 ident: bib9 article-title: Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture‐resistant capping layer publication-title: Adv. Mater. – volume: 7 start-page: 13573 year: 2019 end-page: 13584 ident: bib38 article-title: A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties publication-title: J. Mater. Chem. C – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: bib57 article-title: Two-step photon up-conversion solar cells publication-title: Nat. Commun. – volume: 95 year: 2020 ident: bib48 article-title: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell publication-title: Phys. Scripta – volume: 8 start-page: 26 year: 2016 end-page: 30 ident: bib25 article-title: Interface engineering of high efficiency organic-silicon heterojunction solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 67 start-page: 2944 year: 1990 ident: bib47 article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon publication-title: J. Appl. Phys. – volume: 5 start-page: 1500744 year: 2015 ident: bib8 article-title: Highly efficient solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability publication-title: Adv. Energy Mater. – volume: 16 start-page: 393 year: 2014 ident: bib35 article-title: A new crystal: layer-structured rhombohedral In publication-title: CrystEngComm – reference: Heterojunction Solar Cells, arXiv:2009.13948 [physics.app-ph]. – volume: 91 year: 2007 ident: bib51 article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation publication-title: Appl. Phys. Lett. – volume: 14 start-page: 96 year: 2002 end-page: 100 ident: bib28 article-title: Detailed balance limit for the series constrained two terminal tandem solar cell publication-title: Physica E – volume: 217 start-page: 1900921 year: 2020 ident: bib49 article-title: Design and simulation of FeSi publication-title: Phys. Status Solidi A – volume: 23 start-page: 5762 year: 2011 end-page: 5766 ident: bib1 article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells publication-title: Adv. Mater. – volume: 4 start-page: 17762 year: 2019 ident: bib37 article-title: Electronic structure of In publication-title: ACS Omega – volume: 9 year: 2016 ident: bib5 article-title: Solution-processed crystalline silicon double-heterojunction solar cells publication-title: APEX – volume: 6 start-page: 126421 year: 2019 ident: bib36 article-title: Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In publication-title: Mater. Res. Express – volume: 100 start-page: 183901 year: 2012 ident: bib3 article-title: Highly efficient crystalline silicon/zonylfluorosurfactant-treated organic heterojunction solar cell publication-title: Appl. Phys. Lett. – volume: 33 year: 2018 ident: bib44 article-title: Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure publication-title: Semicond. Sci. Technol. – volume: 122 start-page: 55101 year: 2017 ident: bib18 article-title: Barium hydroxide hole blocking layer for front-and back-organic/crystalline Si heterojunction solar cells publication-title: J. Appl. Phys. – volume: 78 start-page: 5014 year: 1997 end-page: 5017 ident: bib29 article-title: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels publication-title: Phys. Rev. Lett. – volume: 55 year: 2016 ident: bib2 article-title: Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells publication-title: Jpn. J. Appl. Phys. – volume: 120 year: 2016 ident: bib7 article-title: Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells publication-title: J. Appl. Phys. – volume: 4 start-page: 1300923 year: 2014 ident: bib21 article-title: Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells publication-title: Adv. Energy Mater. – volume: 2 start-page: 17032 year: 2017 ident: bib26 article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% publication-title: Nat. Energy – volume: 7 year: 2020 ident: bib52 article-title: Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/C-Si heterojunction solar cells publication-title: Mater. Res. Express – volume: 13 start-page: 839 year: 1980 end-page: 846 ident: bib27 article-title: Detailed balance limit of the efficiency of tandem solar cells publication-title: J. Phys. D Appl. Phys. – reference: J. Hossain, M. M. A. Moon, B. K. Mondal, M. A. Halim, Design Guidelines for a Novel High-Purity Germanium (HPGe) Based High Efficiency – volume: 6 start-page: 1900367 year: 2019 ident: bib33 article-title: 12.29% Low temperature-processed dopant-free CdS/n-Si heterojunction solar cells publication-title: Adv. Mater. Interfaces – year: 2020 ident: bib54 article-title: Numerical study of AgInTe publication-title: Advances in Materials and Processing Technologies – volume: 8 start-page: 31926 year: 2016 end-page: 31934 ident: bib6 article-title: Nafion-modified PEDOT:PSS as a transparent hole-transporting layer for high-performance crystalline-Si/organic heterojunction solar cells with improved light soaking stability publication-title: ACS Appl. Mater. Interfaces – volume: 103 start-page: 183901 year: 2013 ident: bib4 article-title: Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability publication-title: Appl. Phys. Lett. – volume: 12 start-page: 143 year: 2004 end-page: 153 ident: bib40 article-title: Modeling thin-film PV devices publication-title: Prog. Photovoltaics Res. Appl. – volume: 110 start-page: 133504 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib14 article-title: Magnesium thin film as a doping-free back surface field layer for hybrid solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979345 – volume: 8 start-page: 297 year: 2015 ident: 10.1016/j.spmi.2021.106853_bib17 article-title: High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02282C – volume: 92 start-page: 1329 year: 2002 ident: 10.1016/j.spmi.2021.106853_bib30 article-title: Impurity photovoltaic effect: fundamental energy conversion efficiency limits publication-title: J. Appl. Phys. doi: 10.1063/1.1492016 – volume: 6 start-page: 126421 year: 2019 ident: 10.1016/j.spmi.2021.106853_bib36 article-title: Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In3Se4 phase publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab5ac1 – volume: 217 start-page: 1900921 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib49 article-title: Design and simulation of FeSi2 based novel heterojunction solar cells for harnessing visible and near-infrared light publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201900921 – volume: 103 start-page: 183901 year: 2013 ident: 10.1016/j.spmi.2021.106853_bib4 article-title: Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4827303 – volume: 85 start-page: 2207 year: 1999 ident: 10.1016/j.spmi.2021.106853_bib31 article-title: Impurity photovoltaic effect in c -Si solar cells. A numerical study publication-title: J. Appl. Phys. doi: 10.1063/1.369528 – volume: 13 start-page: 839 year: 1980 ident: 10.1016/j.spmi.2021.106853_bib27 article-title: Detailed balance limit of the efficiency of tandem solar cells publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/13/5/018 – volume: 6 start-page: 17792 year: 2014 ident: 10.1016/j.spmi.2021.106853_bib12 article-title: Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504150n – volume: 213 start-page: 1922 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib24 article-title: Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201532951 – volume: 7 start-page: 13573 year: 2019 ident: 10.1016/j.spmi.2021.106853_bib38 article-title: A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04635F – volume: 67 start-page: 2944 year: 1990 ident: 10.1016/j.spmi.2021.106853_bib47 article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon publication-title: J. Appl. Phys. doi: 10.1063/1.345414 – volume: 55 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib2 article-title: Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.55.031601 – volume: 8 start-page: 1702921 year: 2018 ident: 10.1016/j.spmi.2021.106853_bib15 article-title: Dual functional electron-selective contacts based on silicon oxide/magnesium: tailoring heterointerface band structures while maintaining surface passivation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702921 – volume: 103 start-page: 263105 year: 2013 ident: 10.1016/j.spmi.2021.106853_bib34 article-title: Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.4857655 – volume: 23 start-page: 5762 year: 2011 ident: 10.1016/j.spmi.2021.106853_bib1 article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201102712 – volume: 181 start-page: 60 year: 2018 ident: 10.1016/j.spmi.2021.106853_bib11 article-title: Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.10.016 – volume: 16 start-page: 393 year: 2014 ident: 10.1016/j.spmi.2021.106853_bib35 article-title: A new crystal: layer-structured rhombohedral In3Se4 publication-title: CrystEngComm doi: 10.1039/C3CE41815D – volume: 11 start-page: 7215 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib22 article-title: Naphthalene diimide-based n-type polymers: efficient rear interlayers for high performance silicon-organic heterojunction solar cells publication-title: ACS Nano doi: 10.1021/acsnano.7b03090 – volume: 4 start-page: 17762 year: 2019 ident: 10.1016/j.spmi.2021.106853_bib37 article-title: Electronic structure of In3-xSe4 electron transport layer forchalcogenide/p-Si heterojunction solar cells publication-title: ACS Omega doi: 10.1021/acsomega.9b02210 – volume: 125 start-page: 67 year: 2014 ident: 10.1016/j.spmi.2021.106853_bib42 article-title: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis publication-title: Optik doi: 10.1016/j.ijleo.2013.06.034 – volume: 3 start-page: 1750 year: 2015 ident: 10.1016/j.spmi.2021.106853_bib45 article-title: Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500390 – volume: 91 year: 2007 ident: 10.1016/j.spmi.2021.106853_bib51 article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4398 issue: 4 year: 2015 ident: 10.1016/j.spmi.2021.106853_bib39 article-title: Cosolvent approach for solution processable electronic thin films publication-title: ACS Nano doi: 10.1021/acsnano.5b00886 – volume: 82 start-page: 248 year: 2015 ident: 10.1016/j.spmi.2021.106853_bib41 article-title: A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2015.02.020 – volume: 104 year: 2014 ident: 10.1016/j.spmi.2021.106853_bib16 article-title: The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly- (styrenesulfonate)/Si organic-inorganic hybrid solar cells publication-title: Appl. Phys. Lett. – volume: 126 start-page: 145 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib32 article-title: A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells publication-title: Appl. Phys. A doi: 10.1007/s00339-020-3331-0 – volume: 33 year: 2018 ident: 10.1016/j.spmi.2021.106853_bib44 article-title: Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aaa917 – year: 2020 ident: 10.1016/j.spmi.2021.106853_bib54 article-title: Numerical study of AgInTe2 solar cells using SCAPS – volume: 2 start-page: 1700191 year: 2018 ident: 10.1016/j.spmi.2021.106853_bib10 article-title: PSS/c‐Si heterojunction solar cells with screen‐printed metal contacts publication-title: Sol. RRL doi: 10.1002/solr.201700191 – volume: 7 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib52 article-title: Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/C-Si heterojunction solar cells publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab5ac7 – volume: 29 start-page: 1606321 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib9 article-title: Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture‐resistant capping layer publication-title: Adv. Mater. doi: 10.1002/adma.201606321 – ident: 10.1016/j.spmi.2021.106853_bib55 – volume: 105 start-page: 124520 year: 2009 ident: 10.1016/j.spmi.2021.106853_bib53 article-title: Recombination at textured silicon surfaces passivated with silicon dioxide publication-title: J. Appl. Phys. doi: 10.1063/1.3153979 – volume: 6 start-page: 1900367 year: 2019 ident: 10.1016/j.spmi.2021.106853_bib33 article-title: 12.29% Low temperature-processed dopant-free CdS/n-Si heterojunction solar cells publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900367 – volume: 132 start-page: 106168 year: 2019 ident: 10.1016/j.spmi.2021.106853_bib43 article-title: Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106168 – volume: 8 start-page: 31926 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib6 article-title: Nafion-modified PEDOT:PSS as a transparent hole-transporting layer for high-performance crystalline-Si/organic heterojunction solar cells with improved light soaking stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10272 – volume: 14 start-page: 96 year: 2002 ident: 10.1016/j.spmi.2021.106853_bib28 article-title: Detailed balance limit for the series constrained two terminal tandem solar cell publication-title: Physica E doi: 10.1016/S1386-9477(02)00364-8 – volume: 120 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib7 article-title: Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.4958845 – volume: 34 start-page: 257 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib20 article-title: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2017.02.024 – volume: 123 year: 2018 ident: 10.1016/j.spmi.2021.106853_bib23 article-title: Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.5010937 – volume: 8 start-page: 26 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib25 article-title: Interface engineering of high efficiency organic-silicon heterojunction solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10959 – volume: 95 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib48 article-title: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab49e8 – volume: 10 start-page: 704 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib19 article-title: High performance nanostructured silicon−organic quasi p−n junction solar cells via low-temperature deposited hole and electron selective layer publication-title: ACS Nano doi: 10.1021/acsnano.5b05732 – volume: 207 start-page: 693 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib56 article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.003 – volume: 5 start-page: 1500744 year: 2015 ident: 10.1016/j.spmi.2021.106853_bib8 article-title: Highly efficient solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500744 – volume: 12 start-page: 143 year: 2004 ident: 10.1016/j.spmi.2021.106853_bib40 article-title: Modeling thin-film PV devices publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.524 – volume: 4 start-page: 1300923 year: 2014 ident: 10.1016/j.spmi.2021.106853_bib21 article-title: Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300923 – volume: 78 start-page: 5014 year: 1997 ident: 10.1016/j.spmi.2021.106853_bib29 article-title: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.5014 – volume: 9 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib5 article-title: Solution-processed crystalline silicon double-heterojunction solar cells publication-title: APEX – volume: 100 start-page: 183901 year: 2012 ident: 10.1016/j.spmi.2021.106853_bib3 article-title: Highly efficient crystalline silicon/zonylfluorosurfactant-treated organic heterojunction solar cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.4709615 – volume: 119 start-page: 204501 year: 2016 ident: 10.1016/j.spmi.2021.106853_bib50 article-title: Analysis of short circuit current loss in rear emitter crystalline Si solar cell publication-title: J. Appl. Phys. doi: 10.1063/1.4951003 – volume: 122 start-page: 55101 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib18 article-title: Barium hydroxide hole blocking layer for front-and back-organic/crystalline Si heterojunction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.4985812 – volume: 31 start-page: 6398 year: 2020 ident: 10.1016/j.spmi.2021.106853_bib13 article-title: The ideal doping concentration of silicon wafer for single junction hybrid n-Si/PEDOT: PSS solar cells with 3.2% elevated PCE and VOC of 620 mV publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-03196-y – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib57 article-title: Two-step photon up-conversion solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms14962 – volume: 2 start-page: 17032 year: 2017 ident: 10.1016/j.spmi.2021.106853_bib26 article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 – ident: 10.1016/j.spmi.2021.106853_bib46 |
SSID | ssj0009417 |
Score | 2.150548 |
Snippet | In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106853 |
SubjectTerms | Bulk defects CdS and In3Se4 BSF PEDOT:PSS/n-Si solar Cells Photovoltaics SCAPS-1D simulation |
Title | Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data |
URI | https://dx.doi.org/10.1016/j.spmi.2021.106853 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ64v5uBN6tomfaw3XV1WxVWogreSJ1Z22-LWq2d_tpk-dAXx4LEhU0ommflSvpmPkEM_pN6JEti3VQmHcSPxSFFHGypNEHEtXSxwvh0Fw0d2_eQ_zZF-WwuDtMom9tcxvYrWzUi3Wc1ukabd2CY_C79tAHYrIIIdPxkLcZcfv3_TPHqsUt3FyQ7Obgpnao7XtJik9o7ouXYgiHz6e3KaSTiDVbLSIEU4qz9mjczpbJ0s9VuBtnWyWLE35XSDfNQ9iCE30Fcx8EzBVUZjzeA8HsCYI6yGPAML9qB4zsvcxqSSpxKK77IBNL6_vLh7OL2P427mxClM8doL-Gt_egpxOmmUvgAzn8L3zcoDAHJNN8nj4PKhP3QaiQVH0iAoHSNCqpiwOd0uouI8FEIaE4bKD13GsSxVcDeQmoqeZtoTklkAoWToK0_Y0KToFpnP8kxvE6AWynieirS9YDLjiogqYZR1ToSa1kGvQ9x2bRPZ9B9HGYxx0hLNXhL0R4L-SGp_dMjRl01Rd9_4c7bfuiz5sYcSmx7-sNv5p90uWcanmsezR-bL1ze9byFKKQ6qPXhAFs6uboajT0od5Mc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKESoXBAVEefoAJxSWZCaPrcQBtl3t0geVspV6C5mXCGqTiAQhLpz5P_xB7DxokVAPSL1O4tFkPGN_Vmx_AM_DWASvjeK-rUZ5Mnear5TwrBPaRUlutc8FzgeH0eJYvj8JT9bg11gLw2mVg-3vbXpnrYeRybCbk7ooJik5P4LfZID9DoiMDNZ79vs3ituaN8sdUvKLIJjvrmYLb6AW8LSIotZzKhZGKvJlJGzyPFZKOxfHJox9mXM5psr9SFuhplbaQGlJjtPoODSBoitpBM17Da5LMhdMm_Dqx3leyVR2NL-8Oo-XN1Tq9EllTX1WUFAa-DQQJaH4tze84OHmt-HWAE3xbf_1d2DNlpuwMRsZ4TbhRpcuqpu78LNveoyVw5lJMS8NLkuRWonv0jme5ozjsSqR0CXWn6q2IiPY5oXG-rxOgYWPdnc-rLaP0nRSemmBDcfZyP8Smm1Mi7OBWgzZ1Rqe7yIfAXJy6z04vpKNvw_rZVXaB4CCsFMQmMRSRCudrxJhlDN0GhIm0Y6mW-CPe5vpoeE5826cZmNm2-eM9ZGxPrJeH1vw8o9M3bf7uPTtcFRZ9tehzcgfXSL38D_lnsHGYnWwn-0vD_cewU1-0icRPYb19stX-4TwUaueducR4eNVX4DfS9chiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+CdS+and+In3Se4+BSF+layers+on+the+photovoltaic+performance+of+PEDOT%3APSS%2Fn-Si+solar+cells%3A+Simulation+based+on+experimental+data&rft.jtitle=Superlattices+and+microstructures&rft.au=Mondal%2C+Bipanko+Kumar&rft.au=Mostaque%2C+Shaikh+Khaled&rft.au=Rashid%2C+Md.+Abdur&rft.au=Kuddus%2C+Abdul&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=152&rft_id=info:doi/10.1016%2Fj.spmi.2021.106853&rft.externalDocID=S0749603621000513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |