Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data

In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 152; p. 106853
Main Authors Mondal, Bipanko Kumar, Mostaque, Shaikh Khaled, Rashid, Md. Abdur, Kuddus, Abdul, Shirai, Hajime, Hossain, Jaker
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness, doping and defect densities on the photovoltaic performance have been investigated in details employing the solar cell capacitance simulator (SCAPS-1D) software. It is found that the power conversion efficiency (PCE) of the PEDOT:PSS/n-Si heterojunction solar cells significantly increases with use of these BSF layers. The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with VOC = 0.89 V, JSC = 44.02 mA/cm2 and FF = 78.92%, respectively due to the use of CdS BSF layer. On the other hand, the PCE of the solar cell is found to be 38% with VOC = 0.84 V, JSC = 53.22 mA/cm2 and FF = 85.11%, respectively as a result of longer wavelength absorption in In3Se4 BSF layer. These entire theoretical predictions indicate the promising applications of CdS and In3Se4 compounds as BSF layers in PEDOT:PSS/n-Si heterojunction solar cells to harness solar energy in near future. [Display omitted] •Design guideline to fabricate high-efficiency PEDOT:PSS/n-Si solar cells using CdS and In3Se4 BSF layers.•The simulation reveals that CdS and In3Se4 BSF layers have significant effects on the performance of the solar cells.•The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with use of CdS BSF layer.•The PCE of the PEDOT:PSS/n-Si solar cell further increases to 38% with use of In3Se4 BSF layer.
AbstractList In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS and In3Se4 chalcogenide compounds as back surface field (BSF) layer in the solar cell. The impacts of various parameters such as the thickness, doping and defect densities on the photovoltaic performance have been investigated in details employing the solar cell capacitance simulator (SCAPS-1D) software. It is found that the power conversion efficiency (PCE) of the PEDOT:PSS/n-Si heterojunction solar cells significantly increases with use of these BSF layers. The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with VOC = 0.89 V, JSC = 44.02 mA/cm2 and FF = 78.92%, respectively due to the use of CdS BSF layer. On the other hand, the PCE of the solar cell is found to be 38% with VOC = 0.84 V, JSC = 53.22 mA/cm2 and FF = 85.11%, respectively as a result of longer wavelength absorption in In3Se4 BSF layer. These entire theoretical predictions indicate the promising applications of CdS and In3Se4 compounds as BSF layers in PEDOT:PSS/n-Si heterojunction solar cells to harness solar energy in near future. [Display omitted] •Design guideline to fabricate high-efficiency PEDOT:PSS/n-Si solar cells using CdS and In3Se4 BSF layers.•The simulation reveals that CdS and In3Se4 BSF layers have significant effects on the performance of the solar cells.•The optimized PCE of the PEDOT:PSS/n-Si solar cell is 22.46% which increases to 30.94% with use of CdS BSF layer.•The PCE of the PEDOT:PSS/n-Si solar cell further increases to 38% with use of In3Se4 BSF layer.
ArticleNumber 106853
Author Hossain, Jaker
Kuddus, Abdul
Rashid, Md. Abdur
Mostaque, Shaikh Khaled
Shirai, Hajime
Mondal, Bipanko Kumar
Author_xml – sequence: 1
  givenname: Bipanko Kumar
  surname: Mondal
  fullname: Mondal, Bipanko Kumar
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
– sequence: 2
  givenname: Shaikh Khaled
  surname: Mostaque
  fullname: Mostaque, Shaikh Khaled
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
– sequence: 3
  givenname: Md. Abdur
  surname: Rashid
  fullname: Rashid, Md. Abdur
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
– sequence: 4
  givenname: Abdul
  surname: Kuddus
  fullname: Kuddus, Abdul
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
– sequence: 5
  givenname: Hajime
  surname: Shirai
  fullname: Shirai, Hajime
  organization: Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
– sequence: 6
  givenname: Jaker
  surname: Hossain
  fullname: Hossain, Jaker
  email: jak_apee@ru.ac.bd
  organization: Solar Energy Laboratory, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
BookMark eNp9kMFOGzEQQK2KSg20P9CTf2CDvd7YLOICIbRISCAtPVtjeywcOevINgj-gM9mt-mpB04jjfSeZt4xORrTiIT85GzJGZen22XZ78KyZS2fFvJsJb6QBWe9bIRU6ogsmOr6RjIhv5HjUraMsb7jakHeN96jrTR5unYDhdHR21EM2NGr4YZGeMNcaBppfUK6f0o1vaRYIVi6x-xT3sFocYYfNtf3j-cPw3A6NkOgJUXI1GKM5ZwOYfccoYZJY6Cgm334OgnCDscKkTqo8J189RAL_vg3T8ifm83j-ndzd__rdn1511ghZW28UcJ1RnLBGXMAyhjrvVJupXgHPePcAJcWhemxw9bYjvfMWbVyrRFKOnFCzg5em1MpGb22of49rmYIUXOm56J6q-eiei6qD0UntP0P3U8vQH77HLo4QDg99RIw62IDTtVcyFN47VL4DP8AsvaSrA
CitedBy_id crossref_primary_10_1002_eng2_12849
crossref_primary_10_1016_j_rinma_2023_100521
crossref_primary_10_1016_j_egyr_2024_08_045
crossref_primary_10_1016_j_seta_2025_104264
crossref_primary_10_1088_1361_6641_ac30e9
crossref_primary_10_1016_j_heliyon_2022_e09120
crossref_primary_10_1016_j_solener_2024_112870
crossref_primary_10_1088_1402_4896_ad3685
crossref_primary_10_1016_j_cap_2022_03_017
crossref_primary_10_1016_j_optcom_2025_131558
crossref_primary_10_1016_j_solener_2023_112076
crossref_primary_10_1002_ente_202301329
crossref_primary_10_1016_j_jalmes_2023_100041
crossref_primary_10_1016_j_solener_2021_04_062
crossref_primary_10_1021_acs_jpcc_4c03301
crossref_primary_10_1021_acs_jpcc_3c07469
crossref_primary_10_3762_bjnano_16_11
crossref_primary_10_1016_j_rinp_2022_105701
crossref_primary_10_1088_1402_4896_acd485
crossref_primary_10_2139_ssrn_4169553
crossref_primary_10_3390_coatings13061123
crossref_primary_10_15251_CL_2024_213_229
crossref_primary_10_1080_15435075_2021_2011291
crossref_primary_10_1364_OME_510358
crossref_primary_10_1088_1402_4896_ad0945
crossref_primary_10_1016_j_optcom_2025_131761
crossref_primary_10_1016_j_physb_2023_415524
crossref_primary_10_1364_OME_439629
crossref_primary_10_1088_2399_6528_ac1bc0
crossref_primary_10_1016_j_matpr_2022_12_114
crossref_primary_10_1016_j_rio_2023_100364
crossref_primary_10_1016_j_solmat_2024_112891
crossref_primary_10_1049_ote2_12118
crossref_primary_10_1088_1402_4896_ad21c6
crossref_primary_10_1007_s12633_022_02163_y
crossref_primary_10_1364_OPTCON_527415
crossref_primary_10_1364_OPTCON_542953
crossref_primary_10_1007_s12633_024_02940_x
crossref_primary_10_3390_nano14201630
crossref_primary_10_1021_acsomega_4c02375
crossref_primary_10_1002_adts_202401028
crossref_primary_10_1088_2631_8695_acd98a
crossref_primary_10_1016_j_ijleo_2021_168278
crossref_primary_10_1039_D4YA00323C
crossref_primary_10_1007_s10854_023_11812_w
crossref_primary_10_1364_OPTCON_477319
crossref_primary_10_1016_j_rio_2022_100250
crossref_primary_10_1002_pssa_202300839
crossref_primary_10_1016_j_heliyon_2023_e15716
crossref_primary_10_1142_S0217979224503612
crossref_primary_10_1002_nano_202200228
Cites_doi 10.1063/1.4979345
10.1039/C4EE02282C
10.1063/1.1492016
10.1088/2053-1591/ab5ac1
10.1002/pssa.201900921
10.1063/1.4827303
10.1063/1.369528
10.1088/0022-3727/13/5/018
10.1021/am504150n
10.1002/pssa.201532951
10.1039/C9TC04635F
10.1063/1.345414
10.7567/JJAP.55.031601
10.1002/aenm.201702921
10.1063/1.4857655
10.1002/adma.201102712
10.1016/j.solmat.2017.10.016
10.1039/C3CE41815D
10.1021/acsnano.7b03090
10.1021/acsomega.9b02210
10.1016/j.ijleo.2013.06.034
10.1002/adom.201500390
10.1021/acsnano.5b00886
10.1016/j.spmi.2015.02.020
10.1007/s00339-020-3331-0
10.1088/1361-6641/aaa917
10.1002/solr.201700191
10.1088/2053-1591/ab5ac7
10.1002/adma.201606321
10.1063/1.3153979
10.1002/admi.201900367
10.1016/j.spmi.2019.106168
10.1021/acsami.6b10272
10.1016/S1386-9477(02)00364-8
10.1063/1.4958845
10.1016/j.nanoen.2017.02.024
10.1063/1.5010937
10.1021/acsami.5b10959
10.1088/1402-4896/ab49e8
10.1021/acsnano.5b05732
10.1016/j.solener.2020.07.003
10.1002/aenm.201500744
10.1002/pip.524
10.1002/aenm.201300923
10.1103/PhysRevLett.78.5014
10.1063/1.4709615
10.1063/1.4951003
10.1063/1.4985812
10.1007/s10854-020-03196-y
10.1038/ncomms14962
10.1038/nenergy.2017.32
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.106853
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_106853
S0749603621000513
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-fb73d4b613100daa7bbcff77d5714a9011ba16ce3b9e4e2bc4190dc75d2b376d3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 01:35:16 EDT 2025
Fri Feb 23 02:47:47 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords PEDOT:PSS/n-Si solar Cells
CdS and In3Se4 BSF
SCAPS-1D simulation
Bulk defects
Photovoltaics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-fb73d4b613100daa7bbcff77d5714a9011ba16ce3b9e4e2bc4190dc75d2b376d3
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2021_106853
crossref_primary_10_1016_j_spmi_2021_106853
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_106853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Reichel, Würfel, Winkler, Schleiermacher, Kohlstädt, Unmüssig, Messmer, Hermle, Glunz (bib23) 2018; 123
Funda, Ohki, Liu, Hossain, Ishimaru, Ueno, Shira (bib7) 2016; 120
Watahiki, Kobayashi, Morioka, Nishimura, Niinobe, Nishimura, Tokioka, Yamamuka (bib50) 2016; 119
Devkota, Liu, Ohki, Hossain, Ueno, Shirai (bib5) 2016; 9
Simya, Mahaboobbatcha, Balachander (bib41) 2015; 82
S. K. Mostaque, B. K. Mondal, J. Hossain, Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell, (submitted to Progress in photovoltaics).
Lu, Bowden, Das, Birkemire (bib51) 2007; 91
Zhang, Zu, Lee, Liao, Zhao, Sun (bib21) 2014; 4
Asahi, Teranishi, Kusaki, Kaizu, Kita (bib57) 2017; 8
Schmeits, Mani (bib31) 1999; 85
Hossain, Ohki, Ichikawa, Fujiyama, Ueno, Fujii, Hanajiri, Shirai (bib2) 2016; 55
Han, Liu, Yuan, Dong, Li, Ma, Lee, Sun (bib22) 2017; 11
Ho, Chu (bib45) 2015; 3
Lin, He, Yin, Xu, Wang, Ding, Cheng, Papandrea, Huang, Duan (bib39) 2015; 9
Brown, Green (bib28) 2002; 14
Zhang, Cui, Zhu, Zu, Liao, Lee, Sun (bib17) 2015; 8
Liu, Zhang, Wu, Cui, Wang, Ding, Lee, Sun (bib20) 2017; 34
Kasahara, Hossain, Harada, Ichikawa, Ishikawa, Shirai (bib11) 2018; 181
Ohki, Ichikawa, Hossain, Fujii, Hanajiri, Ishikawa, Ueno, Shirai (bib24) 2016; 213
Brown, Green (bib30) 2002; 92
Rahman, Hossain, Kuddus, Tabassum, Rubel, Shirai, Ismail (bib32) 2020; 126
Han, Gu, Yang, Chen, Zou (bib38) 2019; 7
Tong, Yang, Wang, Liu, Chen, Ke, Sui, Tang, Yu, Ge, Zeng, Gao, Ye (bib15) 2018; 8
Prakoso, Rusli, Li, Lu, Jiang (bib44) 2018; 33
Schmidt, Titova, Zielke (bib4) 2013; 103
Liu, Ishikawa, Funada, Ohki, Ueno, Shirai (bib8) 2015; 5
Burgelman, Verschraegen, Degrave, Nollet (bib40) 2004; 12
Cai, Wang, Jin, Yao, Lin, Meng, Ai, Liang, Huang, Zhang, Altermatt, Shen (bib33) 2019; 6
Moon, Ali, Rahman, Kuddus, Hossain, Ismail (bib48) 2020; 95
Moon, Ali, Rahman, Hossain, Ismail (bib49) 2020; 217
Movla (bib42) 2014; 125
Zhang, Liu, Lee, Sun (bib16) 2014; 104
Han, Chen, Yang, Cheng, Jack, Drennan, Zou (bib34) 2013; 103
Hossain, Mondal, Mostaque, Ahmed, Shirai (bib52) 2020; 7
Avasthi, Lee, Loo, Sturm (bib1) 2011; 23
Green (bib47) 1990; 67
J. Hossain, M. M. A. Moon, B. K. Mondal, M. A. Halim, Design Guidelines for a Novel High-Purity Germanium (HPGe) Based High Efficiency
Liu, Ono, Tang, Ishikawa, Ueno, Shirai (bib3) 2012; 100
Han, Chen, Sun, Yang, Cheng, Li, Lu, Gibbs, Snyder, Jack, Drennan, Zou (bib35) 2014; 16
Mondal, Newaz, Rashid, Hossain, Mostaque, Rahman, Rubel, Hossain (bib37) 2019; 4
Hossain, Julkarnain, Mondal, Newaz, Khan (bib36) 2019; 6
Kuddus, Rahman, Ahmmed, Hossain, Ismail (bib43) 2019; 132
Fang, Ni, Wang, Xiang, Sun, Zhang, Wang, Yang, Yang (bib13) 2020; 31
Vos (bib27) 1980; 13
Hossain, Liu, Miura, Kasahara, Harada, Ishikawa, Ueno, Shirai (bib6) 2016; 8
Zielke, Gogolin, Halbich, Marquardt, Lövenich, Sauer, Schmidt, Large‐area (bib10) 2018; 2
Luque, Martí (bib29) 1997; 78
Heterojunction Solar Cells, arXiv:2009.13948 [physics.app-ph].
Yoshikawa, Kawasaki, Yoshida, Irie, Konishi, Nakano, Uto, Adachi, Kanematsu, Uzu, Yamamoto (bib26) 2017; 2
Liu, Zhang, Xia, Zhang, Liu, Liang, Li, Song, Yu, Lee, Sun (bib19) 2016; 10
Hossain, Kasahara, Harada, Saiful Islam, Ishikawa, Ueno, Hanajiri, Nakajima, Fujii, Tokuda, Shirai (bib18) 2017; 122
Mclntosh, Johnson (bib53) 2009; 105
Benseddik, Belkacemi, Boukabrine, Ameur, Mazari, Boumesjed, Benyahya, Benamara (bib54) 2020
Ahmmed, Aktar, Hossain, Ismail (bib56) 2020; 207
Mukherjee, Singh, Gopinathan, Murugan, Gawali, Saha, Biswas, Lodha, Kumar (bib12) 2014; 6
He, Gao, Yang, Yu, Yu, Zhang, Sheng, Ye, Amine, Cui (bib9) 2017; 29
Yang, Liu, Chen, Wang, Liang, Mei, Kuznetsov, Du (bib25) 2016; 8
Chen, Chen, Shen, Ge, Guo, Li, Liu, Xu, Mai (bib14) 2017; 110
Ohki (10.1016/j.spmi.2021.106853_bib24) 2016; 213
Lu (10.1016/j.spmi.2021.106853_bib51) 2007; 91
10.1016/j.spmi.2021.106853_bib55
Tong (10.1016/j.spmi.2021.106853_bib15) 2018; 8
Hossain (10.1016/j.spmi.2021.106853_bib36) 2019; 6
Hossain (10.1016/j.spmi.2021.106853_bib52) 2020; 7
Han (10.1016/j.spmi.2021.106853_bib34) 2013; 103
Zhang (10.1016/j.spmi.2021.106853_bib21) 2014; 4
Han (10.1016/j.spmi.2021.106853_bib38) 2019; 7
Asahi (10.1016/j.spmi.2021.106853_bib57) 2017; 8
Movla (10.1016/j.spmi.2021.106853_bib42) 2014; 125
Watahiki (10.1016/j.spmi.2021.106853_bib50) 2016; 119
Mclntosh (10.1016/j.spmi.2021.106853_bib53) 2009; 105
Luque (10.1016/j.spmi.2021.106853_bib29) 1997; 78
Mukherjee (10.1016/j.spmi.2021.106853_bib12) 2014; 6
Hossain (10.1016/j.spmi.2021.106853_bib6) 2016; 8
Kasahara (10.1016/j.spmi.2021.106853_bib11) 2018; 181
Brown (10.1016/j.spmi.2021.106853_bib30) 2002; 92
Liu (10.1016/j.spmi.2021.106853_bib19) 2016; 10
Funda (10.1016/j.spmi.2021.106853_bib7) 2016; 120
Zhang (10.1016/j.spmi.2021.106853_bib16) 2014; 104
Hossain (10.1016/j.spmi.2021.106853_bib18) 2017; 122
Green (10.1016/j.spmi.2021.106853_bib47) 1990; 67
Vos (10.1016/j.spmi.2021.106853_bib27) 1980; 13
Zhang (10.1016/j.spmi.2021.106853_bib17) 2015; 8
Lin (10.1016/j.spmi.2021.106853_bib39) 2015; 9
Liu (10.1016/j.spmi.2021.106853_bib3) 2012; 100
Schmidt (10.1016/j.spmi.2021.106853_bib4) 2013; 103
Kuddus (10.1016/j.spmi.2021.106853_bib43) 2019; 132
Han (10.1016/j.spmi.2021.106853_bib35) 2014; 16
Moon (10.1016/j.spmi.2021.106853_bib49) 2020; 217
Liu (10.1016/j.spmi.2021.106853_bib8) 2015; 5
Han (10.1016/j.spmi.2021.106853_bib22) 2017; 11
Yang (10.1016/j.spmi.2021.106853_bib25) 2016; 8
Chen (10.1016/j.spmi.2021.106853_bib14) 2017; 110
Avasthi (10.1016/j.spmi.2021.106853_bib1) 2011; 23
Brown (10.1016/j.spmi.2021.106853_bib28) 2002; 14
Devkota (10.1016/j.spmi.2021.106853_bib5) 2016; 9
Schmeits (10.1016/j.spmi.2021.106853_bib31) 1999; 85
Liu (10.1016/j.spmi.2021.106853_bib20) 2017; 34
Prakoso (10.1016/j.spmi.2021.106853_bib44) 2018; 33
Burgelman (10.1016/j.spmi.2021.106853_bib40) 2004; 12
Hossain (10.1016/j.spmi.2021.106853_bib2) 2016; 55
He (10.1016/j.spmi.2021.106853_bib9) 2017; 29
Cai (10.1016/j.spmi.2021.106853_bib33) 2019; 6
Ho (10.1016/j.spmi.2021.106853_bib45) 2015; 3
Benseddik (10.1016/j.spmi.2021.106853_bib54) 2020
Simya (10.1016/j.spmi.2021.106853_bib41) 2015; 82
Yoshikawa (10.1016/j.spmi.2021.106853_bib26) 2017; 2
Moon (10.1016/j.spmi.2021.106853_bib48) 2020; 95
Rahman (10.1016/j.spmi.2021.106853_bib32) 2020; 126
Zielke (10.1016/j.spmi.2021.106853_bib10) 2018; 2
10.1016/j.spmi.2021.106853_bib46
Ahmmed (10.1016/j.spmi.2021.106853_bib56) 2020; 207
Mondal (10.1016/j.spmi.2021.106853_bib37) 2019; 4
Reichel (10.1016/j.spmi.2021.106853_bib23) 2018; 123
Fang (10.1016/j.spmi.2021.106853_bib13) 2020; 31
References_xml – volume: 34
  start-page: 257
  year: 2017
  end-page: 263
  ident: bib20
  article-title: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage
  publication-title: Nanomater. Energy
– volume: 181
  start-page: 60
  year: 2018
  end-page: 70
  ident: bib11
  article-title: Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 92
  start-page: 1329
  year: 2002
  end-page: 1336
  ident: bib30
  article-title: Impurity photovoltaic effect: fundamental energy conversion efficiency limits
  publication-title: J. Appl. Phys.
– volume: 105
  start-page: 124520
  year: 2009
  ident: bib53
  article-title: Recombination at textured silicon surfaces passivated with silicon dioxide
  publication-title: J. Appl. Phys.
– volume: 82
  start-page: 248
  year: 2015
  end-page: 261
  ident: bib41
  article-title: A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program
  publication-title: Superlattice. Microst.
– volume: 8
  start-page: 297
  year: 2015
  end-page: 302
  ident: bib17
  article-title: High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact
  publication-title: Energy Environ. Sci.
– volume: 104
  year: 2014
  ident: bib16
  article-title: The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly- (styrenesulfonate)/Si organic-inorganic hybrid solar cells
  publication-title: Appl. Phys. Lett.
– volume: 119
  start-page: 204501
  year: 2016
  ident: bib50
  article-title: Analysis of short circuit current loss in rear emitter crystalline Si solar cell
  publication-title: J. Appl. Phys
– volume: 2
  start-page: 1700191
  year: 2018
  ident: bib10
  article-title: PSS/c‐Si heterojunction solar cells with screen‐printed metal contacts
  publication-title: Sol. RRL
– volume: 132
  start-page: 106168
  year: 2019
  ident: bib43
  article-title: Role of facile synthesized V
  publication-title: Superlattice. Microst.
– volume: 110
  start-page: 133504
  year: 2017
  ident: bib14
  article-title: Magnesium thin film as a doping-free back surface field layer for hybrid solar cells
  publication-title: Appl. Phys. Lett.
– volume: 123
  year: 2018
  ident: bib23
  article-title: Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells
  publication-title: J. Appl. Phys.
– volume: 207
  start-page: 693
  year: 2020
  end-page: 702
  ident: bib56
  article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL
  publication-title: Sol. Energy
– volume: 10
  start-page: 704
  year: 2016
  end-page: 712
  ident: bib19
  article-title: High performance nanostructured silicon−organic quasi p−n junction solar cells via low-temperature deposited hole and electron selective layer
  publication-title: ACS Nano
– reference: S. K. Mostaque, B. K. Mondal, J. Hossain, Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell, (submitted to Progress in photovoltaics).
– volume: 6
  start-page: 17792
  year: 2014
  end-page: 17803
  ident: bib12
  article-title: Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1750
  year: 2015
  end-page: 1758
  ident: bib45
  article-title: Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals
  publication-title: Adv. Optical Mater
– volume: 11
  start-page: 7215
  year: 2017
  end-page: 7222
  ident: bib22
  article-title: Naphthalene diimide-based n-type polymers: efficient rear interlayers for high performance silicon-organic heterojunction solar cells
  publication-title: ACS Nano
– volume: 213
  start-page: 1922
  year: 2016
  end-page: 1925
  ident: bib24
  article-title: Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells
  publication-title: Phys. Status Solidi A
– volume: 8
  start-page: 1702921
  year: 2018
  ident: bib15
  article-title: Dual functional electron-selective contacts based on silicon oxide/magnesium: tailoring heterointerface band structures while maintaining surface passivation
  publication-title: Adv. Energy Mater.
– volume: 103
  start-page: 263105
  year: 2013
  ident: bib34
  article-title: Thermal stability and oxidation of layer-structured rhombohedral In
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4398
  year: 2015
  end-page: 4405
  ident: bib39
  article-title: Cosolvent approach for solution processable electronic thin films
  publication-title: ACS Nano
– volume: 126
  start-page: 145
  year: 2020
  ident: bib32
  article-title: A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells
  publication-title: Appl. Phys. A
– volume: 125
  start-page: 67
  year: 2014
  end-page: 70
  ident: bib42
  article-title: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis
  publication-title: Optik
– volume: 31
  start-page: 6398
  year: 2020
  end-page: 6405
  ident: bib13
  article-title: The ideal doping concentration of silicon wafer for single junction hybrid n-Si/PEDOT: PSS solar cells with 3.2% elevated PCE and V
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 85
  start-page: 2207
  year: 1999
  end-page: 2212
  ident: bib31
  article-title: Impurity photovoltaic effect in c -Si solar cells. A numerical study
  publication-title: J. Appl. Phys.
– volume: 29
  start-page: 1606321
  year: 2017
  ident: bib9
  article-title: Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture‐resistant capping layer
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13573
  year: 2019
  end-page: 13584
  ident: bib38
  article-title: A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib57
  article-title: Two-step photon up-conversion solar cells
  publication-title: Nat. Commun.
– volume: 95
  year: 2020
  ident: bib48
  article-title: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell
  publication-title: Phys. Scripta
– volume: 8
  start-page: 26
  year: 2016
  end-page: 30
  ident: bib25
  article-title: Interface engineering of high efficiency organic-silicon heterojunction solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 67
  start-page: 2944
  year: 1990
  ident: bib47
  article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1500744
  year: 2015
  ident: bib8
  article-title: Highly efficient solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 393
  year: 2014
  ident: bib35
  article-title: A new crystal: layer-structured rhombohedral In
  publication-title: CrystEngComm
– reference: Heterojunction Solar Cells, arXiv:2009.13948 [physics.app-ph].
– volume: 91
  year: 2007
  ident: bib51
  article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 96
  year: 2002
  end-page: 100
  ident: bib28
  article-title: Detailed balance limit for the series constrained two terminal tandem solar cell
  publication-title: Physica E
– volume: 217
  start-page: 1900921
  year: 2020
  ident: bib49
  article-title: Design and simulation of FeSi
  publication-title: Phys. Status Solidi A
– volume: 23
  start-page: 5762
  year: 2011
  end-page: 5766
  ident: bib1
  article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells
  publication-title: Adv. Mater.
– volume: 4
  start-page: 17762
  year: 2019
  ident: bib37
  article-title: Electronic structure of In
  publication-title: ACS Omega
– volume: 9
  year: 2016
  ident: bib5
  article-title: Solution-processed crystalline silicon double-heterojunction solar cells
  publication-title: APEX
– volume: 6
  start-page: 126421
  year: 2019
  ident: bib36
  article-title: Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In
  publication-title: Mater. Res. Express
– volume: 100
  start-page: 183901
  year: 2012
  ident: bib3
  article-title: Highly efficient crystalline silicon/zonylfluorosurfactant-treated organic heterojunction solar cell
  publication-title: Appl. Phys. Lett.
– volume: 33
  year: 2018
  ident: bib44
  article-title: Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure
  publication-title: Semicond. Sci. Technol.
– volume: 122
  start-page: 55101
  year: 2017
  ident: bib18
  article-title: Barium hydroxide hole blocking layer for front-and back-organic/crystalline Si heterojunction solar cells
  publication-title: J. Appl. Phys.
– volume: 78
  start-page: 5014
  year: 1997
  end-page: 5017
  ident: bib29
  article-title: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels
  publication-title: Phys. Rev. Lett.
– volume: 55
  year: 2016
  ident: bib2
  article-title: Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells
  publication-title: Jpn. J. Appl. Phys.
– volume: 120
  year: 2016
  ident: bib7
  article-title: Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 1300923
  year: 2014
  ident: bib21
  article-title: Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 17032
  year: 2017
  ident: bib26
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat. Energy
– volume: 7
  year: 2020
  ident: bib52
  article-title: Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/C-Si heterojunction solar cells
  publication-title: Mater. Res. Express
– volume: 13
  start-page: 839
  year: 1980
  end-page: 846
  ident: bib27
  article-title: Detailed balance limit of the efficiency of tandem solar cells
  publication-title: J. Phys. D Appl. Phys.
– reference: J. Hossain, M. M. A. Moon, B. K. Mondal, M. A. Halim, Design Guidelines for a Novel High-Purity Germanium (HPGe) Based High Efficiency
– volume: 6
  start-page: 1900367
  year: 2019
  ident: bib33
  article-title: 12.29% Low temperature-processed dopant-free CdS/n-Si heterojunction solar cells
  publication-title: Adv. Mater. Interfaces
– year: 2020
  ident: bib54
  article-title: Numerical study of AgInTe
  publication-title: Advances in Materials and Processing Technologies
– volume: 8
  start-page: 31926
  year: 2016
  end-page: 31934
  ident: bib6
  article-title: Nafion-modified PEDOT:PSS as a transparent hole-transporting layer for high-performance crystalline-Si/organic heterojunction solar cells with improved light soaking stability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 103
  start-page: 183901
  year: 2013
  ident: bib4
  article-title: Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 143
  year: 2004
  end-page: 153
  ident: bib40
  article-title: Modeling thin-film PV devices
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 110
  start-page: 133504
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib14
  article-title: Magnesium thin film as a doping-free back surface field layer for hybrid solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979345
– volume: 8
  start-page: 297
  year: 2015
  ident: 10.1016/j.spmi.2021.106853_bib17
  article-title: High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02282C
– volume: 92
  start-page: 1329
  year: 2002
  ident: 10.1016/j.spmi.2021.106853_bib30
  article-title: Impurity photovoltaic effect: fundamental energy conversion efficiency limits
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1492016
– volume: 6
  start-page: 126421
  year: 2019
  ident: 10.1016/j.spmi.2021.106853_bib36
  article-title: Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In3Se4 phase
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab5ac1
– volume: 217
  start-page: 1900921
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib49
  article-title: Design and simulation of FeSi2 based novel heterojunction solar cells for harnessing visible and near-infrared light
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201900921
– volume: 103
  start-page: 183901
  year: 2013
  ident: 10.1016/j.spmi.2021.106853_bib4
  article-title: Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4827303
– volume: 85
  start-page: 2207
  year: 1999
  ident: 10.1016/j.spmi.2021.106853_bib31
  article-title: Impurity photovoltaic effect in c -Si solar cells. A numerical study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369528
– volume: 13
  start-page: 839
  year: 1980
  ident: 10.1016/j.spmi.2021.106853_bib27
  article-title: Detailed balance limit of the efficiency of tandem solar cells
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/13/5/018
– volume: 6
  start-page: 17792
  year: 2014
  ident: 10.1016/j.spmi.2021.106853_bib12
  article-title: Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504150n
– volume: 213
  start-page: 1922
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib24
  article-title: Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201532951
– volume: 7
  start-page: 13573
  year: 2019
  ident: 10.1016/j.spmi.2021.106853_bib38
  article-title: A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04635F
– volume: 67
  start-page: 2944
  year: 1990
  ident: 10.1016/j.spmi.2021.106853_bib47
  article-title: Intrinsic concentration, effective densities of states, and effective mass in silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.345414
– volume: 55
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib2
  article-title: Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.55.031601
– volume: 8
  start-page: 1702921
  year: 2018
  ident: 10.1016/j.spmi.2021.106853_bib15
  article-title: Dual functional electron-selective contacts based on silicon oxide/magnesium: tailoring heterointerface band structures while maintaining surface passivation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702921
– volume: 103
  start-page: 263105
  year: 2013
  ident: 10.1016/j.spmi.2021.106853_bib34
  article-title: Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4857655
– volume: 23
  start-page: 5762
  year: 2011
  ident: 10.1016/j.spmi.2021.106853_bib1
  article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102712
– volume: 181
  start-page: 60
  year: 2018
  ident: 10.1016/j.spmi.2021.106853_bib11
  article-title: Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.10.016
– volume: 16
  start-page: 393
  year: 2014
  ident: 10.1016/j.spmi.2021.106853_bib35
  article-title: A new crystal: layer-structured rhombohedral In3Se4
  publication-title: CrystEngComm
  doi: 10.1039/C3CE41815D
– volume: 11
  start-page: 7215
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib22
  article-title: Naphthalene diimide-based n-type polymers: efficient rear interlayers for high performance silicon-organic heterojunction solar cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03090
– volume: 4
  start-page: 17762
  year: 2019
  ident: 10.1016/j.spmi.2021.106853_bib37
  article-title: Electronic structure of In3-xSe4 electron transport layer forchalcogenide/p-Si heterojunction solar cells
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b02210
– volume: 125
  start-page: 67
  year: 2014
  ident: 10.1016/j.spmi.2021.106853_bib42
  article-title: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.06.034
– volume: 3
  start-page: 1750
  year: 2015
  ident: 10.1016/j.spmi.2021.106853_bib45
  article-title: Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201500390
– volume: 91
  year: 2007
  ident: 10.1016/j.spmi.2021.106853_bib51
  article-title: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4398
  issue: 4
  year: 2015
  ident: 10.1016/j.spmi.2021.106853_bib39
  article-title: Cosolvent approach for solution processable electronic thin films
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00886
– volume: 82
  start-page: 248
  year: 2015
  ident: 10.1016/j.spmi.2021.106853_bib41
  article-title: A comparative study on the performance of kesterite based thin film solar cells using SCAPS simulation program
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2015.02.020
– volume: 104
  year: 2014
  ident: 10.1016/j.spmi.2021.106853_bib16
  article-title: The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly- (styrenesulfonate)/Si organic-inorganic hybrid solar cells
  publication-title: Appl. Phys. Lett.
– volume: 126
  start-page: 145
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib32
  article-title: A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-3331-0
– volume: 33
  year: 2018
  ident: 10.1016/j.spmi.2021.106853_bib44
  article-title: Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aaa917
– year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib54
  article-title: Numerical study of AgInTe2 solar cells using SCAPS
– volume: 2
  start-page: 1700191
  year: 2018
  ident: 10.1016/j.spmi.2021.106853_bib10
  article-title: PSS/c‐Si heterojunction solar cells with screen‐printed metal contacts
  publication-title: Sol. RRL
  doi: 10.1002/solr.201700191
– volume: 7
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib52
  article-title: Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/C-Si heterojunction solar cells
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab5ac7
– volume: 29
  start-page: 1606321
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib9
  article-title: Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture‐resistant capping layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606321
– ident: 10.1016/j.spmi.2021.106853_bib55
– volume: 105
  start-page: 124520
  year: 2009
  ident: 10.1016/j.spmi.2021.106853_bib53
  article-title: Recombination at textured silicon surfaces passivated with silicon dioxide
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3153979
– volume: 6
  start-page: 1900367
  year: 2019
  ident: 10.1016/j.spmi.2021.106853_bib33
  article-title: 12.29% Low temperature-processed dopant-free CdS/n-Si heterojunction solar cells
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900367
– volume: 132
  start-page: 106168
  year: 2019
  ident: 10.1016/j.spmi.2021.106853_bib43
  article-title: Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2019.106168
– volume: 8
  start-page: 31926
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib6
  article-title: Nafion-modified PEDOT:PSS as a transparent hole-transporting layer for high-performance crystalline-Si/organic heterojunction solar cells with improved light soaking stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10272
– volume: 14
  start-page: 96
  year: 2002
  ident: 10.1016/j.spmi.2021.106853_bib28
  article-title: Detailed balance limit for the series constrained two terminal tandem solar cell
  publication-title: Physica E
  doi: 10.1016/S1386-9477(02)00364-8
– volume: 120
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib7
  article-title: Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4958845
– volume: 34
  start-page: 257
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib20
  article-title: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2017.02.024
– volume: 123
  year: 2018
  ident: 10.1016/j.spmi.2021.106853_bib23
  article-title: Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5010937
– volume: 8
  start-page: 26
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib25
  article-title: Interface engineering of high efficiency organic-silicon heterojunction solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10959
– volume: 95
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib48
  article-title: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab49e8
– volume: 10
  start-page: 704
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib19
  article-title: High performance nanostructured silicon−organic quasi p−n junction solar cells via low-temperature deposited hole and electron selective layer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05732
– volume: 207
  start-page: 693
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib56
  article-title: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.003
– volume: 5
  start-page: 1500744
  year: 2015
  ident: 10.1016/j.spmi.2021.106853_bib8
  article-title: Highly efficient solution-processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500744
– volume: 12
  start-page: 143
  year: 2004
  ident: 10.1016/j.spmi.2021.106853_bib40
  article-title: Modeling thin-film PV devices
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.524
– volume: 4
  start-page: 1300923
  year: 2014
  ident: 10.1016/j.spmi.2021.106853_bib21
  article-title: Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300923
– volume: 78
  start-page: 5014
  year: 1997
  ident: 10.1016/j.spmi.2021.106853_bib29
  article-title: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.5014
– volume: 9
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib5
  article-title: Solution-processed crystalline silicon double-heterojunction solar cells
  publication-title: APEX
– volume: 100
  start-page: 183901
  year: 2012
  ident: 10.1016/j.spmi.2021.106853_bib3
  article-title: Highly efficient crystalline silicon/zonylfluorosurfactant-treated organic heterojunction solar cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4709615
– volume: 119
  start-page: 204501
  year: 2016
  ident: 10.1016/j.spmi.2021.106853_bib50
  article-title: Analysis of short circuit current loss in rear emitter crystalline Si solar cell
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4951003
– volume: 122
  start-page: 55101
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib18
  article-title: Barium hydroxide hole blocking layer for front-and back-organic/crystalline Si heterojunction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4985812
– volume: 31
  start-page: 6398
  year: 2020
  ident: 10.1016/j.spmi.2021.106853_bib13
  article-title: The ideal doping concentration of silicon wafer for single junction hybrid n-Si/PEDOT: PSS solar cells with 3.2% elevated PCE and VOC of 620 mV
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-03196-y
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib57
  article-title: Two-step photon up-conversion solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14962
– volume: 2
  start-page: 17032
  year: 2017
  ident: 10.1016/j.spmi.2021.106853_bib26
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– ident: 10.1016/j.spmi.2021.106853_bib46
SSID ssj0009417
Score 2.150548
Snippet In this article, we perform a theoretical analysis on PEDOT:PSS/n-Si heterojunction solar cells for further enhancement of the solar cells. We introduced CdS...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106853
SubjectTerms Bulk defects
CdS and In3Se4 BSF
PEDOT:PSS/n-Si solar Cells
Photovoltaics
SCAPS-1D simulation
Title Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data
URI https://dx.doi.org/10.1016/j.spmi.2021.106853
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ64v5uBN6tomfaw3XV1WxVWogreSJ1Z22-LWq2d_tpk-dAXx4LEhU0ommflSvpmPkEM_pN6JEti3VQmHcSPxSFFHGypNEHEtXSxwvh0Fw0d2_eQ_zZF-WwuDtMom9tcxvYrWzUi3Wc1ukabd2CY_C79tAHYrIIIdPxkLcZcfv3_TPHqsUt3FyQ7Obgpnao7XtJik9o7ouXYgiHz6e3KaSTiDVbLSIEU4qz9mjczpbJ0s9VuBtnWyWLE35XSDfNQ9iCE30Fcx8EzBVUZjzeA8HsCYI6yGPAML9qB4zsvcxqSSpxKK77IBNL6_vLh7OL2P427mxClM8doL-Gt_egpxOmmUvgAzn8L3zcoDAHJNN8nj4PKhP3QaiQVH0iAoHSNCqpiwOd0uouI8FEIaE4bKD13GsSxVcDeQmoqeZtoTklkAoWToK0_Y0KToFpnP8kxvE6AWynieirS9YDLjiogqYZR1ToSa1kGvQ9x2bRPZ9B9HGYxx0hLNXhL0R4L-SGp_dMjRl01Rd9_4c7bfuiz5sYcSmx7-sNv5p90uWcanmsezR-bL1ze9byFKKQ6qPXhAFs6uboajT0od5Mc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKESoXBAVEefoAJxSWZCaPrcQBtl3t0geVspV6C5mXCGqTiAQhLpz5P_xB7DxokVAPSL1O4tFkPGN_Vmx_AM_DWASvjeK-rUZ5Mnear5TwrBPaRUlutc8FzgeH0eJYvj8JT9bg11gLw2mVg-3vbXpnrYeRybCbk7ooJik5P4LfZID9DoiMDNZ79vs3ituaN8sdUvKLIJjvrmYLb6AW8LSIotZzKhZGKvJlJGzyPFZKOxfHJox9mXM5psr9SFuhplbaQGlJjtPoODSBoitpBM17Da5LMhdMm_Dqx3leyVR2NL-8Oo-XN1Tq9EllTX1WUFAa-DQQJaH4tze84OHmt-HWAE3xbf_1d2DNlpuwMRsZ4TbhRpcuqpu78LNveoyVw5lJMS8NLkuRWonv0jme5ozjsSqR0CXWn6q2IiPY5oXG-rxOgYWPdnc-rLaP0nRSemmBDcfZyP8Smm1Mi7OBWgzZ1Rqe7yIfAXJy6z04vpKNvw_rZVXaB4CCsFMQmMRSRCudrxJhlDN0GhIm0Y6mW-CPe5vpoeE5826cZmNm2-eM9ZGxPrJeH1vw8o9M3bf7uPTtcFRZ9tehzcgfXSL38D_lnsHGYnWwn-0vD_cewU1-0icRPYb19stX-4TwUaueducR4eNVX4DfS9chiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+CdS+and+In3Se4+BSF+layers+on+the+photovoltaic+performance+of+PEDOT%3APSS%2Fn-Si+solar+cells%3A+Simulation+based+on+experimental+data&rft.jtitle=Superlattices+and+microstructures&rft.au=Mondal%2C+Bipanko+Kumar&rft.au=Mostaque%2C+Shaikh+Khaled&rft.au=Rashid%2C+Md.+Abdur&rft.au=Kuddus%2C+Abdul&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=152&rft_id=info:doi/10.1016%2Fj.spmi.2021.106853&rft.externalDocID=S0749603621000513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon