Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR

Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecu...

Full description

Saved in:
Bibliographic Details
Published inSAR and QSAR in environmental research Vol. 30; no. 2; pp. 63 - 80
Main Authors Kumar, P., Kumar, A., Sindhu, J.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.02.2019
Subjects
Online AccessGet full text
ISSN1062-936X
1029-046X
1029-046X
DOI10.1080/1062936X.2018.1564067

Cover

Abstract Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r 2 = 0.8398 and Q 2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.
AbstractList Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r 2 = 0.8398 and Q 2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.
Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r = 0.8398 and Q = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.
Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r2 = 0.8398 and Q2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r2 = 0.8398 and Q2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.
Author Kumar, P.
Kumar, A.
Sindhu, J.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0002-2635-6465
  surname: Kumar
  fullname: Kumar, P.
  email: parvinchem@kuk.ac.in, parvinjangra@gmail.com
  organization: Department of Chemistry, Kurukshetra University
– sequence: 2
  givenname: A.
  surname: Kumar
  fullname: Kumar, A.
  organization: Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology
– sequence: 3
  givenname: J.
  surname: Sindhu
  fullname: Sindhu, J.
  organization: K. M. Govt. College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30793981$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2OFCEUhYkZ4_zoI2hYjotuoaiiqLix0zqjcYzxL5kdoeDWNEpBC_TM9Iv4vFJ298aFbuCS-51zwz2n6MgHDwg9pWROiSAvKOFVx_j1vCJUzGnDa8LbB-iEkqqbkZpfH001r2YTdIxOU_pOCBGMtI_QcTk71gl6gn69hmRvPFbeYAO34MJ6BJ9xGLAP5YmHoJXDyqwKFzz-Yb1KgM8vFu-fY-tXtrc5xIQ3yfob_CH4DHipogt4hLwKBt_ZvCqggfvJ0xpQzubtVOsQIziVJ9sc8G1pGFXkn74sPj9GDwflEjzZ32fo28Wbr8u3s6uPl--Wi6uZZpzn2dCCqGmj676DoRVGq64ioKiuhGFd05jWMMFFVZu-YEwI1Q8V1E3H-dBDx9gZOt_5rmP4uYGU5WiTBueUh7BJsqKiaRrS0ragz_boph_ByHW0o4pbedhlAV7uAB1DShEGqW3-870clXWSEjklJw_JySk5uU-uqJu_1IcB_9O92umsH0Ic1V2Izsisti7EISqvbZLs3xa_AWjesRY
CitedBy_id crossref_primary_10_1016_j_molstruc_2023_135404
crossref_primary_10_3390_molecules27092729
crossref_primary_10_1080_08927022_2022_2110246
crossref_primary_10_1016_j_molstruc_2021_131205
crossref_primary_10_1007_s11030_019_10026_9
crossref_primary_10_1080_1062936X_2020_1806922
crossref_primary_10_2174_1568026619666191105111817
crossref_primary_10_1038_s41598_022_26279_8
crossref_primary_10_1080_07391102_2019_1704885
crossref_primary_10_1016_j_compbiomed_2021_104370
crossref_primary_10_1080_10406638_2022_2067194
crossref_primary_10_1016_j_molstruc_2022_133437
crossref_primary_10_1080_07391102_2019_1656109
crossref_primary_10_1080_09593330_2021_1882588
crossref_primary_10_1016_j_rechem_2024_101734
crossref_primary_10_1039_D0NJ00121J
crossref_primary_10_1080_02772248_2023_2181348
crossref_primary_10_1007_s11030_024_10839_3
crossref_primary_10_1080_1536383X_2020_1779705
crossref_primary_10_1080_1062936X_2021_1973095
crossref_primary_10_3390_toxics11120993
crossref_primary_10_1080_07391102_2020_1784286
crossref_primary_10_1016_j_microc_2023_109549
crossref_primary_10_1016_j_molliq_2021_116465
crossref_primary_10_1080_1062936X_2021_2003429
crossref_primary_10_1007_s11224_020_01525_9
crossref_primary_10_1016_j_chemolab_2022_104552
crossref_primary_10_1007_s11224_020_01588_8
crossref_primary_10_1016_j_scitotenv_2019_05_114
crossref_primary_10_1016_j_compbiomed_2021_104876
crossref_primary_10_1080_15376516_2020_1801928
crossref_primary_10_1080_1062936X_2019_1629998
crossref_primary_10_1080_1062936X_2022_2076736
crossref_primary_10_1080_15376516_2022_2118092
crossref_primary_10_1080_1062936X_2020_1842495
crossref_primary_10_1007_s11224_020_01629_2
crossref_primary_10_1080_07391102_2023_2193991
crossref_primary_10_1016_j_jics_2023_101052
crossref_primary_10_1007_s11696_019_00903_w
crossref_primary_10_1080_1062936X_2019_1615547
crossref_primary_10_1016_j_etap_2022_103893
crossref_primary_10_1080_07391102_2020_1863861
crossref_primary_10_1080_07391102_2023_2270709
crossref_primary_10_1007_s11030_020_10085_3
crossref_primary_10_1080_15376516_2024_2416226
crossref_primary_10_1080_1062936X_2023_2167860
crossref_primary_10_1080_1062936X_2021_1914156
crossref_primary_10_1007_s00204_020_02828_w
crossref_primary_10_1080_15376516_2022_2053918
crossref_primary_10_1039_D3NJ03696K
crossref_primary_10_1007_s11224_019_01361_6
crossref_primary_10_1080_09593330_2022_2093655
crossref_primary_10_1080_1062936X_2020_1806105
crossref_primary_10_2174_1389557520666200212111428
crossref_primary_10_1007_s11356_020_07820_6
crossref_primary_10_1007_s41742_019_00183_y
crossref_primary_10_1080_1062936X_2020_1771769
crossref_primary_10_1016_j_scitotenv_2020_139720
crossref_primary_10_2298_JSC240330094M
crossref_primary_10_1002_minf_201900070
crossref_primary_10_1016_j_chemolab_2020_103982
crossref_primary_10_1016_j_compbiolchem_2023_107975
crossref_primary_10_1016_j_scitotenv_2024_172119
Cites_doi 10.1002/etc.3466
10.1021/cr9400976
10.2174/1389450117666160101120822
10.1038/nrm1490
10.1039/C7MD00080D
10.1080/07391102.2017.1329095
10.1016/j.chemolab.2011.08.007
10.1021/cr980018g
10.1002/ardp.201600268
10.1016/j.scitotenv.2017.01.198
10.1016/S1093-3263(02)00123-7
10.1021/acs.jcim.8b00417
10.1021/cr0304469
10.1016/j.chemolab.2007.07.004
10.1016/j.bmcl.2018.08.006
10.1016/j.ceb.2006.08.009
10.1016/j.bmcl.2017.02.072
10.1016/j.bmcl.2013.06.038
10.1002/jcc.21334
10.2174/1386207311316030007
10.1021/jm500784e
10.1002/jhet.2876
10.1055/a-0652-5290
10.1021/cr5005953
10.1021/acs.jchemed.6b00596
10.1787/9789264085442-en
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/1062936X.2018.1564067
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Environmental Sciences
EISSN 1029-046X
EndPage 80
ExternalDocumentID 30793981
10_1080_1062936X_2018_1564067
1564067
Genre Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
123
29P
30N
36B
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
07J
1TA
53G
AAAJW
ABKVM
ABZMO
ACMLV
ACYAP
ADBHG
ADOGB
AEUXM
AFWJF
AGGGY
AOWVY
AWFQP
BDVFT
BKMSO
C5E
CAG
CGR
COF
CTOBV
CUY
CVF
CXCUG
C~V
ECM
EIF
HJQDS
LZ8
NPM
NUSFT
OCADI
OEUFU
TAV
TCCYZ
TFMCV
UA2
7X8
TASJS
ID FETCH-LOGICAL-c366t-f7e8415c4b9ef78dca920ea1c28d3955d7d386824db415388abf2e45966fbe933
ISSN 1062-936X
1029-046X
IngestDate Fri Sep 05 02:59:14 EDT 2025
Wed Feb 19 02:33:09 EST 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 02:29:41 EDT 2025
Wed Dec 25 09:08:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords IIC
SMILES
CORAL
QSAR
Focal adhesion kinase (FAK)
triazine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-f7e8415c4b9ef78dca920ea1c28d3955d7d386824db415388abf2e45966fbe933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2635-6465
PMID 30793981
PQID 2185550717
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2185550717
informaworld_taylorfrancis_310_1080_1062936X_2018_1564067
pubmed_primary_30793981
crossref_citationtrail_10_1080_1062936X_2018_1564067
crossref_primary_10_1080_1062936X_2018_1564067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2/1/2019
2019-02-01
2019-Feb
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2/1/2019
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle SAR and QSAR in environmental research
PublicationTitleAlternate SAR QSAR Environ Res
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0012
CIT0034
CIT0011
CIT0033
Toropov A.A. (CIT0032) 2013; 24
Kumar P. (CIT0027) 2018; 68
O’Boyle N.M. (CIT0031)
Toropova A.P. (CIT0036) 2018; 18
Roy K. (CIT0038) 2007; 2
CIT0014
Toropov A.A. (CIT0035) 2017; 819
CIT0013
CIT0016
CIT0015
Stoickov V. (CIT0018) 2018; 29
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0001
CIT0045
CIT0022
Trott O. (CIT0044) 2010; 31
Toropov A.A. (CIT0037) 2018; 29
Cabrita M.A. (CIT0006) 2011; 5
Kumar P. (CIT0024) 2017; 38
CIT0003
CIT0025
CIT0002
Kumar A. (CIT0020) 2017; 28
CIT0046
CIT0005
OECD (CIT0042)
CIT0004
Kumar P. (CIT0023) 2018; 68
CIT0026
CIT0007
CIT0029
Aouidate A. (CIT0017) 2018; 74
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0022
  doi: 10.1002/etc.3466
– ident: CIT0040
– ident: CIT0014
  doi: 10.1021/cr9400976
– volume: 68
  start-page: 189
  year: 2018
  ident: CIT0023
  publication-title: (Stuttg)
– volume: 68
  start-page: 72
  year: 2018
  ident: CIT0027
  publication-title: (Stuttg)
– ident: CIT0011
  doi: 10.2174/1389450117666160101120822
– ident: CIT0031
  publication-title: Cheminform
– ident: CIT0003
  doi: 10.1038/nrm1490
– volume: 28
  start-page: 179
  year: 2017
  ident: CIT0020
  publication-title: Res
– ident: CIT0025
  doi: 10.1039/C7MD00080D
– ident: CIT0028
  doi: 10.1080/07391102.2017.1329095
– ident: CIT0041
  doi: 10.1016/j.chemolab.2011.08.007
– ident: CIT0046
– volume: 819
  start-page: 31
  year: 2017
  ident: CIT0035
  publication-title: Res
– volume: 38
  start-page: 585
  year: 2017
  ident: CIT0024
  publication-title: Sul. Chem.
– volume: 5
  start-page: 517
  year: 2011
  ident: CIT0006
  publication-title: Onco
– ident: CIT0012
  doi: 10.1021/cr980018g
– volume: 74
  start-page: 201
  year: 2018
  ident: CIT0017
  publication-title: Biol. Chem.
– ident: CIT0021
  doi: 10.1002/ardp.201600268
– ident: CIT0004
– ident: CIT0034
  doi: 10.1016/j.scitotenv.2017.01.198
– ident: CIT0045
  doi: 10.1016/S1093-3263(02)00123-7
– ident: CIT0009
  doi: 10.1021/acs.jcim.8b00417
– volume: 29
  start-page: 441
  year: 2018
  ident: CIT0018
  publication-title: Chem
– ident: CIT0013
  doi: 10.1021/cr0304469
– ident: CIT0039
  doi: 10.1016/j.chemolab.2007.07.004
– ident: CIT0008
  doi: 10.1016/j.bmcl.2018.08.006
– ident: CIT0002
  doi: 10.1016/j.ceb.2006.08.009
– ident: CIT0007
  doi: 10.1016/j.bmcl.2017.02.072
– ident: CIT0029
  doi: 10.1016/j.bmcl.2013.06.038
– volume: 31
  start-page: 455
  year: 2010
  ident: CIT0044
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.21334
– ident: CIT0043
– ident: CIT0016
  doi: 10.2174/1386207311316030007
– ident: CIT0030
  doi: 10.1021/jm500784e
– volume: 29
  start-page: 33
  year: 2018
  ident: CIT0037
  publication-title: Chem
– volume: 24
  start-page: 1369
  year: 2013
  ident: CIT0032
  publication-title: Chem
– ident: CIT0026
  doi: 10.1002/jhet.2876
– ident: CIT0033
  doi: 10.1055/a-0652-5290
– ident: CIT0001
– ident: CIT0015
  doi: 10.1021/cr5005953
– ident: CIT0005
– ident: CIT0010
  doi: 10.1021/acs.jchemed.6b00596
– volume-title: Guidance document on the validation of (quantitative) structure–activity relationship [(Q)SAR] models
  ident: CIT0042
  doi: 10.1787/9789264085442-en
– ident: CIT0019
– volume: 2
  start-page: 1567
  year: 2007
  ident: CIT0038
  publication-title: Drug Discov
– volume: 18
  start-page: 382
  year: 2018
  ident: CIT0036
  publication-title: Med. Chem.
SSID ssj0008307
Score 2.4203527
Snippet Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms CORAL
Focal adhesion kinase (FAK)
Focal Adhesion Protein-Tyrosine Kinases - antagonists & inhibitors
IIC
Models, Molecular
Monte Carlo Method
QSAR
Quantitative Structure-Activity Relationship
SMILES
Software
triazine
Title Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR
URI https://www.tandfonline.com/doi/abs/10.1080/1062936X.2018.1564067
https://www.ncbi.nlm.nih.gov/pubmed/30793981
https://www.proquest.com/docview/2185550717
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OCtIvoq3V-sYIIsqRekn2NsnHQ1uK0qK2hfsWkuyGC7ZJueY-6E_wB_h7nZnNW2lL1S8h2bwez3O7M7PPzgjxOggjqROlkLwycqRnlJMqnTpJ4MtMmSzyFa1GPjhU-yfy03w6H41-DVRLqzrdyX5eu67kf1DFNsSVVsn-A7LdQ7EB9xFf3CLCuP0rjD-y_ILj_7oX_7A2o8LDcV5xKgC9MBQTG38vShyzyKbcm32mcEBRLoq04Ho7K44ZHFCuKhKBnFZNbWkbqOWcipxdQhtruLMafblspHRkweIPKyh8MP56NPs2tHnxkD-R2jlDSb-2jqsKDOJpQ833lystHdmO8HsWq35Sq4la0EKpTgFibE9Luht0zufDrriZoikGHrHtV20neKW7t_pI9GrRaFFzEuqFO5T9ZmJLfAwocH7GHPApH2AUuv3o12kS21N3xF0vCHjK358cdqN6iOfbFWDh5P2171wX99qnXDJzLiXBvdmVYZPm-IG43_giMLPEeihGptwQm7MyqauzH_AGWB3M0y4bYmt3iBo0Q8LFpvhtSQiIMAxICFUOTEJgEkJLQrAkhLdIwXfQExCYgMAEBCYgWAICERCYgPTMloC0PyAg1BW0BAQi2iNxsrd7_GHfaYp9OJmvVO3kgQnRmMxkGpk8CHWWRN7EJG7mhdqPplMdaD9UoSd1KmmUDpM094ycoruepyby_S2xVlaleSIAfYKU5n9d46ZS4YWeCiYqQ9M08IzO9baQLTZx1mTCp4Isp7HbJMxt0Y0J3bhBd1vsdLed21Qwt90QDYGPa47B5bZgTuzfcu-rliUxdvg0i5eUplpdxGiTTykJoYvXPLb06T6nZd_TG888E-v93_G5WKuXK_MCzeo6fcl8_wMYJsg4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBSoKWlPAcJIThktYm9jn1cla4W2l0JaKW9RfEjNGqboDZ7gB_C72XGSbYtUtVDT0mUTB7yeGY8-eYbxt6nSguXS4nKK3QkEi8jI52J8pQLK73VXFI18mwup0fi62K0uFILQ7BKWkMXLVFEsNU0uSkZ3UPicCvRS8kFIbPUgOhO0ObeZw9GGLuTlvPhfGWNFQ8l0yQSkUxfxXPTba75p2vspTfHoMEXTR4z239FC0E5GSwbM7B__iN4vNtnPmHrXagK41a3nrJ7vtpgm-MKl-lnv-EDBPBoyMpvsK29y4I5lOksxsUm-_s5QEQA3wLcJUAJ6gKqGg-hIGcKuTv2lLeDk7JCvwofJ-P9T1BWx6UpqR8QED7_J8yISwt28_PTGtre10CJZAicj3TP0vmwsKB9S41HWqgfNDXglCopvQHffoy_P2NHk73D3WnU9YKILJeyiYrUK4w1rDDaF6lyNtfJ0OexTZTjejRyqeNKqkQ4I8iIq9wUiRekEYXxmvMttlbVlX_OAENGQ78HYx8bIfHCRKZDaTFySRPvCrfDRK8Bme2I0qlfx2kWd3yq_cBkNDBZNzA7bLAS-9UyhdwmoK-qV9aEFE3R9lPJ-C2y73pdzNAe0E-evPL18iLDkG1EHHUxXrPdKunqdTixIWoVv7jDk9-yh9PD2UF28GW-_5I9wlO6BbG_YmvN-dK_xhitMW_CJPwHP1MuLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLhZaWltcgIQSHrDax48THVdtVoXTFq1JvUfyiUUtSdbMH-CH8XmacZEuRqh56SqJkEkcez4zHn79h7E2WK2FLKVF5hYpE4mSkpdVRmXFhpDOKS9qNfDiT-0fi43E6oAnnPayS5tC-I4oItpoG97n1AyIOjxKdlDwmYFY-IrYTNLl32T2J4Qmh-vh4tjTGOQ87pkkkIplhE891r7ninq6Ql14fggZXNF1leviJDoFyOlq0emR-_8fveKu_fMQe9oEqTDrNeszuuHqNrU9qnKT__AVvIUBHQ05-jW3sXW6XQ5neXszX2Z_dABABbATYS3gSNB7qBi_BkyuF0p44ytrBaVWjV4V308nBe6jqk0pXVA0ICJ3_Aw6JSQt2youzBrrK10BpZAiMj_TOyrowraBzQ2VHOqAftA3ggKoouQFfvk2-PmFH073vO_tRXwkiMlzKNvKZyzHSMEIr57PcmlIlY1fGJsktV2lqM8tzmSfCakEmPC-1T5xIcS7ntVOcb7CVuqndUwYYMGpaHIxdrIXEBxOZjaXBuCVLnPV2i4lBAQrT06RTtY6zIu7ZVIeOKahjir5jtthoKXbe8YTcJKD-1a6iDQka31VTKfgNsq8HVSzQGtAST1m7ZjEvMGBLiaEuxmc2Ox1dNocTF6LK4-1bfPkVu_95d1p8-jA7eMYe4B3VIdifs5X2YuFeYIDW6pdhCP4FWdUs0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+novel+focal+adhesion+kinase+%28FAK%29+inhibitors+using+Monte+Carlo+method+with+index+of+ideality+of+correlation+to+validate+QSAR&rft.jtitle=SAR+and+QSAR+in+environmental+research&rft.au=Kumar%2C+P&rft.au=Kumar%2C+A&rft.au=Sindhu%2C+J&rft.date=2019-02-01&rft.eissn=1029-046X&rft.volume=30&rft.issue=2&rft.spage=63&rft_id=info:doi/10.1080%2F1062936X.2018.1564067&rft_id=info%3Apmid%2F30793981&rft.externalDocID=30793981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-936X&client=summon