Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR
Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecu...
Saved in:
Published in | SAR and QSAR in environmental research Vol. 30; no. 2; pp. 63 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1062-936X 1029-046X 1029-046X |
DOI | 10.1080/1062936X.2018.1564067 |
Cover
Abstract | Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r
2
= 0.8398 and Q
2
= 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles. |
---|---|
AbstractList | Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r
2
= 0.8398 and Q
2
= 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles. Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r = 0.8398 and Q = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles. Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r2 = 0.8398 and Q2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r2 = 0.8398 and Q2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles. |
Author | Kumar, P. Kumar, A. Sindhu, J. |
Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0002-2635-6465 surname: Kumar fullname: Kumar, P. email: parvinchem@kuk.ac.in, parvinjangra@gmail.com organization: Department of Chemistry, Kurukshetra University – sequence: 2 givenname: A. surname: Kumar fullname: Kumar, A. organization: Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology – sequence: 3 givenname: J. surname: Sindhu fullname: Sindhu, J. organization: K. M. Govt. College |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30793981$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2OFCEUhYkZ4_zoI2hYjotuoaiiqLix0zqjcYzxL5kdoeDWNEpBC_TM9Iv4vFJ298aFbuCS-51zwz2n6MgHDwg9pWROiSAvKOFVx_j1vCJUzGnDa8LbB-iEkqqbkZpfH001r2YTdIxOU_pOCBGMtI_QcTk71gl6gn69hmRvPFbeYAO34MJ6BJ9xGLAP5YmHoJXDyqwKFzz-Yb1KgM8vFu-fY-tXtrc5xIQ3yfob_CH4DHipogt4hLwKBt_ZvCqggfvJ0xpQzubtVOsQIziVJ9sc8G1pGFXkn74sPj9GDwflEjzZ32fo28Wbr8u3s6uPl--Wi6uZZpzn2dCCqGmj676DoRVGq64ioKiuhGFd05jWMMFFVZu-YEwI1Q8V1E3H-dBDx9gZOt_5rmP4uYGU5WiTBueUh7BJsqKiaRrS0ragz_boph_ByHW0o4pbedhlAV7uAB1DShEGqW3-870clXWSEjklJw_JySk5uU-uqJu_1IcB_9O92umsH0Ic1V2Izsisti7EISqvbZLs3xa_AWjesRY |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2023_135404 crossref_primary_10_3390_molecules27092729 crossref_primary_10_1080_08927022_2022_2110246 crossref_primary_10_1016_j_molstruc_2021_131205 crossref_primary_10_1007_s11030_019_10026_9 crossref_primary_10_1080_1062936X_2020_1806922 crossref_primary_10_2174_1568026619666191105111817 crossref_primary_10_1038_s41598_022_26279_8 crossref_primary_10_1080_07391102_2019_1704885 crossref_primary_10_1016_j_compbiomed_2021_104370 crossref_primary_10_1080_10406638_2022_2067194 crossref_primary_10_1016_j_molstruc_2022_133437 crossref_primary_10_1080_07391102_2019_1656109 crossref_primary_10_1080_09593330_2021_1882588 crossref_primary_10_1016_j_rechem_2024_101734 crossref_primary_10_1039_D0NJ00121J crossref_primary_10_1080_02772248_2023_2181348 crossref_primary_10_1007_s11030_024_10839_3 crossref_primary_10_1080_1536383X_2020_1779705 crossref_primary_10_1080_1062936X_2021_1973095 crossref_primary_10_3390_toxics11120993 crossref_primary_10_1080_07391102_2020_1784286 crossref_primary_10_1016_j_microc_2023_109549 crossref_primary_10_1016_j_molliq_2021_116465 crossref_primary_10_1080_1062936X_2021_2003429 crossref_primary_10_1007_s11224_020_01525_9 crossref_primary_10_1016_j_chemolab_2022_104552 crossref_primary_10_1007_s11224_020_01588_8 crossref_primary_10_1016_j_scitotenv_2019_05_114 crossref_primary_10_1016_j_compbiomed_2021_104876 crossref_primary_10_1080_15376516_2020_1801928 crossref_primary_10_1080_1062936X_2019_1629998 crossref_primary_10_1080_1062936X_2022_2076736 crossref_primary_10_1080_15376516_2022_2118092 crossref_primary_10_1080_1062936X_2020_1842495 crossref_primary_10_1007_s11224_020_01629_2 crossref_primary_10_1080_07391102_2023_2193991 crossref_primary_10_1016_j_jics_2023_101052 crossref_primary_10_1007_s11696_019_00903_w crossref_primary_10_1080_1062936X_2019_1615547 crossref_primary_10_1016_j_etap_2022_103893 crossref_primary_10_1080_07391102_2020_1863861 crossref_primary_10_1080_07391102_2023_2270709 crossref_primary_10_1007_s11030_020_10085_3 crossref_primary_10_1080_15376516_2024_2416226 crossref_primary_10_1080_1062936X_2023_2167860 crossref_primary_10_1080_1062936X_2021_1914156 crossref_primary_10_1007_s00204_020_02828_w crossref_primary_10_1080_15376516_2022_2053918 crossref_primary_10_1039_D3NJ03696K crossref_primary_10_1007_s11224_019_01361_6 crossref_primary_10_1080_09593330_2022_2093655 crossref_primary_10_1080_1062936X_2020_1806105 crossref_primary_10_2174_1389557520666200212111428 crossref_primary_10_1007_s11356_020_07820_6 crossref_primary_10_1007_s41742_019_00183_y crossref_primary_10_1080_1062936X_2020_1771769 crossref_primary_10_1016_j_scitotenv_2020_139720 crossref_primary_10_2298_JSC240330094M crossref_primary_10_1002_minf_201900070 crossref_primary_10_1016_j_chemolab_2020_103982 crossref_primary_10_1016_j_compbiolchem_2023_107975 crossref_primary_10_1016_j_scitotenv_2024_172119 |
Cites_doi | 10.1002/etc.3466 10.1021/cr9400976 10.2174/1389450117666160101120822 10.1038/nrm1490 10.1039/C7MD00080D 10.1080/07391102.2017.1329095 10.1016/j.chemolab.2011.08.007 10.1021/cr980018g 10.1002/ardp.201600268 10.1016/j.scitotenv.2017.01.198 10.1016/S1093-3263(02)00123-7 10.1021/acs.jcim.8b00417 10.1021/cr0304469 10.1016/j.chemolab.2007.07.004 10.1016/j.bmcl.2018.08.006 10.1016/j.ceb.2006.08.009 10.1016/j.bmcl.2017.02.072 10.1016/j.bmcl.2013.06.038 10.1002/jcc.21334 10.2174/1386207311316030007 10.1021/jm500784e 10.1002/jhet.2876 10.1055/a-0652-5290 10.1021/cr5005953 10.1021/acs.jchemed.6b00596 10.1787/9789264085442-en |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/1062936X.2018.1564067 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Environmental Sciences |
EISSN | 1029-046X |
EndPage | 80 |
ExternalDocumentID | 30793981 10_1080_1062936X_2018_1564067 1564067 |
Genre | Article Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 123 29P 30N 36B 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NW0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07J 1TA 53G AAAJW ABKVM ABZMO ACMLV ACYAP ADBHG ADOGB AEUXM AFWJF AGGGY AOWVY AWFQP BDVFT BKMSO C5E CAG CGR COF CTOBV CUY CVF CXCUG C~V ECM EIF HJQDS LZ8 NPM NUSFT OCADI OEUFU TAV TCCYZ TFMCV UA2 7X8 TASJS |
ID | FETCH-LOGICAL-c366t-f7e8415c4b9ef78dca920ea1c28d3955d7d386824db415388abf2e45966fbe933 |
ISSN | 1062-936X 1029-046X |
IngestDate | Fri Sep 05 02:59:14 EDT 2025 Wed Feb 19 02:33:09 EST 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 02:29:41 EDT 2025 Wed Dec 25 09:08:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | IIC SMILES CORAL QSAR Focal adhesion kinase (FAK) triazine |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-f7e8415c4b9ef78dca920ea1c28d3955d7d386824db415388abf2e45966fbe933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2635-6465 |
PMID | 30793981 |
PQID | 2185550717 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2185550717 informaworld_taylorfrancis_310_1080_1062936X_2018_1564067 pubmed_primary_30793981 crossref_citationtrail_10_1080_1062936X_2018_1564067 crossref_primary_10_1080_1062936X_2018_1564067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2/1/2019 2019-02-01 2019-Feb 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2/1/2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | SAR and QSAR in environmental research |
PublicationTitleAlternate | SAR QSAR Environ Res |
PublicationYear | 2019 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0010 CIT0012 CIT0034 CIT0011 CIT0033 Toropov A.A. (CIT0032) 2013; 24 Kumar P. (CIT0027) 2018; 68 O’Boyle N.M. (CIT0031) Toropova A.P. (CIT0036) 2018; 18 Roy K. (CIT0038) 2007; 2 CIT0014 Toropov A.A. (CIT0035) 2017; 819 CIT0013 CIT0016 CIT0015 Stoickov V. (CIT0018) 2018; 29 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 CIT0001 CIT0045 CIT0022 Trott O. (CIT0044) 2010; 31 Toropov A.A. (CIT0037) 2018; 29 Cabrita M.A. (CIT0006) 2011; 5 Kumar P. (CIT0024) 2017; 38 CIT0003 CIT0025 CIT0002 Kumar A. (CIT0020) 2017; 28 CIT0046 CIT0005 OECD (CIT0042) CIT0004 Kumar P. (CIT0023) 2018; 68 CIT0026 CIT0007 CIT0029 Aouidate A. (CIT0017) 2018; 74 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0022 doi: 10.1002/etc.3466 – ident: CIT0040 – ident: CIT0014 doi: 10.1021/cr9400976 – volume: 68 start-page: 189 year: 2018 ident: CIT0023 publication-title: (Stuttg) – volume: 68 start-page: 72 year: 2018 ident: CIT0027 publication-title: (Stuttg) – ident: CIT0011 doi: 10.2174/1389450117666160101120822 – ident: CIT0031 publication-title: Cheminform – ident: CIT0003 doi: 10.1038/nrm1490 – volume: 28 start-page: 179 year: 2017 ident: CIT0020 publication-title: Res – ident: CIT0025 doi: 10.1039/C7MD00080D – ident: CIT0028 doi: 10.1080/07391102.2017.1329095 – ident: CIT0041 doi: 10.1016/j.chemolab.2011.08.007 – ident: CIT0046 – volume: 819 start-page: 31 year: 2017 ident: CIT0035 publication-title: Res – volume: 38 start-page: 585 year: 2017 ident: CIT0024 publication-title: Sul. Chem. – volume: 5 start-page: 517 year: 2011 ident: CIT0006 publication-title: Onco – ident: CIT0012 doi: 10.1021/cr980018g – volume: 74 start-page: 201 year: 2018 ident: CIT0017 publication-title: Biol. Chem. – ident: CIT0021 doi: 10.1002/ardp.201600268 – ident: CIT0004 – ident: CIT0034 doi: 10.1016/j.scitotenv.2017.01.198 – ident: CIT0045 doi: 10.1016/S1093-3263(02)00123-7 – ident: CIT0009 doi: 10.1021/acs.jcim.8b00417 – volume: 29 start-page: 441 year: 2018 ident: CIT0018 publication-title: Chem – ident: CIT0013 doi: 10.1021/cr0304469 – ident: CIT0039 doi: 10.1016/j.chemolab.2007.07.004 – ident: CIT0008 doi: 10.1016/j.bmcl.2018.08.006 – ident: CIT0002 doi: 10.1016/j.ceb.2006.08.009 – ident: CIT0007 doi: 10.1016/j.bmcl.2017.02.072 – ident: CIT0029 doi: 10.1016/j.bmcl.2013.06.038 – volume: 31 start-page: 455 year: 2010 ident: CIT0044 publication-title: Comput. Chem. doi: 10.1002/jcc.21334 – ident: CIT0043 – ident: CIT0016 doi: 10.2174/1386207311316030007 – ident: CIT0030 doi: 10.1021/jm500784e – volume: 29 start-page: 33 year: 2018 ident: CIT0037 publication-title: Chem – volume: 24 start-page: 1369 year: 2013 ident: CIT0032 publication-title: Chem – ident: CIT0026 doi: 10.1002/jhet.2876 – ident: CIT0033 doi: 10.1055/a-0652-5290 – ident: CIT0001 – ident: CIT0015 doi: 10.1021/cr5005953 – ident: CIT0005 – ident: CIT0010 doi: 10.1021/acs.jchemed.6b00596 – volume-title: Guidance document on the validation of (quantitative) structure–activity relationship [(Q)SAR] models ident: CIT0042 doi: 10.1787/9789264085442-en – ident: CIT0019 – volume: 2 start-page: 1567 year: 2007 ident: CIT0038 publication-title: Drug Discov – volume: 18 start-page: 382 year: 2018 ident: CIT0036 publication-title: Med. Chem. |
SSID | ssj0008307 |
Score | 2.4203527 |
Snippet | Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | CORAL Focal adhesion kinase (FAK) Focal Adhesion Protein-Tyrosine Kinases - antagonists & inhibitors IIC Models, Molecular Monte Carlo Method QSAR Quantitative Structure-Activity Relationship SMILES Software triazine |
Title | Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR |
URI | https://www.tandfonline.com/doi/abs/10.1080/1062936X.2018.1564067 https://www.ncbi.nlm.nih.gov/pubmed/30793981 https://www.proquest.com/docview/2185550717 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OCtIvoq3V-sYIIsqRekn2NsnHQ1uK0qK2hfsWkuyGC7ZJueY-6E_wB_h7nZnNW2lL1S8h2bwez3O7M7PPzgjxOggjqROlkLwycqRnlJMqnTpJ4MtMmSzyFa1GPjhU-yfy03w6H41-DVRLqzrdyX5eu67kf1DFNsSVVsn-A7LdQ7EB9xFf3CLCuP0rjD-y_ILj_7oX_7A2o8LDcV5xKgC9MBQTG38vShyzyKbcm32mcEBRLoq04Ho7K44ZHFCuKhKBnFZNbWkbqOWcipxdQhtruLMafblspHRkweIPKyh8MP56NPs2tHnxkD-R2jlDSb-2jqsKDOJpQ833lystHdmO8HsWq35Sq4la0EKpTgFibE9Luht0zufDrriZoikGHrHtV20neKW7t_pI9GrRaFFzEuqFO5T9ZmJLfAwocH7GHPApH2AUuv3o12kS21N3xF0vCHjK358cdqN6iOfbFWDh5P2171wX99qnXDJzLiXBvdmVYZPm-IG43_giMLPEeihGptwQm7MyqauzH_AGWB3M0y4bYmt3iBo0Q8LFpvhtSQiIMAxICFUOTEJgEkJLQrAkhLdIwXfQExCYgMAEBCYgWAICERCYgPTMloC0PyAg1BW0BAQi2iNxsrd7_GHfaYp9OJmvVO3kgQnRmMxkGpk8CHWWRN7EJG7mhdqPplMdaD9UoSd1KmmUDpM094ycoruepyby_S2xVlaleSIAfYKU5n9d46ZS4YWeCiYqQ9M08IzO9baQLTZx1mTCp4Isp7HbJMxt0Y0J3bhBd1vsdLed21Qwt90QDYGPa47B5bZgTuzfcu-rliUxdvg0i5eUplpdxGiTTykJoYvXPLb06T6nZd_TG888E-v93_G5WKuXK_MCzeo6fcl8_wMYJsg4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBSoKWlPAcJIThktYm9jn1cla4W2l0JaKW9RfEjNGqboDZ7gB_C72XGSbYtUtVDT0mUTB7yeGY8-eYbxt6nSguXS4nKK3QkEi8jI52J8pQLK73VXFI18mwup0fi62K0uFILQ7BKWkMXLVFEsNU0uSkZ3UPicCvRS8kFIbPUgOhO0ObeZw9GGLuTlvPhfGWNFQ8l0yQSkUxfxXPTba75p2vspTfHoMEXTR4z239FC0E5GSwbM7B__iN4vNtnPmHrXagK41a3nrJ7vtpgm-MKl-lnv-EDBPBoyMpvsK29y4I5lOksxsUm-_s5QEQA3wLcJUAJ6gKqGg-hIGcKuTv2lLeDk7JCvwofJ-P9T1BWx6UpqR8QED7_J8yISwt28_PTGtre10CJZAicj3TP0vmwsKB9S41HWqgfNDXglCopvQHffoy_P2NHk73D3WnU9YKILJeyiYrUK4w1rDDaF6lyNtfJ0OexTZTjejRyqeNKqkQ4I8iIq9wUiRekEYXxmvMttlbVlX_OAENGQ78HYx8bIfHCRKZDaTFySRPvCrfDRK8Bme2I0qlfx2kWd3yq_cBkNDBZNzA7bLAS-9UyhdwmoK-qV9aEFE3R9lPJ-C2y73pdzNAe0E-evPL18iLDkG1EHHUxXrPdKunqdTixIWoVv7jDk9-yh9PD2UF28GW-_5I9wlO6BbG_YmvN-dK_xhitMW_CJPwHP1MuLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLhZaWltcgIQSHrDax48THVdtVoXTFq1JvUfyiUUtSdbMH-CH8XmacZEuRqh56SqJkEkcez4zHn79h7E2WK2FLKVF5hYpE4mSkpdVRmXFhpDOKS9qNfDiT-0fi43E6oAnnPayS5tC-I4oItpoG97n1AyIOjxKdlDwmYFY-IrYTNLl32T2J4Qmh-vh4tjTGOQ87pkkkIplhE891r7ninq6Ql14fggZXNF1leviJDoFyOlq0emR-_8fveKu_fMQe9oEqTDrNeszuuHqNrU9qnKT__AVvIUBHQ05-jW3sXW6XQ5neXszX2Z_dABABbATYS3gSNB7qBi_BkyuF0p44ytrBaVWjV4V308nBe6jqk0pXVA0ICJ3_Aw6JSQt2youzBrrK10BpZAiMj_TOyrowraBzQ2VHOqAftA3ggKoouQFfvk2-PmFH073vO_tRXwkiMlzKNvKZyzHSMEIr57PcmlIlY1fGJsktV2lqM8tzmSfCakEmPC-1T5xIcS7ntVOcb7CVuqndUwYYMGpaHIxdrIXEBxOZjaXBuCVLnPV2i4lBAQrT06RTtY6zIu7ZVIeOKahjir5jtthoKXbe8YTcJKD-1a6iDQka31VTKfgNsq8HVSzQGtAST1m7ZjEvMGBLiaEuxmc2Ox1dNocTF6LK4-1bfPkVu_95d1p8-jA7eMYe4B3VIdifs5X2YuFeYIDW6pdhCP4FWdUs0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+development+of+novel+focal+adhesion+kinase+%28FAK%29+inhibitors+using+Monte+Carlo+method+with+index+of+ideality+of+correlation+to+validate+QSAR&rft.jtitle=SAR+and+QSAR+in+environmental+research&rft.au=Kumar%2C+P&rft.au=Kumar%2C+A&rft.au=Sindhu%2C+J&rft.date=2019-02-01&rft.eissn=1029-046X&rft.volume=30&rft.issue=2&rft.spage=63&rft_id=info:doi/10.1080%2F1062936X.2018.1564067&rft_id=info%3Apmid%2F30793981&rft.externalDocID=30793981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-936X&client=summon |