Bivariate iterated Farlie–Gumbel–Morgenstern stress–strength reliability model for Rayleigh margins: Properties and estimation

In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength r...

Full description

Saved in:
Bibliographic Details
Published inStatistical theory and related fields Vol. 8; no. 4; pp. 315 - 334
Main Authors Chandra, N., James, A., Domma, Filippo, Rehman, Habbiburr
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength reliability function is derived with its important reliability characteristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of dependence parameters on the reliability function. We found that the upper bound of the positive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. A comprehensive comparison between classical FGM with iterated FGM copulas is graphically examined to assess the over or under estimation of reliability with respect to α and β. We propose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo simulation study is conducted to assess the finite sample behaviour of the proposed reliability estimators. Finally, the proposed estimators are examined and validated with real data sets.
AbstractList In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength reliability function is derived with its important reliability characteristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of dependence parameters on the reliability function. We found that the upper bound of the positive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. A comprehensive comparison between classical FGM with iterated FGM copulas is graphically examined to assess the over or under estimation of reliability with respect to α and β. We propose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo simulation study is conducted to assess the finite sample behaviour of the proposed reliability estimators. Finally, the proposed estimators are examined and validated with real data sets.
Author Domma, Filippo
Rehman, Habbiburr
Chandra, N.
James, A.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0002-1213-7739
  surname: Chandra
  fullname: Chandra, N.
  organization: Department of Statistics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry, India
– sequence: 2
  givenname: A.
  surname: James
  fullname: James, A.
  organization: Department of Statistics and Data Science, CHRIST University, Bengaluru, India
– sequence: 3
  givenname: Filippo
  orcidid: 0000-0002-1489-1065
  surname: Domma
  fullname: Domma, Filippo
  organization: Department of Economics, Statistics and Finance ‘Giovanni Anania’, University of Calabria, Arcavacata of Rende (CS), Italy
– sequence: 4
  givenname: Habbiburr
  orcidid: 0000-0003-1762-3573
  surname: Rehman
  fullname: Rehman, Habbiburr
  organization: Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
BookMark eNp9UctOHDEQtNBGghA-Ack_sBvb4_F4yClZhYdElCjibvWM24uRd7yynUh748Af8Id8CV5YOOSQU5dKXdXVqo9kNsUJCTnlbMGZZp-F7FopVL8QTMiFaHrd6-6AHO34uRRdN3vHqj8kJznfMca4bplq-BF5-Ob_QvJQkPqCqU5LzyEFj0_3jxd_1gOGCn7EtMIp14WJ5pIw50ruwLQqtzRh8DD44MuWrqPFQF1M9DdsA_rVLV1DWvkpn9FfKW4wFY-ZwmQp5uLXUHycPpEPDkLGk_08Jjfn32-Wl_PrnxdXy6_X87FRqsyd6C1z_dAMoLXrJaCVbuCuhVFJKxu0Ai06qbVUmstBdpy31lqpOShtm2Ny9WprI9yZTarX09ZE8OaFqD8aqPHGgEaB7GzTKOtaIXsYtdWjhnYQgwYh1Fi9vrx6jSnmnNCZ0ZeXZ0oCHwxnZlePeavH7Oox-3qquv1H_Zbm_7pnGC-cCg
CitedBy_id crossref_primary_10_3390_axioms14030219
crossref_primary_10_3934_math_20241635
Cites_doi 10.1007/s001840100158
10.1016/j.cam.2020.113316
10.1007/s00362-012-0463-0
10.1016/0047-259X(87)90085-6
10.7712/120217.5399.16870
10.1155/MPE.2005.151
10.1080/03610926.2015.1014110
10.1007/s10260-012-0192-5
10.18576/jsapl/070304
10.1080/10485250701262242
10.1214/13-BA802
10.1080/03610927708827509
10.1007/s001840050030
10.1080/03610918.2016.1169292
10.1142/9789812564511_0001
10.1007/s40745-019-00197-5
10.2307/2336577
10.1080/00949655.2017.1376328
10.33889/IJMEMS.2020.5.1.001
10.2307/2333302
10.1080/01621459.1960.10483368
10.13052/jrss0974-8024.15114
10.1177/0008068317696574
10.1016/j.aej.2021.07.025
10.1080/01621459.1971.10482228
10.1007/s13198-022-01836-6
10.1142/S021853932050014X
10.12988/ams.2017.7398
10.1016/0047-259X(75)90055-X
10.1002/asmb.935
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/24754269.2024.2398987
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2475-4277
EndPage 334
ExternalDocumentID oai_doaj_org_article_6a47d336df5249ac8d8c8a5b2b8a226c
10_1080_24754269_2024_2398987
GroupedDBID 0YH
30N
AAYXX
ACGFS
ADFNY
ADWHR
AECIN
AEEWU
AEISY
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APAHL
BLEHA
CCCUG
CITATION
DHTFA
EBS
EJD
GROUPED_DOAJ
H13
KYCEM
LJTGL
M4Z
SOJIQ
TDBHL
TFL
TFW
TTHFI
UK4
ID FETCH-LOGICAL-c366t-f29d0f9b3ba88f94aed4fb1f5ac64d43ed2edef48846814b47115ddd481a68d3
IEDL.DBID DOA
ISSN 2475-4269
IngestDate Wed Aug 27 01:26:40 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 03:12:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-f29d0f9b3ba88f94aed4fb1f5ac64d43ed2edef48846814b47115ddd481a68d3
ORCID 0000-0003-1762-3573
0000-0002-1489-1065
0000-0002-1213-7739
OpenAccessLink https://doaj.org/article/6a47d336df5249ac8d8c8a5b2b8a226c
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_6a47d336df5249ac8d8c8a5b2b8a226c
crossref_citationtrail_10_1080_24754269_2024_2398987
crossref_primary_10_1080_24754269_2024_2398987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Statistical theory and related fields
PublicationYear 2024
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_3_30_1
Chandra N. (e_1_3_3_11_1) 2012; 13
Sankaran P. G. (e_1_3_3_37_1) 1991; 11
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
Morgenstern D. (e_1_3_3_31_1) 1956; 8
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_32_1
Bekrizadeh H. (e_1_3_3_9_1) 2012; 6
James A. (e_1_3_3_22_1) 2022; 11
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
Birnbaum Z. W. (e_1_3_3_10_1) 1956; 1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
References_xml – ident: e_1_3_3_5_1
  doi: 10.1007/s001840100158
– ident: e_1_3_3_4_1
  doi: 10.1016/j.cam.2020.113316
– ident: e_1_3_3_15_1
  doi: 10.1007/s00362-012-0463-0
– volume: 11
  start-page: 213
  year: 2022
  ident: e_1_3_3_22_1
  article-title: Dependence stress–strength reliability estimation of bivariate xgamma exponential distribution under copula approach
  publication-title: Palestine Journal of Mathematics
– ident: e_1_3_3_38_1
  doi: 10.1016/0047-259X(87)90085-6
– ident: e_1_3_3_6_1
  doi: 10.7712/120217.5399.16870
– ident: e_1_3_3_32_1
  doi: 10.1155/MPE.2005.151
– ident: e_1_3_3_30_1
  doi: 10.1080/03610926.2015.1014110
– volume: 11
  start-page: 189
  year: 1991
  ident: e_1_3_3_37_1
  article-title: On bivariate vitality functions
  publication-title: Proceeding of National Symposium on Distribution Theory
– ident: e_1_3_3_14_1
  doi: 10.1007/s10260-012-0192-5
– ident: e_1_3_3_2_1
  doi: 10.18576/jsapl/070304
– ident: e_1_3_3_16_1
  doi: 10.1080/10485250701262242
– ident: e_1_3_3_36_1
  doi: 10.1214/13-BA802
– ident: e_1_3_3_27_1
  doi: 10.1080/03610927708827509
– ident: e_1_3_3_21_1
  doi: 10.1007/s001840050030
– ident: e_1_3_3_8_1
  doi: 10.1080/03610918.2016.1169292
– ident: e_1_3_3_28_1
  doi: 10.1142/9789812564511_0001
– ident: e_1_3_3_3_1
  doi: 10.1007/s40745-019-00197-5
– ident: e_1_3_3_20_1
  doi: 10.2307/2336577
– ident: e_1_3_3_34_1
  doi: 10.1080/00949655.2017.1376328
– ident: e_1_3_3_35_1
  doi: 10.33889/IJMEMS.2020.5.1.001
– ident: e_1_3_3_17_1
  doi: 10.2307/2333302
– ident: e_1_3_3_18_1
  doi: 10.1080/01621459.1960.10483368
– ident: e_1_3_3_23_1
  doi: 10.13052/jrss0974-8024.15114
– ident: e_1_3_3_12_1
  doi: 10.1177/0008068317696574
– ident: e_1_3_3_33_1
  doi: 10.1016/j.aej.2021.07.025
– ident: e_1_3_3_7_1
  doi: 10.1080/01621459.1971.10482228
– ident: e_1_3_3_24_1
  doi: 10.1007/s13198-022-01836-6
– ident: e_1_3_3_13_1
  doi: 10.1142/S021853932050014X
– ident: e_1_3_3_25_1
  doi: 10.1080/03610927708827509
– ident: e_1_3_3_29_1
  doi: 10.12988/ams.2017.7398
– volume: 13
  start-page: 37
  issue: 1
  year: 2012
  ident: e_1_3_3_11_1
  article-title: Bayesian reliability estimation of bivariate Marshal–Olkin exponential stress–strength model
  publication-title: International Journal of Reliability and Applications
– volume: 6
  start-page: 3527
  issue: 71
  year: 2012
  ident: e_1_3_3_9_1
  article-title: The new generalization of Farlie–Gumbel–Morgenstern copulas
  publication-title: Applied Mathematical Sciences
– ident: e_1_3_3_26_1
  doi: 10.1016/0047-259X(75)90055-X
– volume: 1
  start-page: 13
  year: 1956
  ident: e_1_3_3_10_1
  article-title: On a use of mann-whitney statistics
  publication-title: Proceeding Third Berkley Symposium on Mathematical Statistics and Probability
– ident: e_1_3_3_19_1
  doi: 10.1002/asmb.935
– volume: 8
  start-page: 234
  year: 1956
  ident: e_1_3_3_31_1
  article-title: Einfache Beispiele zweidimensionaler Verteilungen
  publication-title: Mitteilingsblatt fur Mathematische Statistik
SSID ssj0001850631
Score 2.2906716
Snippet In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 315
SubjectTerms dependence stress–strength
Iterated FGM
Monte-Carlo simulation
Rayleigh distribution
reliability
Title Bivariate iterated Farlie–Gumbel–Morgenstern stress–strength reliability model for Rayleigh margins: Properties and estimation
URI https://doaj.org/article/6a47d336df5249ac8d8c8a5b2b8a226c
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxfEU5RH5YE1bRI7rsNGEaVCaoVQkbpF50egUgmoCkhsDPwD_iG_BF-cVt26sFmnOLJ8Tu678913hFyEBlMtehCAUBDwWOsAUgmBDYVOew4yq4pLbzQWw0d-N02ma62-MCfM0wP7jesK4D3DmDB54jwF0NJILSFRsZLgoIPGv6-zeWvOVBVdQSK2qhlhzHtJgPWay_IdGXZRhiLnHsa8gwx4KabUrRmmNf7-ytAMdslOjRDplV_ZHtmyxT5pIij0nMoH5Ls_-3AurkOJ1JMiW0MxbXVmf79-brHFx9wNRhjsLioeBOorQpwQB8VT-UwXdj7zFN2ftOqGQx16pQ_Of8dYKX2BBUaiL-k9BusXyLpKoTAUOTl8seMhmQxuJtfDoO6mEGgmRBnkcWrCPFVMgZR5ysEanqsoT0ALbjizJrbG5u6D5kJGXDmrFSXGGC4jENKwI9IoXgt7TCgHh-qAMWsVcGAAOgG8fQWIlZChaBG-3MlM10zj2PBinkU1IelSARkqIKsV0CKd1bQ3T7WxaUIf1bR6GJmyK4Hb36w-P9mm83PyHy85JU1cmE_yOyONcvFuzx1YKVWbbLNw3K5O5x9t6-ne
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bivariate+iterated+Farlie%E2%80%93Gumbel%E2%80%93Morgenstern+stress%E2%80%93strength+reliability+model+for+Rayleigh+margins%3A+Properties+and+estimation&rft.jtitle=Statistical+theory+and+related+fields&rft.au=Chandra%2C+N.&rft.au=James%2C+A.&rft.au=Domma%2C+Filippo&rft.au=Rehman%2C+Habbiburr&rft.date=2024-10-01&rft.issn=2475-4269&rft.eissn=2475-4277&rft.volume=8&rft.issue=4&rft.spage=315&rft.epage=334&rft_id=info:doi/10.1080%2F24754269.2024.2398987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24754269_2024_2398987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4269&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4269&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4269&client=summon