Bivariate iterated Farlie–Gumbel–Morgenstern stress–strength reliability model for Rayleigh margins: Properties and estimation
In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength r...
Saved in:
Published in | Statistical theory and related fields Vol. 8; no. 4; pp. 315 - 334 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength reliability function is derived with its important reliability characteristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of dependence parameters on the reliability function. We found that the upper bound of the positive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. A comprehensive comparison between classical FGM with iterated FGM copulas is graphically examined to assess the over or under estimation of reliability with respect to α and β. We propose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo simulation study is conducted to assess the finite sample behaviour of the proposed reliability estimators. Finally, the proposed estimators are examined and validated with real data sets. |
---|---|
AbstractList | In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 71(3), 633–636. https://doi.org/10.2307/2336577] with Rayleigh marginals. The dependence stress–strength reliability function is derived with its important reliability characteristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of dependence parameters on the reliability function. We found that the upper bound of the positive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. A comprehensive comparison between classical FGM with iterated FGM copulas is graphically examined to assess the over or under estimation of reliability with respect to α and β. We propose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo simulation study is conducted to assess the finite sample behaviour of the proposed reliability estimators. Finally, the proposed estimators are examined and validated with real data sets. |
Author | Domma, Filippo Rehman, Habbiburr Chandra, N. James, A. |
Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0002-1213-7739 surname: Chandra fullname: Chandra, N. organization: Department of Statistics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry, India – sequence: 2 givenname: A. surname: James fullname: James, A. organization: Department of Statistics and Data Science, CHRIST University, Bengaluru, India – sequence: 3 givenname: Filippo orcidid: 0000-0002-1489-1065 surname: Domma fullname: Domma, Filippo organization: Department of Economics, Statistics and Finance ‘Giovanni Anania’, University of Calabria, Arcavacata of Rende (CS), Italy – sequence: 4 givenname: Habbiburr orcidid: 0000-0003-1762-3573 surname: Rehman fullname: Rehman, Habbiburr organization: Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA |
BookMark | eNp9UctOHDEQtNBGghA-Ack_sBvb4_F4yClZhYdElCjibvWM24uRd7yynUh748Af8Id8CV5YOOSQU5dKXdXVqo9kNsUJCTnlbMGZZp-F7FopVL8QTMiFaHrd6-6AHO34uRRdN3vHqj8kJznfMca4bplq-BF5-Ob_QvJQkPqCqU5LzyEFj0_3jxd_1gOGCn7EtMIp14WJ5pIw50ruwLQqtzRh8DD44MuWrqPFQF1M9DdsA_rVLV1DWvkpn9FfKW4wFY-ZwmQp5uLXUHycPpEPDkLGk_08Jjfn32-Wl_PrnxdXy6_X87FRqsyd6C1z_dAMoLXrJaCVbuCuhVFJKxu0Ai06qbVUmstBdpy31lqpOShtm2Ny9WprI9yZTarX09ZE8OaFqD8aqPHGgEaB7GzTKOtaIXsYtdWjhnYQgwYh1Fi9vrx6jSnmnNCZ0ZeXZ0oCHwxnZlePeavH7Oox-3qquv1H_Zbm_7pnGC-cCg |
CitedBy_id | crossref_primary_10_3390_axioms14030219 crossref_primary_10_3934_math_20241635 |
Cites_doi | 10.1007/s001840100158 10.1016/j.cam.2020.113316 10.1007/s00362-012-0463-0 10.1016/0047-259X(87)90085-6 10.7712/120217.5399.16870 10.1155/MPE.2005.151 10.1080/03610926.2015.1014110 10.1007/s10260-012-0192-5 10.18576/jsapl/070304 10.1080/10485250701262242 10.1214/13-BA802 10.1080/03610927708827509 10.1007/s001840050030 10.1080/03610918.2016.1169292 10.1142/9789812564511_0001 10.1007/s40745-019-00197-5 10.2307/2336577 10.1080/00949655.2017.1376328 10.33889/IJMEMS.2020.5.1.001 10.2307/2333302 10.1080/01621459.1960.10483368 10.13052/jrss0974-8024.15114 10.1177/0008068317696574 10.1016/j.aej.2021.07.025 10.1080/01621459.1971.10482228 10.1007/s13198-022-01836-6 10.1142/S021853932050014X 10.12988/ams.2017.7398 10.1016/0047-259X(75)90055-X 10.1002/asmb.935 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/24754269.2024.2398987 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2475-4277 |
EndPage | 334 |
ExternalDocumentID | oai_doaj_org_article_6a47d336df5249ac8d8c8a5b2b8a226c 10_1080_24754269_2024_2398987 |
GroupedDBID | 0YH 30N AAYXX ACGFS ADFNY ADWHR AECIN AEEWU AEISY AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU APAHL BLEHA CCCUG CITATION DHTFA EBS EJD GROUPED_DOAJ H13 KYCEM LJTGL M4Z SOJIQ TDBHL TFL TFW TTHFI UK4 |
ID | FETCH-LOGICAL-c366t-f29d0f9b3ba88f94aed4fb1f5ac64d43ed2edef48846814b47115ddd481a68d3 |
IEDL.DBID | DOA |
ISSN | 2475-4269 |
IngestDate | Wed Aug 27 01:26:40 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 03:12:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-f29d0f9b3ba88f94aed4fb1f5ac64d43ed2edef48846814b47115ddd481a68d3 |
ORCID | 0000-0003-1762-3573 0000-0002-1489-1065 0000-0002-1213-7739 |
OpenAccessLink | https://doaj.org/article/6a47d336df5249ac8d8c8a5b2b8a226c |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a47d336df5249ac8d8c8a5b2b8a226c crossref_citationtrail_10_1080_24754269_2024_2398987 crossref_primary_10_1080_24754269_2024_2398987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Statistical theory and related fields |
PublicationYear | 2024 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_3_30_1 Chandra N. (e_1_3_3_11_1) 2012; 13 Sankaran P. G. (e_1_3_3_37_1) 1991; 11 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 Morgenstern D. (e_1_3_3_31_1) 1956; 8 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_32_1 Bekrizadeh H. (e_1_3_3_9_1) 2012; 6 James A. (e_1_3_3_22_1) 2022; 11 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 Birnbaum Z. W. (e_1_3_3_10_1) 1956; 1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 |
References_xml | – ident: e_1_3_3_5_1 doi: 10.1007/s001840100158 – ident: e_1_3_3_4_1 doi: 10.1016/j.cam.2020.113316 – ident: e_1_3_3_15_1 doi: 10.1007/s00362-012-0463-0 – volume: 11 start-page: 213 year: 2022 ident: e_1_3_3_22_1 article-title: Dependence stress–strength reliability estimation of bivariate xgamma exponential distribution under copula approach publication-title: Palestine Journal of Mathematics – ident: e_1_3_3_38_1 doi: 10.1016/0047-259X(87)90085-6 – ident: e_1_3_3_6_1 doi: 10.7712/120217.5399.16870 – ident: e_1_3_3_32_1 doi: 10.1155/MPE.2005.151 – ident: e_1_3_3_30_1 doi: 10.1080/03610926.2015.1014110 – volume: 11 start-page: 189 year: 1991 ident: e_1_3_3_37_1 article-title: On bivariate vitality functions publication-title: Proceeding of National Symposium on Distribution Theory – ident: e_1_3_3_14_1 doi: 10.1007/s10260-012-0192-5 – ident: e_1_3_3_2_1 doi: 10.18576/jsapl/070304 – ident: e_1_3_3_16_1 doi: 10.1080/10485250701262242 – ident: e_1_3_3_36_1 doi: 10.1214/13-BA802 – ident: e_1_3_3_27_1 doi: 10.1080/03610927708827509 – ident: e_1_3_3_21_1 doi: 10.1007/s001840050030 – ident: e_1_3_3_8_1 doi: 10.1080/03610918.2016.1169292 – ident: e_1_3_3_28_1 doi: 10.1142/9789812564511_0001 – ident: e_1_3_3_3_1 doi: 10.1007/s40745-019-00197-5 – ident: e_1_3_3_20_1 doi: 10.2307/2336577 – ident: e_1_3_3_34_1 doi: 10.1080/00949655.2017.1376328 – ident: e_1_3_3_35_1 doi: 10.33889/IJMEMS.2020.5.1.001 – ident: e_1_3_3_17_1 doi: 10.2307/2333302 – ident: e_1_3_3_18_1 doi: 10.1080/01621459.1960.10483368 – ident: e_1_3_3_23_1 doi: 10.13052/jrss0974-8024.15114 – ident: e_1_3_3_12_1 doi: 10.1177/0008068317696574 – ident: e_1_3_3_33_1 doi: 10.1016/j.aej.2021.07.025 – ident: e_1_3_3_7_1 doi: 10.1080/01621459.1971.10482228 – ident: e_1_3_3_24_1 doi: 10.1007/s13198-022-01836-6 – ident: e_1_3_3_13_1 doi: 10.1142/S021853932050014X – ident: e_1_3_3_25_1 doi: 10.1080/03610927708827509 – ident: e_1_3_3_29_1 doi: 10.12988/ams.2017.7398 – volume: 13 start-page: 37 issue: 1 year: 2012 ident: e_1_3_3_11_1 article-title: Bayesian reliability estimation of bivariate Marshal–Olkin exponential stress–strength model publication-title: International Journal of Reliability and Applications – volume: 6 start-page: 3527 issue: 71 year: 2012 ident: e_1_3_3_9_1 article-title: The new generalization of Farlie–Gumbel–Morgenstern copulas publication-title: Applied Mathematical Sciences – ident: e_1_3_3_26_1 doi: 10.1016/0047-259X(75)90055-X – volume: 1 start-page: 13 year: 1956 ident: e_1_3_3_10_1 article-title: On a use of mann-whitney statistics publication-title: Proceeding Third Berkley Symposium on Mathematical Statistics and Probability – ident: e_1_3_3_19_1 doi: 10.1002/asmb.935 – volume: 8 start-page: 234 year: 1956 ident: e_1_3_3_31_1 article-title: Einfache Beispiele zweidimensionaler Verteilungen publication-title: Mitteilingsblatt fur Mathematische Statistik |
SSID | ssj0001850631 |
Score | 2.2906716 |
Snippet | In this paper, we propose bivariate iterated Farlie–Gumbel–Morgenstern (FGM) due to [Huang and Kotz (1984). Correlation structure in iterated... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 315 |
SubjectTerms | dependence stress–strength Iterated FGM Monte-Carlo simulation Rayleigh distribution reliability |
Title | Bivariate iterated Farlie–Gumbel–Morgenstern stress–strength reliability model for Rayleigh margins: Properties and estimation |
URI | https://doaj.org/article/6a47d336df5249ac8d8c8a5b2b8a226c |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxfEU5RH5YE1bRI7rsNGEaVCaoVQkbpF50egUgmoCkhsDPwD_iG_BF-cVt26sFmnOLJ8Tu678913hFyEBlMtehCAUBDwWOsAUgmBDYVOew4yq4pLbzQWw0d-N02ma62-MCfM0wP7jesK4D3DmDB54jwF0NJILSFRsZLgoIPGv6-zeWvOVBVdQSK2qhlhzHtJgPWay_IdGXZRhiLnHsa8gwx4KabUrRmmNf7-ytAMdslOjRDplV_ZHtmyxT5pIij0nMoH5Ls_-3AurkOJ1JMiW0MxbXVmf79-brHFx9wNRhjsLioeBOorQpwQB8VT-UwXdj7zFN2ftOqGQx16pQ_Of8dYKX2BBUaiL-k9BusXyLpKoTAUOTl8seMhmQxuJtfDoO6mEGgmRBnkcWrCPFVMgZR5ysEanqsoT0ALbjizJrbG5u6D5kJGXDmrFSXGGC4jENKwI9IoXgt7TCgHh-qAMWsVcGAAOgG8fQWIlZChaBG-3MlM10zj2PBinkU1IelSARkqIKsV0CKd1bQ3T7WxaUIf1bR6GJmyK4Hb36w-P9mm83PyHy85JU1cmE_yOyONcvFuzx1YKVWbbLNw3K5O5x9t6-ne |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bivariate+iterated+Farlie%E2%80%93Gumbel%E2%80%93Morgenstern+stress%E2%80%93strength+reliability+model+for+Rayleigh+margins%3A+Properties+and+estimation&rft.jtitle=Statistical+theory+and+related+fields&rft.au=Chandra%2C+N.&rft.au=James%2C+A.&rft.au=Domma%2C+Filippo&rft.au=Rehman%2C+Habbiburr&rft.date=2024-10-01&rft.issn=2475-4269&rft.eissn=2475-4277&rft.volume=8&rft.issue=4&rft.spage=315&rft.epage=334&rft_id=info:doi/10.1080%2F24754269.2024.2398987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24754269_2024_2398987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4269&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4269&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4269&client=summon |