In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries

[Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 608; no. Pt 2; pp. 2100 - 2110
Main Authors Sun, Rui-Min, Zhang, Lu, Feng, Jiu-Ju, Fang, Ke-Ming, Wang, Ai-Jun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm−2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm−2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.
AbstractList Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm-2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm-2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm-2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm-2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.
Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co₉S₈ nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co₉S₈@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co₉S₈ nanoclusters. The Co₉S₈@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm⁻² for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm⁻² towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO₂ catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co₉S₈@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.
[Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm−2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm−2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.
Author Fang, Ke-Ming
Feng, Jiu-Ju
Sun, Rui-Min
Zhang, Lu
Wang, Ai-Jun
Author_xml – sequence: 1
  givenname: Rui-Min
  surname: Sun
  fullname: Sun, Rui-Min
– sequence: 2
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
– sequence: 3
  givenname: Jiu-Ju
  surname: Feng
  fullname: Feng, Jiu-Ju
  email: jjfeng@zjnu.cn
– sequence: 4
  givenname: Ke-Ming
  surname: Fang
  fullname: Fang, Ke-Ming
– sequence: 5
  givenname: Ai-Jun
  surname: Wang
  fullname: Wang, Ai-Jun
  email: ajwang@zjnu.cn
BookMark eNqFkc1u1DAUhSNUJKaFF2B1lyzIjJ3Y-ZHYoKFApQKLlg2b6Ma5bj147MF2KubxeDMchhWLsvLVPd-xrXPOizPnHRXFS87WnPFms1vvlInrilV8veyEeFKsOOtl2XJWnxUrlpWyb_v2WXEe444xzqXsV8WvKwfRpBkOwU-zogm2vr_pwKHzys4xUYibrd98cuXNa_gM-9kmU07-kMn6HRx88HMEhWH0DiYK5iELOvg95Nmr-zwRjBbVd7gFjIAOSGtSKYMwGj27PHqHFvzP4x1l1WYxeIUJ7TEm0D5AIHWP4Y5wtATfXIkmwIgp_81QfF481Wgjvfh7XhRf31_ebj-W118-XG3fXpeqbppU6krIHlWrhGZSsV5wyaRAzhs-1UJ3yAnbpkGhJ8RRYjNyofmoq4xSrWR9Ubw63ZuT-jFTTMPeREXWoqOcwVA1-Z26Fh3_Pyr7VnR9K9uMVidUBR9jID0cgtljOA6cDUu1w25Yqh2Wav_shMim7h-TMgmXHFNAYx-3vjlZKUf1YCgMURlyuXiTU07D5M1j9t-hLMSc
CitedBy_id crossref_primary_10_1016_j_compositesb_2022_109876
crossref_primary_10_1016_j_ijhydene_2022_03_142
crossref_primary_10_1016_j_jcis_2022_01_023
crossref_primary_10_1016_j_apcatb_2022_121329
crossref_primary_10_1021_acs_energyfuels_2c01191
crossref_primary_10_1016_j_ccr_2022_214854
crossref_primary_10_1021_acsanm_3c04820
crossref_primary_10_1016_j_jpowsour_2022_231270
crossref_primary_10_1088_1361_6528_ac8487
crossref_primary_10_1016_j_electacta_2022_139935
crossref_primary_10_1021_acsanm_3c02636
crossref_primary_10_1021_acs_analchem_1c05578
crossref_primary_10_1016_j_snb_2022_132179
crossref_primary_10_1021_acsaem_3c02691
crossref_primary_10_1016_j_jtice_2022_104397
crossref_primary_10_1016_j_apcata_2022_118847
crossref_primary_10_1002_celc_202300272
crossref_primary_10_1016_j_cplett_2023_140752
crossref_primary_10_1016_j_ijbiomac_2024_136285
crossref_primary_10_1016_j_jcis_2023_02_061
crossref_primary_10_1007_s10853_022_07784_7
crossref_primary_10_1016_j_mtener_2022_101150
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1016_j_snb_2022_131518
crossref_primary_10_1016_j_jtice_2022_104280
crossref_primary_10_1016_j_jcis_2022_07_061
crossref_primary_10_1016_j_arabjc_2022_103736
crossref_primary_10_1021_acs_inorgchem_2c04092
crossref_primary_10_1016_j_jallcom_2022_165757
crossref_primary_10_1016_j_jechem_2023_01_054
crossref_primary_10_1016_j_jcis_2022_01_125
crossref_primary_10_1016_j_apsusc_2022_153022
crossref_primary_10_1149_1945_7111_ad5380
crossref_primary_10_1016_j_bios_2022_114048
crossref_primary_10_1016_j_jallcom_2023_169754
crossref_primary_10_1002_smll_202107141
crossref_primary_10_1039_D4NJ03221G
crossref_primary_10_1021_acsanm_2c01317
crossref_primary_10_1016_j_apcatb_2022_121430
crossref_primary_10_1016_j_cej_2022_137665
crossref_primary_10_1016_j_jelechem_2023_117652
crossref_primary_10_1016_j_bioelechem_2022_108080
crossref_primary_10_1016_j_colsurfa_2022_129181
crossref_primary_10_1016_j_jmrt_2022_04_048
crossref_primary_10_1016_j_apcatb_2022_121553
crossref_primary_10_1016_j_mtener_2024_101601
crossref_primary_10_1007_s00604_022_05179_8
crossref_primary_10_1016_j_jcis_2023_05_111
crossref_primary_10_1021_acs_iecr_2c01783
crossref_primary_10_1016_j_jcis_2021_12_066
crossref_primary_10_3390_molecules29010003
crossref_primary_10_1016_j_solidstatesciences_2022_106840
crossref_primary_10_1016_j_jcis_2022_06_094
crossref_primary_10_1016_j_jcis_2022_06_130
crossref_primary_10_3390_catal14030205
crossref_primary_10_1016_j_apsusc_2024_161613
crossref_primary_10_1016_j_apcatb_2022_121265
crossref_primary_10_1002_batt_202200160
crossref_primary_10_1016_j_snb_2024_137075
crossref_primary_10_1016_j_cis_2023_102891
crossref_primary_10_1016_j_jcis_2023_07_101
crossref_primary_10_1016_j_apsusc_2022_153642
crossref_primary_10_1016_j_isci_2024_109620
crossref_primary_10_1016_j_jcis_2022_06_048
crossref_primary_10_1002_slct_202301645
crossref_primary_10_1016_j_colcom_2022_100634
crossref_primary_10_1016_j_cej_2022_136078
crossref_primary_10_1016_j_est_2024_111303
crossref_primary_10_1039_D4DT01625D
crossref_primary_10_1016_j_jcis_2022_04_043
crossref_primary_10_1016_j_jcis_2022_02_033
crossref_primary_10_1016_j_jcis_2025_01_222
crossref_primary_10_1039_D3EY00160A
crossref_primary_10_1016_j_electacta_2023_142518
crossref_primary_10_1016_j_cej_2022_135700
crossref_primary_10_1016_j_cej_2022_134617
crossref_primary_10_1021_acs_analchem_3c01070
crossref_primary_10_1016_j_apcatb_2022_121656
crossref_primary_10_2139_ssrn_4001447
crossref_primary_10_1021_acs_analchem_1c04608
crossref_primary_10_1007_s00604_022_05262_0
crossref_primary_10_1016_j_ijhydene_2023_10_094
crossref_primary_10_1016_j_colsurfa_2023_132112
crossref_primary_10_1039_D3QM00323J
crossref_primary_10_1016_j_matchemphys_2022_126413
crossref_primary_10_1021_acs_energyfuels_4c00776
crossref_primary_10_1039_D2DT01650H
crossref_primary_10_1021_acs_jpcc_2c03819
crossref_primary_10_1016_j_jcis_2023_01_074
crossref_primary_10_1007_s00604_022_05164_1
crossref_primary_10_1016_j_jcis_2023_01_077
crossref_primary_10_1016_j_jcis_2024_04_156
crossref_primary_10_1016_j_jcis_2022_03_083
crossref_primary_10_1016_j_ijhydene_2022_11_161
crossref_primary_10_3390_nano12213834
crossref_primary_10_1016_j_ijhydene_2023_08_269
crossref_primary_10_1016_j_coelec_2023_101229
crossref_primary_10_1016_j_seppur_2022_121291
crossref_primary_10_1016_j_cej_2022_135281
crossref_primary_10_1021_acsanm_4c06196
crossref_primary_10_1016_j_colsurfa_2022_129818
crossref_primary_10_1016_j_jcis_2023_10_083
crossref_primary_10_1016_j_jcis_2025_03_011
crossref_primary_10_1016_j_apsusc_2022_154304
crossref_primary_10_1016_j_jcis_2023_07_151
crossref_primary_10_1016_j_jpowsour_2021_230926
crossref_primary_10_1002_cssc_202200312
crossref_primary_10_1016_j_matchemphys_2022_126356
crossref_primary_10_1016_j_jelechem_2022_116909
crossref_primary_10_1016_j_jcis_2022_03_149
crossref_primary_10_1016_j_cej_2022_136266
crossref_primary_10_1016_j_hybadv_2025_100411
crossref_primary_10_1016_j_ijhydene_2022_03_190
crossref_primary_10_1016_j_est_2024_111298
crossref_primary_10_1016_j_cej_2022_135456
crossref_primary_10_1016_j_jcis_2022_02_102
crossref_primary_10_1016_j_cej_2022_136784
crossref_primary_10_1016_j_ijhydene_2022_06_131
crossref_primary_10_1016_j_jcis_2022_02_066
crossref_primary_10_1016_j_jcis_2021_11_101
crossref_primary_10_1016_j_apcatb_2022_121501
crossref_primary_10_1039_D2NJ01022D
Cites_doi 10.1016/j.jcis.2019.05.099
10.1039/C7RA04127F
10.1016/j.jechem.2020.08.066
10.1016/j.electacta.2016.01.160
10.1021/acsami.0c08267
10.1039/D0TA05510G
10.1002/smll.201906735
10.1002/adfm.201704638
10.1016/j.jcis.2021.08.144
10.1002/smll.202001089
10.1039/C8NR05812A
10.1039/C8CC06638H
10.1016/j.nanoen.2016.04.024
10.1016/j.jcis.2019.08.064
10.1002/adfm.202003933
10.1016/j.apsusc.2020.147860
10.1039/D0TA06987F
10.1021/acsanm.0c02431
10.1016/j.jhazmat.2020.123810
10.1016/j.nanoen.2019.03.084
10.1016/j.jpowsour.2020.229107
10.1002/admi.201701322
10.1016/j.jcis.2021.01.053
10.1016/j.electacta.2019.135078
10.1016/j.jcis.2018.12.066
10.1021/acssuschemeng.9b02884
10.1002/adma.201808043
10.1039/C9TA09598E
10.1002/adma.201800005
10.1021/acsami.0c19124
10.1039/C4TA04337E
10.1021/acs.inorgchem.9b02524
10.1021/acsaem.9b02309
10.1039/C7RA01798G
10.1016/j.jcis.2021.07.082
10.1039/C9CY01717H
10.1016/j.electacta.2017.06.058
10.1002/adma.201804653
10.1016/j.cej.2020.127345
10.1016/j.jhazmat.2021.125448
10.1039/D0QI01155J
10.1039/C9CC02615K
10.1002/anie.201708765
10.1039/C6EE00054A
10.1039/D0TA02741C
10.1021/acscatal.5b01637
10.1039/D0TA06306A
10.1021/acsami.8b07207
10.1016/j.jechem.2020.08.007
10.1039/C8TA11400E
10.1002/adfm.201805641
10.1016/j.electacta.2021.138299
10.1002/smll.202070053
10.1039/an9840900703
10.1039/C9CC01705D
10.1016/S0003-2670(00)88169-6
10.1002/adma.202003313
10.1039/C9QM00385A
10.1016/j.electacta.2020.137642
10.1016/j.jechem.2020.07.048
10.1016/j.cej.2018.03.048
10.1021/acssuschemeng.9b03794
10.1039/C9TA04972J
10.1039/D0TA08114K
10.1016/j.jcis.2021.07.101
10.1016/j.apsusc.2020.147950
10.1016/j.jechem.2017.10.015
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.10.144
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 2110
ExternalDocumentID 10_1016_j_jcis_2021_10_144
S0021979721018233
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-f2459ac7c4f05c09415054a1161d34f8a1ea766a4fdaab5a6b14f1bf2094e3c53
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 11:35:06 EDT 2025
Fri Jul 11 08:31:01 EDT 2025
Tue Jul 01 01:19:13 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Fri Feb 23 02:43:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Eriochrome black T
Pyrolysis
Oxygen reduction reaction
Zn-air battery
Oxygen evolution reaction
Cobalt sulfide
Doped porous carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-f2459ac7c4f05c09415054a1161d34f8a1ea766a4fdaab5a6b14f1bf2094e3c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2597489757
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2636633481
proquest_miscellaneous_2597489757
crossref_primary_10_1016_j_jcis_2021_10_144
crossref_citationtrail_10_1016_j_jcis_2021_10_144
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_10_144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Wang, Xue, Liu, Tang, Bai, Dou (b0240) 2018; 343
Xia, Zhang, Zhu, Xing, Xue, Huang, Sun, Li, Wang (b0010) 2020; 8
Deng, Shen, Zhong, Zhang, Wu, Wang, Xia, Tu (b0285) 2017; 26
Bai, Qu, Wang, Chen, Yang (b0165) 2020; 12
Wen, Niu, Wang, Yin, Zhang, Feng (b0180) 2019; 556
Du, Ma, Lyu, He, Li, Lu, Li (b0020) 2019; 55
Duan, Pan, Sun, Zhang, Zhu, Zhang, Song, Zheng (b0245) 2021; 56
Dong, Wu, Wang, Fu, Tang (b0045) 2019; 7
Xie, Li, Chen, Fan, Li, Min, Xu (b0125) 2021; 13
Niu, Chen, Sun, Wang, Mei, Zhang, Feng (b0290) 2020; 480
Li, Cao, Li, Tang, Chu, Huang, Yuan, Chen (b0220) 2020; 16
Jasion, Barforoush, Qiao, Zhu, Ren, Leonard (b0050) 2015; 5
Yan, Xu, Chen, Zhang, Jiang, Yang, Wang, Zhang, Shen, Zhao, Wang (b0205) 2020; 32
Yang, Zhao, Qu, Zhou, Zhou, Wang, Wu, Li (b0005) 2019; 31
Jones, Hobbs, Ebdon (b0130) 1984; 109
Niu, Lin, Chen, Feng, Zhang, Wang (b0175) 2021; 536
R. Liu, H. Zhang, X. Zhang, T. Wu, H. Zhao, G. Wang, Co
Li, Cao, Li, Tang, Chu, Huang, Yuan, Chen (b0080) 2020; 16
Chakrabartty, Karmakar, Raj (b0170) 2020; 3
Zhu, Khan, Wang, Bano, Xia (b0135) 2021; 403
Zong, Chen, Liu, Fan, Dou, Xu, Zhao, Zhang, Zhang, Wu, Lu, Cui, Jia, Zhang, Yang, Zhao, Li, Deng, Chen, Wang (b0145) 2021; 56
Niu, Chen, Wen, Feng, Zhang, Wang (b0015) 2019; 539
Han, Feng, Yao, Wang, Zhang, Wang (b0100) 2021; 590
Meng, Zhan, Jiang, Zhu, Li (b0255) 2019; 9
Wang, Liu, Liu, Wang, Luo, Han, Du, Qiao, Yang (b0265) 2018; 30
Chen, Zhang, Liu, Long, Wang, Yang, Jia (b0310) 2019; 55
Xu, Shang, Di, Du (b0095) 2019; 58
Wang, Wang, Wu, Huang, Yuan, Zhang (b0250) 2021; 537
Calderón, Vizintin, Bobnar, Barraco, Leiva, Visintin, Fantini, Fischer, Dominko (b0075) 2020; 3
Amiinu, Liu, Pu, Li, Li, Zhang, Tang, Zhang, Mu (b0210) 2018; 28
Wang, Kuai, Cao, Huttula, Ollikkala, Ahopelto, Honkanen, Huotari, Yu, Geng (b0300) 2017; 56
Wang, Guo, Zhu, Pan, Wang, Zhang, Qiu (b0110) 2018; 54
Ashok, Kumar, Ponraj, Mansour (b0150) 2021; 368
Niu, Teng, Wang, Liu, Guo, Song, Chen (b0030) 2019; 7
Chen, Zhao, Ma, Wang, Dai, Zhang (b0215) 2019; 60
Wei, Qiu, Liu, Zhang, Yuan, Wang (b0295) 2019; 7
Al-Shahat Eissa, Kim, Lee (b0160) 2020; 8
Luo, Li, Luo, Guo, Sun, Lan, Luo, Huang, Qin, Luo (b0305) 2020; 8
@N,P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media, RSC Adv., 7 (2017) 19181-19188.
Fu, Liu, Chen, Tang, Goodenough, Lee (b0335) 2018; 10
Zhang, Chao, Wang, Han, Bai, Yang (b0270) 2017; 246
Chen, Lin, Sun, Wang, Zhang, Ma, Feng (b0185) 2022; 605
Chen, Zhang, Feng, Mei, Jiao, Zhang, Wang (b0325) 2022; 606
Wang, Yuan, Wang, Zhang, Sun, Xi, Wang, Chu, Wang, Li (b0225) 2019; 7
Abd El Raheem, Amin (b0120) 1958; 19
S
Liu, Luo, Gao, Hu, Yu, Chen (b0275) 2020; 16
Qin, Wang, Fu, Lai, Liu, Li, Liu, Yi, Li, Zhang, Li, Cao, Niu (b0200) 2021; 414
Liu, Liu, Xie, Sun, Liang, Wang, Fu (b0115) 2020; 8
Mao, He, Yang, Liu, Zhou, Xu, Yang (b0190) 2019; 328
Wu, Wang, Song, Zhao, Zhu, Fu, Liu (b0105) 2018; 10
Ma, Hu, Chen, Zhu, Chen, Lv, Wang, Liang, Liu, Yan, Zhu, Tie, Jin, Liu (b0065) 2016; 24
Guo, Feng, Zhu, Xu, Li, Liu, Xu, Zhang, Liu (b0230) 2019; 7
Chen, Duan, Feng, Mei, Jiao, Zhang, Wang (b0320) 2022; 605
Li, Cui, Da, Qiu, Qin, Hu, Du, Davey, Ling, Qiao (b0040) 2018; 30
Xu, Han, Zhu, Zeng, Jiang, Chen (b0140) 2018; 5
Wang, Gao, Wang, Miao, Wu, Li, Bao (b0025) 2014; 2
Zhang, Wang, Wang, Huang, Meng, Ouyang, Yuan, Guo, Li (b0155) 2020; 30
Zhang, Hu, Ji, Wang, Yu, Liu, Zhu, Xu (b0280) 2021; 8
Yang, Gao, Dai, Guo, Liu, Peng (b0055) 2016; 191
Liu, Zhang, Yan, Geng, Zhu, Chen (b0035) 2020; 8
Dou, Tao, Huo, Wang, Dai (b0085) 2016; 9
Zhu, Wu, Dai, Zhao, Yang, Li, Li, Chen (b0090) 2021; 384
Niu, Wang, Zhang, Guo, Feng (b0235) 2019; 3
Liu, Rao, Bao, Xu, Lei, Li (b0070) 2021; 57
Guo, Yuan, Zhang, Xia, Cheng, Zhou, Li, Qiao, Mu, Xu (b0330) 2018; 28
Shang, Wang, Zhang, Gao, Zhang, Meng, Wang, Wang, Du, Shen, Huang, Qiao, Wu, Gao (b0260) 2021; 426
Niu, Zhang, Feng, Zhang, Huang, Wang (b0315) 2019; 552
Wang, Liu, Guo, Li, Qi, Rooney, Sun (b0195) 2017; 7
Wei (10.1016/j.jcis.2021.10.144_b0295) 2019; 7
Xu (10.1016/j.jcis.2021.10.144_b0095) 2019; 58
Niu (10.1016/j.jcis.2021.10.144_b0175) 2021; 536
Ma (10.1016/j.jcis.2021.10.144_b0065) 2016; 24
Xie (10.1016/j.jcis.2021.10.144_b0125) 2021; 13
Chen (10.1016/j.jcis.2021.10.144_b0325) 2022; 606
Chen (10.1016/j.jcis.2021.10.144_b0185) 2022; 605
Wang (10.1016/j.jcis.2021.10.144_b0300) 2017; 56
Zhang (10.1016/j.jcis.2021.10.144_b0280) 2021; 8
Luo (10.1016/j.jcis.2021.10.144_b0305) 2020; 8
Zhang (10.1016/j.jcis.2021.10.144_b0240) 2018; 343
Al-Shahat Eissa (10.1016/j.jcis.2021.10.144_b0160) 2020; 8
Duan (10.1016/j.jcis.2021.10.144_b0245) 2021; 56
Li (10.1016/j.jcis.2021.10.144_b0220) 2020; 16
Chakrabartty (10.1016/j.jcis.2021.10.144_b0170) 2020; 3
Guo (10.1016/j.jcis.2021.10.144_b0230) 2019; 7
Meng (10.1016/j.jcis.2021.10.144_b0255) 2019; 9
Deng (10.1016/j.jcis.2021.10.144_b0285) 2017; 26
Chen (10.1016/j.jcis.2021.10.144_b0320) 2022; 605
Dou (10.1016/j.jcis.2021.10.144_b0085) 2016; 9
Wang (10.1016/j.jcis.2021.10.144_b0225) 2019; 7
Zhang (10.1016/j.jcis.2021.10.144_b0270) 2017; 246
Wang (10.1016/j.jcis.2021.10.144_b0025) 2014; 2
Amiinu (10.1016/j.jcis.2021.10.144_b0210) 2018; 28
Wang (10.1016/j.jcis.2021.10.144_b0265) 2018; 30
Zhu (10.1016/j.jcis.2021.10.144_b0090) 2021; 384
Jasion (10.1016/j.jcis.2021.10.144_b0050) 2015; 5
Zhu (10.1016/j.jcis.2021.10.144_b0135) 2021; 403
Du (10.1016/j.jcis.2021.10.144_b0020) 2019; 55
Calderón (10.1016/j.jcis.2021.10.144_b0075) 2020; 3
Guo (10.1016/j.jcis.2021.10.144_b0330) 2018; 28
Niu (10.1016/j.jcis.2021.10.144_b0235) 2019; 3
Yang (10.1016/j.jcis.2021.10.144_b0005) 2019; 31
Abd El Raheem (10.1016/j.jcis.2021.10.144_b0120) 1958; 19
Bai (10.1016/j.jcis.2021.10.144_b0165) 2020; 12
Shang (10.1016/j.jcis.2021.10.144_b0260) 2021; 426
Xu (10.1016/j.jcis.2021.10.144_b0140) 2018; 5
Liu (10.1016/j.jcis.2021.10.144_b0115) 2020; 8
Wu (10.1016/j.jcis.2021.10.144_b0105) 2018; 10
Niu (10.1016/j.jcis.2021.10.144_b0315) 2019; 552
Mao (10.1016/j.jcis.2021.10.144_b0190) 2019; 328
Niu (10.1016/j.jcis.2021.10.144_b0015) 2019; 539
Niu (10.1016/j.jcis.2021.10.144_b0290) 2020; 480
Chen (10.1016/j.jcis.2021.10.144_b0310) 2019; 55
Xia (10.1016/j.jcis.2021.10.144_b0010) 2020; 8
Liu (10.1016/j.jcis.2021.10.144_b0070) 2021; 57
Liu (10.1016/j.jcis.2021.10.144_b0035) 2020; 8
Wang (10.1016/j.jcis.2021.10.144_b0195) 2017; 7
Li (10.1016/j.jcis.2021.10.144_b0040) 2018; 30
10.1016/j.jcis.2021.10.144_b0060
Wang (10.1016/j.jcis.2021.10.144_b0250) 2021; 537
Fu (10.1016/j.jcis.2021.10.144_b0335) 2018; 10
Dong (10.1016/j.jcis.2021.10.144_b0045) 2019; 7
Ashok (10.1016/j.jcis.2021.10.144_b0150) 2021; 368
Yan (10.1016/j.jcis.2021.10.144_b0205) 2020; 32
Chen (10.1016/j.jcis.2021.10.144_b0215) 2019; 60
Wen (10.1016/j.jcis.2021.10.144_b0180) 2019; 556
Han (10.1016/j.jcis.2021.10.144_b0100) 2021; 590
Liu (10.1016/j.jcis.2021.10.144_b0275) 2020; 16
Zong (10.1016/j.jcis.2021.10.144_b0145) 2021; 56
Zhang (10.1016/j.jcis.2021.10.144_b0155) 2020; 30
Qin (10.1016/j.jcis.2021.10.144_b0200) 2021; 414
Wang (10.1016/j.jcis.2021.10.144_b0110) 2018; 54
Jones (10.1016/j.jcis.2021.10.144_b0130) 1984; 109
Niu (10.1016/j.jcis.2021.10.144_b0030) 2019; 7
Li (10.1016/j.jcis.2021.10.144_b0080) 2020; 16
Yang (10.1016/j.jcis.2021.10.144_b0055) 2016; 191
References_xml – volume: 7
  start-page: 3664
  year: 2019
  end-page: 3672
  ident: b0230
  article-title: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis
  publication-title: J. Mater. Chem. A
– volume: 368
  year: 2021
  ident: b0150
  article-title: Development of Co/Co
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 2001089
  year: 2020
  ident: b0275
  article-title: A combined ordered macro-mesoporous architecture design and surface engineering strategy for high-performance sulfur immobilizer in lithium-sulfur batteries
  publication-title: Small
– volume: 16
  start-page: 1906735
  year: 2020
  ident: b0080
  article-title: Simultaneously integrating single atomic cobalt sites and Co
  publication-title: Small
– volume: 55
  start-page: 5789
  year: 2019
  end-page: 5792
  ident: b0020
  article-title: Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction
  publication-title: Chem. Commun.
– volume: 13
  start-page: 3949
  year: 2021
  end-page: 3958
  ident: b0125
  article-title: Folic acid coordinated Cu-Co site N-doped carbon nanosheets for oxygen reduction reaction
  publication-title: ACS Appl. Mat. Inter.
– volume: 556
  start-page: 352
  year: 2019
  end-page: 359
  ident: b0180
  article-title: Graphene wrapped Fe
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 18162
  year: 2020
  end-page: 18172
  ident: b0035
  article-title: Self-supported N-doped CNT arrays for flexible Zn-air batteries
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 12974
  year: 2018
  end-page: 12977
  ident: b0110
  article-title: Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction
  publication-title: Chem. Commun.
– volume: 28
  start-page: 1805641
  year: 2018
  ident: b0330
  article-title: Co
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 13576
  year: 2019
  end-page: 13583
  ident: b0030
  article-title: Space-confined strategy to Fe
  publication-title: ACS Sustain Chem Eng.
– volume: 403
  year: 2021
  ident: b0135
  article-title: Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies
  publication-title: J. Hazard. Mater.
– volume: 9
  start-page: 5757
  year: 2019
  end-page: 5762
  ident: b0255
  article-title: Confined Co
  publication-title: Catal. Sci. Technol.
– volume: 426
  start-page: 127345
  year: 2021
  ident: b0260
  article-title: Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 368
  year: 2021
  end-page: 375
  ident: b0280
  article-title: Co/Co
  publication-title: Inorg. Chem. Front.
– volume: 328
  start-page: 135078
  year: 2019
  ident: b0190
  article-title: Hierarchical holey Co
  publication-title: Electrochim. Acta
– volume: 246
  start-page: 380
  year: 2017
  end-page: 390
  ident: b0270
  article-title: Hierarchical Co
  publication-title: Electrochim. Acta
– volume: 480
  start-page: 229107
  year: 2020
  ident: b0290
  article-title: Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery
  publication-title: J. Power Sources
– volume: 191
  start-page: 813
  year: 2016
  end-page: 820
  ident: b0055
  article-title: An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 327
  year: 1958
  end-page: 330
  ident: b0120
  article-title: Eriochrome black a as an indicator for chelatometric titrations
  publication-title: Anal. Chim. Acta
– volume: 414
  start-page: 125448
  year: 2021
  ident: b0200
  article-title: Gold nanoparticles-modified MnFe
  publication-title: J. Hazard. Mater.
– volume: 26
  start-page: 1203
  year: 2017
  end-page: 1209
  ident: b0285
  article-title: Assembling Co
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 33740
  year: 2020
  end-page: 33750
  ident: b0165
  article-title: Confinement catalyst of Co
  publication-title: ACS Appl. Mat. Inter.
– volume: 2
  start-page: 20067
  year: 2014
  end-page: 20074
  ident: b0025
  article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1701322
  year: 2018
  ident: b0140
  article-title: PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 21189
  year: 2020
  end-page: 21198
  ident: b0115
  article-title: N-doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2020
  year: 2020
  end-page: 2027
  ident: b0075
  article-title: Lithium metal protection by a cross-linked polymer ionic liquid and its application in lithium battery
  publication-title: ACS Appl. Energy Mater.
– volume: 31
  start-page: 1808043
  year: 2019
  ident: b0005
  article-title: Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal
  publication-title: Adv. Mater.
– volume: 8
  start-page: 18125
  year: 2020
  end-page: 18131
  ident: b0010
  article-title: Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers
  publication-title: J. Mater. Chem. A
– volume: 539
  start-page: 525
  year: 2019
  end-page: 532
  ident: b0015
  article-title: One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 23436
  year: 2020
  end-page: 23454
  ident: b0160
  article-title: Rational design of a highly mesoporous Fe-N-C/Fe
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6653
  year: 2015
  end-page: 6657
  ident: b0050
  article-title: Low-dimensional hyperthin FeS
  publication-title: ACS Catal.
– reference: @N,P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media, RSC Adv., 7 (2017) 19181-19188.
– volume: 537
  start-page: 147860
  year: 2021
  ident: b0250
  article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 1320
  year: 2016
  end-page: 1326
  ident: b0085
  article-title: Etched and doped Co
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1849
  year: 2019
  end-page: 1858
  ident: b0235
  article-title: Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution
  publication-title: Mater. Chem. Front.
– volume: 16
  start-page: 2070053
  year: 2020
  ident: b0220
  article-title: Simultaneously integrating single atomic cobalt sites and Co
  publication-title: Small
– volume: 57
  start-page: 428
  year: 2021
  end-page: 435
  ident: b0070
  article-title: Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries
  publication-title: J. Energy Chem.
– volume: 7
  start-page: 34763
  year: 2017
  end-page: 34769
  ident: b0195
  article-title: Co
  publication-title: RSC Adv.
– volume: 606
  start-page: 1707
  year: 2022
  end-page: 1714
  ident: b0325
  article-title: A facile one-pot room-temperature growth of self-supported ultrathin rhodium-iridium nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 536
  start-page: 147950
  year: 2021
  ident: b0175
  article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
– volume: 30
  start-page: 2003933
  year: 2020
  ident: b0155
  article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 536
  year: 2019
  end-page: 544
  ident: b0215
  article-title: Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries
  publication-title: Nano Energy
– volume: 343
  start-page: 512
  year: 2018
  end-page: 519
  ident: b0240
  article-title: Co
  publication-title: Chem. Eng. J.
– volume: 605
  start-page: 888
  year: 2022
  end-page: 896
  ident: b0320
  article-title: Iron, rhodium-codoped Ni
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 1804653
  year: 2018
  ident: b0040
  article-title: Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density
  publication-title: Adv. Mater.
– volume: 56
  start-page: 14977
  year: 2017
  end-page: 14981
  ident: b0300
  article-title: Mass-production of mesoporous MnCo
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 5651
  year: 2019
  end-page: 5654
  ident: b0310
  article-title: Strongly coupled ultrasmall-Fe
  publication-title: Chem. Commun.
– volume: 3
  start-page: 11326
  year: 2020
  end-page: 11334
  ident: b0170
  article-title: An electrocatalytically active nanoflake-iike Co
  publication-title: ACS Appl. Nano Mater.
– reference: S
– volume: 7
  start-page: 16068
  year: 2019
  end-page: 16088
  ident: b0045
  article-title: Recent progress in Co
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 25845
  year: 2019
  end-page: 25852
  ident: b0225
  article-title: A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long-cycling and high-rate potassium ion storage
  publication-title: J. Mater. Chem. A
– volume: 590
  start-page: 330
  year: 2021
  end-page: 340
  ident: b0100
  article-title: Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 1800005
  year: 2018
  ident: b0265
  article-title: Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER
  publication-title: Adv. Mater.
– volume: 605
  start-page: 451
  year: 2022
  end-page: 462
  ident: b0185
  article-title: FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 14180
  year: 2019
  end-page: 14188
  ident: b0295
  article-title: Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries
  publication-title: ACS Sustain Chem Eng.
– volume: 552
  start-page: 744
  year: 2019
  end-page: 751
  ident: b0315
  article-title: Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction
  publication-title: J. Colloid Interface Sci.
– volume: 56
  start-page: 290
  year: 2021
  end-page: 298
  ident: b0245
  article-title: MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 19937
  year: 2018
  end-page: 19944
  ident: b0335
  article-title: Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries
  publication-title: Nanoscale
– volume: 8
  start-page: 9832
  year: 2020
  end-page: 9842
  ident: b0305
  article-title: Boosting the primary Zn-air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 25415
  year: 2018
  end-page: 25421
  ident: b0105
  article-title: Boosting oxygen reduction catalysis with N-doped carbon coated Co
  publication-title: ACS Appl. Mat. Inter.
– reference: R. Liu, H. Zhang, X. Zhang, T. Wu, H. Zhao, G. Wang, Co
– volume: 384
  start-page: 138299
  year: 2021
  ident: b0090
  article-title: Co
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 703
  year: 1984
  end-page: 707
  ident: b0130
  article-title: Inverse photometric detector, based on Eriochrome Black T, for trace metal determination by high-performance liquid chromatography
  publication-title: Analyst
– volume: 56
  start-page: 72
  year: 2021
  end-page: 79
  ident: b0145
  article-title: Ultrafine Fe/Fe
  publication-title: J. Energy Chem.
– volume: 28
  start-page: 1704638
  year: 2018
  ident: b0210
  article-title: From 3D ZIF nanocrystals to Co-N
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 2003313
  year: 2020
  ident: b0205
  article-title: A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries
  publication-title: Adv. Mater.
– volume: 58
  start-page: 15433
  year: 2019
  end-page: 15442
  ident: b0095
  article-title: Geometric and electronic engineering of Mn-doped Cu(OH)
  publication-title: Inorg. Chem.
– volume: 24
  start-page: 139
  year: 2016
  end-page: 147
  ident: b0065
  article-title: Self-assembled ultrathin NiCo
  publication-title: Nano Energy
– volume: 552
  start-page: 744
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0315
  article-title: Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.05.099
– volume: 7
  start-page: 34763
  issue: 55
  year: 2017
  ident: 10.1016/j.jcis.2021.10.144_b0195
  article-title: Co9S8 activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction
  publication-title: RSC Adv.
  doi: 10.1039/C7RA04127F
– volume: 57
  start-page: 428
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0070
  article-title: Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.066
– volume: 191
  start-page: 813
  year: 2016
  ident: 10.1016/j.jcis.2021.10.144_b0055
  article-title: An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.160
– volume: 12
  start-page: 33740
  issue: 30
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0165
  article-title: Confinement catalyst of Co9S8@N-doped carbon derived from intercalated Co(OH)2 precursor and enhanced electrocatalytic oxygen reduction performance
  publication-title: ACS Appl. Mat. Inter.
  doi: 10.1021/acsami.0c08267
– volume: 8
  start-page: 18162
  issue: 35
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0035
  article-title: Self-supported N-doped CNT arrays for flexible Zn-air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05510G
– volume: 16
  start-page: 1906735
  issue: 10
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0080
  article-title: Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting
  publication-title: Small
  doi: 10.1002/smll.201906735
– volume: 28
  start-page: 1704638
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0210
  article-title: From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704638
– volume: 606
  start-page: 1707
  year: 2022
  ident: 10.1016/j.jcis.2021.10.144_b0325
  article-title: A facile one-pot room-temperature growth of self-supported ultrathin rhodium-iridium nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.144
– volume: 16
  start-page: 2001089
  issue: 37
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0275
  article-title: A combined ordered macro-mesoporous architecture design and surface engineering strategy for high-performance sulfur immobilizer in lithium-sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.202001089
– volume: 10
  start-page: 19937
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0335
  article-title: Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries
  publication-title: Nanoscale
  doi: 10.1039/C8NR05812A
– volume: 54
  start-page: 12974
  issue: 92
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0110
  article-title: Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06638H
– volume: 24
  start-page: 139
  year: 2016
  ident: 10.1016/j.jcis.2021.10.144_b0065
  article-title: Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.024
– volume: 556
  start-page: 352
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0180
  article-title: Graphene wrapped Fe7C3 nanoparticles supported on N-doped graphene nanosheets for efficient and highly methanol-tolerant oxygen reduction reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.08.064
– volume: 30
  start-page: 2003933
  issue: 43
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0155
  article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003933
– volume: 537
  start-page: 147860
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0250
  article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147860
– volume: 8
  start-page: 23436
  issue: 44
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0160
  article-title: Rational design of a highly mesoporous Fe-N-C/Fe3C/C-S-C nanohybrid with dense active sites for superb electrocatalysis of oxygen reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06987F
– volume: 3
  start-page: 11326
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0170
  article-title: An electrocatalytically active nanoflake-iike Co9S8-CoSe2 heterostructure for overall water splitting
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c02431
– volume: 403
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0135
  article-title: Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123810
– volume: 60
  start-page: 536
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0215
  article-title: Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.084
– volume: 480
  start-page: 229107
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0290
  article-title: Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229107
– volume: 5
  start-page: 1701322
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0140
  article-title: PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701322
– volume: 590
  start-page: 330
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0100
  article-title: Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.01.053
– volume: 328
  start-page: 135078
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0190
  article-title: Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135078
– volume: 539
  start-page: 525
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0015
  article-title: One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.12.066
– volume: 7
  start-page: 14180
  issue: 16
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0295
  article-title: Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries
  publication-title: ACS Sustain Chem Eng.
  doi: 10.1021/acssuschemeng.9b02884
– volume: 31
  start-page: 1808043
  issue: 12
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0005
  article-title: Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808043
– volume: 7
  start-page: 25845
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0225
  article-title: A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long-cycling and high-rate potassium ion storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09598E
– volume: 30
  start-page: 1800005
  issue: 23
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0265
  article-title: Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800005
– volume: 13
  start-page: 3949
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0125
  article-title: Folic acid coordinated Cu-Co site N-doped carbon nanosheets for oxygen reduction reaction
  publication-title: ACS Appl. Mat. Inter.
  doi: 10.1021/acsami.0c19124
– volume: 2
  start-page: 20067
  issue: 47
  year: 2014
  ident: 10.1016/j.jcis.2021.10.144_b0025
  article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04337E
– volume: 58
  start-page: 15433
  issue: 22
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0095
  article-title: Geometric and electronic engineering of Mn-doped Cu(OH)2 hexagonal nanorings for superior oxygen evolution reaction electrocatalysis
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02524
– volume: 3
  start-page: 2020
  issue: 2
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0075
  article-title: Lithium metal protection by a cross-linked polymer ionic liquid and its application in lithium battery
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02309
– ident: 10.1016/j.jcis.2021.10.144_b0060
  doi: 10.1039/C7RA01798G
– volume: 605
  start-page: 451
  year: 2022
  ident: 10.1016/j.jcis.2021.10.144_b0185
  article-title: FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.082
– volume: 9
  start-page: 5757
  issue: 20
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0255
  article-title: Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY01717H
– volume: 246
  start-page: 380
  year: 2017
  ident: 10.1016/j.jcis.2021.10.144_b0270
  article-title: Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.058
– volume: 30
  start-page: 1804653
  issue: 46
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0040
  article-title: Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804653
– volume: 426
  start-page: 127345
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0260
  article-title: Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127345
– volume: 414
  start-page: 125448
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0200
  article-title: Gold nanoparticles-modified MnFe2O4 with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125448
– volume: 8
  start-page: 368
  issue: 2
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0280
  article-title: Co/Co9S8@carbon nanotubes on a carbon sheet: Facile controlled synthesis, and application to electrocatalysis in oxygen reduction/oxygen evolution reactions, and to a rechargeable Zn-air battery
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01155J
– volume: 55
  start-page: 5789
  issue: 41
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0020
  article-title: Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02615K
– volume: 56
  start-page: 14977
  issue: 47
  year: 2017
  ident: 10.1016/j.jcis.2021.10.144_b0300
  article-title: Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)-and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708765
– volume: 9
  start-page: 1320
  issue: 4
  year: 2016
  ident: 10.1016/j.jcis.2021.10.144_b0085
  article-title: Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00054A
– volume: 8
  start-page: 9832
  issue: 19
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0305
  article-title: Boosting the primary Zn-air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02741C
– volume: 5
  start-page: 6653
  issue: 11
  year: 2015
  ident: 10.1016/j.jcis.2021.10.144_b0050
  article-title: Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01637
– volume: 8
  start-page: 18125
  issue: 35
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0010
  article-title: Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06306A
– volume: 10
  start-page: 25415
  issue: 30
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0105
  article-title: Boosting oxygen reduction catalysis with N-doped carbon coated Co9S8 microtubes
  publication-title: ACS Appl. Mat. Inter.
  doi: 10.1021/acsami.8b07207
– volume: 56
  start-page: 290
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0245
  article-title: MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.007
– volume: 7
  start-page: 3664
  issue: 8
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0230
  article-title: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11400E
– volume: 28
  start-page: 1805641
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0330
  article-title: Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805641
– volume: 384
  start-page: 138299
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0090
  article-title: Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138299
– volume: 16
  start-page: 2070053
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0220
  article-title: Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting
  publication-title: Small
  doi: 10.1002/smll.202070053
– volume: 109
  start-page: 703
  year: 1984
  ident: 10.1016/j.jcis.2021.10.144_b0130
  article-title: Inverse photometric detector, based on Eriochrome Black T, for trace metal determination by high-performance liquid chromatography
  publication-title: Analyst
  doi: 10.1039/an9840900703
– volume: 55
  start-page: 5651
  issue: 39
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0310
  article-title: Strongly coupled ultrasmall-Fe7C3/N-doped porous carbon hybrids for highly efficient Zn-air batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01705D
– volume: 19
  start-page: 327
  year: 1958
  ident: 10.1016/j.jcis.2021.10.144_b0120
  article-title: Eriochrome black a as an indicator for chelatometric titrations
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88169-6
– volume: 32
  start-page: 2003313
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0205
  article-title: A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003313
– volume: 3
  start-page: 1849
  issue: 9
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0235
  article-title: Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00385A
– volume: 368
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0150
  article-title: Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137642
– volume: 56
  start-page: 72
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0145
  article-title: Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.048
– volume: 343
  start-page: 512
  year: 2018
  ident: 10.1016/j.jcis.2021.10.144_b0240
  article-title: Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.048
– volume: 7
  start-page: 13576
  issue: 15
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0030
  article-title: Space-confined strategy to Fe7C3 nanoparticles wrapped in porous Fe-/N-doped carbon nanosheets for efficient oxygen electrocatalysis
  publication-title: ACS Sustain Chem Eng.
  doi: 10.1021/acssuschemeng.9b03794
– volume: 7
  start-page: 16068
  issue: 27
  year: 2019
  ident: 10.1016/j.jcis.2021.10.144_b0045
  article-title: Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04972J
– volume: 8
  start-page: 21189
  issue: 40
  year: 2020
  ident: 10.1016/j.jcis.2021.10.144_b0115
  article-title: N-doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08114K
– volume: 605
  start-page: 888
  year: 2022
  ident: 10.1016/j.jcis.2021.10.144_b0320
  article-title: Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.101
– volume: 536
  start-page: 147950
  year: 2021
  ident: 10.1016/j.jcis.2021.10.144_b0175
  article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147950
– volume: 26
  start-page: 1203
  issue: 6
  year: 2017
  ident: 10.1016/j.jcis.2021.10.144_b0285
  article-title: Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.10.015
SSID ssj0011559
Score 2.6462038
Snippet [Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly...
Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2100
SubjectTerms air
batteries
carbon
catalysts
cathodes
Cobalt sulfide
dicyandiamide
Doped porous carbon
durability
electrochemistry
energy conversion
Eriochrome black T
oxygen
Oxygen evolution reaction
oxygen production
Oxygen reduction reaction
Pyrolysis
sulfonic acids
temperature
Zn-air battery
Title In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
URI https://dx.doi.org/10.1016/j.jcis.2021.10.144
https://www.proquest.com/docview/2597489757
https://www.proquest.com/docview/2636633481
Volume 608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI-mcQAOCAaIDZiMxA2y99ImbXqcCtMbaO-yTZq4VEmaik5T-vTah9iF78Y3w-6fCZB4B25V6rRV7Dq2Y__M2Fv0trROnOXKpSWXTiuurdQ8NmUmUy-iqA_ony2TxaX8dKWudlg-1cJQWuWo-wed3mvrcWQ2ruZsVddU44t_W0roM3M0kmNC_JQyJSk_-nGX5iHo2G1I8xCcqMfCmSHH69rVBNkdiSMak_Jfm9Nfarrfe04es0ej0QjHw3c9YTs-7LH7-dSrbY89_A1W8Cn7eRqgrbsNrHo4V19C3mTnGoIJjbvZEDRCO8ub2Vng5-9hCX1SIS-bFVLGHwAt8mbTgjNr2wQo8aHf8AbVoQBeN-4rIRyApcgfXIBpwQQY0kKQEGxNW-UQYYTm-y0KKIy9dvpQ0W3bARrKgKtOIE2eSrfgS-CmXoPtwT7Rd3_GLk8-XuQLPrZq4C5Oko5XkVSZcamT1Vw5dBnRzlTSCLQny1hW2ghv0iQxsiqNscokVshK2CpCUh87FT9nu6EJ_gWD2LvMamFk6Z30Tms08pwU1Txxcm7nyT4TE48KN-KYUzuNm2JKWLsuiK8F8bUfk3KfvbubsxpQPLZSq4n1xR-yWOA2s3Xem0lOCuQ_nbyY4JFjRURum85SlW6hSXAl-7rog_98_0v2IKLiDGpXo16x3W698a_RZOrsYf9PHLJ7x6efF8tfp1EYYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggynOQuIHZPOzEe6wC1S7t7qVbqeIS2Y6jpqqc1WYX0Z_HP2MmjwqQ2AO3yBknkceZl2e-Yew9eltKJdZwadOCC6skV0YoHutiIlIXRlEb0J8vkumF-HopL_dYNtTCUFplL_s7md5K635k3K_meFVVVOOLf1tK6DMBGslxfI_tEzqVHLH949npdHF3mEAnb12mR8hpQl8706V5XduKULuj8BONCfEv_fSXpG7Vz8kj9rC3G-G4-7THbM_5Q3aQDe3aDtmD35AFn7CfMw9NtdnCqkV0dQVk9eRcgde-tjdbQkdoxlk9nnt-_hEW0OYV8qJeIWX8GdAor7cNWL02tYcCH_odb1ApCuB1ba8I5AAMBf9gCboB7aHLDEFCMBVpyy7ICPWPW9yj0LfbaaNFt80G0FYGXHjCaXJUvQXfPNfVGkyL94nu-1N2cfJlmU15362B2zhJNryMhJxom1pRBtKi14imphQ6RJOyiEWpdOh0miRalIXWRurEhKIMTRkhqYutjJ-xka-9e84gdnZiVKhF4axwVim086wIyyCxIjBBcsTCgUe57aHMqaPGTT7krF3nxNec-NqOCXHEPtzNWXVAHjup5cD6_I_tmKOm2Tnv3bBPcuQ_Hb5o75BjeUSem5qkMt1Bk-BKtqXRL_7z_W_ZwXQ5P8vPZovTl-x-RLUa1L1GvmKjzXrrXqMFtTFv-j_kFyrKGxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+produced+Co9S8+nanoclusters%2FCo%2FMn-S%2C+N+multi-doped+3D+porous+carbon+derived+from+eriochrome+black+T+as+an+effective+bifunctional+oxygen+electrocatalyst+for+rechargeable+Zn-air+batteries&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sun%2C+Rui-Min&rft.au=Zhang%2C+Lu&rft.au=Feng%2C+Jiu-Ju&rft.au=Fang%2C+Ke-Ming&rft.date=2022-02-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=608&rft.issue=Pt+2&rft.spage=2100&rft_id=info:doi/10.1016%2Fj.jcis.2021.10.144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon