In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
[Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites fo...
Saved in:
Published in | Journal of colloid and interface science Vol. 608; no. Pt 2; pp. 2100 - 2110 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm−2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm−2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices. |
---|---|
AbstractList | Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm-2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm-2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm-2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm-2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices. Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co₉S₈ nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co₉S₈@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co₉S₈ nanoclusters. The Co₉S₈@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm⁻² for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm⁻² towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO₂ catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co₉S₈@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices. [Display omitted] Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm−2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm−2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices. |
Author | Fang, Ke-Ming Feng, Jiu-Ju Sun, Rui-Min Zhang, Lu Wang, Ai-Jun |
Author_xml | – sequence: 1 givenname: Rui-Min surname: Sun fullname: Sun, Rui-Min – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu – sequence: 3 givenname: Jiu-Ju surname: Feng fullname: Feng, Jiu-Ju email: jjfeng@zjnu.cn – sequence: 4 givenname: Ke-Ming surname: Fang fullname: Fang, Ke-Ming – sequence: 5 givenname: Ai-Jun surname: Wang fullname: Wang, Ai-Jun email: ajwang@zjnu.cn |
BookMark | eNqFkc1u1DAUhSNUJKaFF2B1lyzIjJ3Y-ZHYoKFApQKLlg2b6Ma5bj147MF2KubxeDMchhWLsvLVPd-xrXPOizPnHRXFS87WnPFms1vvlInrilV8veyEeFKsOOtl2XJWnxUrlpWyb_v2WXEe444xzqXsV8WvKwfRpBkOwU-zogm2vr_pwKHzys4xUYibrd98cuXNa_gM-9kmU07-kMn6HRx88HMEhWH0DiYK5iELOvg95Nmr-zwRjBbVd7gFjIAOSGtSKYMwGj27PHqHFvzP4x1l1WYxeIUJ7TEm0D5AIHWP4Y5wtATfXIkmwIgp_81QfF481Wgjvfh7XhRf31_ebj-W118-XG3fXpeqbppU6krIHlWrhGZSsV5wyaRAzhs-1UJ3yAnbpkGhJ8RRYjNyofmoq4xSrWR9Ubw63ZuT-jFTTMPeREXWoqOcwVA1-Z26Fh3_Pyr7VnR9K9uMVidUBR9jID0cgtljOA6cDUu1w25Yqh2Wav_shMim7h-TMgmXHFNAYx-3vjlZKUf1YCgMURlyuXiTU07D5M1j9t-hLMSc |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2022_109876 crossref_primary_10_1016_j_ijhydene_2022_03_142 crossref_primary_10_1016_j_jcis_2022_01_023 crossref_primary_10_1016_j_apcatb_2022_121329 crossref_primary_10_1021_acs_energyfuels_2c01191 crossref_primary_10_1016_j_ccr_2022_214854 crossref_primary_10_1021_acsanm_3c04820 crossref_primary_10_1016_j_jpowsour_2022_231270 crossref_primary_10_1088_1361_6528_ac8487 crossref_primary_10_1016_j_electacta_2022_139935 crossref_primary_10_1021_acsanm_3c02636 crossref_primary_10_1021_acs_analchem_1c05578 crossref_primary_10_1016_j_snb_2022_132179 crossref_primary_10_1021_acsaem_3c02691 crossref_primary_10_1016_j_jtice_2022_104397 crossref_primary_10_1016_j_apcata_2022_118847 crossref_primary_10_1002_celc_202300272 crossref_primary_10_1016_j_cplett_2023_140752 crossref_primary_10_1016_j_ijbiomac_2024_136285 crossref_primary_10_1016_j_jcis_2023_02_061 crossref_primary_10_1007_s10853_022_07784_7 crossref_primary_10_1016_j_mtener_2022_101150 crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1016_j_snb_2022_131518 crossref_primary_10_1016_j_jtice_2022_104280 crossref_primary_10_1016_j_jcis_2022_07_061 crossref_primary_10_1016_j_arabjc_2022_103736 crossref_primary_10_1021_acs_inorgchem_2c04092 crossref_primary_10_1016_j_jallcom_2022_165757 crossref_primary_10_1016_j_jechem_2023_01_054 crossref_primary_10_1016_j_jcis_2022_01_125 crossref_primary_10_1016_j_apsusc_2022_153022 crossref_primary_10_1149_1945_7111_ad5380 crossref_primary_10_1016_j_bios_2022_114048 crossref_primary_10_1016_j_jallcom_2023_169754 crossref_primary_10_1002_smll_202107141 crossref_primary_10_1039_D4NJ03221G crossref_primary_10_1021_acsanm_2c01317 crossref_primary_10_1016_j_apcatb_2022_121430 crossref_primary_10_1016_j_cej_2022_137665 crossref_primary_10_1016_j_jelechem_2023_117652 crossref_primary_10_1016_j_bioelechem_2022_108080 crossref_primary_10_1016_j_colsurfa_2022_129181 crossref_primary_10_1016_j_jmrt_2022_04_048 crossref_primary_10_1016_j_apcatb_2022_121553 crossref_primary_10_1016_j_mtener_2024_101601 crossref_primary_10_1007_s00604_022_05179_8 crossref_primary_10_1016_j_jcis_2023_05_111 crossref_primary_10_1021_acs_iecr_2c01783 crossref_primary_10_1016_j_jcis_2021_12_066 crossref_primary_10_3390_molecules29010003 crossref_primary_10_1016_j_solidstatesciences_2022_106840 crossref_primary_10_1016_j_jcis_2022_06_094 crossref_primary_10_1016_j_jcis_2022_06_130 crossref_primary_10_3390_catal14030205 crossref_primary_10_1016_j_apsusc_2024_161613 crossref_primary_10_1016_j_apcatb_2022_121265 crossref_primary_10_1002_batt_202200160 crossref_primary_10_1016_j_snb_2024_137075 crossref_primary_10_1016_j_cis_2023_102891 crossref_primary_10_1016_j_jcis_2023_07_101 crossref_primary_10_1016_j_apsusc_2022_153642 crossref_primary_10_1016_j_isci_2024_109620 crossref_primary_10_1016_j_jcis_2022_06_048 crossref_primary_10_1002_slct_202301645 crossref_primary_10_1016_j_colcom_2022_100634 crossref_primary_10_1016_j_cej_2022_136078 crossref_primary_10_1016_j_est_2024_111303 crossref_primary_10_1039_D4DT01625D crossref_primary_10_1016_j_jcis_2022_04_043 crossref_primary_10_1016_j_jcis_2022_02_033 crossref_primary_10_1016_j_jcis_2025_01_222 crossref_primary_10_1039_D3EY00160A crossref_primary_10_1016_j_electacta_2023_142518 crossref_primary_10_1016_j_cej_2022_135700 crossref_primary_10_1016_j_cej_2022_134617 crossref_primary_10_1021_acs_analchem_3c01070 crossref_primary_10_1016_j_apcatb_2022_121656 crossref_primary_10_2139_ssrn_4001447 crossref_primary_10_1021_acs_analchem_1c04608 crossref_primary_10_1007_s00604_022_05262_0 crossref_primary_10_1016_j_ijhydene_2023_10_094 crossref_primary_10_1016_j_colsurfa_2023_132112 crossref_primary_10_1039_D3QM00323J crossref_primary_10_1016_j_matchemphys_2022_126413 crossref_primary_10_1021_acs_energyfuels_4c00776 crossref_primary_10_1039_D2DT01650H crossref_primary_10_1021_acs_jpcc_2c03819 crossref_primary_10_1016_j_jcis_2023_01_074 crossref_primary_10_1007_s00604_022_05164_1 crossref_primary_10_1016_j_jcis_2023_01_077 crossref_primary_10_1016_j_jcis_2024_04_156 crossref_primary_10_1016_j_jcis_2022_03_083 crossref_primary_10_1016_j_ijhydene_2022_11_161 crossref_primary_10_3390_nano12213834 crossref_primary_10_1016_j_ijhydene_2023_08_269 crossref_primary_10_1016_j_coelec_2023_101229 crossref_primary_10_1016_j_seppur_2022_121291 crossref_primary_10_1016_j_cej_2022_135281 crossref_primary_10_1021_acsanm_4c06196 crossref_primary_10_1016_j_colsurfa_2022_129818 crossref_primary_10_1016_j_jcis_2023_10_083 crossref_primary_10_1016_j_jcis_2025_03_011 crossref_primary_10_1016_j_apsusc_2022_154304 crossref_primary_10_1016_j_jcis_2023_07_151 crossref_primary_10_1016_j_jpowsour_2021_230926 crossref_primary_10_1002_cssc_202200312 crossref_primary_10_1016_j_matchemphys_2022_126356 crossref_primary_10_1016_j_jelechem_2022_116909 crossref_primary_10_1016_j_jcis_2022_03_149 crossref_primary_10_1016_j_cej_2022_136266 crossref_primary_10_1016_j_hybadv_2025_100411 crossref_primary_10_1016_j_ijhydene_2022_03_190 crossref_primary_10_1016_j_est_2024_111298 crossref_primary_10_1016_j_cej_2022_135456 crossref_primary_10_1016_j_jcis_2022_02_102 crossref_primary_10_1016_j_cej_2022_136784 crossref_primary_10_1016_j_ijhydene_2022_06_131 crossref_primary_10_1016_j_jcis_2022_02_066 crossref_primary_10_1016_j_jcis_2021_11_101 crossref_primary_10_1016_j_apcatb_2022_121501 crossref_primary_10_1039_D2NJ01022D |
Cites_doi | 10.1016/j.jcis.2019.05.099 10.1039/C7RA04127F 10.1016/j.jechem.2020.08.066 10.1016/j.electacta.2016.01.160 10.1021/acsami.0c08267 10.1039/D0TA05510G 10.1002/smll.201906735 10.1002/adfm.201704638 10.1016/j.jcis.2021.08.144 10.1002/smll.202001089 10.1039/C8NR05812A 10.1039/C8CC06638H 10.1016/j.nanoen.2016.04.024 10.1016/j.jcis.2019.08.064 10.1002/adfm.202003933 10.1016/j.apsusc.2020.147860 10.1039/D0TA06987F 10.1021/acsanm.0c02431 10.1016/j.jhazmat.2020.123810 10.1016/j.nanoen.2019.03.084 10.1016/j.jpowsour.2020.229107 10.1002/admi.201701322 10.1016/j.jcis.2021.01.053 10.1016/j.electacta.2019.135078 10.1016/j.jcis.2018.12.066 10.1021/acssuschemeng.9b02884 10.1002/adma.201808043 10.1039/C9TA09598E 10.1002/adma.201800005 10.1021/acsami.0c19124 10.1039/C4TA04337E 10.1021/acs.inorgchem.9b02524 10.1021/acsaem.9b02309 10.1039/C7RA01798G 10.1016/j.jcis.2021.07.082 10.1039/C9CY01717H 10.1016/j.electacta.2017.06.058 10.1002/adma.201804653 10.1016/j.cej.2020.127345 10.1016/j.jhazmat.2021.125448 10.1039/D0QI01155J 10.1039/C9CC02615K 10.1002/anie.201708765 10.1039/C6EE00054A 10.1039/D0TA02741C 10.1021/acscatal.5b01637 10.1039/D0TA06306A 10.1021/acsami.8b07207 10.1016/j.jechem.2020.08.007 10.1039/C8TA11400E 10.1002/adfm.201805641 10.1016/j.electacta.2021.138299 10.1002/smll.202070053 10.1039/an9840900703 10.1039/C9CC01705D 10.1016/S0003-2670(00)88169-6 10.1002/adma.202003313 10.1039/C9QM00385A 10.1016/j.electacta.2020.137642 10.1016/j.jechem.2020.07.048 10.1016/j.cej.2018.03.048 10.1021/acssuschemeng.9b03794 10.1039/C9TA04972J 10.1039/D0TA08114K 10.1016/j.jcis.2021.07.101 10.1016/j.apsusc.2020.147950 10.1016/j.jechem.2017.10.015 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.10.144 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 2110 |
ExternalDocumentID | 10_1016_j_jcis_2021_10_144 S0021979721018233 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-f2459ac7c4f05c09415054a1161d34f8a1ea766a4fdaab5a6b14f1bf2094e3c53 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 11:35:06 EDT 2025 Fri Jul 11 08:31:01 EDT 2025 Tue Jul 01 01:19:13 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Fri Feb 23 02:43:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Eriochrome black T Pyrolysis Oxygen reduction reaction Zn-air battery Oxygen evolution reaction Cobalt sulfide Doped porous carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-f2459ac7c4f05c09415054a1161d34f8a1ea766a4fdaab5a6b14f1bf2094e3c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2597489757 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636633481 proquest_miscellaneous_2597489757 crossref_primary_10_1016_j_jcis_2021_10_144 crossref_citationtrail_10_1016_j_jcis_2021_10_144 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_10_144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Wang, Xue, Liu, Tang, Bai, Dou (b0240) 2018; 343 Xia, Zhang, Zhu, Xing, Xue, Huang, Sun, Li, Wang (b0010) 2020; 8 Deng, Shen, Zhong, Zhang, Wu, Wang, Xia, Tu (b0285) 2017; 26 Bai, Qu, Wang, Chen, Yang (b0165) 2020; 12 Wen, Niu, Wang, Yin, Zhang, Feng (b0180) 2019; 556 Du, Ma, Lyu, He, Li, Lu, Li (b0020) 2019; 55 Duan, Pan, Sun, Zhang, Zhu, Zhang, Song, Zheng (b0245) 2021; 56 Dong, Wu, Wang, Fu, Tang (b0045) 2019; 7 Xie, Li, Chen, Fan, Li, Min, Xu (b0125) 2021; 13 Niu, Chen, Sun, Wang, Mei, Zhang, Feng (b0290) 2020; 480 Li, Cao, Li, Tang, Chu, Huang, Yuan, Chen (b0220) 2020; 16 Jasion, Barforoush, Qiao, Zhu, Ren, Leonard (b0050) 2015; 5 Yan, Xu, Chen, Zhang, Jiang, Yang, Wang, Zhang, Shen, Zhao, Wang (b0205) 2020; 32 Yang, Zhao, Qu, Zhou, Zhou, Wang, Wu, Li (b0005) 2019; 31 Jones, Hobbs, Ebdon (b0130) 1984; 109 Niu, Lin, Chen, Feng, Zhang, Wang (b0175) 2021; 536 R. Liu, H. Zhang, X. Zhang, T. Wu, H. Zhao, G. Wang, Co Li, Cao, Li, Tang, Chu, Huang, Yuan, Chen (b0080) 2020; 16 Chakrabartty, Karmakar, Raj (b0170) 2020; 3 Zhu, Khan, Wang, Bano, Xia (b0135) 2021; 403 Zong, Chen, Liu, Fan, Dou, Xu, Zhao, Zhang, Zhang, Wu, Lu, Cui, Jia, Zhang, Yang, Zhao, Li, Deng, Chen, Wang (b0145) 2021; 56 Niu, Chen, Wen, Feng, Zhang, Wang (b0015) 2019; 539 Han, Feng, Yao, Wang, Zhang, Wang (b0100) 2021; 590 Meng, Zhan, Jiang, Zhu, Li (b0255) 2019; 9 Wang, Liu, Liu, Wang, Luo, Han, Du, Qiao, Yang (b0265) 2018; 30 Chen, Zhang, Liu, Long, Wang, Yang, Jia (b0310) 2019; 55 Xu, Shang, Di, Du (b0095) 2019; 58 Wang, Wang, Wu, Huang, Yuan, Zhang (b0250) 2021; 537 Calderón, Vizintin, Bobnar, Barraco, Leiva, Visintin, Fantini, Fischer, Dominko (b0075) 2020; 3 Amiinu, Liu, Pu, Li, Li, Zhang, Tang, Zhang, Mu (b0210) 2018; 28 Wang, Kuai, Cao, Huttula, Ollikkala, Ahopelto, Honkanen, Huotari, Yu, Geng (b0300) 2017; 56 Wang, Guo, Zhu, Pan, Wang, Zhang, Qiu (b0110) 2018; 54 Ashok, Kumar, Ponraj, Mansour (b0150) 2021; 368 Niu, Teng, Wang, Liu, Guo, Song, Chen (b0030) 2019; 7 Chen, Zhao, Ma, Wang, Dai, Zhang (b0215) 2019; 60 Wei, Qiu, Liu, Zhang, Yuan, Wang (b0295) 2019; 7 Al-Shahat Eissa, Kim, Lee (b0160) 2020; 8 Luo, Li, Luo, Guo, Sun, Lan, Luo, Huang, Qin, Luo (b0305) 2020; 8 @N,P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media, RSC Adv., 7 (2017) 19181-19188. Fu, Liu, Chen, Tang, Goodenough, Lee (b0335) 2018; 10 Zhang, Chao, Wang, Han, Bai, Yang (b0270) 2017; 246 Chen, Lin, Sun, Wang, Zhang, Ma, Feng (b0185) 2022; 605 Chen, Zhang, Feng, Mei, Jiao, Zhang, Wang (b0325) 2022; 606 Wang, Yuan, Wang, Zhang, Sun, Xi, Wang, Chu, Wang, Li (b0225) 2019; 7 Abd El Raheem, Amin (b0120) 1958; 19 S Liu, Luo, Gao, Hu, Yu, Chen (b0275) 2020; 16 Qin, Wang, Fu, Lai, Liu, Li, Liu, Yi, Li, Zhang, Li, Cao, Niu (b0200) 2021; 414 Liu, Liu, Xie, Sun, Liang, Wang, Fu (b0115) 2020; 8 Mao, He, Yang, Liu, Zhou, Xu, Yang (b0190) 2019; 328 Wu, Wang, Song, Zhao, Zhu, Fu, Liu (b0105) 2018; 10 Ma, Hu, Chen, Zhu, Chen, Lv, Wang, Liang, Liu, Yan, Zhu, Tie, Jin, Liu (b0065) 2016; 24 Guo, Feng, Zhu, Xu, Li, Liu, Xu, Zhang, Liu (b0230) 2019; 7 Chen, Duan, Feng, Mei, Jiao, Zhang, Wang (b0320) 2022; 605 Li, Cui, Da, Qiu, Qin, Hu, Du, Davey, Ling, Qiao (b0040) 2018; 30 Xu, Han, Zhu, Zeng, Jiang, Chen (b0140) 2018; 5 Wang, Gao, Wang, Miao, Wu, Li, Bao (b0025) 2014; 2 Zhang, Wang, Wang, Huang, Meng, Ouyang, Yuan, Guo, Li (b0155) 2020; 30 Zhang, Hu, Ji, Wang, Yu, Liu, Zhu, Xu (b0280) 2021; 8 Yang, Gao, Dai, Guo, Liu, Peng (b0055) 2016; 191 Liu, Zhang, Yan, Geng, Zhu, Chen (b0035) 2020; 8 Dou, Tao, Huo, Wang, Dai (b0085) 2016; 9 Zhu, Wu, Dai, Zhao, Yang, Li, Li, Chen (b0090) 2021; 384 Niu, Wang, Zhang, Guo, Feng (b0235) 2019; 3 Liu, Rao, Bao, Xu, Lei, Li (b0070) 2021; 57 Guo, Yuan, Zhang, Xia, Cheng, Zhou, Li, Qiao, Mu, Xu (b0330) 2018; 28 Shang, Wang, Zhang, Gao, Zhang, Meng, Wang, Wang, Du, Shen, Huang, Qiao, Wu, Gao (b0260) 2021; 426 Niu, Zhang, Feng, Zhang, Huang, Wang (b0315) 2019; 552 Wang, Liu, Guo, Li, Qi, Rooney, Sun (b0195) 2017; 7 Wei (10.1016/j.jcis.2021.10.144_b0295) 2019; 7 Xu (10.1016/j.jcis.2021.10.144_b0095) 2019; 58 Niu (10.1016/j.jcis.2021.10.144_b0175) 2021; 536 Ma (10.1016/j.jcis.2021.10.144_b0065) 2016; 24 Xie (10.1016/j.jcis.2021.10.144_b0125) 2021; 13 Chen (10.1016/j.jcis.2021.10.144_b0325) 2022; 606 Chen (10.1016/j.jcis.2021.10.144_b0185) 2022; 605 Wang (10.1016/j.jcis.2021.10.144_b0300) 2017; 56 Zhang (10.1016/j.jcis.2021.10.144_b0280) 2021; 8 Luo (10.1016/j.jcis.2021.10.144_b0305) 2020; 8 Zhang (10.1016/j.jcis.2021.10.144_b0240) 2018; 343 Al-Shahat Eissa (10.1016/j.jcis.2021.10.144_b0160) 2020; 8 Duan (10.1016/j.jcis.2021.10.144_b0245) 2021; 56 Li (10.1016/j.jcis.2021.10.144_b0220) 2020; 16 Chakrabartty (10.1016/j.jcis.2021.10.144_b0170) 2020; 3 Guo (10.1016/j.jcis.2021.10.144_b0230) 2019; 7 Meng (10.1016/j.jcis.2021.10.144_b0255) 2019; 9 Deng (10.1016/j.jcis.2021.10.144_b0285) 2017; 26 Chen (10.1016/j.jcis.2021.10.144_b0320) 2022; 605 Dou (10.1016/j.jcis.2021.10.144_b0085) 2016; 9 Wang (10.1016/j.jcis.2021.10.144_b0225) 2019; 7 Zhang (10.1016/j.jcis.2021.10.144_b0270) 2017; 246 Wang (10.1016/j.jcis.2021.10.144_b0025) 2014; 2 Amiinu (10.1016/j.jcis.2021.10.144_b0210) 2018; 28 Wang (10.1016/j.jcis.2021.10.144_b0265) 2018; 30 Zhu (10.1016/j.jcis.2021.10.144_b0090) 2021; 384 Jasion (10.1016/j.jcis.2021.10.144_b0050) 2015; 5 Zhu (10.1016/j.jcis.2021.10.144_b0135) 2021; 403 Du (10.1016/j.jcis.2021.10.144_b0020) 2019; 55 Calderón (10.1016/j.jcis.2021.10.144_b0075) 2020; 3 Guo (10.1016/j.jcis.2021.10.144_b0330) 2018; 28 Niu (10.1016/j.jcis.2021.10.144_b0235) 2019; 3 Yang (10.1016/j.jcis.2021.10.144_b0005) 2019; 31 Abd El Raheem (10.1016/j.jcis.2021.10.144_b0120) 1958; 19 Bai (10.1016/j.jcis.2021.10.144_b0165) 2020; 12 Shang (10.1016/j.jcis.2021.10.144_b0260) 2021; 426 Xu (10.1016/j.jcis.2021.10.144_b0140) 2018; 5 Liu (10.1016/j.jcis.2021.10.144_b0115) 2020; 8 Wu (10.1016/j.jcis.2021.10.144_b0105) 2018; 10 Niu (10.1016/j.jcis.2021.10.144_b0315) 2019; 552 Mao (10.1016/j.jcis.2021.10.144_b0190) 2019; 328 Niu (10.1016/j.jcis.2021.10.144_b0015) 2019; 539 Niu (10.1016/j.jcis.2021.10.144_b0290) 2020; 480 Chen (10.1016/j.jcis.2021.10.144_b0310) 2019; 55 Xia (10.1016/j.jcis.2021.10.144_b0010) 2020; 8 Liu (10.1016/j.jcis.2021.10.144_b0070) 2021; 57 Liu (10.1016/j.jcis.2021.10.144_b0035) 2020; 8 Wang (10.1016/j.jcis.2021.10.144_b0195) 2017; 7 Li (10.1016/j.jcis.2021.10.144_b0040) 2018; 30 10.1016/j.jcis.2021.10.144_b0060 Wang (10.1016/j.jcis.2021.10.144_b0250) 2021; 537 Fu (10.1016/j.jcis.2021.10.144_b0335) 2018; 10 Dong (10.1016/j.jcis.2021.10.144_b0045) 2019; 7 Ashok (10.1016/j.jcis.2021.10.144_b0150) 2021; 368 Yan (10.1016/j.jcis.2021.10.144_b0205) 2020; 32 Chen (10.1016/j.jcis.2021.10.144_b0215) 2019; 60 Wen (10.1016/j.jcis.2021.10.144_b0180) 2019; 556 Han (10.1016/j.jcis.2021.10.144_b0100) 2021; 590 Liu (10.1016/j.jcis.2021.10.144_b0275) 2020; 16 Zong (10.1016/j.jcis.2021.10.144_b0145) 2021; 56 Zhang (10.1016/j.jcis.2021.10.144_b0155) 2020; 30 Qin (10.1016/j.jcis.2021.10.144_b0200) 2021; 414 Wang (10.1016/j.jcis.2021.10.144_b0110) 2018; 54 Jones (10.1016/j.jcis.2021.10.144_b0130) 1984; 109 Niu (10.1016/j.jcis.2021.10.144_b0030) 2019; 7 Li (10.1016/j.jcis.2021.10.144_b0080) 2020; 16 Yang (10.1016/j.jcis.2021.10.144_b0055) 2016; 191 |
References_xml | – volume: 7 start-page: 3664 year: 2019 end-page: 3672 ident: b0230 article-title: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis publication-title: J. Mater. Chem. A – volume: 368 year: 2021 ident: b0150 article-title: Development of Co/Co publication-title: Electrochim. Acta – volume: 16 start-page: 2001089 year: 2020 ident: b0275 article-title: A combined ordered macro-mesoporous architecture design and surface engineering strategy for high-performance sulfur immobilizer in lithium-sulfur batteries publication-title: Small – volume: 16 start-page: 1906735 year: 2020 ident: b0080 article-title: Simultaneously integrating single atomic cobalt sites and Co publication-title: Small – volume: 55 start-page: 5789 year: 2019 end-page: 5792 ident: b0020 article-title: Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction publication-title: Chem. Commun. – volume: 13 start-page: 3949 year: 2021 end-page: 3958 ident: b0125 article-title: Folic acid coordinated Cu-Co site N-doped carbon nanosheets for oxygen reduction reaction publication-title: ACS Appl. Mat. Inter. – volume: 556 start-page: 352 year: 2019 end-page: 359 ident: b0180 article-title: Graphene wrapped Fe publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 18162 year: 2020 end-page: 18172 ident: b0035 article-title: Self-supported N-doped CNT arrays for flexible Zn-air batteries publication-title: J. Mater. Chem. A – volume: 54 start-page: 12974 year: 2018 end-page: 12977 ident: b0110 article-title: Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction publication-title: Chem. Commun. – volume: 28 start-page: 1805641 year: 2018 ident: b0330 article-title: Co publication-title: Adv. Funct. Mater. – volume: 7 start-page: 13576 year: 2019 end-page: 13583 ident: b0030 article-title: Space-confined strategy to Fe publication-title: ACS Sustain Chem Eng. – volume: 403 year: 2021 ident: b0135 article-title: Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies publication-title: J. Hazard. Mater. – volume: 9 start-page: 5757 year: 2019 end-page: 5762 ident: b0255 article-title: Confined Co publication-title: Catal. Sci. Technol. – volume: 426 start-page: 127345 year: 2021 ident: b0260 article-title: Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries publication-title: Chem. Eng. J. – volume: 8 start-page: 368 year: 2021 end-page: 375 ident: b0280 article-title: Co/Co publication-title: Inorg. Chem. Front. – volume: 328 start-page: 135078 year: 2019 ident: b0190 article-title: Hierarchical holey Co publication-title: Electrochim. Acta – volume: 246 start-page: 380 year: 2017 end-page: 390 ident: b0270 article-title: Hierarchical Co publication-title: Electrochim. Acta – volume: 480 start-page: 229107 year: 2020 ident: b0290 article-title: Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery publication-title: J. Power Sources – volume: 191 start-page: 813 year: 2016 end-page: 820 ident: b0055 article-title: An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework publication-title: Electrochim. Acta – volume: 19 start-page: 327 year: 1958 end-page: 330 ident: b0120 article-title: Eriochrome black a as an indicator for chelatometric titrations publication-title: Anal. Chim. Acta – volume: 414 start-page: 125448 year: 2021 ident: b0200 article-title: Gold nanoparticles-modified MnFe publication-title: J. Hazard. Mater. – volume: 26 start-page: 1203 year: 2017 end-page: 1209 ident: b0285 article-title: Assembling Co publication-title: J. Energy Chem. – volume: 12 start-page: 33740 year: 2020 end-page: 33750 ident: b0165 article-title: Confinement catalyst of Co publication-title: ACS Appl. Mat. Inter. – volume: 2 start-page: 20067 year: 2014 end-page: 20074 ident: b0025 article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis publication-title: J. Mater. Chem. A – volume: 5 start-page: 1701322 year: 2018 ident: b0140 article-title: PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 21189 year: 2020 end-page: 21198 ident: b0115 article-title: N-doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery publication-title: J. Mater. Chem. A – volume: 3 start-page: 2020 year: 2020 end-page: 2027 ident: b0075 article-title: Lithium metal protection by a cross-linked polymer ionic liquid and its application in lithium battery publication-title: ACS Appl. Energy Mater. – volume: 31 start-page: 1808043 year: 2019 ident: b0005 article-title: Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal publication-title: Adv. Mater. – volume: 8 start-page: 18125 year: 2020 end-page: 18131 ident: b0010 article-title: Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers publication-title: J. Mater. Chem. A – volume: 539 start-page: 525 year: 2019 end-page: 532 ident: b0015 article-title: One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 23436 year: 2020 end-page: 23454 ident: b0160 article-title: Rational design of a highly mesoporous Fe-N-C/Fe publication-title: J. Mater. Chem. A – volume: 5 start-page: 6653 year: 2015 end-page: 6657 ident: b0050 article-title: Low-dimensional hyperthin FeS publication-title: ACS Catal. – reference: @N,P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media, RSC Adv., 7 (2017) 19181-19188. – volume: 537 start-page: 147860 year: 2021 ident: b0250 article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation publication-title: Appl. Surf. Sci. – volume: 9 start-page: 1320 year: 2016 end-page: 1326 ident: b0085 article-title: Etched and doped Co publication-title: Energy Environ. Sci. – volume: 3 start-page: 1849 year: 2019 end-page: 1858 ident: b0235 article-title: Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution publication-title: Mater. Chem. Front. – volume: 16 start-page: 2070053 year: 2020 ident: b0220 article-title: Simultaneously integrating single atomic cobalt sites and Co publication-title: Small – volume: 57 start-page: 428 year: 2021 end-page: 435 ident: b0070 article-title: Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries publication-title: J. Energy Chem. – volume: 7 start-page: 34763 year: 2017 end-page: 34769 ident: b0195 article-title: Co publication-title: RSC Adv. – volume: 606 start-page: 1707 year: 2022 end-page: 1714 ident: b0325 article-title: A facile one-pot room-temperature growth of self-supported ultrathin rhodium-iridium nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 536 start-page: 147950 year: 2021 ident: b0175 article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction publication-title: Appl. Surf. Sci. – volume: 30 start-page: 2003933 year: 2020 ident: b0155 article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation publication-title: Adv. Funct. Mater. – volume: 60 start-page: 536 year: 2019 end-page: 544 ident: b0215 article-title: Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries publication-title: Nano Energy – volume: 343 start-page: 512 year: 2018 end-page: 519 ident: b0240 article-title: Co publication-title: Chem. Eng. J. – volume: 605 start-page: 888 year: 2022 end-page: 896 ident: b0320 article-title: Iron, rhodium-codoped Ni publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 1804653 year: 2018 ident: b0040 article-title: Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density publication-title: Adv. Mater. – volume: 56 start-page: 14977 year: 2017 end-page: 14981 ident: b0300 article-title: Mass-production of mesoporous MnCo publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 5651 year: 2019 end-page: 5654 ident: b0310 article-title: Strongly coupled ultrasmall-Fe publication-title: Chem. Commun. – volume: 3 start-page: 11326 year: 2020 end-page: 11334 ident: b0170 article-title: An electrocatalytically active nanoflake-iike Co publication-title: ACS Appl. Nano Mater. – reference: S – volume: 7 start-page: 16068 year: 2019 end-page: 16088 ident: b0045 article-title: Recent progress in Co publication-title: J. Mater. Chem. A – volume: 7 start-page: 25845 year: 2019 end-page: 25852 ident: b0225 article-title: A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long-cycling and high-rate potassium ion storage publication-title: J. Mater. Chem. A – volume: 590 start-page: 330 year: 2021 end-page: 340 ident: b0100 article-title: Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 1800005 year: 2018 ident: b0265 article-title: Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER publication-title: Adv. Mater. – volume: 605 start-page: 451 year: 2022 end-page: 462 ident: b0185 article-title: FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 14180 year: 2019 end-page: 14188 ident: b0295 article-title: Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries publication-title: ACS Sustain Chem Eng. – volume: 552 start-page: 744 year: 2019 end-page: 751 ident: b0315 article-title: Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction publication-title: J. Colloid Interface Sci. – volume: 56 start-page: 290 year: 2021 end-page: 298 ident: b0245 article-title: MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting publication-title: J. Energy Chem. – volume: 10 start-page: 19937 year: 2018 end-page: 19944 ident: b0335 article-title: Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries publication-title: Nanoscale – volume: 8 start-page: 9832 year: 2020 end-page: 9842 ident: b0305 article-title: Boosting the primary Zn-air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures publication-title: J. Mater. Chem. A – volume: 10 start-page: 25415 year: 2018 end-page: 25421 ident: b0105 article-title: Boosting oxygen reduction catalysis with N-doped carbon coated Co publication-title: ACS Appl. Mat. Inter. – reference: R. Liu, H. Zhang, X. Zhang, T. Wu, H. Zhao, G. Wang, Co – volume: 384 start-page: 138299 year: 2021 ident: b0090 article-title: Co publication-title: Electrochim. Acta – volume: 109 start-page: 703 year: 1984 end-page: 707 ident: b0130 article-title: Inverse photometric detector, based on Eriochrome Black T, for trace metal determination by high-performance liquid chromatography publication-title: Analyst – volume: 56 start-page: 72 year: 2021 end-page: 79 ident: b0145 article-title: Ultrafine Fe/Fe publication-title: J. Energy Chem. – volume: 28 start-page: 1704638 year: 2018 ident: b0210 article-title: From 3D ZIF nanocrystals to Co-N publication-title: Adv. Funct. Mater. – volume: 32 start-page: 2003313 year: 2020 ident: b0205 article-title: A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries publication-title: Adv. Mater. – volume: 58 start-page: 15433 year: 2019 end-page: 15442 ident: b0095 article-title: Geometric and electronic engineering of Mn-doped Cu(OH) publication-title: Inorg. Chem. – volume: 24 start-page: 139 year: 2016 end-page: 147 ident: b0065 article-title: Self-assembled ultrathin NiCo publication-title: Nano Energy – volume: 552 start-page: 744 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0315 article-title: Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.05.099 – volume: 7 start-page: 34763 issue: 55 year: 2017 ident: 10.1016/j.jcis.2021.10.144_b0195 article-title: Co9S8 activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction publication-title: RSC Adv. doi: 10.1039/C7RA04127F – volume: 57 start-page: 428 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0070 article-title: Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.066 – volume: 191 start-page: 813 year: 2016 ident: 10.1016/j.jcis.2021.10.144_b0055 article-title: An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.160 – volume: 12 start-page: 33740 issue: 30 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0165 article-title: Confinement catalyst of Co9S8@N-doped carbon derived from intercalated Co(OH)2 precursor and enhanced electrocatalytic oxygen reduction performance publication-title: ACS Appl. Mat. Inter. doi: 10.1021/acsami.0c08267 – volume: 8 start-page: 18162 issue: 35 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0035 article-title: Self-supported N-doped CNT arrays for flexible Zn-air batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05510G – volume: 16 start-page: 1906735 issue: 10 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0080 article-title: Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting publication-title: Small doi: 10.1002/smll.201906735 – volume: 28 start-page: 1704638 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0210 article-title: From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704638 – volume: 606 start-page: 1707 year: 2022 ident: 10.1016/j.jcis.2021.10.144_b0325 article-title: A facile one-pot room-temperature growth of self-supported ultrathin rhodium-iridium nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.144 – volume: 16 start-page: 2001089 issue: 37 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0275 article-title: A combined ordered macro-mesoporous architecture design and surface engineering strategy for high-performance sulfur immobilizer in lithium-sulfur batteries publication-title: Small doi: 10.1002/smll.202001089 – volume: 10 start-page: 19937 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0335 article-title: Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries publication-title: Nanoscale doi: 10.1039/C8NR05812A – volume: 54 start-page: 12974 issue: 92 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0110 article-title: Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction publication-title: Chem. Commun. doi: 10.1039/C8CC06638H – volume: 24 start-page: 139 year: 2016 ident: 10.1016/j.jcis.2021.10.144_b0065 article-title: Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.024 – volume: 556 start-page: 352 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0180 article-title: Graphene wrapped Fe7C3 nanoparticles supported on N-doped graphene nanosheets for efficient and highly methanol-tolerant oxygen reduction reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.08.064 – volume: 30 start-page: 2003933 issue: 43 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0155 article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and stable electrocatalysts for formic acid oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003933 – volume: 537 start-page: 147860 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0250 article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147860 – volume: 8 start-page: 23436 issue: 44 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0160 article-title: Rational design of a highly mesoporous Fe-N-C/Fe3C/C-S-C nanohybrid with dense active sites for superb electrocatalysis of oxygen reduction publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06987F – volume: 3 start-page: 11326 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0170 article-title: An electrocatalytically active nanoflake-iike Co9S8-CoSe2 heterostructure for overall water splitting publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c02431 – volume: 403 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0135 article-title: Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123810 – volume: 60 start-page: 536 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0215 article-title: Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.084 – volume: 480 start-page: 229107 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0290 article-title: Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229107 – volume: 5 start-page: 1701322 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0140 article-title: PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701322 – volume: 590 start-page: 330 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0100 article-title: Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.01.053 – volume: 328 start-page: 135078 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0190 article-title: Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135078 – volume: 539 start-page: 525 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0015 article-title: One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.12.066 – volume: 7 start-page: 14180 issue: 16 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0295 article-title: Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries publication-title: ACS Sustain Chem Eng. doi: 10.1021/acssuschemeng.9b02884 – volume: 31 start-page: 1808043 issue: 12 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0005 article-title: Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal publication-title: Adv. Mater. doi: 10.1002/adma.201808043 – volume: 7 start-page: 25845 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0225 article-title: A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long-cycling and high-rate potassium ion storage publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09598E – volume: 30 start-page: 1800005 issue: 23 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0265 article-title: Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER publication-title: Adv. Mater. doi: 10.1002/adma.201800005 – volume: 13 start-page: 3949 issue: 3 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0125 article-title: Folic acid coordinated Cu-Co site N-doped carbon nanosheets for oxygen reduction reaction publication-title: ACS Appl. Mat. Inter. doi: 10.1021/acsami.0c19124 – volume: 2 start-page: 20067 issue: 47 year: 2014 ident: 10.1016/j.jcis.2021.10.144_b0025 article-title: Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04337E – volume: 58 start-page: 15433 issue: 22 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0095 article-title: Geometric and electronic engineering of Mn-doped Cu(OH)2 hexagonal nanorings for superior oxygen evolution reaction electrocatalysis publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02524 – volume: 3 start-page: 2020 issue: 2 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0075 article-title: Lithium metal protection by a cross-linked polymer ionic liquid and its application in lithium battery publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02309 – ident: 10.1016/j.jcis.2021.10.144_b0060 doi: 10.1039/C7RA01798G – volume: 605 start-page: 451 year: 2022 ident: 10.1016/j.jcis.2021.10.144_b0185 article-title: FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.082 – volume: 9 start-page: 5757 issue: 20 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0255 article-title: Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01717H – volume: 246 start-page: 380 year: 2017 ident: 10.1016/j.jcis.2021.10.144_b0270 article-title: Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.058 – volume: 30 start-page: 1804653 issue: 46 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0040 article-title: Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density publication-title: Adv. Mater. doi: 10.1002/adma.201804653 – volume: 426 start-page: 127345 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0260 article-title: Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127345 – volume: 414 start-page: 125448 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0200 article-title: Gold nanoparticles-modified MnFe2O4 with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125448 – volume: 8 start-page: 368 issue: 2 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0280 article-title: Co/Co9S8@carbon nanotubes on a carbon sheet: Facile controlled synthesis, and application to electrocatalysis in oxygen reduction/oxygen evolution reactions, and to a rechargeable Zn-air battery publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01155J – volume: 55 start-page: 5789 issue: 41 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0020 article-title: Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction publication-title: Chem. Commun. doi: 10.1039/C9CC02615K – volume: 56 start-page: 14977 issue: 47 year: 2017 ident: 10.1016/j.jcis.2021.10.144_b0300 article-title: Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)-and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708765 – volume: 9 start-page: 1320 issue: 4 year: 2016 ident: 10.1016/j.jcis.2021.10.144_b0085 article-title: Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00054A – volume: 8 start-page: 9832 issue: 19 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0305 article-title: Boosting the primary Zn-air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02741C – volume: 5 start-page: 6653 issue: 11 year: 2015 ident: 10.1016/j.jcis.2021.10.144_b0050 article-title: Low-dimensional hyperthin FeS2 nanostructures for efficient and stable hydrogen evolution electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.5b01637 – volume: 8 start-page: 18125 issue: 35 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0010 article-title: Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06306A – volume: 10 start-page: 25415 issue: 30 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0105 article-title: Boosting oxygen reduction catalysis with N-doped carbon coated Co9S8 microtubes publication-title: ACS Appl. Mat. Inter. doi: 10.1021/acsami.8b07207 – volume: 56 start-page: 290 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0245 article-title: MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.007 – volume: 7 start-page: 3664 issue: 8 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0230 article-title: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal-organic framework for tri-functional ORR, OER and HER electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11400E – volume: 28 start-page: 1805641 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0330 article-title: Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805641 – volume: 384 start-page: 138299 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0090 article-title: Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138299 – volume: 16 start-page: 2070053 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0220 article-title: Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting publication-title: Small doi: 10.1002/smll.202070053 – volume: 109 start-page: 703 year: 1984 ident: 10.1016/j.jcis.2021.10.144_b0130 article-title: Inverse photometric detector, based on Eriochrome Black T, for trace metal determination by high-performance liquid chromatography publication-title: Analyst doi: 10.1039/an9840900703 – volume: 55 start-page: 5651 issue: 39 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0310 article-title: Strongly coupled ultrasmall-Fe7C3/N-doped porous carbon hybrids for highly efficient Zn-air batteries publication-title: Chem. Commun. doi: 10.1039/C9CC01705D – volume: 19 start-page: 327 year: 1958 ident: 10.1016/j.jcis.2021.10.144_b0120 article-title: Eriochrome black a as an indicator for chelatometric titrations publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88169-6 – volume: 32 start-page: 2003313 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0205 article-title: A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries publication-title: Adv. Mater. doi: 10.1002/adma.202003313 – volume: 3 start-page: 1849 issue: 9 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0235 article-title: Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00385A – volume: 368 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0150 article-title: Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137642 – volume: 56 start-page: 72 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0145 article-title: Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.048 – volume: 343 start-page: 512 year: 2018 ident: 10.1016/j.jcis.2021.10.144_b0240 article-title: Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.048 – volume: 7 start-page: 13576 issue: 15 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0030 article-title: Space-confined strategy to Fe7C3 nanoparticles wrapped in porous Fe-/N-doped carbon nanosheets for efficient oxygen electrocatalysis publication-title: ACS Sustain Chem Eng. doi: 10.1021/acssuschemeng.9b03794 – volume: 7 start-page: 16068 issue: 27 year: 2019 ident: 10.1016/j.jcis.2021.10.144_b0045 article-title: Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04972J – volume: 8 start-page: 21189 issue: 40 year: 2020 ident: 10.1016/j.jcis.2021.10.144_b0115 article-title: N-doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08114K – volume: 605 start-page: 888 year: 2022 ident: 10.1016/j.jcis.2021.10.144_b0320 article-title: Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.101 – volume: 536 start-page: 147950 year: 2021 ident: 10.1016/j.jcis.2021.10.144_b0175 article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147950 – volume: 26 start-page: 1203 issue: 6 year: 2017 ident: 10.1016/j.jcis.2021.10.144_b0285 article-title: Assembling Co9S8 nanoflakes on Co3O4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.10.015 |
SSID | ssj0011559 |
Score | 2.6462038 |
Snippet | [Display omitted]
Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly... Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2100 |
SubjectTerms | air batteries carbon catalysts cathodes Cobalt sulfide dicyandiamide Doped porous carbon durability electrochemistry energy conversion Eriochrome black T oxygen Oxygen evolution reaction oxygen production Oxygen reduction reaction Pyrolysis sulfonic acids temperature Zn-air battery |
Title | In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries |
URI | https://dx.doi.org/10.1016/j.jcis.2021.10.144 https://www.proquest.com/docview/2597489757 https://www.proquest.com/docview/2636633481 |
Volume | 608 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI-mcQAOCAaIDZiMxA2y99ImbXqcCtMbaO-yTZq4VEmaik5T-vTah9iF78Y3w-6fCZB4B25V6rRV7Dq2Y__M2Fv0trROnOXKpSWXTiuurdQ8NmUmUy-iqA_ony2TxaX8dKWudlg-1cJQWuWo-wed3mvrcWQ2ruZsVddU44t_W0roM3M0kmNC_JQyJSk_-nGX5iHo2G1I8xCcqMfCmSHH69rVBNkdiSMak_Jfm9Nfarrfe04es0ej0QjHw3c9YTs-7LH7-dSrbY89_A1W8Cn7eRqgrbsNrHo4V19C3mTnGoIJjbvZEDRCO8ub2Vng5-9hCX1SIS-bFVLGHwAt8mbTgjNr2wQo8aHf8AbVoQBeN-4rIRyApcgfXIBpwQQY0kKQEGxNW-UQYYTm-y0KKIy9dvpQ0W3bARrKgKtOIE2eSrfgS-CmXoPtwT7Rd3_GLk8-XuQLPrZq4C5Oko5XkVSZcamT1Vw5dBnRzlTSCLQny1hW2ghv0iQxsiqNscokVshK2CpCUh87FT9nu6EJ_gWD2LvMamFk6Z30Tms08pwU1Txxcm7nyT4TE48KN-KYUzuNm2JKWLsuiK8F8bUfk3KfvbubsxpQPLZSq4n1xR-yWOA2s3Xem0lOCuQ_nbyY4JFjRURum85SlW6hSXAl-7rog_98_0v2IKLiDGpXo16x3W698a_RZOrsYf9PHLJ7x6efF8tfp1EYYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggynOQuIHZPOzEe6wC1S7t7qVbqeIS2Y6jpqqc1WYX0Z_HP2MmjwqQ2AO3yBknkceZl2e-Yew9eltKJdZwadOCC6skV0YoHutiIlIXRlEb0J8vkumF-HopL_dYNtTCUFplL_s7md5K635k3K_meFVVVOOLf1tK6DMBGslxfI_tEzqVHLH949npdHF3mEAnb12mR8hpQl8706V5XduKULuj8BONCfEv_fSXpG7Vz8kj9rC3G-G4-7THbM_5Q3aQDe3aDtmD35AFn7CfMw9NtdnCqkV0dQVk9eRcgde-tjdbQkdoxlk9nnt-_hEW0OYV8qJeIWX8GdAor7cNWL02tYcCH_odb1ApCuB1ba8I5AAMBf9gCboB7aHLDEFCMBVpyy7ICPWPW9yj0LfbaaNFt80G0FYGXHjCaXJUvQXfPNfVGkyL94nu-1N2cfJlmU15362B2zhJNryMhJxom1pRBtKi14imphQ6RJOyiEWpdOh0miRalIXWRurEhKIMTRkhqYutjJ-xka-9e84gdnZiVKhF4axwVim086wIyyCxIjBBcsTCgUe57aHMqaPGTT7krF3nxNec-NqOCXHEPtzNWXVAHjup5cD6_I_tmKOm2Tnv3bBPcuQ_Hb5o75BjeUSem5qkMt1Bk-BKtqXRL_7z_W_ZwXQ5P8vPZovTl-x-RLUa1L1GvmKjzXrrXqMFtTFv-j_kFyrKGxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+produced+Co9S8+nanoclusters%2FCo%2FMn-S%2C+N+multi-doped+3D+porous+carbon+derived+from+eriochrome+black+T+as+an+effective+bifunctional+oxygen+electrocatalyst+for+rechargeable+Zn-air+batteries&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sun%2C+Rui-Min&rft.au=Zhang%2C+Lu&rft.au=Feng%2C+Jiu-Ju&rft.au=Fang%2C+Ke-Ming&rft.date=2022-02-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=608&rft.issue=Pt+2&rft.spage=2100&rft_id=info:doi/10.1016%2Fj.jcis.2021.10.144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |