Improving regorafenib's organ target precision via nano-assembly to change its delivery mode abolishes chemoresistance and liver metastasis of colorectal cancer
A regorafenib nanodrug is prepared by self-assembly using regorafenib and clinically approved indocyanine green, which sufficiently delivers regorafenib into colorectal tumor and liver metastasis, markedly enhances regorafenib’s therapeutic efficacy. [Display omitted] •A regorafenib nanodrug (nanoRF...
Saved in:
Published in | Journal of colloid and interface science Vol. 607; no. Pt 1; pp. 229 - 241 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A regorafenib nanodrug is prepared by self-assembly using regorafenib and clinically approved indocyanine green, which sufficiently delivers regorafenib into colorectal tumor and liver metastasis, markedly enhances regorafenib’s therapeutic efficacy.
[Display omitted]
•A regorafenib nanodrug (nanoRF) was fabricated by self-assembly.•NanoRF encapsulated regorafenib with a high loading content of 96%.•NanoRF exhibited excellent reproducibility and colloidal stability.•NanoRF effectively delivered regorafenib into tumor local and liver.•NanoRF enhanced regorafenib’s antitumor efficacy in advanced colorectal cancers.
Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib’s limitations, towards improving regorafenib’s therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib’s delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib’s blood circulation by halving clearance rate, and enhances regorafenib’s tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib’s tumor inhibiting efficacy by 0.5–4 folds and effectively extends survival by 0.5–5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential. |
---|---|
AbstractList | A regorafenib nanodrug is prepared by self-assembly using regorafenib and clinically approved indocyanine green, which sufficiently delivers regorafenib into colorectal tumor and liver metastasis, markedly enhances regorafenib’s therapeutic efficacy.
[Display omitted]
•A regorafenib nanodrug (nanoRF) was fabricated by self-assembly.•NanoRF encapsulated regorafenib with a high loading content of 96%.•NanoRF exhibited excellent reproducibility and colloidal stability.•NanoRF effectively delivered regorafenib into tumor local and liver.•NanoRF enhanced regorafenib’s antitumor efficacy in advanced colorectal cancers.
Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib’s limitations, towards improving regorafenib’s therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib’s delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib’s blood circulation by halving clearance rate, and enhances regorafenib’s tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib’s tumor inhibiting efficacy by 0.5–4 folds and effectively extends survival by 0.5–5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential. Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib's limitations, towards improving regorafenib's therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib's delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib's blood circulation by halving clearance rate, and enhances regorafenib's tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib's tumor inhibiting efficacy by 0.5-4 folds and effectively extends survival by 0.5-5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential.Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib's limitations, towards improving regorafenib's therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib's delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib's blood circulation by halving clearance rate, and enhances regorafenib's tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib's tumor inhibiting efficacy by 0.5-4 folds and effectively extends survival by 0.5-5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential. Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib’s limitations, towards improving regorafenib’s therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib’s delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib’s blood circulation by halving clearance rate, and enhances regorafenib’s tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib’s tumor inhibiting efficacy by 0.5–4 folds and effectively extends survival by 0.5–5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential. |
Author | Yuan, Ye Wang, Kang Wang, Zheng Deng, Yan Li, Mingyi Fu, Daan Lu, Xiaohuan Zhou, Cheng Lv, Qiying Wang, Lin Shi, Lin Wang, Guobin Liu, Jia |
Author_xml | – sequence: 1 givenname: Jia surname: Liu fullname: Liu, Jia organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 2 givenname: Daan surname: Fu fullname: Fu, Daan organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 3 givenname: Kang surname: Wang fullname: Wang, Kang organization: Hubei Province Tobacco Quality Supervision and Test Station, Wuhan 430030, China – sequence: 4 givenname: Ye surname: Yuan fullname: Yuan, Ye organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 5 givenname: Yan surname: Deng fullname: Deng, Yan organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 6 givenname: Lin surname: Shi fullname: Shi, Lin organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 7 givenname: Mingyi surname: Li fullname: Li, Mingyi organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 8 givenname: Cheng surname: Zhou fullname: Zhou, Cheng organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 9 givenname: Xiaohuan surname: Lu fullname: Lu, Xiaohuan organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 10 givenname: Qiying surname: Lv fullname: Lv, Qiying organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 11 givenname: Guobin surname: Wang fullname: Wang, Guobin email: wgb@hust.edu.cn organization: Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 12 givenname: Lin surname: Wang fullname: Wang, Lin email: lin_wang@hust.edu.cn organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China – sequence: 13 givenname: Zheng surname: Wang fullname: Wang, Zheng email: zhengwang@hust.edu.cn organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China |
BookMark | eNqFkc1u1DAUhS3USkx_XqAr72CTYDuJE0tsUEWhUiU2sLZu7JvUo8QebHekeRseFYdhxaKsrnTOd-7inCty4YNHQu44qznj8sO-3huXasEEr9lQ8169ITvOVFf1nDUXZMeKU6le9W_JVUp7xjjvOrUjvx7XQwxH52cacQ4RJvRufJdoiDN4miHOmOkhYnnvgqdHB9SDDxWkhOu4nGgO1DyDn5G6nKjFxR0xnugaLFIYw-LSM6aC4BoiJpcyeFMcb-kfkq6YoYjFoWGiJiwFMxkWajYw3pDLCZaEt3_vNfnx8Pn7_dfq6duXx_tPT5VppMwV4jiJVsLEZSfYoHrWKYMGYLCyaMKM4yhVy-w4TEqarmlNiwMHOzEBltvmmrw__y11_HzBlPXqksFlAY_hJWkhG9mxtm_5_9Gu50r0XGzocEZNDClFnLRxGXJpMkdwi-ZMb_vpvd7209t-mg267Fei4p_oIboV4un10MdzCEtVR4dRJ-Ow9Gjd1qq2wb0W_w18VruZ |
CitedBy_id | crossref_primary_10_1097_CAD_0000000000001323 crossref_primary_10_1002_adhm_202401708 crossref_primary_10_3389_fcell_2022_814621 crossref_primary_10_1002_cam4_4398 crossref_primary_10_1080_17425255_2023_2272598 crossref_primary_10_1016_j_jddst_2023_105238 |
Cites_doi | 10.1002/anie.202003082 10.1016/S1470-2045(14)70330-4 10.1002/anie.201403036 10.1021/acsami.9b18086 10.1073/pnas.1718917115 10.1002/adfm.202000229 10.1002/ijc.28669 10.1016/S1470-2045(15)00122-9 10.1124/dmd.118.084541 10.1002/smll.201000631 10.1038/s41563-017-0007-z 10.1016/j.ijbiomac.2020.03.148 10.1038/s41467-020-14780-5 10.1158/0008-5472.CAN-04-1443 10.1016/j.biomaterials.2019.119475 10.1002/advs.202002020 10.1021/acsami.7b14755 10.1186/1476-4598-8-2 10.3322/caac.21492 10.1016/j.ccr.2013.09.007 10.1038/s41588-019-0423-x 10.1093/annonc/mdu260 10.1016/j.nantod.2019.02.005 10.1016/j.colsurfb.2017.02.006 10.1016/j.jcis.2021.02.098 10.1016/j.jconrel.2016.08.038 10.1158/1535-7163.MCT-12-1162 10.1021/acsami.8b11976 10.1002/ijc.25864 10.1200/JCO.2006.09.0928 10.1016/j.addr.2012.06.013 10.1016/S0140-6736(12)61900-X 10.1016/j.jconrel.2020.05.018 10.1016/j.nano.2014.08.004 10.1002/jcb.26783 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.08.179 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 241 |
ExternalDocumentID | 10_1016_j_jcis_2021_08_179 S0021979721014132 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-eebf246af16520897059cecaa8d6f162cbbb6940db8f96c534c4e81adf02ad1d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 04:12:18 EDT 2025 Fri Jul 11 03:45:53 EDT 2025 Tue Jul 01 01:19:10 EDT 2025 Thu Apr 24 23:06:12 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 1 |
Keywords | Regorafenib Self-assembly Drug delivery Nanodrug Advanced colorectal cancer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-eebf246af16520897059cecaa8d6f162cbbb6940db8f96c534c4e81adf02ad1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2571927121 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636504741 proquest_miscellaneous_2571927121 crossref_citationtrail_10_1016_j_jcis_2021_08_179 crossref_primary_10_1016_j_jcis_2021_08_179 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_08_179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Grothey, Cutsem, Sobrero, Siena, Falcone, Ychou, Humblet, Bouché, Mineur, Barone, Adenis, Tabernero, Yoshino, Lenz, Goldberg, Sargent, Cihon, Cupit, Wagner, Laurent (b0055) 2013; 381 Hu, Yang, Zhang, Li, Tu, Mu, Dawulieti, Lao, Xiao, Yan, Sun, Shao, Leong (b0180) 2021; 8 National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Colon Cancer. Version 6.2020. https://www.nccn.org/professionals/physician_gls/default.aspx. (Accessed 8 January, 2021) Zou, Wang, Yu, Sun, Wang, Xu, Zhao (b0175) 2018; 10 Liu, Ye, Xiang, Chang, Cui, Ji, Zhao, Li, Deng, Xu, Wang, Wang, Wang (b0170) 2019; 223 National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Colon Cancer. Version 4.2020. https://www.nccn.org/professionals/physician_gls/default.aspx. (Accessed 8 January, 2021). Sun, Zhang, Pang, Hyun, Yang, Xia (b0080) 2014; 53 Carr, Franke, Caram, Perkinson, Saif, Askoxylakis, Datta, Fukumura, Jain, Bawendi, Bruns (b0150) 2018; 115 Deng, Liu, Zhou, Wu, Zhang, Yi, Yuan, Wang (b0090) 2021; 593 Abou-Elkacem, Arns, Brix, Gremse, Zopf, Kiessling, Lederle (b0160) 2013; 12 Lang, Wang, Sun, Chen, Liu (b0070) 2020; 154 Wu, Wang, Sun, Sun, Wan, Wang, Gu, Yu, Yang, He, Zhang, Lv, Wang, Yao, Qin, Wang, Jin (b0140) 2019; 11 Kukcinaviciute, Jonusiene, Sasnauskiene, Dabkeviciene, Eidenaite, Laurinavicius (b0190) 2018; 119 Knudsen, Northeved, Kumar EK, Permin, Gjetting, Andresen, Larsen, Wegener, Lykkesfeldt, Jantzen, Loft, Møller, Roursgaard (b0110) 2015; 11 Wolfram, Ferrari (b0085) 2019; 25 Falcone, Ricci, Brunetti, Pfanner, Allegrini, Barbara, Crino, Benedetti, Evangelista, Fanchini, Cortesi, Picone, Vitello, Chiara, Granetto, Porcile, Fioretto, Orlandini, Andreuccetti, Masi, Gruppo Oncologico Nord (b0035) 2007; 25 Wilhelm, Carter, Tang, Wilkie, McNabola, Rong, Chen, Zhang, Vincent, McHugh, Cao, Shujath, Gawlak, Eveleigh, Rowley, Liu, Adnane, Lynch, Auclair, Taylor, Gedrich, Voznesensky, Riedl, Post, Bollag, Trail (b0060) 2004; 64 Laffleur, Keckeis (b0075) 2020; 2 Schmitt, Lienau, Fricker, Reichel (b0185) 2019; 47 Vanharanta, Massagué (b0010) 2013; 24 Aryal, Hu, Zhang (b0125) 2010; 6 Pacheco, Kanou, Fung, Chen, Lee, Bai, Keshavjee, Liu (b0095) 2016; 239 Egorova, Galushko, Ananikov (b0120) 2020; 59 Wang, Li, Hou, Li, Yao, Xue, Fei, Xiang, Cai, Zhao, Luo (b0100) 2020; 30 Van Cutsem, Cervantes, Nordlinger, Arnold (b0015) 2014; 25 Wilhelm, Dumas, Adnane, Lynch, Carter, Schütz, Thierauch, Zopf (b0050) 2011; 129 Hu, Ding, Ma, Sun, Seoane, Scott Shaffer, Suarez, Berghoff, Cremolini, Falcone, Loupakis, Birner, Preusser, Lenz, Curtis (b0020) 2019; 51 Heinemann, von Weikersthal, Decker, Kiani, Vehling-Kaiser, Al-Batran, Heintges, Lerchenmüller, Kahl, Seipelt, Kullmann, Stauch, Scheithauer, Hielscher, Scholz, Müller, Link, Niederle, Rost, Höffkes, Moehler, Lindig, Modest, Rossius, Kirchner, Jung, Stintzing (b0040) 2014; 15 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (b0005) 2018; 68 Cremolini, Loupakis, Antoniotti, Lupi, Sensi, Lonardi, Mezi, Tomasello, Ronzoni, Zaniboni, Tonini, Carlomagno, Allegrini, Chiara, D'Amico, Granetto, Cazzaniga, Boni, Fontanini, Falcone (b0045) 2015; 16 Hu, Sun, Li, Tang (b0065) 2017; 153 Hu, Dong, Wang, Liu, Zhou, Xiang, Zhou, Liu, Shen (b0145) 2020; 324 Zabala, Alzuguren, Benavides, Crettaz, Gonzalez-Aseguinolaza, Ortiz de Solorzano, Gonzalez-Aparicio, Kramer, Prieto, Hernandez-Alcoceba (b0155) 2009; 8 Peer (b0115) 2012; 64 Guo, Vieweger, Zhang, Yin, Wang, Li, Li, Hu, Sparreboom, Evers, Dong, Chiu, Guo (b0105) 2020; 11 Guo, Jiang, Shen, Zheng, Fan, Zhao, Shao (b0135) 2017; 9 Shamay, Shah, Işık, Mizrachi, Leibold, Tschaharganeh, Roxbury, Budhathoki-Uprety, Nawaly, Sugarman, Baut, Neiman, Dacek, Ganesh, Johnson, Sridharan, Chu, Rajasekhar, Lowe, Chodera, Heller (b0130) 2018; 17 Schmieder, Hoffmann, Becker, Bhargava, Müller, Kahmann, Ellinghaus, Adams, Rosenthal, Thierauch, Scholz, Wilhelm, Zopf (b0165) 2014; 135 Vanharanta (10.1016/j.jcis.2021.08.179_b0010) 2013; 24 10.1016/j.jcis.2021.08.179_b0030 Shamay (10.1016/j.jcis.2021.08.179_b0130) 2018; 17 Pacheco (10.1016/j.jcis.2021.08.179_b0095) 2016; 239 Bray (10.1016/j.jcis.2021.08.179_b0005) 2018; 68 Schmitt (10.1016/j.jcis.2021.08.179_b0185) 2019; 47 Sun (10.1016/j.jcis.2021.08.179_b0080) 2014; 53 Falcone (10.1016/j.jcis.2021.08.179_b0035) 2007; 25 Hu (10.1016/j.jcis.2021.08.179_b0020) 2019; 51 Laffleur (10.1016/j.jcis.2021.08.179_b0075) 2020; 2 Wang (10.1016/j.jcis.2021.08.179_b0100) 2020; 30 Grothey (10.1016/j.jcis.2021.08.179_b0055) 2013; 381 Heinemann (10.1016/j.jcis.2021.08.179_b0040) 2014; 15 Wilhelm (10.1016/j.jcis.2021.08.179_b0060) 2004; 64 Egorova (10.1016/j.jcis.2021.08.179_b0120) 2020; 59 Guo (10.1016/j.jcis.2021.08.179_b0105) 2020; 11 Zou (10.1016/j.jcis.2021.08.179_b0175) 2018; 10 Zabala (10.1016/j.jcis.2021.08.179_b0155) 2009; 8 Wilhelm (10.1016/j.jcis.2021.08.179_b0050) 2011; 129 Wu (10.1016/j.jcis.2021.08.179_b0140) 2019; 11 Lang (10.1016/j.jcis.2021.08.179_b0070) 2020; 154 Knudsen (10.1016/j.jcis.2021.08.179_b0110) 2015; 11 Van Cutsem (10.1016/j.jcis.2021.08.179_b0015) 2014; 25 Cremolini (10.1016/j.jcis.2021.08.179_b0045) 2015; 16 10.1016/j.jcis.2021.08.179_b0025 Hu (10.1016/j.jcis.2021.08.179_b0180) 2021; 8 Wolfram (10.1016/j.jcis.2021.08.179_b0085) 2019; 25 Aryal (10.1016/j.jcis.2021.08.179_b0125) 2010; 6 Guo (10.1016/j.jcis.2021.08.179_b0135) 2017; 9 Schmieder (10.1016/j.jcis.2021.08.179_b0165) 2014; 135 Kukcinaviciute (10.1016/j.jcis.2021.08.179_b0190) 2018; 119 Deng (10.1016/j.jcis.2021.08.179_b0090) 2021; 593 Abou-Elkacem (10.1016/j.jcis.2021.08.179_b0160) 2013; 12 Carr (10.1016/j.jcis.2021.08.179_b0150) 2018; 115 Liu (10.1016/j.jcis.2021.08.179_b0170) 2019; 223 Hu (10.1016/j.jcis.2021.08.179_b0065) 2017; 153 Hu (10.1016/j.jcis.2021.08.179_b0145) 2020; 324 Peer (10.1016/j.jcis.2021.08.179_b0115) 2012; 64 |
References_xml | – volume: 25 start-page: 1670 year: 2007 end-page: 1676 ident: b0035 article-title: Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: The gruppo oncologico nord ovest publication-title: J. Clin. Oncol. – volume: 223 start-page: 119475 year: 2019 ident: b0170 article-title: Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance publication-title: Biomaterials – volume: 239 start-page: 211 year: 2016 end-page: 222 ident: b0095 article-title: Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery publication-title: J. Control Release – reference: National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Colon Cancer. Version 4.2020. https://www.nccn.org/professionals/physician_gls/default.aspx. (Accessed 8 January, 2021). – volume: 15 start-page: 1065 year: 2014 end-page: 1075 ident: b0040 article-title: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial publication-title: Lancet Oncol. – volume: 47 start-page: 49 year: 2019 end-page: 57 ident: b0185 article-title: Quantitation of lysosomal trapping of basic lipophilic compounds using in vitro assays and in silico predictions based on the determination of the full pH profile of the endo-/lysosomal system in rat hepatocytes publication-title: Drug Metab. Dispos. – volume: 593 start-page: 424 year: 2021 end-page: 433 ident: b0090 article-title: Engineering of dendritic mesoporous silica nanoparticles for efficient delivery of water-insoluble paclitaxel in cancer therapy publication-title: J. of Colloid Interface Sci. – volume: 129 start-page: 245 year: 2011 end-page: 255 ident: b0050 article-title: Regorafenib (BAY 73–4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity publication-title: Int. J. Cancer – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: b0005 article-title: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. – volume: 11 start-page: 972 year: 2020 ident: b0105 article-title: Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy publication-title: Nat. Commun. – reference: National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Colon Cancer. Version 6.2020. https://www.nccn.org/professionals/physician_gls/default.aspx. (Accessed 8 January, 2021) – volume: 16 start-page: 1306 year: 2015 end-page: 1315 ident: b0045 article-title: FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study publication-title: Lancet Oncol. – volume: 11 start-page: 467 year: 2015 end-page: 477 ident: b0110 article-title: In vivo toxicity of cationic micelles and liposomes publication-title: Nanomedicine – volume: 17 start-page: 361 year: 2018 end-page: 368 ident: b0130 article-title: Quantitative self-assembly prediction yields targeted nanomedicines publication-title: Nat. Mater. – volume: 30 start-page: 2000229 year: 2020 ident: b0100 article-title: Tumor-Microenvironment-activated in situ self-assembly of sequentially responsive biopolymer for targeted photodynamic therapy publication-title: Adv. Funct. Mater. – volume: 25 start-page: iii1 year: 2014 end-page: iii9 ident: b0015 article-title: Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up publication-title: Ann. Oncol. – volume: 135 start-page: 1487 year: 2014 end-page: 1496 ident: b0165 article-title: Regorafenib (BAY 73–4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer publication-title: Int. J. Cancer – volume: 25 start-page: 85 year: 2019 end-page: 98 ident: b0085 article-title: Clinical cancer nanomedicine publication-title: Nano Today – volume: 2 start-page: 100050 year: 2020 ident: b0075 article-title: Advances in drug delivery systems: Work in progress still needed? publication-title: Int. J. Pharm. X – volume: 8 start-page: 2 year: 2009 ident: b0155 article-title: Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy publication-title: Mol. Cancer – volume: 324 start-page: 250 year: 2020 end-page: 259 ident: b0145 article-title: Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy publication-title: J. Control. Release – volume: 24 start-page: 410 year: 2013 end-page: 421 ident: b0010 article-title: Origins of metastatic traits publication-title: Cancer Cell – volume: 8 start-page: 2002020 year: 2021 ident: b0180 article-title: A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines publication-title: Adv. Sci. (Weinh). – volume: 381 start-page: 303 year: 2013 end-page: 312 ident: b0055 article-title: CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial publication-title: Lancet – volume: 64 start-page: 7099 year: 2004 end-page: 7109 ident: b0060 article-title: BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis publication-title: Cancer Res. – volume: 53 start-page: 12320 year: 2014 end-page: 12364 ident: b0080 article-title: Engineered nanoparticles for drug delivery in cancer therapy publication-title: Angew. Chem. Int. Ed. Engl. – volume: 64 start-page: 1738 year: 2012 end-page: 1748 ident: b0115 article-title: Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles publication-title: Adv. Drug Deliv. Rev. – volume: 6 start-page: 1442 year: 2010 end-page: 1448 ident: b0125 article-title: Combinatorial Drug Conjugation enables nanoparticle dual-drug delivery publication-title: Small – volume: 51 start-page: 1113 year: 2019 end-page: 1122 ident: b0020 article-title: Quantitative evidence for early metastatic seeding in colorectal cancer publication-title: Nat. Genet. – volume: 119 start-page: 5913 year: 2018 end-page: 5920 ident: b0190 article-title: Significance of Notch and Wnt signaling for chemoresistance of colorectal cancer cells HCT116 publication-title: J. Cell. Biochem. – volume: 154 start-page: 433 year: 2020 end-page: 445 ident: b0070 article-title: Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review publication-title: Int. J. Biol. Macromol. – volume: 59 start-page: 22296 year: 2020 end-page: 22305 ident: b0120 article-title: Introducing tox-profiles of chemical reactions publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 43508 year: 2017 end-page: 43519 ident: b0135 article-title: A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-infrared cancer theranostics publication-title: ACS Appl. Mater. Inter. – volume: 12 start-page: 1322 year: 2013 end-page: 1331 ident: b0160 article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model publication-title: Mol. Cancer. Ther. – volume: 153 start-page: 61 year: 2017 end-page: 68 ident: b0065 article-title: Evaluation of molecular chaperone drug function: Regorafenib and beta-cyclodextrins publication-title: Colloids Surf. B Biointerfaces – volume: 10 start-page: 34618 year: 2018 end-page: 34624 ident: b0175 article-title: Composite multifunctional micromotors from droplet microfluidics publication-title: ACS Appl. Mater. Inter. – volume: 11 start-page: 43996 year: 2019 end-page: 44006 ident: b0140 article-title: Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis publication-title: ACS Appl. Mater. Inter. – volume: 115 start-page: 4465 year: 2018 end-page: 4470 ident: b0150 article-title: Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 59 start-page: 22296 issue: 50 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0120 article-title: Introducing tox-profiles of chemical reactions publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202003082 – volume: 15 start-page: 1065 issue: 10 year: 2014 ident: 10.1016/j.jcis.2021.08.179_b0040 article-title: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70330-4 – volume: 53 start-page: 12320 year: 2014 ident: 10.1016/j.jcis.2021.08.179_b0080 article-title: Engineered nanoparticles for drug delivery in cancer therapy publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201403036 – volume: 11 start-page: 43996 issue: 47 year: 2019 ident: 10.1016/j.jcis.2021.08.179_b0140 article-title: Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b18086 – volume: 115 start-page: 4465 issue: 17 year: 2018 ident: 10.1016/j.jcis.2021.08.179_b0150 article-title: Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718917115 – volume: 30 start-page: 2000229 issue: 40 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0100 article-title: Tumor-Microenvironment-activated in situ self-assembly of sequentially responsive biopolymer for targeted photodynamic therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000229 – volume: 135 start-page: 1487 issue: 6 year: 2014 ident: 10.1016/j.jcis.2021.08.179_b0165 article-title: Regorafenib (BAY 73–4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.28669 – volume: 16 start-page: 1306 issue: 13 year: 2015 ident: 10.1016/j.jcis.2021.08.179_b0045 article-title: FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(15)00122-9 – volume: 47 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.jcis.2021.08.179_b0185 article-title: Quantitation of lysosomal trapping of basic lipophilic compounds using in vitro assays and in silico predictions based on the determination of the full pH profile of the endo-/lysosomal system in rat hepatocytes publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.118.084541 – volume: 6 start-page: 1442 issue: 13 year: 2010 ident: 10.1016/j.jcis.2021.08.179_b0125 article-title: Combinatorial Drug Conjugation enables nanoparticle dual-drug delivery publication-title: Small doi: 10.1002/smll.201000631 – volume: 17 start-page: 361 issue: 4 year: 2018 ident: 10.1016/j.jcis.2021.08.179_b0130 article-title: Quantitative self-assembly prediction yields targeted nanomedicines publication-title: Nat. Mater. doi: 10.1038/s41563-017-0007-z – volume: 154 start-page: 433 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0070 article-title: Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.03.148 – volume: 11 start-page: 972 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0105 article-title: Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy publication-title: Nat. Commun. doi: 10.1038/s41467-020-14780-5 – volume: 64 start-page: 7099 year: 2004 ident: 10.1016/j.jcis.2021.08.179_b0060 article-title: BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-1443 – volume: 223 start-page: 119475 year: 2019 ident: 10.1016/j.jcis.2021.08.179_b0170 article-title: Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119475 – volume: 8 start-page: 2002020 issue: 15 year: 2021 ident: 10.1016/j.jcis.2021.08.179_b0180 article-title: A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines publication-title: Adv. Sci. (Weinh). doi: 10.1002/advs.202002020 – volume: 9 start-page: 43508 issue: 50 year: 2017 ident: 10.1016/j.jcis.2021.08.179_b0135 article-title: A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergistic near-infrared cancer theranostics publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b14755 – volume: 8 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.jcis.2021.08.179_b0155 article-title: Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy publication-title: Mol. Cancer doi: 10.1186/1476-4598-8-2 – volume: 68 start-page: 394 year: 2018 ident: 10.1016/j.jcis.2021.08.179_b0005 article-title: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 24 start-page: 410 issue: 4 year: 2013 ident: 10.1016/j.jcis.2021.08.179_b0010 article-title: Origins of metastatic traits publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.09.007 – volume: 51 start-page: 1113 issue: 7 year: 2019 ident: 10.1016/j.jcis.2021.08.179_b0020 article-title: Quantitative evidence for early metastatic seeding in colorectal cancer publication-title: Nat. Genet. doi: 10.1038/s41588-019-0423-x – volume: 25 start-page: iii1 year: 2014 ident: 10.1016/j.jcis.2021.08.179_b0015 article-title: Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu260 – ident: 10.1016/j.jcis.2021.08.179_b0025 – volume: 25 start-page: 85 year: 2019 ident: 10.1016/j.jcis.2021.08.179_b0085 article-title: Clinical cancer nanomedicine publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.005 – volume: 153 start-page: 61 year: 2017 ident: 10.1016/j.jcis.2021.08.179_b0065 article-title: Evaluation of molecular chaperone drug function: Regorafenib and beta-cyclodextrins publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.02.006 – volume: 593 start-page: 424 year: 2021 ident: 10.1016/j.jcis.2021.08.179_b0090 article-title: Engineering of dendritic mesoporous silica nanoparticles for efficient delivery of water-insoluble paclitaxel in cancer therapy publication-title: J. of Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.098 – ident: 10.1016/j.jcis.2021.08.179_b0030 – volume: 239 start-page: 211 year: 2016 ident: 10.1016/j.jcis.2021.08.179_b0095 article-title: Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery publication-title: J. Control Release doi: 10.1016/j.jconrel.2016.08.038 – volume: 12 start-page: 1322 issue: 7 year: 2013 ident: 10.1016/j.jcis.2021.08.179_b0160 article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model publication-title: Mol. Cancer. Ther. doi: 10.1158/1535-7163.MCT-12-1162 – volume: 10 start-page: 34618 issue: 40 year: 2018 ident: 10.1016/j.jcis.2021.08.179_b0175 article-title: Composite multifunctional micromotors from droplet microfluidics publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b11976 – volume: 129 start-page: 245 issue: 1 year: 2011 ident: 10.1016/j.jcis.2021.08.179_b0050 article-title: Regorafenib (BAY 73–4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity publication-title: Int. J. Cancer doi: 10.1002/ijc.25864 – volume: 2 start-page: 100050 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0075 article-title: Advances in drug delivery systems: Work in progress still needed? publication-title: Int. J. Pharm. X – volume: 25 start-page: 1670 year: 2007 ident: 10.1016/j.jcis.2021.08.179_b0035 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.09.0928 – volume: 64 start-page: 1738 issue: 15 year: 2012 ident: 10.1016/j.jcis.2021.08.179_b0115 article-title: Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.06.013 – volume: 381 start-page: 303 issue: 9863 year: 2013 ident: 10.1016/j.jcis.2021.08.179_b0055 article-title: CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(12)61900-X – volume: 324 start-page: 250 year: 2020 ident: 10.1016/j.jcis.2021.08.179_b0145 article-title: Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.05.018 – volume: 11 start-page: 467 issue: 2 year: 2015 ident: 10.1016/j.jcis.2021.08.179_b0110 article-title: In vivo toxicity of cationic micelles and liposomes publication-title: Nanomedicine doi: 10.1016/j.nano.2014.08.004 – volume: 119 start-page: 5913 issue: 7 year: 2018 ident: 10.1016/j.jcis.2021.08.179_b0190 article-title: Significance of Notch and Wnt signaling for chemoresistance of colorectal cancer cells HCT116 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26783 |
SSID | ssj0011559 |
Score | 2.4106317 |
Snippet | A regorafenib nanodrug is prepared by self-assembly using regorafenib and clinically approved indocyanine green, which sufficiently delivers regorafenib into... Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 229 |
SubjectTerms | Advanced colorectal cancer bioavailability blood circulation colorectal neoplasms Drug delivery encapsulation fluorescent dyes hydrophobicity intravenous injection liver metastasis mortality Nanodrug Regorafenib Self-assembly |
Title | Improving regorafenib's organ target precision via nano-assembly to change its delivery mode abolishes chemoresistance and liver metastasis of colorectal cancer |
URI | https://dx.doi.org/10.1016/j.jcis.2021.08.179 https://www.proquest.com/docview/2571927121 https://www.proquest.com/docview/2636504741 |
Volume | 607 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqI8qgGCYkDMl07jpM9ViuqBaSeqNSb5aeUapusdlOkXvgt_FRmnGQFCO2BqzNWEs9k5nP8zQxj7xKBBtx1cee05sr6wN0sOC5VwuheJGrtQGyLC728VF-uyqsDtphyYYhWOfr-wadnbz2OnI6rebpuGsrxxa-touozRFYsyA8rVZGVf_yxo3kIOnYbaB6Ck_SYODNwvK59QyW7ZS7jKYjO9e_g9JebzrHn_DF7NIJGOBue6wk7iO0Ru7-YerUdsYe_lRV8yn7u_hRAzkCxKbaNe7-F3MIJBvI3rDdjex343lhobdtxBNLxxq3uoO9gyAiGpt9CiCtib9wBtc0BtJpMpN-iSKbpbgmC4rqBbQNkSbiJvcVBvAJdAiqMTYuMr-BJcPOMXZ5_-rZY8rETA_eF1j2P0SWptE1Cl3JWzysEZT56a-ugcUx6h6qeK1Rynebal4XyKtbChjSTNohQPGeHbdfGFwxQzCn0sLIqg0K0UONuvpiXqRTOCoSjx0xMKjB-LFNO3TJWZuKjXRtSmyG1mVltUG3H7MNuznoo0rFXupw0a_4wNYNRZO-8t5MZGFQvHazYNna3KFRWCJQrIcUeGV0gGFYI4F7-5_1fsQeSci8yZfw1O-w3t_ENIqLenWSTP2H3zj5_XV78Ak2LDp0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BatwwEBVhc0h7KE3a0jRtOoVCD8VkZUuy9xiWhk2T7imB3IQkS-CwsZddJ5C_yadmRraXtpQ99CqPsK2RRs_WmzeMfQ0EGvCrK7FWqUQYVyZ2XNokFQF39yxQaQdiW8zV7Fr8vJE3O2w65MIQrbKP_V1Mj9G6bznpR_NkWVWU44urLSf1GSIrZhiHd0mdSo7Y7un5xWy-OUygk7eO6cET6tDnznQ0r1tXkWp3GpU8OTG6_r0__RWp4_Zz9pq96nEjnHaPts92fH3A9qZDubYD9vI3ZcE37GnzswBiEooJvq7stzXEKk7Q8b9hueor7MBDZaA2dZMglvZ3dvEIbQNdUjBU7RpKvyACxyNQ5RzAiRO59Gs0iUzdNaFQHDowdQnREu58a7ARr0ATgLSxaZzxFRwZrt6y67MfV9NZ0hdjSFymVJt4b0MqlAlcyXRcTHLEZc47Y4pSYVvqLHp7ItDPRZgoJzPhhC-4KcM4NSUvs3dsVDe1f88AzazAIJvmshQIGAr8oM8mMkhuDUdEesj44ALteqVyKpix0AMl7VaT2zS5TY8LjW47ZN83fZadTsdWazl4Vv8x2zRuJFv7fRmmgUb30tmKqX1zj0YyR6yc85RvsVEZ4mGBGO7Df97_M9ubXf261Jfn84sj9iKlVIzIIP_IRu3q3n9CgNTa434BPAN96xFO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+regorafenib%27s+organ+target+precision+via+nano-assembly+to+change+its+delivery+mode+abolishes+chemoresistance+and+liver+metastasis+of+colorectal+cancer&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Jia&rft.au=Fu%2C+Daan&rft.au=Wang%2C+Kang&rft.au=Yuan%2C+Ye&rft.date=2022-02-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=607&rft.spage=229&rft.epage=241&rft_id=info:doi/10.1016%2Fj.jcis.2021.08.179&rft.externalDocID=S0021979721014132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |