Spatially Enhanced Spectral Unmixing Through Data Fusion of Spectral and Visible Images from Different Sensors

We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolutio...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 8; p. 1255
Main Authors Kizel, Fadi, Benediktsson, Jón Atli
Format Journal Article
LanguageEnglish
Published MDPI AG 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolution and a visible RGB image of high spatial resolution. Unlike commonly used methods, DFuSIAL allows for fusing data from different sensors. To achieve this objective, we apply a learning process using automatically extracted invariant points, which are assumed to have the same land cover type in both images. First, we estimate the fraction maps of a set of endmembers for the spectral image. Then, we train a spatial-features aided neural network (SFFAN) to learn the relationship between the fractions, the visible bands, and rotation-invariant spatial features for learning (RISFLs) that we extract from the RGB image. Our experiments show that the proposed DFuSIAL method obtains fraction maps with significantly enhanced spatial resolution and an average mean absolute error between 2% and 4% compared to the reference ground truth. Furthermore, it is shown that the proposed method is preferable to other examined state-of-the-art methods, especially when data is obtained from different instruments and in cases with missing-data pixels.
AbstractList We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolution and a visible RGB image of high spatial resolution. Unlike commonly used methods, DFuSIAL allows for fusing data from different sensors. To achieve this objective, we apply a learning process using automatically extracted invariant points, which are assumed to have the same land cover type in both images. First, we estimate the fraction maps of a set of endmembers for the spectral image. Then, we train a spatial-features aided neural network (SFFAN) to learn the relationship between the fractions, the visible bands, and rotation-invariant spatial features for learning (RISFLs) that we extract from the RGB image. Our experiments show that the proposed DFuSIAL method obtains fraction maps with significantly enhanced spatial resolution and an average mean absolute error between 2% and 4% compared to the reference ground truth. Furthermore, it is shown that the proposed method is preferable to other examined state-of-the-art methods, especially when data is obtained from different instruments and in cases with missing-data pixels.
Author Benediktsson, Jón Atli
Kizel, Fadi
Author_xml – sequence: 1
  givenname: Fadi
  orcidid: 0000-0002-0821-296X
  surname: Kizel
  fullname: Kizel, Fadi
– sequence: 2
  givenname: Jón Atli
  orcidid: 0000-0003-0621-9647
  surname: Benediktsson
  fullname: Benediktsson, Jón Atli
BookMark eNptUctqHDEQFMGBOI4v-QIdQ2ATvWfmGPyIFww5rJ2raEmtXZkZaSPNQvz3nmQdHEL60k1TVXRXvSUnuWQk5D1nn6Qc2OfauGA9F1q_IqeCdWKlxCBO_prfkPPWHthSUvKBqVOSN3uYE4zjI73KO8geA93s0c8VRnqfp_Qz5S2929Vy2O7oJcxArw8tlUxLfAFCDvR7asmNSNcTbLHRWMtEL1OMWDHPdIO5ldrekdcRxobnz_2M3F9f3V3crG6_fV1ffLldeWnMvEIfjNIe-x6Z6gfudXTGmY5HA9obpjuhwYXlWymkDOiMVBxcDBij172XZ2R91A0FHuy-pgnqoy2Q7O9FqVsLdU5-RKtCNH5gPMiuU1JLEIjYRQfOGVCDWrQ-HLX2tfw4YJvtlJrHcYSM5dCsGHrDpRScL1B2hPpaWqsYrU_z4m_Ji01ptJzZX0nZl6QWysd_KH-u_Q_4CbO4lsc
CitedBy_id crossref_primary_10_3390_rs14051119
crossref_primary_10_1080_01431161_2022_2040755
crossref_primary_10_3390_rs12203387
crossref_primary_10_3390_rs13183592
crossref_primary_10_3390_rs13081473
crossref_primary_10_3390_rs13081550
crossref_primary_10_3390_rs16152808
crossref_primary_10_3390_rs14020383
Cites_doi 10.1109/TGRS.2003.820314
10.1126/science.228.4704.1147
10.1016/j.neunet.2009.07.002
10.1109/ICCV.2011.6126542
10.1117/1.1813441
10.1109/TGRS.2018.2817393
10.1109/IJCNN.2006.246777
10.1016/j.image.2019.03.004
10.1016/j.inffus.2018.05.006
10.1109/MGRS.2015.2440094
10.1109/TGRS.2005.844293
10.1007/11744023_32
10.1023/B:VISI.0000029664.99615.94
10.1109/36.843007
10.1016/S0169-7439(97)00061-0
10.3390/rs8070594
10.1109/ICCV.2017.193
10.1109/JSTARS.2012.2194696
10.1016/j.isprsjprs.2018.01.016
10.1109/JSTARS.2019.2901122
10.1016/j.isprsjprs.2018.03.021
10.1117/12.267840
10.1109/TGRS.2018.2810208
10.3390/app10010238
10.1109/WHISPERS.2010.5594963
10.1021/ci034160g
10.1109/LGRS.2013.2257669
10.1002/jcc.24764
10.3390/s8095576
10.1002/cyto.a.20311
10.1109/LGRS.2017.2668299
10.1145/358669.358692
10.3390/rs12010094
10.1109/LGRS.2014.2376034
10.1109/JSTARS.2020.2975000
10.1109/TGRS.2017.2692999
10.1109/LGRS.2010.2101578
10.1109/TGRS.2010.2098413
10.1109/LGRS.2014.2353135
10.3390/rs12030348
10.1109/WHISPERS.2018.8747053
10.3390/rs12040676
10.1109/TIP.2011.2175739
10.1016/j.isprsjprs.2007.05.009
10.1162/neco.2006.18.7.1527
10.1016/j.rse.2014.03.034
10.1080/014311699211994
10.1109/TGRS.2004.840720
10.1109/79.974724
10.1109/JSTARS.2018.2794888
10.1109/72.329697
10.1109/TGRS.2010.2051674
10.1109/TGRS.2016.2606324
10.3390/rs11222606
10.1109/36.763274
10.1109/JSTARS.2018.2804666
10.1109/JSTARS.2019.2898574
10.3390/rs11222608
10.1109/TGRS.2017.2656162
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12081255
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494
10_3390_rs12081255
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-ecd645ce88e04891c5fb6b671f6a5c605725abd2083233deb6341abfdeffc58c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:16 EDT 2025
Thu Jul 10 22:21:46 EDT 2025
Tue Jul 01 04:15:04 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-ecd645ce88e04891c5fb6b671f6a5c605725abd2083233deb6341abfdeffc58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0821-296X
0000-0003-0621-9647
OpenAccessLink https://doaj.org/article/4df6c901d3774353a2eee7fbabb6a494
PQID 2986133211
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494
proquest_miscellaneous_2986133211
crossref_citationtrail_10_3390_rs12081255
crossref_primary_10_3390_rs12081255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Manolakis (ref_5) 2002; 19
Khoshsokhan (ref_57) 2019; 12
Meng (ref_11) 2019; 46
Garini (ref_2) 2006; 69
Chang (ref_37) 2000; 38
Guo (ref_23) 2020; 13
Ye (ref_22) 2019; 74
Kizel (ref_51) 2018; 11
Amolins (ref_15) 2007; 62
ref_56
ref_55
Huang (ref_18) 2015; 12
ref_19
Svetnik (ref_63) 2003; 43
Palsson (ref_20) 2017; 14
ref_17
ref_59
Zhao (ref_54) 2012; 21
Wald (ref_60) 1997; 63
Boreman (ref_1) 2005; 44
Markham (ref_36) 2004; 42
Smith (ref_50) 1999; 20
Goetz (ref_3) 1985; 228
ref_25
Palsson (ref_16) 2014; 11
Goh (ref_31) 2017; 38
Loncan (ref_10) 2015; 3
ref_29
ref_28
ref_27
Shi (ref_41) 2014; 149
Scarpa (ref_26) 2018; 56
Svozil (ref_52) 1997; 39
Peng (ref_62) 2010; 23
Lowe (ref_35) 2004; 60
Nascimento (ref_58) 2005; 43
ref_34
Nunez (ref_14) 1999; 37
Plaza (ref_42) 2004; 42
Zhang (ref_44) 2018; 56
ref_32
Gao (ref_43) 2017; 55
Netanyahu (ref_39) 2011; 8
Xing (ref_21) 2018; 145
Kizel (ref_49) 2018; 141
Hagan (ref_53) 1994; 5
Shahdoosti (ref_61) 2015; 12
Choi (ref_13) 2011; 49
Klein (ref_7) 2008; 8
Aiazzi (ref_33) 2017; 55
ref_47
ref_46
Shaw (ref_6) 2003; 14
Hinton (ref_30) 2006; 18
Fischler (ref_45) 1981; 24
Iordache (ref_40) 2011; 49
Kizel (ref_38) 2017; 55
Yuan (ref_12) 2018; 11
He (ref_24) 2019; 12
ref_48
ref_9
Plaza (ref_8) 2012; 5
ref_4
References_xml – volume: 42
  start-page: 650
  year: 2004
  ident: ref_42
  article-title: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.820314
– volume: 228
  start-page: 1147
  year: 1985
  ident: ref_3
  article-title: Imaging spectrometry for Earth remote sensing
  publication-title: Science
  doi: 10.1126/science.228.4704.1147
– ident: ref_55
– volume: 23
  start-page: 365
  year: 2010
  ident: ref_62
  article-title: TSVR: An efficient twin support vector machine for regression
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.07.002
– ident: ref_48
  doi: 10.1109/ICCV.2011.6126542
– volume: 44
  start-page: 013602
  year: 2005
  ident: ref_1
  article-title: Classification of imaging spectrometers for remote sensing applications
  publication-title: Opt. Eng.
  doi: 10.1117/1.1813441
– volume: 56
  start-page: 5443
  year: 2018
  ident: ref_26
  article-title: Target-adaptive CNN-based pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2817393
– ident: ref_17
  doi: 10.1109/IJCNN.2006.246777
– volume: 74
  start-page: 322
  year: 2019
  ident: ref_22
  article-title: Pan-sharpening via a gradient-based deep network prior
  publication-title: Signal. Process. Image Commun.
  doi: 10.1016/j.image.2019.03.004
– volume: 46
  start-page: 102
  year: 2019
  ident: ref_11
  article-title: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.05.006
– volume: 3
  start-page: 27
  year: 2015
  ident: ref_10
  article-title: Hyperspectral pansharpening: A review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2440094
– volume: 43
  start-page: 898
  year: 2005
  ident: ref_58
  article-title: Vertex component analysis: A fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– ident: ref_47
  doi: 10.1007/11744023_32
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_35
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 38
  start-page: 1144
  year: 2000
  ident: ref_37
  article-title: Constrained subpixel target detection for remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.843007
– volume: 39
  start-page: 43
  year: 1997
  ident: ref_52
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– ident: ref_25
  doi: 10.3390/rs8070594
– ident: ref_56
– ident: ref_19
  doi: 10.1109/ICCV.2017.193
– volume: 5
  start-page: 354
  year: 2012
  ident: ref_8
  article-title: Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– volume: 145
  start-page: 165
  year: 2018
  ident: ref_21
  article-title: Pan-sharpening via deep metric learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.016
– volume: 12
  start-page: 1279
  year: 2019
  ident: ref_57
  article-title: Sparsity-constrained distributed unmixing of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2901122
– volume: 141
  start-page: 185
  year: 2018
  ident: ref_49
  article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2 D. Gaussians
  publication-title: Isprs J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.021
– ident: ref_4
  doi: 10.1117/12.267840
– volume: 56
  start-page: 4274
  year: 2018
  ident: ref_44
  article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2810208
– ident: ref_34
  doi: 10.3390/app10010238
– ident: ref_59
  doi: 10.1109/WHISPERS.2010.5594963
– volume: 43
  start-page: 1947
  year: 2003
  ident: ref_63
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– volume: 11
  start-page: 318
  year: 2014
  ident: ref_16
  article-title: A new pansharpening algorithm based on total variation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2257669
– volume: 38
  start-page: 1291
  year: 2017
  ident: ref_31
  article-title: Deep learning for computational chemistry
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24764
– volume: 63
  start-page: 691
  year: 1997
  ident: ref_60
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 8
  start-page: 5576
  year: 2008
  ident: ref_7
  article-title: Quantitative hyperspectral reflectance imaging
  publication-title: Sensors
  doi: 10.3390/s8095576
– volume: 69
  start-page: 735
  year: 2006
  ident: ref_2
  article-title: Spectral imaging: Principles and applications
  publication-title: Cytom. Part. A
  doi: 10.1002/cyto.a.20311
– volume: 14
  start-page: 639
  year: 2017
  ident: ref_20
  article-title: Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2668299
– volume: 24
  start-page: 381
  year: 1981
  ident: ref_45
  article-title: Random sample consensus
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– ident: ref_9
  doi: 10.3390/rs12010094
– volume: 12
  start-page: 1037
  year: 2015
  ident: ref_18
  article-title: A new pan-sharpening method with deep neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2376034
– volume: 13
  start-page: 950
  year: 2020
  ident: ref_23
  article-title: Bayesian Pan-Sharpening With Multiorder Gradient-Based Deep Network Constraints
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2975000
– volume: 55
  start-page: 4925
  year: 2017
  ident: ref_38
  article-title: A stepwise analytical projected gradient descent search for hyperspectral unmixing and its code vectorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2692999
– volume: 8
  start-page: 706
  year: 2011
  ident: ref_39
  article-title: An iterative search in end-member fraction space for spectral unmixing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2101578
– volume: 49
  start-page: 2014
  year: 2011
  ident: ref_40
  article-title: Sparse unmixing of hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2098413
– volume: 12
  start-page: 611
  year: 2015
  ident: ref_61
  article-title: Fusion of MS and PAN images preserving spectral quality
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2353135
– ident: ref_28
  doi: 10.3390/rs12030348
– ident: ref_46
  doi: 10.1109/WHISPERS.2018.8747053
– volume: 14
  start-page: 3
  year: 2003
  ident: ref_6
  article-title: Spectral imaging for remote sensing
  publication-title: Linc. Lab. J.
– ident: ref_29
  doi: 10.3390/rs12040676
– volume: 21
  start-page: 1465
  year: 2012
  ident: ref_54
  article-title: Rotation-invariant image and video description with local binary pattern features
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2175739
– volume: 62
  start-page: 249
  year: 2007
  ident: ref_15
  article-title: Wavelet based image fusion techniques—An introduction, review and comparison
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.05.009
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_30
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 149
  start-page: 70
  year: 2014
  ident: ref_41
  article-title: Incorporating spatial information in spectral unmixing: A review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.034
– volume: 20
  start-page: 2653
  year: 1999
  ident: ref_50
  article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699211994
– volume: 42
  start-page: 2691
  year: 2004
  ident: ref_36
  article-title: Landsat sensor performance: History and current status
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.840720
– volume: 19
  start-page: 29
  year: 2002
  ident: ref_5
  article-title: Detection algorithms for hyperspectral imaging applications
  publication-title: IEEE Signal. Process. Mag.
  doi: 10.1109/79.974724
– volume: 11
  start-page: 978
  year: 2018
  ident: ref_12
  article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2794888
– volume: 5
  start-page: 989
  year: 1994
  ident: ref_53
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 49
  start-page: 295
  year: 2011
  ident: ref_13
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051674
– volume: 55
  start-page: 308
  year: 2017
  ident: ref_33
  article-title: Sensitivity of pansharpening methods to temporal and instrumental changes between multispectral and panchromatic data sets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2606324
– ident: ref_27
  doi: 10.3390/rs11222606
– volume: 37
  start-page: 1204
  year: 1999
  ident: ref_14
  article-title: Multiresolution-based image fusion with additive wavelet decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763274
– volume: 11
  start-page: 2047
  year: 2018
  ident: ref_51
  article-title: Simultaneous and constrained calibration of multiple hyperspectral images through a new generalized empirical line model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2804666
– volume: 12
  start-page: 1188
  year: 2019
  ident: ref_24
  article-title: Pansharpening via detail injection based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2898574
– ident: ref_32
  doi: 10.3390/rs11222608
– volume: 55
  start-page: 3656
  year: 2017
  ident: ref_43
  article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2656162
SSID ssj0000331904
Score 2.2991924
Snippet We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1255
SubjectTerms data fusion
land cover
learning
multispectral imagery
multispectral images
remote sensing
spatial information
spatial resolution
spectral unmixing
Title Spatially Enhanced Spectral Unmixing Through Data Fusion of Spectral and Visible Images from Different Sensors
URI https://www.proquest.com/docview/2986133211
https://doaj.org/article/4df6c901d3774353a2eee7fbabb6a494
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7g-lohePBTdpE3To7q7PlARdcVbyWOCwtqV3S7ov3eSVl1Q8OKp0A60TL7MzJek8xGyJ2LrV40RvDo1SFCsjFTMWeSskc5JhAGEA7LX4qwXXzwmjxNSX_5MWNUeuHLcQWydMJi0LMdChSdcMQBInVZaCxVnoRMo5rwJMhViMEdoHcZVP1KOvP5gOGoxTH_M_9M3kYFCo_4fcTgkl-4iWairQnpUfc0SmYJimczVAuVP7yuk8NLBCJX-O-0UT2HXnnrpeL9OQXvFy_MbpiB6X4nu0LYqFe2O_UIYHbhvQ1VY-vCMk6AP9PwFI8mI-t9LaLtWSSnpHbLawXC0Snrdzv3JWVRLJUSGC1FGYKyIEwNSAk7JrGUSp4UWacsJlRikLClLlLboAc44t6AFZi-lnQXnTCINXyMzxaCAdULxSZY65rDwUDFgPGRKtSDNZMZSwAKjQfY_3Zebuo-4l7Po58gnvKvzb1c3yO6X7WvVPeNXq2M_Cl8WvuN1uIE4yGsc5H_hoEF2Pscwxxnitz1UAYPxKGeZxJqFI9Pd-I8XbZJ55jl3OL2zRWbK4Ri2sTApdZNMy-5pk8weta8u7_B63Lm-uW0GZH4AIMPmiQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Enhanced+Spectral+Unmixing+Through+Data+Fusion+of+Spectral+and+Visible+Images+from+Different+Sensors&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fadi+Kizel&rft.au=J%C3%B3n+Atli+Benediktsson&rft.date=2020-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=8&rft.spage=1255&rft_id=info:doi/10.3390%2Frs12081255&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon