Spatially Enhanced Spectral Unmixing Through Data Fusion of Spectral and Visible Images from Different Sensors
We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolutio...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 8; p. 1255 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolution and a visible RGB image of high spatial resolution. Unlike commonly used methods, DFuSIAL allows for fusing data from different sensors. To achieve this objective, we apply a learning process using automatically extracted invariant points, which are assumed to have the same land cover type in both images. First, we estimate the fraction maps of a set of endmembers for the spectral image. Then, we train a spatial-features aided neural network (SFFAN) to learn the relationship between the fractions, the visible bands, and rotation-invariant spatial features for learning (RISFLs) that we extract from the RGB image. Our experiments show that the proposed DFuSIAL method obtains fraction maps with significantly enhanced spatial resolution and an average mean absolute error between 2% and 4% compared to the reference ground truth. Furthermore, it is shown that the proposed method is preferable to other examined state-of-the-art methods, especially when data is obtained from different instruments and in cases with missing-data pixels. |
---|---|
AbstractList | We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through spatial information-aided learning (DFuSIAL), is based on a learning process for the fusion of a multispectral image of low spatial resolution and a visible RGB image of high spatial resolution. Unlike commonly used methods, DFuSIAL allows for fusing data from different sensors. To achieve this objective, we apply a learning process using automatically extracted invariant points, which are assumed to have the same land cover type in both images. First, we estimate the fraction maps of a set of endmembers for the spectral image. Then, we train a spatial-features aided neural network (SFFAN) to learn the relationship between the fractions, the visible bands, and rotation-invariant spatial features for learning (RISFLs) that we extract from the RGB image. Our experiments show that the proposed DFuSIAL method obtains fraction maps with significantly enhanced spatial resolution and an average mean absolute error between 2% and 4% compared to the reference ground truth. Furthermore, it is shown that the proposed method is preferable to other examined state-of-the-art methods, especially when data is obtained from different instruments and in cases with missing-data pixels. |
Author | Benediktsson, Jón Atli Kizel, Fadi |
Author_xml | – sequence: 1 givenname: Fadi orcidid: 0000-0002-0821-296X surname: Kizel fullname: Kizel, Fadi – sequence: 2 givenname: Jón Atli orcidid: 0000-0003-0621-9647 surname: Benediktsson fullname: Benediktsson, Jón Atli |
BookMark | eNptUctqHDEQFMGBOI4v-QIdQ2ATvWfmGPyIFww5rJ2raEmtXZkZaSPNQvz3nmQdHEL60k1TVXRXvSUnuWQk5D1nn6Qc2OfauGA9F1q_IqeCdWKlxCBO_prfkPPWHthSUvKBqVOSN3uYE4zjI73KO8geA93s0c8VRnqfp_Qz5S2929Vy2O7oJcxArw8tlUxLfAFCDvR7asmNSNcTbLHRWMtEL1OMWDHPdIO5ldrekdcRxobnz_2M3F9f3V3crG6_fV1ffLldeWnMvEIfjNIe-x6Z6gfudXTGmY5HA9obpjuhwYXlWymkDOiMVBxcDBij172XZ2R91A0FHuy-pgnqoy2Q7O9FqVsLdU5-RKtCNH5gPMiuU1JLEIjYRQfOGVCDWrQ-HLX2tfw4YJvtlJrHcYSM5dCsGHrDpRScL1B2hPpaWqsYrU_z4m_Ji01ptJzZX0nZl6QWysd_KH-u_Q_4CbO4lsc |
CitedBy_id | crossref_primary_10_3390_rs14051119 crossref_primary_10_1080_01431161_2022_2040755 crossref_primary_10_3390_rs12203387 crossref_primary_10_3390_rs13183592 crossref_primary_10_3390_rs13081473 crossref_primary_10_3390_rs13081550 crossref_primary_10_3390_rs16152808 crossref_primary_10_3390_rs14020383 |
Cites_doi | 10.1109/TGRS.2003.820314 10.1126/science.228.4704.1147 10.1016/j.neunet.2009.07.002 10.1109/ICCV.2011.6126542 10.1117/1.1813441 10.1109/TGRS.2018.2817393 10.1109/IJCNN.2006.246777 10.1016/j.image.2019.03.004 10.1016/j.inffus.2018.05.006 10.1109/MGRS.2015.2440094 10.1109/TGRS.2005.844293 10.1007/11744023_32 10.1023/B:VISI.0000029664.99615.94 10.1109/36.843007 10.1016/S0169-7439(97)00061-0 10.3390/rs8070594 10.1109/ICCV.2017.193 10.1109/JSTARS.2012.2194696 10.1016/j.isprsjprs.2018.01.016 10.1109/JSTARS.2019.2901122 10.1016/j.isprsjprs.2018.03.021 10.1117/12.267840 10.1109/TGRS.2018.2810208 10.3390/app10010238 10.1109/WHISPERS.2010.5594963 10.1021/ci034160g 10.1109/LGRS.2013.2257669 10.1002/jcc.24764 10.3390/s8095576 10.1002/cyto.a.20311 10.1109/LGRS.2017.2668299 10.1145/358669.358692 10.3390/rs12010094 10.1109/LGRS.2014.2376034 10.1109/JSTARS.2020.2975000 10.1109/TGRS.2017.2692999 10.1109/LGRS.2010.2101578 10.1109/TGRS.2010.2098413 10.1109/LGRS.2014.2353135 10.3390/rs12030348 10.1109/WHISPERS.2018.8747053 10.3390/rs12040676 10.1109/TIP.2011.2175739 10.1016/j.isprsjprs.2007.05.009 10.1162/neco.2006.18.7.1527 10.1016/j.rse.2014.03.034 10.1080/014311699211994 10.1109/TGRS.2004.840720 10.1109/79.974724 10.1109/JSTARS.2018.2794888 10.1109/72.329697 10.1109/TGRS.2010.2051674 10.1109/TGRS.2016.2606324 10.3390/rs11222606 10.1109/36.763274 10.1109/JSTARS.2018.2804666 10.1109/JSTARS.2019.2898574 10.3390/rs11222608 10.1109/TGRS.2017.2656162 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs12081255 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494 10_3390_rs12081255 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-ecd645ce88e04891c5fb6b671f6a5c605725abd2083233deb6341abfdeffc58c3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:16 EDT 2025 Thu Jul 10 22:21:46 EDT 2025 Tue Jul 01 04:15:04 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-ecd645ce88e04891c5fb6b671f6a5c605725abd2083233deb6341abfdeffc58c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0821-296X 0000-0003-0621-9647 |
OpenAccessLink | https://doaj.org/article/4df6c901d3774353a2eee7fbabb6a494 |
PQID | 2986133211 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494 proquest_miscellaneous_2986133211 crossref_citationtrail_10_3390_rs12081255 crossref_primary_10_3390_rs12081255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Manolakis (ref_5) 2002; 19 Khoshsokhan (ref_57) 2019; 12 Meng (ref_11) 2019; 46 Garini (ref_2) 2006; 69 Chang (ref_37) 2000; 38 Guo (ref_23) 2020; 13 Ye (ref_22) 2019; 74 Kizel (ref_51) 2018; 11 Amolins (ref_15) 2007; 62 ref_56 ref_55 Huang (ref_18) 2015; 12 ref_19 Svetnik (ref_63) 2003; 43 Palsson (ref_20) 2017; 14 ref_17 ref_59 Zhao (ref_54) 2012; 21 Wald (ref_60) 1997; 63 Boreman (ref_1) 2005; 44 Markham (ref_36) 2004; 42 Smith (ref_50) 1999; 20 Goetz (ref_3) 1985; 228 ref_25 Palsson (ref_16) 2014; 11 Goh (ref_31) 2017; 38 Loncan (ref_10) 2015; 3 ref_29 ref_28 ref_27 Shi (ref_41) 2014; 149 Scarpa (ref_26) 2018; 56 Svozil (ref_52) 1997; 39 Peng (ref_62) 2010; 23 Lowe (ref_35) 2004; 60 Nascimento (ref_58) 2005; 43 ref_34 Nunez (ref_14) 1999; 37 Plaza (ref_42) 2004; 42 Zhang (ref_44) 2018; 56 ref_32 Gao (ref_43) 2017; 55 Netanyahu (ref_39) 2011; 8 Xing (ref_21) 2018; 145 Kizel (ref_49) 2018; 141 Hagan (ref_53) 1994; 5 Shahdoosti (ref_61) 2015; 12 Choi (ref_13) 2011; 49 Klein (ref_7) 2008; 8 Aiazzi (ref_33) 2017; 55 ref_47 ref_46 Shaw (ref_6) 2003; 14 Hinton (ref_30) 2006; 18 Fischler (ref_45) 1981; 24 Iordache (ref_40) 2011; 49 Kizel (ref_38) 2017; 55 Yuan (ref_12) 2018; 11 He (ref_24) 2019; 12 ref_48 ref_9 Plaza (ref_8) 2012; 5 ref_4 |
References_xml | – volume: 42 start-page: 650 year: 2004 ident: ref_42 article-title: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.820314 – volume: 228 start-page: 1147 year: 1985 ident: ref_3 article-title: Imaging spectrometry for Earth remote sensing publication-title: Science doi: 10.1126/science.228.4704.1147 – ident: ref_55 – volume: 23 start-page: 365 year: 2010 ident: ref_62 article-title: TSVR: An efficient twin support vector machine for regression publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.07.002 – ident: ref_48 doi: 10.1109/ICCV.2011.6126542 – volume: 44 start-page: 013602 year: 2005 ident: ref_1 article-title: Classification of imaging spectrometers for remote sensing applications publication-title: Opt. Eng. doi: 10.1117/1.1813441 – volume: 56 start-page: 5443 year: 2018 ident: ref_26 article-title: Target-adaptive CNN-based pansharpening publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2817393 – ident: ref_17 doi: 10.1109/IJCNN.2006.246777 – volume: 74 start-page: 322 year: 2019 ident: ref_22 article-title: Pan-sharpening via a gradient-based deep network prior publication-title: Signal. Process. Image Commun. doi: 10.1016/j.image.2019.03.004 – volume: 46 start-page: 102 year: 2019 ident: ref_11 article-title: Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.05.006 – volume: 3 start-page: 27 year: 2015 ident: ref_10 article-title: Hyperspectral pansharpening: A review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2440094 – volume: 43 start-page: 898 year: 2005 ident: ref_58 article-title: Vertex component analysis: A fast algorithm to unmix hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.844293 – ident: ref_47 doi: 10.1007/11744023_32 – volume: 60 start-page: 91 year: 2004 ident: ref_35 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 38 start-page: 1144 year: 2000 ident: ref_37 article-title: Constrained subpixel target detection for remotely sensed imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843007 – volume: 39 start-page: 43 year: 1997 ident: ref_52 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – ident: ref_25 doi: 10.3390/rs8070594 – ident: ref_56 – ident: ref_19 doi: 10.1109/ICCV.2017.193 – volume: 5 start-page: 354 year: 2012 ident: ref_8 article-title: Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2194696 – volume: 145 start-page: 165 year: 2018 ident: ref_21 article-title: Pan-sharpening via deep metric learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.016 – volume: 12 start-page: 1279 year: 2019 ident: ref_57 article-title: Sparsity-constrained distributed unmixing of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2901122 – volume: 141 start-page: 185 year: 2018 ident: ref_49 article-title: Spatially adaptive hyperspectral unmixing through endmembers analytical localization based on sums of anisotropic 2 D. Gaussians publication-title: Isprs J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.021 – ident: ref_4 doi: 10.1117/12.267840 – volume: 56 start-page: 4274 year: 2018 ident: ref_44 article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2810208 – ident: ref_34 doi: 10.3390/app10010238 – ident: ref_59 doi: 10.1109/WHISPERS.2010.5594963 – volume: 43 start-page: 1947 year: 2003 ident: ref_63 article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034160g – volume: 11 start-page: 318 year: 2014 ident: ref_16 article-title: A new pansharpening algorithm based on total variation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2257669 – volume: 38 start-page: 1291 year: 2017 ident: ref_31 article-title: Deep learning for computational chemistry publication-title: J. Comput. Chem. doi: 10.1002/jcc.24764 – volume: 63 start-page: 691 year: 1997 ident: ref_60 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm. Eng. Remote Sens. – volume: 8 start-page: 5576 year: 2008 ident: ref_7 article-title: Quantitative hyperspectral reflectance imaging publication-title: Sensors doi: 10.3390/s8095576 – volume: 69 start-page: 735 year: 2006 ident: ref_2 article-title: Spectral imaging: Principles and applications publication-title: Cytom. Part. A doi: 10.1002/cyto.a.20311 – volume: 14 start-page: 639 year: 2017 ident: ref_20 article-title: Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2668299 – volume: 24 start-page: 381 year: 1981 ident: ref_45 article-title: Random sample consensus publication-title: Commun. ACM doi: 10.1145/358669.358692 – ident: ref_9 doi: 10.3390/rs12010094 – volume: 12 start-page: 1037 year: 2015 ident: ref_18 article-title: A new pan-sharpening method with deep neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2376034 – volume: 13 start-page: 950 year: 2020 ident: ref_23 article-title: Bayesian Pan-Sharpening With Multiorder Gradient-Based Deep Network Constraints publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2975000 – volume: 55 start-page: 4925 year: 2017 ident: ref_38 article-title: A stepwise analytical projected gradient descent search for hyperspectral unmixing and its code vectorization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2692999 – volume: 8 start-page: 706 year: 2011 ident: ref_39 article-title: An iterative search in end-member fraction space for spectral unmixing publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2101578 – volume: 49 start-page: 2014 year: 2011 ident: ref_40 article-title: Sparse unmixing of hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2098413 – volume: 12 start-page: 611 year: 2015 ident: ref_61 article-title: Fusion of MS and PAN images preserving spectral quality publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2353135 – ident: ref_28 doi: 10.3390/rs12030348 – ident: ref_46 doi: 10.1109/WHISPERS.2018.8747053 – volume: 14 start-page: 3 year: 2003 ident: ref_6 article-title: Spectral imaging for remote sensing publication-title: Linc. Lab. J. – ident: ref_29 doi: 10.3390/rs12040676 – volume: 21 start-page: 1465 year: 2012 ident: ref_54 article-title: Rotation-invariant image and video description with local binary pattern features publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2175739 – volume: 62 start-page: 249 year: 2007 ident: ref_15 article-title: Wavelet based image fusion techniques—An introduction, review and comparison publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2007.05.009 – volume: 18 start-page: 1527 year: 2006 ident: ref_30 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 149 start-page: 70 year: 2014 ident: ref_41 article-title: Incorporating spatial information in spectral unmixing: A review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.034 – volume: 20 start-page: 2653 year: 1999 ident: ref_50 article-title: The use of the empirical line method to calibrate remotely sensed data to reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/014311699211994 – volume: 42 start-page: 2691 year: 2004 ident: ref_36 article-title: Landsat sensor performance: History and current status publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.840720 – volume: 19 start-page: 29 year: 2002 ident: ref_5 article-title: Detection algorithms for hyperspectral imaging applications publication-title: IEEE Signal. Process. Mag. doi: 10.1109/79.974724 – volume: 11 start-page: 978 year: 2018 ident: ref_12 article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2794888 – volume: 5 start-page: 989 year: 1994 ident: ref_53 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329697 – volume: 49 start-page: 295 year: 2011 ident: ref_13 article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2051674 – volume: 55 start-page: 308 year: 2017 ident: ref_33 article-title: Sensitivity of pansharpening methods to temporal and instrumental changes between multispectral and panchromatic data sets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2606324 – ident: ref_27 doi: 10.3390/rs11222606 – volume: 37 start-page: 1204 year: 1999 ident: ref_14 article-title: Multiresolution-based image fusion with additive wavelet decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763274 – volume: 11 start-page: 2047 year: 2018 ident: ref_51 article-title: Simultaneous and constrained calibration of multiple hyperspectral images through a new generalized empirical line model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2804666 – volume: 12 start-page: 1188 year: 2019 ident: ref_24 article-title: Pansharpening via detail injection based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2898574 – ident: ref_32 doi: 10.3390/rs11222608 – volume: 55 start-page: 3656 year: 2017 ident: ref_43 article-title: Multitemporal landsat missing data recovery based on tempo-spectral angle model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2656162 |
SSID | ssj0000331904 |
Score | 2.2991924 |
Snippet | We propose an unmixing framework for enhancing endmember fraction maps using a combination of spectral and visible images. The new method, data fusion through... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1255 |
SubjectTerms | data fusion land cover learning multispectral imagery multispectral images remote sensing spatial information spatial resolution spectral unmixing |
Title | Spatially Enhanced Spectral Unmixing Through Data Fusion of Spectral and Visible Images from Different Sensors |
URI | https://www.proquest.com/docview/2986133211 https://doaj.org/article/4df6c901d3774353a2eee7fbabb6a494 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-DnoRn7g-lohePBTdpE3To7q7PlARdcVbyWOCwtqV3S7ov3eSVl1Q8OKp0A60TL7MzJek8xGyJ2LrV40RvDo1SFCsjFTMWeSskc5JhAGEA7LX4qwXXzwmjxNSX_5MWNUeuHLcQWydMJi0LMdChSdcMQBInVZaCxVnoRMo5rwJMhViMEdoHcZVP1KOvP5gOGoxTH_M_9M3kYFCo_4fcTgkl-4iWairQnpUfc0SmYJimczVAuVP7yuk8NLBCJX-O-0UT2HXnnrpeL9OQXvFy_MbpiB6X4nu0LYqFe2O_UIYHbhvQ1VY-vCMk6AP9PwFI8mI-t9LaLtWSSnpHbLawXC0Snrdzv3JWVRLJUSGC1FGYKyIEwNSAk7JrGUSp4UWacsJlRikLClLlLboAc44t6AFZi-lnQXnTCINXyMzxaCAdULxSZY65rDwUDFgPGRKtSDNZMZSwAKjQfY_3Zebuo-4l7Po58gnvKvzb1c3yO6X7WvVPeNXq2M_Cl8WvuN1uIE4yGsc5H_hoEF2Pscwxxnitz1UAYPxKGeZxJqFI9Pd-I8XbZJ55jl3OL2zRWbK4Ri2sTApdZNMy-5pk8weta8u7_B63Lm-uW0GZH4AIMPmiQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Enhanced+Spectral+Unmixing+Through+Data+Fusion+of+Spectral+and+Visible+Images+from+Different+Sensors&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fadi+Kizel&rft.au=J%C3%B3n+Atli+Benediktsson&rft.date=2020-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=8&rft.spage=1255&rft_id=info:doi/10.3390%2Frs12081255&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4df6c901d3774353a2eee7fbabb6a494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |