Discrete wavelet transform based data representation in deep neural network for gait abnormality detection

•A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extr...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 62; p. 102076
Main Authors Chakraborty, Jayeeta, Nandy, Anup
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extraction.•The proposed method has achieved significant improvement in performance over the state-of-the-art deep learning techniques for inertial sensors. Detection of abnormal gait patterns using wearable sensors remains a major challenge in clinical gait analysis and rehabilitation field. Despite the success of recent researches using deep learning techniques, the prospects of improvement in the classification process with the help of modification in data representation is largely overlooked. In this paper, a deep neural network-based framework is proposed where discrete wavelet decomposition is used for data representation to detect abnormal gait patterns using inertial sensors. In the proposed approach, the walking gait data of healthy children and cerebral palsy children are collected using two inertial sensors. Discrete wavelet transform is applied to signal segments to form decomposed signal segments. A multi-channel 1-dimensional convolutional neural network (1D-CNN) model is trained with the decomposed signals. The proposed method achieves 96.4% and 90.97% accuracy for segment-wise and subject-wise evaluation respectively. The performance of the proposed model is compared with the state-of-the-art methods as well as with a basic 1D-CNN model trained with signals directly. Analysis of the result shows that the proposed method performs significantly better than the basic CNN model and also exceeds over the performance of the state-of-the-art methods. An investigation is done on the effect on the performance of the model with varying levels of wavelet decomposition which reveals that at level 2, the proposed method reaches the highest accuracy and lowest loss value. When tested with 100 random samples, the wavelet representation generates higher area-under-curve scores for deep learning based techniques, compared to empirical mode decomposition representation method.
AbstractList •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extraction.•The proposed method has achieved significant improvement in performance over the state-of-the-art deep learning techniques for inertial sensors. Detection of abnormal gait patterns using wearable sensors remains a major challenge in clinical gait analysis and rehabilitation field. Despite the success of recent researches using deep learning techniques, the prospects of improvement in the classification process with the help of modification in data representation is largely overlooked. In this paper, a deep neural network-based framework is proposed where discrete wavelet decomposition is used for data representation to detect abnormal gait patterns using inertial sensors. In the proposed approach, the walking gait data of healthy children and cerebral palsy children are collected using two inertial sensors. Discrete wavelet transform is applied to signal segments to form decomposed signal segments. A multi-channel 1-dimensional convolutional neural network (1D-CNN) model is trained with the decomposed signals. The proposed method achieves 96.4% and 90.97% accuracy for segment-wise and subject-wise evaluation respectively. The performance of the proposed model is compared with the state-of-the-art methods as well as with a basic 1D-CNN model trained with signals directly. Analysis of the result shows that the proposed method performs significantly better than the basic CNN model and also exceeds over the performance of the state-of-the-art methods. An investigation is done on the effect on the performance of the model with varying levels of wavelet decomposition which reveals that at level 2, the proposed method reaches the highest accuracy and lowest loss value. When tested with 100 random samples, the wavelet representation generates higher area-under-curve scores for deep learning based techniques, compared to empirical mode decomposition representation method.
ArticleNumber 102076
Author Chakraborty, Jayeeta
Nandy, Anup
Author_xml – sequence: 1
  givenname: Jayeeta
  orcidid: 0000-0003-3918-1649
  surname: Chakraborty
  fullname: Chakraborty, Jayeeta
  email: jayeeta.iem2012@gmail.com
– sequence: 2
  givenname: Anup
  surname: Nandy
  fullname: Nandy, Anup
BookMark eNp9kM1KxDAURoOM4MzoC7jKC3RM0rRNwY2MvzDgRtchTW4ltZOWJM4wb29KdePC1b183HPhOyu0cIMDhK4p2VBCy5tu04RRbxhhU8BIVZ6hJa14mQlKxOJ3JzW_QKsQOkK4qChfou7eBu0hAj6qA_QQcfTKhXbwe9yoAAYbFRX2MHoI4KKKdnDYOmwARuzgy6s-jXgc_CdOFP5QNmLVuPRA9Tae0mEEPVGX6LxVfYCrn7lG748Pb9vnbPf69LK922U6L8uYQZNTJnQNdaN5XRTANWsLoU0NmqbQsKoyLdOVoA0tBM-LNk9ZbZhoeE10vkZs_qv9EIKHVo7e7pU_SUrkZEt2crIlJ1tytpUg8QfSdi6bfNj-f_R2RiGVOljwMmgLToOxPjWXZrD_4d8j_oqE
CitedBy_id crossref_primary_10_1088_1742_6596_2822_1_012084
crossref_primary_10_1016_j_gaitpost_2024_04_007
crossref_primary_10_1016_j_measurement_2022_111177
crossref_primary_10_1007_s11554_023_01349_w
crossref_primary_10_1007_s00500_023_09121_9
crossref_primary_10_1002_aisy_202300845
crossref_primary_10_1007_s10462_023_10404_8
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_3390_s24051500
crossref_primary_10_1016_j_eswa_2023_120624
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_3934_mbe_2023349
crossref_primary_10_32604_iasc_2023_028481
crossref_primary_10_1016_j_measurement_2024_116234
crossref_primary_10_37394_23205_2021_20_21
crossref_primary_10_3390_math11081770
crossref_primary_10_3390_s22041678
crossref_primary_10_1016_j_eswa_2022_117483
crossref_primary_10_3390_healthcare10071210
crossref_primary_10_1016_j_eswa_2021_115650
crossref_primary_10_1016_j_bspc_2021_103429
crossref_primary_10_1177_20552076231180054
crossref_primary_10_1155_2022_9933018
crossref_primary_10_1016_j_engappai_2022_105170
crossref_primary_10_1093_jcde_qwab054
Cites_doi 10.1109/51.7933
10.1016/j.bspc.2018.05.014
10.1016/j.bspc.2019.101730
10.1016/j.compbiomed.2016.10.019
10.1016/j.bspc.2017.07.022
10.1109/IROS.2009.5354111
10.1109/CSPA.2011.5759842
10.1002/mds.1206
10.1016/j.bspc.2019.101663
10.1016/j.asoc.2017.01.015
10.4018/JOEUC.2020040104
10.21629/JSEE.2017.01.18
10.1109/PerComW.2014.6815179
10.1016/j.medengphy.2014.11.008
10.1016/j.eswa.2012.01.084
10.1109/EMBC.2012.6345873
10.1007/s11042-017-4903-7
10.3390/s16010115
10.3390/s16040475
10.18100/ijamec.270307
10.1016/j.knosys.2017.10.017
10.1111/mice.12447
10.3390/s17122735
10.1016/j.bspc.2020.101867
10.1088/0967-3334/37/3/442
10.1016/j.bspc.2018.07.015
10.1109/ICAR.2015.7251474
10.1007/978-3-319-08010-9_33
10.1007/s13042-019-00947-0
10.1016/j.gaitpost.2012.05.028
10.1016/j.gaitpost.2008.10.061
10.1109/ICIA.2007.4295787
10.3390/s16010134
10.1109/JBHI.2016.2633287
10.1109/ICIP.2016.7533144
10.1186/1743-0003-11-152
10.1016/j.cmpb.2017.04.007
10.1016/j.cogsys.2018.04.002
10.1109/JSEN.2018.2885207
10.1016/j.gaitpost.2008.06.011
10.1109/SoCPaR.2009.115
10.1109/ICIP.2011.6115889
10.3390/s18020468
10.1016/j.neulet.2016.09.043
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2020.102076
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2020_102076
S1746809420302329
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-eb3128c9e9bc4955e4c2f58cd9ec1e9bd277df2c781b158435f3d279d28b490c3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 01:34:07 EDT 2025
Fri Feb 23 02:47:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Gait pattern classification
Discrete wavelet transform
Cerebral palsy gait
Convolutional neural network
Wearable inertial sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-eb3128c9e9bc4955e4c2f58cd9ec1e9bd277df2c781b158435f3d279d28b490c3
ORCID 0000-0003-3918-1649
ParticipantIDs crossref_primary_10_1016_j_bspc_2020_102076
crossref_citationtrail_10_1016_j_bspc_2020_102076
elsevier_sciencedirect_doi_10_1016_j_bspc_2020_102076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Werth, Radha, Andriessen, Aarts, Long (bib0195) 2020; 56
Altan, Kutlu, Allahverdi (bib0265) 2016; 4
Khan, Javed, Khan, Saba, Habib, Khan, Abbasi (bib0235) 2020
Sharif, Attique, Tahir, Yasmim, Saba, Tanik (bib0240) 2020; 32
Wolf, Babaee, Rigoll (bib0175) 2016
Joshi, Khajuria, Joshi (bib0110) 2017; 145
Bai, Kolter, Koltun (bib0215) 2018
Handojoseno, Shine, Nguyen, Tran, Lewis, Nguyen (bib0120) 2012
Yang, Nguyen, San, Li, Krishnaswamy (bib0225) 2015
Lee, Lim (bib0135) 2012; 39
Cha, Kim, Kim (bib0165) 2018; 18
Ayachi, Nguyen, Lavigne-Pelletier, Goubault, Boissy, Duval (bib0105) 2016; 37
Ordó nez, Roggen (bib0145) 2016; 16
Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (bib0160) 2018; 139
Zheng, Liu, Chen, Ge, Zhao (bib0205) 2014
Rezvanian, Lockhart (bib0080) 2016; 16
Xia, Zhang, Ye, Cheng, Lu, Zhang (bib0140) 2018; 46
Chen, Yan, Xu (bib0070) 2009
Zhao, Lu, Chen, Liu, Wu (bib0210) 2017; 28
Zheng, Zhang, Huang, He, Tan (bib0020) 2011
Swets (bib0255) 2014
Qiu, Ren, Suganthan, Amaratunga (bib0270) 2017; 54
Altan, Kutlu (bib0275) 2018; 3
Baby, Saji, Kumar (bib0115) 2017
Balasubramanian, Neptune, Kautz (bib0030) 2009; 29
Zeng, Liu, Wang, Wang, Ma, Zhang (bib0260) 2016; 633
Hamdi, Awad, Abdelhameed, Tolbah (bib0075) 2015
Hammerla, Halloran, Plötz (bib0230) 2016
Dalton, Khalil, Busse, Rosser, van Deursen, ÓLaighin (bib0035) 2013; 37
Trojaniello, Cereatti, Pelosin, Avanzino, Mirelman, Hausdorff, Della Croce (bib0040) 2014; 11
Davis (bib0005) 1988; 7
Majumder, Mondal, Deen (bib0085) 2018; 19
Dehzangi, Taherisadr, ChangalVala (bib0170) 2017; 17
Khandelwal, Wickström (bib0100) 2014
Chai, Wang, Zhao, Liu, Bai, Li (bib0285) 2016; 79
Tharwat (bib0295) 2018
Arshad, Khan, Sharif, Yasmin, Tavares, Zhang, Satapathy (bib0245) 2020
Nieuwboer, Dom, De Weerdt, Desloovere, Fieuws, Broens-Kaucsik (bib0015) 2001; 16
Laudanski, Brouwer, Li (bib0150) 2015; 37
Chen, Huang, Xu (bib0045) 2007
Akula, Shah, Ghosh (bib0180) 2018; 50
Wang, Wang, Yan (bib0130) 2018; 77
Carriero, Zavatsky, Stebbins, Theologis, Shefelbine (bib0010) 2009; 29
Nickel, Busch, Rangarajan, Möbius (bib0055) 2011
Lockhart, Soangra, Zhang, Wu (bib0095) 2013; 49
Chakraborty, Nandy (bib0250) 2019
Zheng, Chen, Li, Zhang, You, Jiang (bib0200) 2020; 56
Altan, Kutlu, Allahverdi (bib0280) 2019
Arshad, Khan, Sharif, Yasmin, Javed (bib0025) 2019; 10
Alickovic, Kevric, Subasi (bib0125) 2018; 39
Mazilu, Blanke, Hardegger, Tröster, Gazit, Dorfman, Hausdorff (bib0050) 2014
Zhang, Miyamori, Mikami, Saito (bib0220) 2019; 34
Mannini, Trojaniello, Cereatti, Sabatini (bib0065) 2016; 16
Mannini, Trojaniello, Della Croce, Sabatini (bib0060) 2015
Ravi, Wong, Lo, Yang (bib0155) 2016; 21
Altan, Kutlu (bib0290) 2018; 3
Sharma, Pachori, Sircar (bib0190) 2020; 58
Gouwanda, Senanayake (bib0090) 2009
Altan, Kutlu, Pekmezci, Nural (bib0185) 2018; 45
Sharma (10.1016/j.bspc.2020.102076_bib0190) 2020; 58
Altan (10.1016/j.bspc.2020.102076_bib0185) 2018; 45
Chai (10.1016/j.bspc.2020.102076_bib0285) 2016; 79
Mannini (10.1016/j.bspc.2020.102076_bib0060) 2015
Altan (10.1016/j.bspc.2020.102076_bib0265) 2016; 4
Werth (10.1016/j.bspc.2020.102076_bib0195) 2020; 56
Nickel (10.1016/j.bspc.2020.102076_bib0055) 2011
Zhao (10.1016/j.bspc.2020.102076_bib0210) 2017; 28
Tharwat (10.1016/j.bspc.2020.102076_bib0295) 2018
Zheng (10.1016/j.bspc.2020.102076_bib0020) 2011
Yang (10.1016/j.bspc.2020.102076_bib0225) 2015
Chen (10.1016/j.bspc.2020.102076_bib0045) 2007
Sharif (10.1016/j.bspc.2020.102076_bib0240) 2020; 32
Akula (10.1016/j.bspc.2020.102076_bib0180) 2018; 50
Handojoseno (10.1016/j.bspc.2020.102076_bib0120) 2012
Ordó nez (10.1016/j.bspc.2020.102076_bib0145) 2016; 16
Rezvanian (10.1016/j.bspc.2020.102076_bib0080) 2016; 16
Majumder (10.1016/j.bspc.2020.102076_bib0085) 2018; 19
Altan (10.1016/j.bspc.2020.102076_bib0280) 2019
Balasubramanian (10.1016/j.bspc.2020.102076_bib0030) 2009; 29
Joshi (10.1016/j.bspc.2020.102076_bib0110) 2017; 145
Camps (10.1016/j.bspc.2020.102076_bib0160) 2018; 139
Altan (10.1016/j.bspc.2020.102076_bib0290) 2018; 3
Hamdi (10.1016/j.bspc.2020.102076_bib0075) 2015
Nieuwboer (10.1016/j.bspc.2020.102076_bib0015) 2001; 16
Zheng (10.1016/j.bspc.2020.102076_bib0205) 2014
Khandelwal (10.1016/j.bspc.2020.102076_bib0100) 2014
Chakraborty (10.1016/j.bspc.2020.102076_bib0250) 2019
Zheng (10.1016/j.bspc.2020.102076_bib0200) 2020; 56
Chen (10.1016/j.bspc.2020.102076_bib0070) 2009
Dehzangi (10.1016/j.bspc.2020.102076_bib0170) 2017; 17
Wolf (10.1016/j.bspc.2020.102076_bib0175) 2016
Trojaniello (10.1016/j.bspc.2020.102076_bib0040) 2014; 11
Baby (10.1016/j.bspc.2020.102076_bib0115) 2017
Carriero (10.1016/j.bspc.2020.102076_bib0010) 2009; 29
Zeng (10.1016/j.bspc.2020.102076_bib0260) 2016; 633
Ayachi (10.1016/j.bspc.2020.102076_bib0105) 2016; 37
Swets (10.1016/j.bspc.2020.102076_bib0255) 2014
Lee (10.1016/j.bspc.2020.102076_bib0135) 2012; 39
Xia (10.1016/j.bspc.2020.102076_bib0140) 2018; 46
Davis (10.1016/j.bspc.2020.102076_bib0005) 1988; 7
Cha (10.1016/j.bspc.2020.102076_bib0165) 2018; 18
Arshad (10.1016/j.bspc.2020.102076_bib0025) 2019; 10
Gouwanda (10.1016/j.bspc.2020.102076_bib0090) 2009
Bai (10.1016/j.bspc.2020.102076_bib0215) 2018
Khan (10.1016/j.bspc.2020.102076_bib0235) 2020
Hammerla (10.1016/j.bspc.2020.102076_bib0230) 2016
Mannini (10.1016/j.bspc.2020.102076_bib0065) 2016; 16
Altan (10.1016/j.bspc.2020.102076_bib0275) 2018; 3
Lockhart (10.1016/j.bspc.2020.102076_bib0095) 2013; 49
Wang (10.1016/j.bspc.2020.102076_bib0130) 2018; 77
Ravi (10.1016/j.bspc.2020.102076_bib0155) 2016; 21
Zhang (10.1016/j.bspc.2020.102076_bib0220) 2019; 34
Dalton (10.1016/j.bspc.2020.102076_bib0035) 2013; 37
Mazilu (10.1016/j.bspc.2020.102076_bib0050) 2014
Arshad (10.1016/j.bspc.2020.102076_bib0245) 2020
Laudanski (10.1016/j.bspc.2020.102076_bib0150) 2015; 37
Alickovic (10.1016/j.bspc.2020.102076_bib0125) 2018; 39
Qiu (10.1016/j.bspc.2020.102076_bib0270) 2017; 54
References_xml – start-page: 5179
  year: 2015
  end-page: 5182
  ident: bib0060
  article-title: Hidden Markov model-based strategy for gait segmentation using inertial sensors: application to elderly, hemiparetic patients and Huntington's disease patients
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 46
  start-page: 221
  year: 2018
  end-page: 230
  ident: bib0140
  article-title: Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson's disease patients
  publication-title: Biomed. Signal Process. Control
– volume: 50
  start-page: 146
  year: 2018
  end-page: 154
  ident: bib0180
  article-title: Deep learning approach for human action recognition in infrared images
  publication-title: Cogn. Syst. Res.
– volume: 16
  start-page: 134
  year: 2016
  ident: bib0065
  article-title: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington's disease patients
  publication-title: Sensors
– volume: 37
  start-page: 180
  year: 2015
  end-page: 186
  ident: bib0150
  article-title: Activity classification in persons with stroke based on frequency features
  publication-title: Med. Eng. Phys.
– volume: 139
  start-page: 119
  year: 2018
  end-page: 131
  ident: bib0160
  article-title: Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl.-Based Syst.
– year: 2018
  ident: bib0295
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Informatics
– volume: 16
  start-page: 115
  year: 2016
  ident: bib0145
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– start-page: 4165
  year: 2016
  end-page: 4169
  ident: bib0175
  article-title: Multi-view gait recognition using 3d convolutional neural networks
  publication-title: 2016 IEEE International Conference on Image Processing (ICIP)
– start-page: 2073
  year: 2011
  end-page: 2076
  ident: bib0020
  article-title: Robust view transformation model for gait recognition
  publication-title: 2011 18th IEEE International Conference on Image Processing
– year: 2014
  ident: bib0255
  article-title: Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers
– start-page: 580
  year: 2009
  end-page: 585
  ident: bib0090
  article-title: Application of hybrid multi-resolution wavelet decomposition method in detecting human walking gait events
  publication-title: 2009 International Conference of Soft Computing and Pattern Recognition
– volume: 37
  start-page: 442
  year: 2016
  ident: bib0105
  article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs)
  publication-title: Physiol. Meas.
– year: 2015
  ident: bib0225
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition
  publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence
– volume: 19
  start-page: 2320
  year: 2018
  end-page: 2329
  ident: bib0085
  article-title: A simple, low-cost and efficient gait analyzer for wearable healthcare applications
  publication-title: IEEE Sens. J.
– volume: 633
  start-page: 268
  year: 2016
  end-page: 278
  ident: bib0260
  article-title: Parkinson's disease classification using gait analysis via deterministic learning
  publication-title: Neurosci. Lett.
– volume: 145
  start-page: 135
  year: 2017
  end-page: 145
  ident: bib0110
  article-title: An automatic non-invasive method for Parkinson's disease classification
  publication-title: Comput. Methods Programs Biomed.
– start-page: 140
  year: 2019
  end-page: 152
  ident: bib0250
  article-title: Periodicity detection of quasi-periodic slow-speed gait signal using IMU sensor
  publication-title: International Conference on Human-Computer Interaction
– start-page: 58
  year: 2011
  end-page: 63
  ident: bib0055
  article-title: Using hidden Markov models for accelerometer-based biometric gait recognition
  publication-title: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications
– volume: 77
  start-page: 12545
  year: 2018
  end-page: 12561
  ident: bib0130
  article-title: Gait recognition based on gabor wavelets and (2d) 2 pca
  publication-title: Multimedia Tools Appl.
– start-page: 197
  year: 2014
  end-page: 204
  ident: bib0100
  article-title: Identification of gait events using expert knowledge and continuous wavelet transform analysis
  publication-title: 7th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2014)
– year: 2019
  ident: bib0280
  article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health Informatics
– volume: 56
  start-page: 101663
  year: 2020
  ident: bib0195
  article-title: Deep learning approach for ECG-based automatic sleep state classification in preterm infants
  publication-title: Biomed. Signal Process. Control
– volume: 29
  start-page: 71
  year: 2009
  end-page: 75
  ident: bib0010
  article-title: Determination of gait patterns in children with spastic diplegic cerebral palsy using principal components
  publication-title: Gait Posture
– volume: 58
  start-page: 101867
  year: 2020
  ident: bib0190
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 11
  start-page: 152
  year: 2014
  ident: bib0040
  article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait
  publication-title: J. Neuroeng. Rehabil.
– volume: 32
  start-page: 67
  year: 2020
  end-page: 92
  ident: bib0240
  article-title: A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition
  publication-title: J. Organ. End User Comput.
– volume: 7
  start-page: 35
  year: 1988
  end-page: 40
  ident: bib0005
  article-title: Clinical gait analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 39
  start-page: 94
  year: 2018
  end-page: 102
  ident: bib0125
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed. Signal Process. Control
– volume: 4
  start-page: 205
  year: 2016
  end-page: 210
  ident: bib0265
  article-title: Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke
  publication-title: Int. J. Appl. Math. Electron. Comput.
– start-page: 517
  year: 2007
  end-page: 522
  ident: bib0045
  article-title: Human abnormal gait modeling via hidden markov model
  publication-title: 2007 International Conference on Information Acquisition
– volume: 10
  start-page: 3601
  year: 2019
  end-page: 3618
  ident: bib0025
  article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 16
  start-page: 475
  year: 2016
  ident: bib0080
  article-title: Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data
  publication-title: Sensors
– volume: 21
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib0155
  article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices
  publication-title: IEEE J. Biomed. Health Informatics
– volume: 18
  start-page: 468
  year: 2018
  ident: bib0165
  article-title: Flexible piezoelectric sensor-based gait recognition
  publication-title: Sensors
– volume: 29
  start-page: 408
  year: 2009
  end-page: 414
  ident: bib0030
  article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke
  publication-title: Gait Posture
– volume: 56
  start-page: 101730
  year: 2020
  ident: bib0200
  article-title: Decoding human brain activity with deep learning
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: 2020
  end-page: 27
  ident: bib0235
  article-title: Human action recognition using fusion of multiview and deep features: an application to video surveillance
  publication-title: Multimedia Tools Appl.
– start-page: e12541
  year: 2020
  ident: bib0245
  article-title: A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition
  publication-title: Expert Syst.
– volume: 17
  start-page: 2735
  year: 2017
  ident: bib0170
  article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion
  publication-title: Sensors
– year: 2018
  ident: bib0215
  article-title: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
– volume: 16
  start-page: 1066
  year: 2001
  end-page: 1075
  ident: bib0015
  article-title: Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease
  publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc.
– volume: 34
  start-page: 822
  year: 2019
  end-page: 839
  ident: bib0220
  article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
– start-page: 298
  year: 2014
  end-page: 310
  ident: bib0205
  article-title: Time series classification using multi-channels deep convolutional neural networks
  publication-title: International Conference on Web-Age Information Management
– start-page: 833
  year: 2009
  end-page: 839
  ident: bib0070
  article-title: Gait pattern classification with integrated shoes
  publication-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 49
  start-page: 224
  year: 2013
  ident: bib0095
  article-title: Wavelet based automated postural event detection and activity classification with single IMU (tempo)
  publication-title: Biomed. Sci. Instrum.
– volume: 3
  start-page: 141
  year: 2018
  end-page: 151
  ident: bib0275
  article-title: Hessenberg ELM autoencoder kernel for deep learning
  publication-title: J. Eng. Technol. Appl. Sci.
– volume: 37
  start-page: 49
  year: 2013
  end-page: 54
  ident: bib0035
  article-title: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington's disease
  publication-title: Gait Posture
– volume: 28
  start-page: 162
  year: 2017
  end-page: 169
  ident: bib0210
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0115
  article-title: Parkinsons disease classification using wavelet transform based feature extraction of gait data
  publication-title: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT)
– start-page: 135
  year: 2014
  end-page: 137
  ident: bib0050
  article-title: Gaitassist: a wearable assistant for gait training and rehabilitation in Parkinson's disease
  publication-title: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS)
– volume: 54
  start-page: 246
  year: 2017
  end-page: 255
  ident: bib0270
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 58
  year: 2018
  end-page: 69
  ident: bib0185
  article-title: Deep learning with 3d-second order difference plot on respiratory sounds
  publication-title: Biomed. Signal Process. Control
– start-page: 316
  year: 2015
  end-page: 322
  ident: bib0075
  article-title: Lower limb gait activity recognition using inertial measurement units for rehabilitation robotics
  publication-title: 2015 International Conference on Advanced Robotics (ICAR)
– volume: 39
  start-page: 7338
  year: 2012
  end-page: 7344
  ident: bib0135
  article-title: Parkinson's disease classification using gait characteristics and wavelet-based feature extraction
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 311
  year: 2018
  end-page: 322
  ident: bib0290
  article-title: Generative autoencoder kernels on deep learning for brain activity analysis
  publication-title: Nat. Eng. Sci.
– start-page: 69
  year: 2012
  end-page: 72
  ident: bib0120
  article-title: The detection of freezing of gait in Parkinson's disease patients using EEG signals based on wavelet decomposition
  publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2016
  ident: bib0230
  article-title: Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: bib0285
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 35
  issue: 3
  year: 1988
  ident: 10.1016/j.bspc.2020.102076_bib0005
  article-title: Clinical gait analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.7933
– volume: 45
  start-page: 58
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0185
  article-title: Deep learning with 3d-second order difference plot on respiratory sounds
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.014
– volume: 56
  start-page: 101730
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0200
  article-title: Decoding human brain activity with deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101730
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0285
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.019
– start-page: 1
  year: 2017
  ident: 10.1016/j.bspc.2020.102076_bib0115
  article-title: Parkinsons disease classification using wavelet transform based feature extraction of gait data
  publication-title: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT)
– start-page: 197
  year: 2014
  ident: 10.1016/j.bspc.2020.102076_bib0100
  article-title: Identification of gait events using expert knowledge and continuous wavelet transform analysis
– volume: 39
  start-page: 94
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0125
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.022
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0235
  article-title: Human action recognition using fusion of multiview and deep features: an application to video surveillance
  publication-title: Multimedia Tools Appl.
– start-page: 833
  year: 2009
  ident: 10.1016/j.bspc.2020.102076_bib0070
  article-title: Gait pattern classification with integrated shoes
  publication-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
  doi: 10.1109/IROS.2009.5354111
– start-page: 58
  year: 2011
  ident: 10.1016/j.bspc.2020.102076_bib0055
  article-title: Using hidden Markov models for accelerometer-based biometric gait recognition
  publication-title: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications
  doi: 10.1109/CSPA.2011.5759842
– start-page: e12541
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0245
  article-title: A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition
  publication-title: Expert Syst.
– volume: 16
  start-page: 1066
  issue: 6
  year: 2001
  ident: 10.1016/j.bspc.2020.102076_bib0015
  article-title: Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease
  publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.1206
– volume: 56
  start-page: 101663
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0195
  article-title: Deep learning approach for ECG-based automatic sleep state classification in preterm infants
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101663
– year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0295
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Informatics
– volume: 54
  start-page: 246
  year: 2017
  ident: 10.1016/j.bspc.2020.102076_bib0270
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.015
– volume: 3
  start-page: 141
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0275
  article-title: Hessenberg ELM autoencoder kernel for deep learning
  publication-title: J. Eng. Technol. Appl. Sci.
– volume: 32
  start-page: 67
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0240
  article-title: A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition
  publication-title: J. Organ. End User Comput.
  doi: 10.4018/JOEUC.2020040104
– volume: 28
  start-page: 162
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2020.102076_bib0210
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– start-page: 135
  year: 2014
  ident: 10.1016/j.bspc.2020.102076_bib0050
  article-title: Gaitassist: a wearable assistant for gait training and rehabilitation in Parkinson's disease
  publication-title: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS)
  doi: 10.1109/PerComW.2014.6815179
– year: 2015
  ident: 10.1016/j.bspc.2020.102076_bib0225
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition
  publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence
– year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0230
– volume: 37
  start-page: 180
  issue: 2
  year: 2015
  ident: 10.1016/j.bspc.2020.102076_bib0150
  article-title: Activity classification in persons with stroke based on frequency features
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.11.008
– volume: 39
  start-page: 7338
  issue: 8
  year: 2012
  ident: 10.1016/j.bspc.2020.102076_bib0135
  article-title: Parkinson's disease classification using gait characteristics and wavelet-based feature extraction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.084
– volume: 49
  start-page: 224
  year: 2013
  ident: 10.1016/j.bspc.2020.102076_bib0095
  article-title: Wavelet based automated postural event detection and activity classification with single IMU (tempo)
  publication-title: Biomed. Sci. Instrum.
– start-page: 69
  year: 2012
  ident: 10.1016/j.bspc.2020.102076_bib0120
  article-title: The detection of freezing of gait in Parkinson's disease patients using EEG signals based on wavelet decomposition
  publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/EMBC.2012.6345873
– volume: 77
  start-page: 12545
  issue: 10
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0130
  article-title: Gait recognition based on gabor wavelets and (2d) 2 pca
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4903-7
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0145
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 16
  start-page: 475
  issue: 4
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0080
  article-title: Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data
  publication-title: Sensors
  doi: 10.3390/s16040475
– volume: 4
  start-page: 205
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0265
  article-title: Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke
  publication-title: Int. J. Appl. Math. Electron. Comput.
  doi: 10.18100/ijamec.270307
– volume: 139
  start-page: 119
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0160
  article-title: Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 34
  start-page: 822
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2020.102076_bib0220
  article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12447
– volume: 17
  start-page: 2735
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2020.102076_bib0170
  article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion
  publication-title: Sensors
  doi: 10.3390/s17122735
– volume: 58
  start-page: 101867
  year: 2020
  ident: 10.1016/j.bspc.2020.102076_bib0190
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101867
– year: 2014
  ident: 10.1016/j.bspc.2020.102076_bib0255
– volume: 37
  start-page: 442
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0105
  article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs)
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/3/442
– volume: 46
  start-page: 221
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0140
  article-title: Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson's disease patients
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.07.015
– start-page: 5179
  year: 2015
  ident: 10.1016/j.bspc.2020.102076_bib0060
  article-title: Hidden Markov model-based strategy for gait segmentation using inertial sensors: application to elderly, hemiparetic patients and Huntington's disease patients
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 316
  year: 2015
  ident: 10.1016/j.bspc.2020.102076_bib0075
  article-title: Lower limb gait activity recognition using inertial measurement units for rehabilitation robotics
  publication-title: 2015 International Conference on Advanced Robotics (ICAR)
  doi: 10.1109/ICAR.2015.7251474
– start-page: 298
  year: 2014
  ident: 10.1016/j.bspc.2020.102076_bib0205
  article-title: Time series classification using multi-channels deep convolutional neural networks
  publication-title: International Conference on Web-Age Information Management
  doi: 10.1007/978-3-319-08010-9_33
– volume: 10
  start-page: 3601
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2020.102076_bib0025
  article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00947-0
– start-page: 140
  year: 2019
  ident: 10.1016/j.bspc.2020.102076_bib0250
  article-title: Periodicity detection of quasi-periodic slow-speed gait signal using IMU sensor
  publication-title: International Conference on Human-Computer Interaction
– volume: 37
  start-page: 49
  issue: 1
  year: 2013
  ident: 10.1016/j.bspc.2020.102076_bib0035
  article-title: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington's disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.05.028
– volume: 29
  start-page: 408
  issue: 3
  year: 2009
  ident: 10.1016/j.bspc.2020.102076_bib0030
  article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.10.061
– start-page: 517
  year: 2007
  ident: 10.1016/j.bspc.2020.102076_bib0045
  article-title: Human abnormal gait modeling via hidden markov model
  publication-title: 2007 International Conference on Information Acquisition
  doi: 10.1109/ICIA.2007.4295787
– volume: 16
  start-page: 134
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0065
  article-title: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington's disease patients
  publication-title: Sensors
  doi: 10.3390/s16010134
– volume: 21
  start-page: 56
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0155
  article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2016.2633287
– start-page: 4165
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0175
  article-title: Multi-view gait recognition using 3d convolutional neural networks
  publication-title: 2016 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP.2016.7533144
– volume: 11
  start-page: 152
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2020.102076_bib0040
  article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-152
– volume: 3
  start-page: 311
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0290
  article-title: Generative autoencoder kernels on deep learning for brain activity analysis
  publication-title: Nat. Eng. Sci.
– volume: 145
  start-page: 135
  year: 2017
  ident: 10.1016/j.bspc.2020.102076_bib0110
  article-title: An automatic non-invasive method for Parkinson's disease classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.04.007
– volume: 50
  start-page: 146
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0180
  article-title: Deep learning approach for human action recognition in infrared images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.04.002
– year: 2019
  ident: 10.1016/j.bspc.2020.102076_bib0280
  article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health Informatics
– volume: 19
  start-page: 2320
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0085
  article-title: A simple, low-cost and efficient gait analyzer for wearable healthcare applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2885207
– volume: 29
  start-page: 71
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2020.102076_bib0010
  article-title: Determination of gait patterns in children with spastic diplegic cerebral palsy using principal components
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.06.011
– start-page: 580
  year: 2009
  ident: 10.1016/j.bspc.2020.102076_bib0090
  article-title: Application of hybrid multi-resolution wavelet decomposition method in detecting human walking gait events
  publication-title: 2009 International Conference of Soft Computing and Pattern Recognition
  doi: 10.1109/SoCPaR.2009.115
– start-page: 2073
  year: 2011
  ident: 10.1016/j.bspc.2020.102076_bib0020
  article-title: Robust view transformation model for gait recognition
  publication-title: 2011 18th IEEE International Conference on Image Processing
  doi: 10.1109/ICIP.2011.6115889
– volume: 18
  start-page: 468
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0165
  article-title: Flexible piezoelectric sensor-based gait recognition
  publication-title: Sensors
  doi: 10.3390/s18020468
– year: 2018
  ident: 10.1016/j.bspc.2020.102076_bib0215
– volume: 633
  start-page: 268
  year: 2016
  ident: 10.1016/j.bspc.2020.102076_bib0260
  article-title: Parkinson's disease classification using gait analysis via deterministic learning
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2016.09.043
SSID ssj0048714
Score 2.3605165
Snippet •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102076
SubjectTerms Cerebral palsy gait
Convolutional neural network
Deep learning
Discrete wavelet transform
Gait pattern classification
Wearable inertial sensor
Title Discrete wavelet transform based data representation in deep neural network for gait abnormality detection
URI https://dx.doi.org/10.1016/j.bspc.2020.102076
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9h0s8kmx1ItVbEXLfQW9hVJkTVoxJu_3Zk8SgXpwWOWGRom25lv4JtvCLkUmQ4zZqRnlIlxJCf2FBQSL1Y64cNMWl1NuT7Ooumc3y_CRYeM21kYpFU2ub_O6VW2bk4GTTQHRZ4PngBLRzF0J8zHxTcMh_g4F3jLr79XNA_A45W-Nxp7aN0MztQcL_VRoIwhqxQMfNQd-as4rRWcyR7ZbZAiHdUvs0861h2QnTX9wEOyvMnhXw-wl35JXCBR0rLFoRTLk6FIAKWVcGU7ZORo7qixtqAoZQk_4GoiOAUv-iLzkkrlEMgiPgfDsuJquSMyn9w-j6deszzB00EUlR40yVB6dGITpaEJCi3XLAtjbRKrh3BomBAmY1oAbh0CCgnCLICzxLBY8cTXwTHpujdnTwiNdKa0EpGJVMilCGKhmc9lIo2Efo2HPTJso5bqRlkcF1y8pi2FbJlipFOMdFpHukeuVj5Fraux0TpsP0b663akkPg3-J3-0--MbONTzSU7J93y_dNeAPgoVb-6XX2yNbp7mM5-AAH_204
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQdvEtpusnkcpVqqtb3YQm9hX5EUiUEj_n1n8pAK0oPXzQ4Js5uZb-CbbwCug0SLhBvpGGVCaskJHYWJxAmVjrx-Iq0uu1wnU3809x4XYrEBg6YXhmiVdeyvYnoZreuVbu3Nbp6m3WfE0n6I1Qnv0eAbHm1Cm9SpRAvatw_j0bQJyAjJS4lv2u-QQd07U9G81EdOSoa8FDHokfTIX_lpJecM92C3Bovstvqefdiw2QHsrEgIHsLyLsUfH5Ev-5I0Q6JgRQNFGWUow4gDykrtyqbPKGNpxoy1OSM1S3xBVnHBGVqxF5kWTKqMsCxBdNxYlHSt7Ajmw_vZYOTU8xMc7fp-4WCdjNlHRzZSGusgYT3NExFqE1ndx0XDg8AkXAcIXfsIRFyRuLgWGR4qL-pp9xha2VtmT4D5OlFaBb7xlfBk4IaB5j1PRtJILNk80YF-47VY1-LiNOPiNW5YZMuYPB2Tp-PK0x24-bHJK2mNtbtFcxjxrwsSY-xfY3f6T7sr2BrNJk_x08N0fAbb9KSilp1Dq3j_tBeIRQp1Wd-1b45w3f8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+wavelet+transform+based+data+representation+in+deep+neural+network+for+gait+abnormality+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chakraborty%2C+Jayeeta&rft.au=Nandy%2C+Anup&rft.date=2020-09-01&rft.issn=1746-8094&rft.volume=62&rft.spage=102076&rft_id=info:doi/10.1016%2Fj.bspc.2020.102076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2020_102076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon