Discrete wavelet transform based data representation in deep neural network for gait abnormality detection
•A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extr...
Saved in:
Published in | Biomedical signal processing and control Vol. 62; p. 102076 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extraction.•The proposed method has achieved significant improvement in performance over the state-of-the-art deep learning techniques for inertial sensors.
Detection of abnormal gait patterns using wearable sensors remains a major challenge in clinical gait analysis and rehabilitation field. Despite the success of recent researches using deep learning techniques, the prospects of improvement in the classification process with the help of modification in data representation is largely overlooked. In this paper, a deep neural network-based framework is proposed where discrete wavelet decomposition is used for data representation to detect abnormal gait patterns using inertial sensors. In the proposed approach, the walking gait data of healthy children and cerebral palsy children are collected using two inertial sensors. Discrete wavelet transform is applied to signal segments to form decomposed signal segments. A multi-channel 1-dimensional convolutional neural network (1D-CNN) model is trained with the decomposed signals. The proposed method achieves 96.4% and 90.97% accuracy for segment-wise and subject-wise evaluation respectively. The performance of the proposed model is compared with the state-of-the-art methods as well as with a basic 1D-CNN model trained with signals directly. Analysis of the result shows that the proposed method performs significantly better than the basic CNN model and also exceeds over the performance of the state-of-the-art methods. An investigation is done on the effect on the performance of the model with varying levels of wavelet decomposition which reveals that at level 2, the proposed method reaches the highest accuracy and lowest loss value. When tested with 100 random samples, the wavelet representation generates higher area-under-curve scores for deep learning based techniques, compared to empirical mode decomposition representation method. |
---|---|
AbstractList | •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of signals.•Discrete wavelet transformation is used for data representation.•Deep neural network architecture modeling is utilized for automatic feature extraction.•The proposed method has achieved significant improvement in performance over the state-of-the-art deep learning techniques for inertial sensors.
Detection of abnormal gait patterns using wearable sensors remains a major challenge in clinical gait analysis and rehabilitation field. Despite the success of recent researches using deep learning techniques, the prospects of improvement in the classification process with the help of modification in data representation is largely overlooked. In this paper, a deep neural network-based framework is proposed where discrete wavelet decomposition is used for data representation to detect abnormal gait patterns using inertial sensors. In the proposed approach, the walking gait data of healthy children and cerebral palsy children are collected using two inertial sensors. Discrete wavelet transform is applied to signal segments to form decomposed signal segments. A multi-channel 1-dimensional convolutional neural network (1D-CNN) model is trained with the decomposed signals. The proposed method achieves 96.4% and 90.97% accuracy for segment-wise and subject-wise evaluation respectively. The performance of the proposed model is compared with the state-of-the-art methods as well as with a basic 1D-CNN model trained with signals directly. Analysis of the result shows that the proposed method performs significantly better than the basic CNN model and also exceeds over the performance of the state-of-the-art methods. An investigation is done on the effect on the performance of the model with varying levels of wavelet decomposition which reveals that at level 2, the proposed method reaches the highest accuracy and lowest loss value. When tested with 100 random samples, the wavelet representation generates higher area-under-curve scores for deep learning based techniques, compared to empirical mode decomposition representation method. |
ArticleNumber | 102076 |
Author | Chakraborty, Jayeeta Nandy, Anup |
Author_xml | – sequence: 1 givenname: Jayeeta orcidid: 0000-0003-3918-1649 surname: Chakraborty fullname: Chakraborty, Jayeeta email: jayeeta.iem2012@gmail.com – sequence: 2 givenname: Anup surname: Nandy fullname: Nandy, Anup |
BookMark | eNp9kM1KxDAURoOM4MzoC7jKC3RM0rRNwY2MvzDgRtchTW4ltZOWJM4wb29KdePC1b183HPhOyu0cIMDhK4p2VBCy5tu04RRbxhhU8BIVZ6hJa14mQlKxOJ3JzW_QKsQOkK4qChfou7eBu0hAj6qA_QQcfTKhXbwe9yoAAYbFRX2MHoI4KKKdnDYOmwARuzgy6s-jXgc_CdOFP5QNmLVuPRA9Tae0mEEPVGX6LxVfYCrn7lG748Pb9vnbPf69LK922U6L8uYQZNTJnQNdaN5XRTANWsLoU0NmqbQsKoyLdOVoA0tBM-LNk9ZbZhoeE10vkZs_qv9EIKHVo7e7pU_SUrkZEt2crIlJ1tytpUg8QfSdi6bfNj-f_R2RiGVOljwMmgLToOxPjWXZrD_4d8j_oqE |
CitedBy_id | crossref_primary_10_1088_1742_6596_2822_1_012084 crossref_primary_10_1016_j_gaitpost_2024_04_007 crossref_primary_10_1016_j_measurement_2022_111177 crossref_primary_10_1007_s11554_023_01349_w crossref_primary_10_1007_s00500_023_09121_9 crossref_primary_10_1002_aisy_202300845 crossref_primary_10_1007_s10462_023_10404_8 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_3390_s24051500 crossref_primary_10_1016_j_eswa_2023_120624 crossref_primary_10_1007_s10462_024_10712_7 crossref_primary_10_3934_mbe_2023349 crossref_primary_10_32604_iasc_2023_028481 crossref_primary_10_1016_j_measurement_2024_116234 crossref_primary_10_37394_23205_2021_20_21 crossref_primary_10_3390_math11081770 crossref_primary_10_3390_s22041678 crossref_primary_10_1016_j_eswa_2022_117483 crossref_primary_10_3390_healthcare10071210 crossref_primary_10_1016_j_eswa_2021_115650 crossref_primary_10_1016_j_bspc_2021_103429 crossref_primary_10_1177_20552076231180054 crossref_primary_10_1155_2022_9933018 crossref_primary_10_1016_j_engappai_2022_105170 crossref_primary_10_1093_jcde_qwab054 |
Cites_doi | 10.1109/51.7933 10.1016/j.bspc.2018.05.014 10.1016/j.bspc.2019.101730 10.1016/j.compbiomed.2016.10.019 10.1016/j.bspc.2017.07.022 10.1109/IROS.2009.5354111 10.1109/CSPA.2011.5759842 10.1002/mds.1206 10.1016/j.bspc.2019.101663 10.1016/j.asoc.2017.01.015 10.4018/JOEUC.2020040104 10.21629/JSEE.2017.01.18 10.1109/PerComW.2014.6815179 10.1016/j.medengphy.2014.11.008 10.1016/j.eswa.2012.01.084 10.1109/EMBC.2012.6345873 10.1007/s11042-017-4903-7 10.3390/s16010115 10.3390/s16040475 10.18100/ijamec.270307 10.1016/j.knosys.2017.10.017 10.1111/mice.12447 10.3390/s17122735 10.1016/j.bspc.2020.101867 10.1088/0967-3334/37/3/442 10.1016/j.bspc.2018.07.015 10.1109/ICAR.2015.7251474 10.1007/978-3-319-08010-9_33 10.1007/s13042-019-00947-0 10.1016/j.gaitpost.2012.05.028 10.1016/j.gaitpost.2008.10.061 10.1109/ICIA.2007.4295787 10.3390/s16010134 10.1109/JBHI.2016.2633287 10.1109/ICIP.2016.7533144 10.1186/1743-0003-11-152 10.1016/j.cmpb.2017.04.007 10.1016/j.cogsys.2018.04.002 10.1109/JSEN.2018.2885207 10.1016/j.gaitpost.2008.06.011 10.1109/SoCPaR.2009.115 10.1109/ICIP.2011.6115889 10.3390/s18020468 10.1016/j.neulet.2016.09.043 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2020.102076 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2020_102076 S1746809420302329 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-eb3128c9e9bc4955e4c2f58cd9ec1e9bd277df2c781b158435f3d279d28b490c3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 01:34:07 EDT 2025 Fri Feb 23 02:47:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Gait pattern classification Discrete wavelet transform Cerebral palsy gait Convolutional neural network Wearable inertial sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-eb3128c9e9bc4955e4c2f58cd9ec1e9bd277df2c781b158435f3d279d28b490c3 |
ORCID | 0000-0003-3918-1649 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2020_102076 crossref_citationtrail_10_1016_j_bspc_2020_102076 elsevier_sciencedirect_doi_10_1016_j_bspc_2020_102076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Werth, Radha, Andriessen, Aarts, Long (bib0195) 2020; 56 Altan, Kutlu, Allahverdi (bib0265) 2016; 4 Khan, Javed, Khan, Saba, Habib, Khan, Abbasi (bib0235) 2020 Sharif, Attique, Tahir, Yasmim, Saba, Tanik (bib0240) 2020; 32 Wolf, Babaee, Rigoll (bib0175) 2016 Joshi, Khajuria, Joshi (bib0110) 2017; 145 Bai, Kolter, Koltun (bib0215) 2018 Handojoseno, Shine, Nguyen, Tran, Lewis, Nguyen (bib0120) 2012 Yang, Nguyen, San, Li, Krishnaswamy (bib0225) 2015 Lee, Lim (bib0135) 2012; 39 Cha, Kim, Kim (bib0165) 2018; 18 Ayachi, Nguyen, Lavigne-Pelletier, Goubault, Boissy, Duval (bib0105) 2016; 37 Ordó nez, Roggen (bib0145) 2016; 16 Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (bib0160) 2018; 139 Zheng, Liu, Chen, Ge, Zhao (bib0205) 2014 Rezvanian, Lockhart (bib0080) 2016; 16 Xia, Zhang, Ye, Cheng, Lu, Zhang (bib0140) 2018; 46 Chen, Yan, Xu (bib0070) 2009 Zhao, Lu, Chen, Liu, Wu (bib0210) 2017; 28 Zheng, Zhang, Huang, He, Tan (bib0020) 2011 Swets (bib0255) 2014 Qiu, Ren, Suganthan, Amaratunga (bib0270) 2017; 54 Altan, Kutlu (bib0275) 2018; 3 Baby, Saji, Kumar (bib0115) 2017 Balasubramanian, Neptune, Kautz (bib0030) 2009; 29 Zeng, Liu, Wang, Wang, Ma, Zhang (bib0260) 2016; 633 Hamdi, Awad, Abdelhameed, Tolbah (bib0075) 2015 Hammerla, Halloran, Plötz (bib0230) 2016 Dalton, Khalil, Busse, Rosser, van Deursen, ÓLaighin (bib0035) 2013; 37 Trojaniello, Cereatti, Pelosin, Avanzino, Mirelman, Hausdorff, Della Croce (bib0040) 2014; 11 Davis (bib0005) 1988; 7 Majumder, Mondal, Deen (bib0085) 2018; 19 Dehzangi, Taherisadr, ChangalVala (bib0170) 2017; 17 Khandelwal, Wickström (bib0100) 2014 Chai, Wang, Zhao, Liu, Bai, Li (bib0285) 2016; 79 Tharwat (bib0295) 2018 Arshad, Khan, Sharif, Yasmin, Tavares, Zhang, Satapathy (bib0245) 2020 Nieuwboer, Dom, De Weerdt, Desloovere, Fieuws, Broens-Kaucsik (bib0015) 2001; 16 Laudanski, Brouwer, Li (bib0150) 2015; 37 Chen, Huang, Xu (bib0045) 2007 Akula, Shah, Ghosh (bib0180) 2018; 50 Wang, Wang, Yan (bib0130) 2018; 77 Carriero, Zavatsky, Stebbins, Theologis, Shefelbine (bib0010) 2009; 29 Nickel, Busch, Rangarajan, Möbius (bib0055) 2011 Lockhart, Soangra, Zhang, Wu (bib0095) 2013; 49 Chakraborty, Nandy (bib0250) 2019 Zheng, Chen, Li, Zhang, You, Jiang (bib0200) 2020; 56 Altan, Kutlu, Allahverdi (bib0280) 2019 Arshad, Khan, Sharif, Yasmin, Javed (bib0025) 2019; 10 Alickovic, Kevric, Subasi (bib0125) 2018; 39 Mazilu, Blanke, Hardegger, Tröster, Gazit, Dorfman, Hausdorff (bib0050) 2014 Zhang, Miyamori, Mikami, Saito (bib0220) 2019; 34 Mannini, Trojaniello, Cereatti, Sabatini (bib0065) 2016; 16 Mannini, Trojaniello, Della Croce, Sabatini (bib0060) 2015 Ravi, Wong, Lo, Yang (bib0155) 2016; 21 Altan, Kutlu (bib0290) 2018; 3 Sharma, Pachori, Sircar (bib0190) 2020; 58 Gouwanda, Senanayake (bib0090) 2009 Altan, Kutlu, Pekmezci, Nural (bib0185) 2018; 45 Sharma (10.1016/j.bspc.2020.102076_bib0190) 2020; 58 Altan (10.1016/j.bspc.2020.102076_bib0185) 2018; 45 Chai (10.1016/j.bspc.2020.102076_bib0285) 2016; 79 Mannini (10.1016/j.bspc.2020.102076_bib0060) 2015 Altan (10.1016/j.bspc.2020.102076_bib0265) 2016; 4 Werth (10.1016/j.bspc.2020.102076_bib0195) 2020; 56 Nickel (10.1016/j.bspc.2020.102076_bib0055) 2011 Zhao (10.1016/j.bspc.2020.102076_bib0210) 2017; 28 Tharwat (10.1016/j.bspc.2020.102076_bib0295) 2018 Zheng (10.1016/j.bspc.2020.102076_bib0020) 2011 Yang (10.1016/j.bspc.2020.102076_bib0225) 2015 Chen (10.1016/j.bspc.2020.102076_bib0045) 2007 Sharif (10.1016/j.bspc.2020.102076_bib0240) 2020; 32 Akula (10.1016/j.bspc.2020.102076_bib0180) 2018; 50 Handojoseno (10.1016/j.bspc.2020.102076_bib0120) 2012 Ordó nez (10.1016/j.bspc.2020.102076_bib0145) 2016; 16 Rezvanian (10.1016/j.bspc.2020.102076_bib0080) 2016; 16 Majumder (10.1016/j.bspc.2020.102076_bib0085) 2018; 19 Altan (10.1016/j.bspc.2020.102076_bib0280) 2019 Balasubramanian (10.1016/j.bspc.2020.102076_bib0030) 2009; 29 Joshi (10.1016/j.bspc.2020.102076_bib0110) 2017; 145 Camps (10.1016/j.bspc.2020.102076_bib0160) 2018; 139 Altan (10.1016/j.bspc.2020.102076_bib0290) 2018; 3 Hamdi (10.1016/j.bspc.2020.102076_bib0075) 2015 Nieuwboer (10.1016/j.bspc.2020.102076_bib0015) 2001; 16 Zheng (10.1016/j.bspc.2020.102076_bib0205) 2014 Khandelwal (10.1016/j.bspc.2020.102076_bib0100) 2014 Chakraborty (10.1016/j.bspc.2020.102076_bib0250) 2019 Zheng (10.1016/j.bspc.2020.102076_bib0200) 2020; 56 Chen (10.1016/j.bspc.2020.102076_bib0070) 2009 Dehzangi (10.1016/j.bspc.2020.102076_bib0170) 2017; 17 Wolf (10.1016/j.bspc.2020.102076_bib0175) 2016 Trojaniello (10.1016/j.bspc.2020.102076_bib0040) 2014; 11 Baby (10.1016/j.bspc.2020.102076_bib0115) 2017 Carriero (10.1016/j.bspc.2020.102076_bib0010) 2009; 29 Zeng (10.1016/j.bspc.2020.102076_bib0260) 2016; 633 Ayachi (10.1016/j.bspc.2020.102076_bib0105) 2016; 37 Swets (10.1016/j.bspc.2020.102076_bib0255) 2014 Lee (10.1016/j.bspc.2020.102076_bib0135) 2012; 39 Xia (10.1016/j.bspc.2020.102076_bib0140) 2018; 46 Davis (10.1016/j.bspc.2020.102076_bib0005) 1988; 7 Cha (10.1016/j.bspc.2020.102076_bib0165) 2018; 18 Arshad (10.1016/j.bspc.2020.102076_bib0025) 2019; 10 Gouwanda (10.1016/j.bspc.2020.102076_bib0090) 2009 Bai (10.1016/j.bspc.2020.102076_bib0215) 2018 Khan (10.1016/j.bspc.2020.102076_bib0235) 2020 Hammerla (10.1016/j.bspc.2020.102076_bib0230) 2016 Mannini (10.1016/j.bspc.2020.102076_bib0065) 2016; 16 Altan (10.1016/j.bspc.2020.102076_bib0275) 2018; 3 Lockhart (10.1016/j.bspc.2020.102076_bib0095) 2013; 49 Wang (10.1016/j.bspc.2020.102076_bib0130) 2018; 77 Ravi (10.1016/j.bspc.2020.102076_bib0155) 2016; 21 Zhang (10.1016/j.bspc.2020.102076_bib0220) 2019; 34 Dalton (10.1016/j.bspc.2020.102076_bib0035) 2013; 37 Mazilu (10.1016/j.bspc.2020.102076_bib0050) 2014 Arshad (10.1016/j.bspc.2020.102076_bib0245) 2020 Laudanski (10.1016/j.bspc.2020.102076_bib0150) 2015; 37 Alickovic (10.1016/j.bspc.2020.102076_bib0125) 2018; 39 Qiu (10.1016/j.bspc.2020.102076_bib0270) 2017; 54 |
References_xml | – start-page: 5179 year: 2015 end-page: 5182 ident: bib0060 article-title: Hidden Markov model-based strategy for gait segmentation using inertial sensors: application to elderly, hemiparetic patients and Huntington's disease patients publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 46 start-page: 221 year: 2018 end-page: 230 ident: bib0140 article-title: Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson's disease patients publication-title: Biomed. Signal Process. Control – volume: 50 start-page: 146 year: 2018 end-page: 154 ident: bib0180 article-title: Deep learning approach for human action recognition in infrared images publication-title: Cogn. Syst. Res. – volume: 16 start-page: 134 year: 2016 ident: bib0065 article-title: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington's disease patients publication-title: Sensors – volume: 37 start-page: 180 year: 2015 end-page: 186 ident: bib0150 article-title: Activity classification in persons with stroke based on frequency features publication-title: Med. Eng. Phys. – volume: 139 start-page: 119 year: 2018 end-page: 131 ident: bib0160 article-title: Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl.-Based Syst. – year: 2018 ident: bib0295 article-title: Classification assessment methods publication-title: Appl. Comput. Informatics – volume: 16 start-page: 115 year: 2016 ident: bib0145 article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors – start-page: 4165 year: 2016 end-page: 4169 ident: bib0175 article-title: Multi-view gait recognition using 3d convolutional neural networks publication-title: 2016 IEEE International Conference on Image Processing (ICIP) – start-page: 2073 year: 2011 end-page: 2076 ident: bib0020 article-title: Robust view transformation model for gait recognition publication-title: 2011 18th IEEE International Conference on Image Processing – year: 2014 ident: bib0255 article-title: Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers – start-page: 580 year: 2009 end-page: 585 ident: bib0090 article-title: Application of hybrid multi-resolution wavelet decomposition method in detecting human walking gait events publication-title: 2009 International Conference of Soft Computing and Pattern Recognition – volume: 37 start-page: 442 year: 2016 ident: bib0105 article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs) publication-title: Physiol. Meas. – year: 2015 ident: bib0225 article-title: Deep convolutional neural networks on multichannel time series for human activity recognition publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence – volume: 19 start-page: 2320 year: 2018 end-page: 2329 ident: bib0085 article-title: A simple, low-cost and efficient gait analyzer for wearable healthcare applications publication-title: IEEE Sens. J. – volume: 633 start-page: 268 year: 2016 end-page: 278 ident: bib0260 article-title: Parkinson's disease classification using gait analysis via deterministic learning publication-title: Neurosci. Lett. – volume: 145 start-page: 135 year: 2017 end-page: 145 ident: bib0110 article-title: An automatic non-invasive method for Parkinson's disease classification publication-title: Comput. Methods Programs Biomed. – start-page: 140 year: 2019 end-page: 152 ident: bib0250 article-title: Periodicity detection of quasi-periodic slow-speed gait signal using IMU sensor publication-title: International Conference on Human-Computer Interaction – start-page: 58 year: 2011 end-page: 63 ident: bib0055 article-title: Using hidden Markov models for accelerometer-based biometric gait recognition publication-title: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications – volume: 77 start-page: 12545 year: 2018 end-page: 12561 ident: bib0130 article-title: Gait recognition based on gabor wavelets and (2d) 2 pca publication-title: Multimedia Tools Appl. – start-page: 197 year: 2014 end-page: 204 ident: bib0100 article-title: Identification of gait events using expert knowledge and continuous wavelet transform analysis publication-title: 7th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS 2014) – year: 2019 ident: bib0280 article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease publication-title: IEEE J. Biomed. Health Informatics – volume: 56 start-page: 101663 year: 2020 ident: bib0195 article-title: Deep learning approach for ECG-based automatic sleep state classification in preterm infants publication-title: Biomed. Signal Process. Control – volume: 29 start-page: 71 year: 2009 end-page: 75 ident: bib0010 article-title: Determination of gait patterns in children with spastic diplegic cerebral palsy using principal components publication-title: Gait Posture – volume: 58 start-page: 101867 year: 2020 ident: bib0190 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control – volume: 11 start-page: 152 year: 2014 ident: bib0040 article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait publication-title: J. Neuroeng. Rehabil. – volume: 32 start-page: 67 year: 2020 end-page: 92 ident: bib0240 article-title: A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition publication-title: J. Organ. End User Comput. – volume: 7 start-page: 35 year: 1988 end-page: 40 ident: bib0005 article-title: Clinical gait analysis publication-title: IEEE Eng. Med. Biol. Mag. – volume: 39 start-page: 94 year: 2018 end-page: 102 ident: bib0125 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control – volume: 4 start-page: 205 year: 2016 end-page: 210 ident: bib0265 article-title: Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke publication-title: Int. J. Appl. Math. Electron. Comput. – start-page: 517 year: 2007 end-page: 522 ident: bib0045 article-title: Human abnormal gait modeling via hidden markov model publication-title: 2007 International Conference on Information Acquisition – volume: 10 start-page: 3601 year: 2019 end-page: 3618 ident: bib0025 article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution publication-title: Int. J. Mach. Learn. Cybern. – volume: 16 start-page: 475 year: 2016 ident: bib0080 article-title: Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data publication-title: Sensors – volume: 21 start-page: 56 year: 2016 end-page: 64 ident: bib0155 article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices publication-title: IEEE J. Biomed. Health Informatics – volume: 18 start-page: 468 year: 2018 ident: bib0165 article-title: Flexible piezoelectric sensor-based gait recognition publication-title: Sensors – volume: 29 start-page: 408 year: 2009 end-page: 414 ident: bib0030 article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke publication-title: Gait Posture – volume: 56 start-page: 101730 year: 2020 ident: bib0200 article-title: Decoding human brain activity with deep learning publication-title: Biomed. Signal Process. Control – start-page: 1 year: 2020 end-page: 27 ident: bib0235 article-title: Human action recognition using fusion of multiview and deep features: an application to video surveillance publication-title: Multimedia Tools Appl. – start-page: e12541 year: 2020 ident: bib0245 article-title: A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition publication-title: Expert Syst. – volume: 17 start-page: 2735 year: 2017 ident: bib0170 article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion publication-title: Sensors – year: 2018 ident: bib0215 article-title: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling – volume: 16 start-page: 1066 year: 2001 end-page: 1075 ident: bib0015 article-title: Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc. – volume: 34 start-page: 822 year: 2019 end-page: 839 ident: bib0220 article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network publication-title: Comput.-Aided Civil Infrastruct. Eng. – start-page: 298 year: 2014 end-page: 310 ident: bib0205 article-title: Time series classification using multi-channels deep convolutional neural networks publication-title: International Conference on Web-Age Information Management – start-page: 833 year: 2009 end-page: 839 ident: bib0070 article-title: Gait pattern classification with integrated shoes publication-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 49 start-page: 224 year: 2013 ident: bib0095 article-title: Wavelet based automated postural event detection and activity classification with single IMU (tempo) publication-title: Biomed. Sci. Instrum. – volume: 3 start-page: 141 year: 2018 end-page: 151 ident: bib0275 article-title: Hessenberg ELM autoencoder kernel for deep learning publication-title: J. Eng. Technol. Appl. Sci. – volume: 37 start-page: 49 year: 2013 end-page: 54 ident: bib0035 article-title: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington's disease publication-title: Gait Posture – volume: 28 start-page: 162 year: 2017 end-page: 169 ident: bib0210 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. – start-page: 1 year: 2017 end-page: 6 ident: bib0115 article-title: Parkinsons disease classification using wavelet transform based feature extraction of gait data publication-title: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT) – start-page: 135 year: 2014 end-page: 137 ident: bib0050 article-title: Gaitassist: a wearable assistant for gait training and rehabilitation in Parkinson's disease publication-title: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS) – volume: 54 start-page: 246 year: 2017 end-page: 255 ident: bib0270 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl. Soft Comput. – volume: 45 start-page: 58 year: 2018 end-page: 69 ident: bib0185 article-title: Deep learning with 3d-second order difference plot on respiratory sounds publication-title: Biomed. Signal Process. Control – start-page: 316 year: 2015 end-page: 322 ident: bib0075 article-title: Lower limb gait activity recognition using inertial measurement units for rehabilitation robotics publication-title: 2015 International Conference on Advanced Robotics (ICAR) – volume: 39 start-page: 7338 year: 2012 end-page: 7344 ident: bib0135 article-title: Parkinson's disease classification using gait characteristics and wavelet-based feature extraction publication-title: Expert Syst. Appl. – volume: 3 start-page: 311 year: 2018 end-page: 322 ident: bib0290 article-title: Generative autoencoder kernels on deep learning for brain activity analysis publication-title: Nat. Eng. Sci. – start-page: 69 year: 2012 end-page: 72 ident: bib0120 article-title: The detection of freezing of gait in Parkinson's disease patients using EEG signals based on wavelet decomposition publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2016 ident: bib0230 article-title: Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables – volume: 79 start-page: 205 year: 2016 end-page: 214 ident: bib0285 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. – volume: 7 start-page: 35 issue: 3 year: 1988 ident: 10.1016/j.bspc.2020.102076_bib0005 article-title: Clinical gait analysis publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.7933 – volume: 45 start-page: 58 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0185 article-title: Deep learning with 3d-second order difference plot on respiratory sounds publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.05.014 – volume: 56 start-page: 101730 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0200 article-title: Decoding human brain activity with deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101730 – volume: 79 start-page: 205 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0285 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.019 – start-page: 1 year: 2017 ident: 10.1016/j.bspc.2020.102076_bib0115 article-title: Parkinsons disease classification using wavelet transform based feature extraction of gait data publication-title: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT) – start-page: 197 year: 2014 ident: 10.1016/j.bspc.2020.102076_bib0100 article-title: Identification of gait events using expert knowledge and continuous wavelet transform analysis – volume: 39 start-page: 94 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0125 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0235 article-title: Human action recognition using fusion of multiview and deep features: an application to video surveillance publication-title: Multimedia Tools Appl. – start-page: 833 year: 2009 ident: 10.1016/j.bspc.2020.102076_bib0070 article-title: Gait pattern classification with integrated shoes publication-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems doi: 10.1109/IROS.2009.5354111 – start-page: 58 year: 2011 ident: 10.1016/j.bspc.2020.102076_bib0055 article-title: Using hidden Markov models for accelerometer-based biometric gait recognition publication-title: 2011 IEEE 7th International Colloquium on Signal Processing and its Applications doi: 10.1109/CSPA.2011.5759842 – start-page: e12541 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0245 article-title: A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition publication-title: Expert Syst. – volume: 16 start-page: 1066 issue: 6 year: 2001 ident: 10.1016/j.bspc.2020.102076_bib0015 article-title: Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc. doi: 10.1002/mds.1206 – volume: 56 start-page: 101663 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0195 article-title: Deep learning approach for ECG-based automatic sleep state classification in preterm infants publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101663 – year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0295 article-title: Classification assessment methods publication-title: Appl. Comput. Informatics – volume: 54 start-page: 246 year: 2017 ident: 10.1016/j.bspc.2020.102076_bib0270 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.015 – volume: 3 start-page: 141 issue: 2 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0275 article-title: Hessenberg ELM autoencoder kernel for deep learning publication-title: J. Eng. Technol. Appl. Sci. – volume: 32 start-page: 67 issue: 2 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0240 article-title: A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition publication-title: J. Organ. End User Comput. doi: 10.4018/JOEUC.2020040104 – volume: 28 start-page: 162 issue: 1 year: 2017 ident: 10.1016/j.bspc.2020.102076_bib0210 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – start-page: 135 year: 2014 ident: 10.1016/j.bspc.2020.102076_bib0050 article-title: Gaitassist: a wearable assistant for gait training and rehabilitation in Parkinson's disease publication-title: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS) doi: 10.1109/PerComW.2014.6815179 – year: 2015 ident: 10.1016/j.bspc.2020.102076_bib0225 article-title: Deep convolutional neural networks on multichannel time series for human activity recognition publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence – year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0230 – volume: 37 start-page: 180 issue: 2 year: 2015 ident: 10.1016/j.bspc.2020.102076_bib0150 article-title: Activity classification in persons with stroke based on frequency features publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.11.008 – volume: 39 start-page: 7338 issue: 8 year: 2012 ident: 10.1016/j.bspc.2020.102076_bib0135 article-title: Parkinson's disease classification using gait characteristics and wavelet-based feature extraction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.084 – volume: 49 start-page: 224 year: 2013 ident: 10.1016/j.bspc.2020.102076_bib0095 article-title: Wavelet based automated postural event detection and activity classification with single IMU (tempo) publication-title: Biomed. Sci. Instrum. – start-page: 69 year: 2012 ident: 10.1016/j.bspc.2020.102076_bib0120 article-title: The detection of freezing of gait in Parkinson's disease patients using EEG signals based on wavelet decomposition publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/EMBC.2012.6345873 – volume: 77 start-page: 12545 issue: 10 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0130 article-title: Gait recognition based on gabor wavelets and (2d) 2 pca publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-017-4903-7 – volume: 16 start-page: 115 issue: 1 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0145 article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – volume: 16 start-page: 475 issue: 4 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0080 article-title: Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data publication-title: Sensors doi: 10.3390/s16040475 – volume: 4 start-page: 205 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0265 article-title: Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke publication-title: Int. J. Appl. Math. Electron. Comput. doi: 10.18100/ijamec.270307 – volume: 139 start-page: 119 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0160 article-title: Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.017 – volume: 34 start-page: 822 issue: 9 year: 2019 ident: 10.1016/j.bspc.2020.102076_bib0220 article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network publication-title: Comput.-Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12447 – volume: 17 start-page: 2735 issue: 12 year: 2017 ident: 10.1016/j.bspc.2020.102076_bib0170 article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion publication-title: Sensors doi: 10.3390/s17122735 – volume: 58 start-page: 101867 year: 2020 ident: 10.1016/j.bspc.2020.102076_bib0190 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101867 – year: 2014 ident: 10.1016/j.bspc.2020.102076_bib0255 – volume: 37 start-page: 442 issue: 3 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0105 article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs) publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/3/442 – volume: 46 start-page: 221 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0140 article-title: Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson's disease patients publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.07.015 – start-page: 5179 year: 2015 ident: 10.1016/j.bspc.2020.102076_bib0060 article-title: Hidden Markov model-based strategy for gait segmentation using inertial sensors: application to elderly, hemiparetic patients and Huntington's disease patients publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – start-page: 316 year: 2015 ident: 10.1016/j.bspc.2020.102076_bib0075 article-title: Lower limb gait activity recognition using inertial measurement units for rehabilitation robotics publication-title: 2015 International Conference on Advanced Robotics (ICAR) doi: 10.1109/ICAR.2015.7251474 – start-page: 298 year: 2014 ident: 10.1016/j.bspc.2020.102076_bib0205 article-title: Time series classification using multi-channels deep convolutional neural networks publication-title: International Conference on Web-Age Information Management doi: 10.1007/978-3-319-08010-9_33 – volume: 10 start-page: 3601 issue: 12 year: 2019 ident: 10.1016/j.bspc.2020.102076_bib0025 article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00947-0 – start-page: 140 year: 2019 ident: 10.1016/j.bspc.2020.102076_bib0250 article-title: Periodicity detection of quasi-periodic slow-speed gait signal using IMU sensor publication-title: International Conference on Human-Computer Interaction – volume: 37 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.bspc.2020.102076_bib0035 article-title: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington's disease publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.05.028 – volume: 29 start-page: 408 issue: 3 year: 2009 ident: 10.1016/j.bspc.2020.102076_bib0030 article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.10.061 – start-page: 517 year: 2007 ident: 10.1016/j.bspc.2020.102076_bib0045 article-title: Human abnormal gait modeling via hidden markov model publication-title: 2007 International Conference on Information Acquisition doi: 10.1109/ICIA.2007.4295787 – volume: 16 start-page: 134 issue: 1 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0065 article-title: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington's disease patients publication-title: Sensors doi: 10.3390/s16010134 – volume: 21 start-page: 56 issue: 1 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0155 article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2016.2633287 – start-page: 4165 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0175 article-title: Multi-view gait recognition using 3d convolutional neural networks publication-title: 2016 IEEE International Conference on Image Processing (ICIP) doi: 10.1109/ICIP.2016.7533144 – volume: 11 start-page: 152 issue: 1 year: 2014 ident: 10.1016/j.bspc.2020.102076_bib0040 article-title: Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-152 – volume: 3 start-page: 311 issue: 3 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0290 article-title: Generative autoencoder kernels on deep learning for brain activity analysis publication-title: Nat. Eng. Sci. – volume: 145 start-page: 135 year: 2017 ident: 10.1016/j.bspc.2020.102076_bib0110 article-title: An automatic non-invasive method for Parkinson's disease classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.04.007 – volume: 50 start-page: 146 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0180 article-title: Deep learning approach for human action recognition in infrared images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.04.002 – year: 2019 ident: 10.1016/j.bspc.2020.102076_bib0280 article-title: Deep learning on computerized analysis of chronic obstructive pulmonary disease publication-title: IEEE J. Biomed. Health Informatics – volume: 19 start-page: 2320 issue: 6 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0085 article-title: A simple, low-cost and efficient gait analyzer for wearable healthcare applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2885207 – volume: 29 start-page: 71 issue: 1 year: 2009 ident: 10.1016/j.bspc.2020.102076_bib0010 article-title: Determination of gait patterns in children with spastic diplegic cerebral palsy using principal components publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.06.011 – start-page: 580 year: 2009 ident: 10.1016/j.bspc.2020.102076_bib0090 article-title: Application of hybrid multi-resolution wavelet decomposition method in detecting human walking gait events publication-title: 2009 International Conference of Soft Computing and Pattern Recognition doi: 10.1109/SoCPaR.2009.115 – start-page: 2073 year: 2011 ident: 10.1016/j.bspc.2020.102076_bib0020 article-title: Robust view transformation model for gait recognition publication-title: 2011 18th IEEE International Conference on Image Processing doi: 10.1109/ICIP.2011.6115889 – volume: 18 start-page: 468 issue: 2 year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0165 article-title: Flexible piezoelectric sensor-based gait recognition publication-title: Sensors doi: 10.3390/s18020468 – year: 2018 ident: 10.1016/j.bspc.2020.102076_bib0215 – volume: 633 start-page: 268 year: 2016 ident: 10.1016/j.bspc.2020.102076_bib0260 article-title: Parkinson's disease classification using gait analysis via deterministic learning publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2016.09.043 |
SSID | ssj0048714 |
Score | 2.3605165 |
Snippet | •A novel approach for classification of abnormal gait pattern using inertial sensors data.•Auto-correlation technique is used for segmentation of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102076 |
SubjectTerms | Cerebral palsy gait Convolutional neural network Deep learning Discrete wavelet transform Gait pattern classification Wearable inertial sensor |
Title | Discrete wavelet transform based data representation in deep neural network for gait abnormality detection |
URI | https://dx.doi.org/10.1016/j.bspc.2020.102076 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9h0s8kmx1ItVbEXLfQW9hVJkTVoxJu_3Zk8SgXpwWOWGRom25lv4JtvCLkUmQ4zZqRnlIlxJCf2FBQSL1Y64cNMWl1NuT7Ooumc3y_CRYeM21kYpFU2ub_O6VW2bk4GTTQHRZ4PngBLRzF0J8zHxTcMh_g4F3jLr79XNA_A45W-Nxp7aN0MztQcL_VRoIwhqxQMfNQd-as4rRWcyR7ZbZAiHdUvs0861h2QnTX9wEOyvMnhXw-wl35JXCBR0rLFoRTLk6FIAKWVcGU7ZORo7qixtqAoZQk_4GoiOAUv-iLzkkrlEMgiPgfDsuJquSMyn9w-j6deszzB00EUlR40yVB6dGITpaEJCi3XLAtjbRKrh3BomBAmY1oAbh0CCgnCLICzxLBY8cTXwTHpujdnTwiNdKa0EpGJVMilCGKhmc9lIo2Efo2HPTJso5bqRlkcF1y8pi2FbJlipFOMdFpHukeuVj5Fraux0TpsP0b663akkPg3-J3-0--MbONTzSU7J93y_dNeAPgoVb-6XX2yNbp7mM5-AAH_204 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQdvEtpusnkcpVqqtb3YQm9hX5EUiUEj_n1n8pAK0oPXzQ4Js5uZb-CbbwCug0SLhBvpGGVCaskJHYWJxAmVjrx-Iq0uu1wnU3809x4XYrEBg6YXhmiVdeyvYnoZreuVbu3Nbp6m3WfE0n6I1Qnv0eAbHm1Cm9SpRAvatw_j0bQJyAjJS4lv2u-QQd07U9G81EdOSoa8FDHokfTIX_lpJecM92C3Bovstvqefdiw2QHsrEgIHsLyLsUfH5Ev-5I0Q6JgRQNFGWUow4gDykrtyqbPKGNpxoy1OSM1S3xBVnHBGVqxF5kWTKqMsCxBdNxYlHSt7Ajmw_vZYOTU8xMc7fp-4WCdjNlHRzZSGusgYT3NExFqE1ndx0XDg8AkXAcIXfsIRFyRuLgWGR4qL-pp9xha2VtmT4D5OlFaBb7xlfBk4IaB5j1PRtJILNk80YF-47VY1-LiNOPiNW5YZMuYPB2Tp-PK0x24-bHJK2mNtbtFcxjxrwsSY-xfY3f6T7sr2BrNJk_x08N0fAbb9KSilp1Dq3j_tBeIRQp1Wd-1b45w3f8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+wavelet+transform+based+data+representation+in+deep+neural+network+for+gait+abnormality+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chakraborty%2C+Jayeeta&rft.au=Nandy%2C+Anup&rft.date=2020-09-01&rft.issn=1746-8094&rft.volume=62&rft.spage=102076&rft_id=info:doi/10.1016%2Fj.bspc.2020.102076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2020_102076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |