Deep learning and multilingual sentiment analysis on social media data: An overview
Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the unde...
Saved in:
Published in | Applied soft computing Vol. 107; p. 107373 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the underlying ideas and commonalities behind the different solutions to achieve multilingual sentiment analysis. Interesting findings of our research are (i) the shift of research interest to cross-lingual and code-switching approaches, (ii) the apparent stagnation of the less complex architectures derived from a backbone featuring an embedding layer, a feature extractor based on a single CNN or LSTM and a classifier, (iii) the lack of approaches tackling multilingual aspect-based sentiment analysis through deep learning, and, surprisingly, (iv) the lack of more complex architectures such as the transformers-based, despite results suggest the more difficult tasks requires more elaborated architectures.
•Review of applications of Deep Learning to tackle Multilingual Sentiment Analysis.•Fast-growing interest in this field, 24 related papers since 2017 to 2020.•Coverage of 23 different languages and 11 social media data or corpus.•Mixed performance, but word embeddings and CNN or LSTM as trending choices.•Embeddings>feature extractor>classifier, prevailing architecture except for aspect SA. |
---|---|
AbstractList | Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the underlying ideas and commonalities behind the different solutions to achieve multilingual sentiment analysis. Interesting findings of our research are (i) the shift of research interest to cross-lingual and code-switching approaches, (ii) the apparent stagnation of the less complex architectures derived from a backbone featuring an embedding layer, a feature extractor based on a single CNN or LSTM and a classifier, (iii) the lack of approaches tackling multilingual aspect-based sentiment analysis through deep learning, and, surprisingly, (iv) the lack of more complex architectures such as the transformers-based, despite results suggest the more difficult tasks requires more elaborated architectures.
•Review of applications of Deep Learning to tackle Multilingual Sentiment Analysis.•Fast-growing interest in this field, 24 related papers since 2017 to 2020.•Coverage of 23 different languages and 11 social media data or corpus.•Mixed performance, but word embeddings and CNN or LSTM as trending choices.•Embeddings>feature extractor>classifier, prevailing architecture except for aspect SA. |
ArticleNumber | 107373 |
Author | Agüero-Torales, Marvin M. Abreu Salas, José I. López-Herrera, Antonio G. |
Author_xml | – sequence: 1 givenname: Marvin M. surname: Agüero-Torales fullname: Agüero-Torales, Marvin M. email: maguero@correo.ugr.es organization: Department of Computer Science and Artificial Intelligence, University of Granada, Calle Daniel Saucedo Aranda, s/n, 18071, Granada, Spain – sequence: 2 givenname: José I. surname: Abreu Salas fullname: Abreu Salas, José I. email: ji.abreu@ua.es organization: University Institute for Computing Research, University of Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Valencia, Spain – sequence: 3 givenname: Antonio G. surname: López-Herrera fullname: López-Herrera, Antonio G. email: lopez-herrera@decsai.ugr.es organization: Department of Computer Science and Artificial Intelligence, University of Granada, Calle Daniel Saucedo Aranda, s/n, 18071, Granada, Spain |
BookMark | eNp9kEtuwyAQQFGVSk3SXqArLuCUj41x1U2UfqVIXTR7hPG4IrIhApIqty9Ruuoim2GG4Q2aN0MT5x0gdE_JghIqHrYLHb1ZMMJovqh5za_QlMqaFY2QdJLzSsiibEpxg2YxbkmGGian6OsZYIcH0MFZ94216_C4H5IdcrXXA47gkh1zyC09HKON2Duc_7K5OUJnNe500o946bA_QDhY-LlF170eItz9nXO0eX3ZrN6L9efbx2q5LgwXIhVQ9wCd6CrdM0P6sq1pWzYchJFV00gwFVQttC0nlSlF2bWSlbytSX4mJQU-R_I81gQfY4BeGZt0st6loO2gKFEnN2qrTm7UyY06u8ko-4fugh11OF6Gns4Q5J3ynkFFY8GZLCGASarz9hL-Cx-1gSY |
CitedBy_id | crossref_primary_10_1007_s10462_022_10386_z crossref_primary_10_1016_j_ipm_2022_103058 crossref_primary_10_58635_ufuksbedergi_1285729 crossref_primary_10_3390_app12178662 crossref_primary_10_1109_ACCESS_2024_3386362 crossref_primary_10_1016_j_techsoc_2021_101724 crossref_primary_10_7717_peerj_cs_1876 crossref_primary_10_1080_03155986_2024_2303907 crossref_primary_10_2478_amns_2024_1453 crossref_primary_10_3390_math10183236 crossref_primary_10_1111_exsy_13291 crossref_primary_10_1007_s10462_022_10183_8 crossref_primary_10_1186_s12544_024_00651_3 crossref_primary_10_1007_s10462_024_10967_0 crossref_primary_10_1007_s10489_022_03384_9 crossref_primary_10_1109_ACCESS_2024_3458815 crossref_primary_10_2478_jsiot_2022_0008 crossref_primary_10_1016_j_asoc_2021_108246 crossref_primary_10_1145_3627820 crossref_primary_10_1016_j_asoc_2022_109377 crossref_primary_10_32628_CSEIT25111203 crossref_primary_10_1016_j_eswa_2024_123247 crossref_primary_10_3233_MGS_221511 crossref_primary_10_17671_gazibtd_999960 crossref_primary_10_1155_2022_5687003 crossref_primary_10_1002_cpe_7374 crossref_primary_10_1016_j_cageo_2023_105405 crossref_primary_10_1051_e3sconf_202344802004 crossref_primary_10_1016_j_aej_2023_08_062 crossref_primary_10_1016_j_datak_2022_102106 crossref_primary_10_1109_ACCESS_2022_3208164 crossref_primary_10_1155_2024_6669491 crossref_primary_10_1016_j_neucom_2025_129862 crossref_primary_10_3390_encyclopedia4040104 crossref_primary_10_3390_info12090374 crossref_primary_10_3390_data8060096 crossref_primary_10_32604_cmc_2022_031732 crossref_primary_10_1016_j_eswa_2022_118246 crossref_primary_10_7717_peerj_cs_2349 crossref_primary_10_1016_j_asoc_2022_108461 crossref_primary_10_1145_3604605 crossref_primary_10_1007_s10579_023_09661_4 crossref_primary_10_1109_JSTSP_2024_3387274 crossref_primary_10_1051_e3sconf_202235905001 crossref_primary_10_1007_s41060_024_00594_x crossref_primary_10_1145_3605152 crossref_primary_10_1109_ACCESS_2024_3398635 crossref_primary_10_1145_3572783 crossref_primary_10_1016_j_ins_2023_119918 crossref_primary_10_1007_s10844_022_00714_8 crossref_primary_10_1007_s11042_024_20184_0 crossref_primary_10_1007_s10462_023_10419_1 crossref_primary_10_1007_s11277_022_10081_w crossref_primary_10_1016_j_eij_2024_100601 crossref_primary_10_1016_j_asoc_2023_110745 crossref_primary_10_1145_3589131 crossref_primary_10_1016_j_neucom_2023_02_015 crossref_primary_10_1109_ACCESS_2022_3224136 |
Cites_doi | 10.18653/v1/D15-1167 10.1371/journal.pone.0155036 10.3115/1034678.1034721 10.1007/s11859-018-1316-z 10.1007/s10462-016-9508-4 10.1109/IJCNN.2017.7966145 10.1007/s00500-017-2766-5 10.18653/v1/D18-1031 10.1007/978-3-031-02145-9 10.1016/j.neucom.2018.04.045 10.18653/v1/N18-1202 10.3115/v1/D14-1162 10.1609/aaai.v28i1.8961 10.1609/aaai.v32i1.12071 10.24963/ijcai.2017/311 10.1162/tacl_a_00039 10.1142/S0218213020500141 10.2196/16023 10.3390/fi10120116 10.18653/v1/D16-1103 10.18653/v1/P19-2052 10.1609/aaai.v32i1.12048 10.1002/cpe.4783 10.1111/lnc3.12228 10.1109/MIS.2013.30 10.1007/s10115-018-1236-4 10.1007/s10462-020-09845-2 10.3115/v1/P15-1162 10.1002/widm.1253 10.1162/neco.1997.9.8.1735 10.1145/2436256.2436274 10.1561/1500000011 10.1016/j.procs.2020.08.014 10.18653/v1/S16-1002 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107373 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107373 S1568494621002969 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-e7feed6d5af2c0f4b71b493e6c85998ec5e5bebb305c464db8243b7071b881e3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:09 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Fri Feb 23 02:44:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Sentiment analysis Cross-lingual 91D30 Social media 68T07 Natural language processing (NLP) Multilingual 68-02 68T50 Code-switching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-e7feed6d5af2c0f4b71b493e6c85998ec5e5bebb305c464db8243b7071b881e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107373 crossref_primary_10_1016_j_asoc_2021_107373 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cambria, Schuller, Xia, Havasi (b22) 2013; 28 Liu (b4) 2012; 5 Ganin, Lempitsky (b34) 2015 Liu, Huang, Liu, Yang (b66) 2019 J. Wehrmann, W. Becker, H.E.L. Cagnini, R.C. Barros, A character-based convolutional neural network for language-agnostic Twitter sentiment analysis, in: 2017 Int. Joint Conf. on Neural Networks, IJCNN, 2017, pp. 2384–2391. W. Wang, S. Feng, W. Gao, D. Wang, Y. Zhang, Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 338–348. Chundi, Hulipalled, Simha (b73) 2020 D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent neural network for sentiment classification, in: Proc. of the 2015 Conf. on Empirical Methods in NLP, 2015, pp. 1422–1432. Rao, Huang, Feng, Cong (b33) 2018; 308 N. Choudhary, R. Singh, I. Bindlish, M. Shrivastava, Sentiment analysis of code-mixed languages leveraging resource rich languages, in: 19th Int. Conf. on Computational Linguistics and Intelligent Text Processing, CICLing-2018, 2018. Shalini, Ganesh, Kumar, Soman (b62) 2018 Y.K. Lal, V. Kumar, M. Dhar, M. Shrivastava, P. Koehn, De-mixing sentiment from code-mixed text, in: Proc. of the 57th Annual Meeting of the ACL: Student Research Workshop, 2019, pp. 371–377. Tromp (b44) 2012 Zhang, Zhang, Chan (b56) 2017 Roncal (b46) 2019 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Neural and Information Processing System, NIPS, 2013. J.T. Zhou, S.J. Pan, I.W. Tsang, Y. Yan, Hybrid heterogeneous transfer learning through deep learning, in: Twenty-Eighth AAAI Conf. on Artificial Intelligence, 2014. Liu (b5) 2015 Shen, Liao, Lei (b70) 2020 M. Jabreel, N. Maaroof, A. Valls, A. Moreno, UniSent: Universal sentiment analysis system for low-resource languages, in: CCIA, 2019, pp. 387–396. Xu, Liu, Shu, Yu (b28) 2018 Mukherjee (b69) 2019 Rosenthal, Farra, Nakov (b23) 2017 Zunic, Corcoran, Spasic (b89) 2020; 8 Z. Li, Y. Zhang, Y. Wei, Y. Wu, Q. Yang, End-to-end adversarial memory network for cross-domain sentiment classification, in: IJCAI, 2017, pp. 2237–2243. Agarwal, Nayak, Mittal, Patnaik (b36) 2020 Medrouk, Pappa (b55) 2017 C. Dos Santos, M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts, in: Proc. of COLING 2014, the 25th Int. Conf. on Computational Linguistics: Technical Papers, 2014, pp. 69–78. Z. Wang, Y. Zhang, S. Lee, S. Li, G. Zhou, A bilingual attention network for code-switched emotion prediction, in: Proc. of COLING 2016, The 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 1624–1634. Pang, Lee, Vaithyanathan (b19) 2002 Feldman (b21) 2013; 56 Zhou, Zeng, Huang, He (b39) 2016 M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daumé, III, Deep unordered composition rivals syntactic methods for text classification, in: Proc. of the 53rd Annual Meeting of the ACL and the 7th Int. Joint Conf. on NLP (Vol. 1: Long Papers), 2015, pp. 1681–1691. G. Lample, A. Conneau, M. Ranzato, L. Denoyer, H. Jégou, Word translation without parallel data, in: Int. Conf. on Learning Representations, 2018. Kanclerz, Miłkowski, Kocoń (b72) 2020; 176 Zhu, Gao, Zhang, Liu, Zhang (b83) 2018; 10 X. Dong, G. De Melo, Cross-lingual propagation for deep sentiment analysis, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018. Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018. X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, K. Weinberger, Adversarial deep averaging networks for cross-lingual sentiment classification, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 557–570. Singhal, Bhattacharyya (b11) 2016 W.Y. Zou, R. Socher, D. Cer, C.D. Manning, Bilingual word embeddings for phrase-based machine translation, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1393–1398. Zhang, Wang, Liu (b14) 2018; 8 Abdullah (b48) 2018 Banea, Mihalcea, Wiebe (b45) 2011 Zhang, Zhang, Chan (b54) 2017 Pires, Schlinger, Garrette (b86) 2019 J.M. Wiebe, R.F. Bruce, T.P. O’Hara, Development and use of a gold-standard data set for subjectivity classifications, in: Proc. of the 37th Annual Meeting of the ACL, 1999, pp. 246–253. R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1631–1642. Pang, Lee (b2) 2008; 2 Heinzerling, Strube (b84) 2018 Deriu, Lucchi, De Luca, Severyn, Müller, Cieliebak, Hofmann, Jaggi (b50) 2017 Patra, Das, Das (b81) 2018 Ghosh, Ghosh, Das (b42) 2017 Ghasemi, Ashrafi Asli, Momtazi (b74) 2020 Habimana, Li, Li, Gu, Yu (b15) 2019; 63 Wolf, Debut, Sanh, Chaumond, Delangue, Moi, Cistac, Rault, Louf, Funtowicz, Davison, Shleifer, von Platen, Ma, Jernite, Plu, Xu, Le Scao, Gugger, Drame, Lhoest, Rush (b85) 2020 M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis, in: Proc. of the 10th Int. Workshop on Semantic Evaluation, SemEval-2016, 2016, pp. 19–30. P. Singhal, P. Bhattacharyya, Borrow a little from your rich cousin: Using embeddings and polarities of English words for multilingual sentiment classification, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 3053–3062. Ahmad, Singla, Nikita (b43) 2019 A. Joshi, A. Prabhu, M. Shrivastava, V. Varma, Towards sub-word level compositions for sentiment analysis of Hindi-English code mixed text, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 2482–2491. Wadawadagi, Pagi (b16) 2020 Steiner-Correa, Viedma-del Jesus, Lopez-Herrera (b47) 2018; 22 Yu, Jiang (b27) 2016 Mozetič, Grčar, Smailović (b52) 2016; 11 Rojas-Barahona (b10) 2016; 10 Ay Karakuş, Talo, Hallaç, Aydin (b49) 2018; 30 Ain, Ali, Riaz, Noureen, Kamran, Hayat, Rehman (b12) 2017; 8 Kim (b8) 2014 Jamatia, Swamy, Gambäck, Das, Debbarma (b71) 2020; 29 Tang, Qin, Liu (b9) 2015; 5 Konate, Du (b59) 2018; 23 Gopal Jhanwar, Das (b60) 2018 Nankani, Dutta, Shrivastava, Krishna, Mahata, Shah (b17) 2020 Makhzani, Shlens, Jaitly, Goodfellow, Frey (b78) 2016 Wang, Manning (b3) 2012 Croce, Castellucci, Basili (b87) 2020 Huang, Ou, Carley (b29) 2018 S. Ruder, P. Ghaffari, J.G. Breslin, A hierarchical model of reviews for aspect-based sentiment analysis, in: Proc. of the 2016 Conf. on Empirical Methods in NLP, 2016, pp. 999–1005. Devlin, Chang, Lee, Toutanova (b82) 2018 Yue, Chen, Li, Zuo, Yin (b88) 2019; 60 Hochreiter, Schmidhuber (b53) 1997; 9 Turney (b20) 2002 Vilares (b13) 2017 Stavridis, Koloniari, Keramopoulos (b63) 2018 Lo, Cambria, Chiong, Cornforth (b1) 2017; 48 J. Pennington, R. Socher, C.D. Manning, GloVe: Global vectors for word representation, in: Empirical Methods in NLP, EMNLP, 2014, pp. 1532–1543. Medrouk, Pappa (b61) 2018 M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, in: Proc. of NAACL-HLT, 2018, pp. 2227–2237. W. Becker, J. Wehrmann, H.E. Cagnini, R.C. Barros, An efficient deep neural architecture for multilingual sentiment analysis in Twitter, in: The Thirtieth Int. Flairs Conf., 2017. 10.1016/j.asoc.2021.107373_b64 10.1016/j.asoc.2021.107373_b65 Tromp (10.1016/j.asoc.2021.107373_b44) 2012 10.1016/j.asoc.2021.107373_b67 10.1016/j.asoc.2021.107373_b24 10.1016/j.asoc.2021.107373_b68 10.1016/j.asoc.2021.107373_b25 10.1016/j.asoc.2021.107373_b26 Steiner-Correa (10.1016/j.asoc.2021.107373_b47) 2018; 22 Heinzerling (10.1016/j.asoc.2021.107373_b84) 2018 Zhang (10.1016/j.asoc.2021.107373_b54) 2017 Hochreiter (10.1016/j.asoc.2021.107373_b53) 1997; 9 Ghasemi (10.1016/j.asoc.2021.107373_b74) 2020 Abdullah (10.1016/j.asoc.2021.107373_b48) 2018 Pires (10.1016/j.asoc.2021.107373_b86) 2019 Ay Karakuş (10.1016/j.asoc.2021.107373_b49) 2018; 30 Deriu (10.1016/j.asoc.2021.107373_b50) 2017 10.1016/j.asoc.2021.107373_b6 10.1016/j.asoc.2021.107373_b7 Nankani (10.1016/j.asoc.2021.107373_b17) 2020 Singhal (10.1016/j.asoc.2021.107373_b11) 2016 Liu (10.1016/j.asoc.2021.107373_b4) 2012; 5 Roncal (10.1016/j.asoc.2021.107373_b46) 2019 Wadawadagi (10.1016/j.asoc.2021.107373_b16) 2020 Shalini (10.1016/j.asoc.2021.107373_b62) 2018 Ain (10.1016/j.asoc.2021.107373_b12) 2017; 8 Patra (10.1016/j.asoc.2021.107373_b81) 2018 10.1016/j.asoc.2021.107373_b30 10.1016/j.asoc.2021.107373_b31 10.1016/j.asoc.2021.107373_b75 Pang (10.1016/j.asoc.2021.107373_b19) 2002 10.1016/j.asoc.2021.107373_b32 10.1016/j.asoc.2021.107373_b76 Medrouk (10.1016/j.asoc.2021.107373_b61) 2018 10.1016/j.asoc.2021.107373_b77 Tang (10.1016/j.asoc.2021.107373_b9) 2015; 5 Kim (10.1016/j.asoc.2021.107373_b8) 2014 10.1016/j.asoc.2021.107373_b35 10.1016/j.asoc.2021.107373_b79 10.1016/j.asoc.2021.107373_b37 Konate (10.1016/j.asoc.2021.107373_b59) 2018; 23 10.1016/j.asoc.2021.107373_b38 Feldman (10.1016/j.asoc.2021.107373_b21) 2013; 56 Banea (10.1016/j.asoc.2021.107373_b45) 2011 Ghosh (10.1016/j.asoc.2021.107373_b42) 2017 Zhu (10.1016/j.asoc.2021.107373_b83) 2018; 10 Kanclerz (10.1016/j.asoc.2021.107373_b72) 2020; 176 Zhang (10.1016/j.asoc.2021.107373_b56) 2017 Mozetič (10.1016/j.asoc.2021.107373_b52) 2016; 11 Pang (10.1016/j.asoc.2021.107373_b2) 2008; 2 Rao (10.1016/j.asoc.2021.107373_b33) 2018; 308 Ahmad (10.1016/j.asoc.2021.107373_b43) 2019 Agarwal (10.1016/j.asoc.2021.107373_b36) 2020 Chundi (10.1016/j.asoc.2021.107373_b73) 2020 10.1016/j.asoc.2021.107373_b80 Stavridis (10.1016/j.asoc.2021.107373_b63) 2018 10.1016/j.asoc.2021.107373_b40 10.1016/j.asoc.2021.107373_b41 Lo (10.1016/j.asoc.2021.107373_b1) 2017; 48 Wolf (10.1016/j.asoc.2021.107373_b85) 2020 Huang (10.1016/j.asoc.2021.107373_b29) 2018 Habimana (10.1016/j.asoc.2021.107373_b15) 2019; 63 Mukherjee (10.1016/j.asoc.2021.107373_b69) 2019 Wang (10.1016/j.asoc.2021.107373_b3) 2012 Yu (10.1016/j.asoc.2021.107373_b27) 2016 Ganin (10.1016/j.asoc.2021.107373_b34) 2015 Rojas-Barahona (10.1016/j.asoc.2021.107373_b10) 2016; 10 Cambria (10.1016/j.asoc.2021.107373_b22) 2013; 28 Rosenthal (10.1016/j.asoc.2021.107373_b23) 2017 Zunic (10.1016/j.asoc.2021.107373_b89) 2020; 8 Liu (10.1016/j.asoc.2021.107373_b66) 2019 Liu (10.1016/j.asoc.2021.107373_b5) 2015 10.1016/j.asoc.2021.107373_b51 Yue (10.1016/j.asoc.2021.107373_b88) 2019; 60 Turney (10.1016/j.asoc.2021.107373_b20) 2002 Makhzani (10.1016/j.asoc.2021.107373_b78) 2016 10.1016/j.asoc.2021.107373_b57 Croce (10.1016/j.asoc.2021.107373_b87) 2020 Zhou (10.1016/j.asoc.2021.107373_b39) 2016 10.1016/j.asoc.2021.107373_b58 Gopal Jhanwar (10.1016/j.asoc.2021.107373_b60) 2018 10.1016/j.asoc.2021.107373_b18 Jamatia (10.1016/j.asoc.2021.107373_b71) 2020; 29 Zhang (10.1016/j.asoc.2021.107373_b14) 2018; 8 Xu (10.1016/j.asoc.2021.107373_b28) 2018 Devlin (10.1016/j.asoc.2021.107373_b82) 2018 Shen (10.1016/j.asoc.2021.107373_b70) 2020 Vilares (10.1016/j.asoc.2021.107373_b13) 2017 Medrouk (10.1016/j.asoc.2021.107373_b55) 2017 |
References_xml | – reference: Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018. – year: 2017 ident: b13 article-title: Compositional Language Processing for Multilingual Sentiment Analysis – year: 2020 ident: b36 article-title: Deep Learning-Based Approaches for Sentiment Analysis – reference: M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis, in: Proc. of the 10th Int. Workshop on Semantic Evaluation, SemEval-2016, 2016, pp. 19–30. – year: 2017 ident: b42 article-title: Sentiment identification in code-mixed social media text – reference: W. Wang, S. Feng, W. Gao, D. Wang, Y. Zhang, Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 338–348. – start-page: 2114 year: 2020 end-page: 2119 ident: b87 article-title: GAN-BERT: Generative adversarial learning for robust text classification with a bunch of labeled examples publication-title: Proc. of the 58th Annual Meeting of the ACL – reference: J. Pennington, R. Socher, C.D. Manning, GloVe: Global vectors for word representation, in: Empirical Methods in NLP, EMNLP, 2014, pp. 1532–1543. – start-page: 4996 year: 2019 end-page: 5001 ident: b86 article-title: How multilingual is multilingual BERT? publication-title: Proc. of the 57th Annual Meeting of the ACL – start-page: 1746 year: 2014 end-page: 1751 ident: b8 article-title: Convolutional neural networks for sentence classification publication-title: Proc. of the 2014 Conf. on Empirical Methods in NLP – volume: 8 year: 2018 ident: b14 article-title: Deep learning for sentiment analysis: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. – reference: A. Joshi, A. Prabhu, M. Shrivastava, V. Varma, Towards sub-word level compositions for sentiment analysis of Hindi-English code mixed text, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 2482–2491. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b53 article-title: Long short-term memory publication-title: Neural Comput. – start-page: 205 year: 2017 end-page: 212 ident: b55 article-title: Deep learning model for sentiment analysis in multi-lingual corpus publication-title: Int. Conf. on Neural Information Processing – start-page: 79 year: 2002 end-page: 86 ident: b19 article-title: Thumbs up?: sentiment classification using machine learning techniques publication-title: Proc. of the ACL-02 Conf. on Empirical Methods in NLP, Vol. 10 – start-page: 103 year: 2018 ident: b48 article-title: Deep Learning for Sentiment and Emotion Detection in Multilingual Contexts – year: 2018 ident: b81 article-title: Sentiment analysis of code-mixed Indian languages: an overview of SAIL_Code-Mixed Shared Task@ ICON-2017 – volume: 48 start-page: 499 year: 2017 end-page: 527 ident: b1 article-title: Multilingual sentiment analysis: from formal to informal and scarce resource languages publication-title: Artif. Intell. Rev. – reference: M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, in: Proc. of NAACL-HLT, 2018, pp. 2227–2237. – start-page: 1 year: 2018 end-page: 6 ident: b63 article-title: Deriving word embeddings using multilingual transfer learning for opinion mining publication-title: 2018 South-Eastern European Design Automation, Computer Engineering, Computer Networks and Society Media Conf. – start-page: 38 year: 2020 end-page: 45 ident: b85 article-title: Transformers: State-of-the-art NLP publication-title: Proc. of the 2020 Conf. on Empirical Methods in NLP: System Demonstrations – volume: 308 start-page: 49 year: 2018 end-page: 57 ident: b33 article-title: LSTM with sentence representations for document-level sentiment classification publication-title: Neurocomputing – reference: X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, K. Weinberger, Adversarial deep averaging networks for cross-lingual sentiment classification, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 557–570. – volume: 10 start-page: 116 year: 2018 ident: b83 article-title: A bi-directional LSTM-CNN model with attention for aspect-level text classification publication-title: Future Internet – year: 2019 ident: b46 article-title: Multilingual Sentiment Analysis in Social Media – year: 2017 ident: b23 article-title: SemEval-2017 task 4: Sentiment analysis in Twitter publication-title: Proc. of the 11th Int. Workshop on Semantic Evaluation – start-page: 413 year: 2017 end-page: 425 ident: b54 article-title: Language-independent Twitter classification using character-based convolutional networks publication-title: Int. Conf. on Advanced Data Mining and Applications – volume: 10 start-page: 701 year: 2016 end-page: 719 ident: b10 article-title: Deep learning for sentiment analysis publication-title: Lang. Linguist. Compass – reference: M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daumé, III, Deep unordered composition rivals syntactic methods for text classification, in: Proc. of the 53rd Annual Meeting of the ACL and the 7th Int. Joint Conf. on NLP (Vol. 1: Long Papers), 2015, pp. 1681–1691. – reference: N. Choudhary, R. Singh, I. Bindlish, M. Shrivastava, Sentiment analysis of code-mixed languages leveraging resource rich languages, in: 19th Int. Conf. on Computational Linguistics and Intelligent Text Processing, CICLing-2018, 2018. – year: 2015 ident: b5 article-title: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions – year: 2018 ident: b84 article-title: BPEmb: Tokenization-free pre-trained subword embeddings in 275 languages publication-title: Proc. of the Eleventh Int. Conf. on Language Resources and Evaluation – year: 2016 ident: b78 article-title: Adversarial autoencoders – volume: 8 start-page: 424 year: 2017 ident: b12 article-title: Sentiment analysis using deep learning techniques: a review publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 327 year: 2020 end-page: 331 ident: b73 article-title: SAEKCS: Sentiment analysis for English–Kannada code switchtext using deep learning techniques publication-title: 2020 Int. Conf. on Smart Technologies in Computing, Electrical and Electronics – volume: 29 year: 2020 ident: b71 article-title: Deep learning based sentiment analysis in a code-mixed English-Hindi and English-Bengali social media corpus publication-title: Int. J. Artif. Intell. Tools – reference: J.T. Zhou, S.J. Pan, I.W. Tsang, Y. Yan, Hybrid heterogeneous transfer learning through deep learning, in: Twenty-Eighth AAAI Conf. on Artificial Intelligence, 2014. – volume: 63 start-page: 1 year: 2019 end-page: 36 ident: b15 article-title: Sentiment analysis using deep learning approaches: an overview publication-title: Sci. China Inf. Sci. – reference: W. Becker, J. Wehrmann, H.E. Cagnini, R.C. Barros, An efficient deep neural architecture for multilingual sentiment analysis in Twitter, in: The Thirtieth Int. Flairs Conf., 2017. – year: 2012 ident: b44 article-title: Multilingual Sentiment Analysis on Social Media – volume: 2 start-page: 1 year: 2008 end-page: 135 ident: b2 article-title: Opinion mining and sentiment analysis publication-title: Found. Trends® Inf. Retr. – reference: R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1631–1642. – year: 2016 ident: b11 article-title: Sentiment Analysis and Deep Learning: A Survey – volume: 56 start-page: 82 year: 2013 end-page: 89 ident: b21 article-title: Techniques and applications for sentiment analysis publication-title: Commun. ACM – reference: Z. Wang, Y. Zhang, S. Lee, S. Li, G. Zhou, A bilingual attention network for code-switched emotion prediction, in: Proc. of COLING 2016, The 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 1624–1634. – reference: Y.K. Lal, V. Kumar, M. Dhar, M. Shrivastava, P. Koehn, De-mixing sentiment from code-mixed text, in: Proc. of the 57th Annual Meeting of the ACL: Student Research Workshop, 2019, pp. 371–377. – reference: G. Lample, A. Conneau, M. Ranzato, L. Denoyer, H. Jégou, Word translation without parallel data, in: Int. Conf. on Learning Representations, 2018. – start-page: 1 year: 2018 end-page: 6 ident: b61 article-title: Do deep networks really need complex modules for multilingual sentiment polarity detection and domain classification? publication-title: 2018 Int. Joint Conf. on Neural Networks – start-page: 90 year: 2012 end-page: 94 ident: b3 article-title: Baselines and bigrams: Simple, good sentiment and topic classification publication-title: Proc. of the 50th Annual Meeting of the ACL: Short Papers, Vol. 2 – volume: 28 start-page: 15 year: 2013 end-page: 21 ident: b22 article-title: New avenues in opinion mining and sentiment analysis publication-title: IEEE Intell. Syst. – year: 2018 ident: b82 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – year: 2016 ident: b27 article-title: Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification – start-page: 193 year: 2020 end-page: 236 ident: b17 article-title: Multilingual sentiment analysis publication-title: Deep Learning-Based Approaches for Sentiment Analysis – reference: M. Jabreel, N. Maaroof, A. Valls, A. Moreno, UniSent: Universal sentiment analysis system for low-resource languages, in: CCIA, 2019, pp. 387–396. – volume: 11 year: 2016 ident: b52 article-title: Multilingual Twitter sentiment classification: The role of human annotators publication-title: PLoS One – reference: J. Wehrmann, W. Becker, H.E.L. Cagnini, R.C. Barros, A character-based convolutional neural network for language-agnostic Twitter sentiment analysis, in: 2017 Int. Joint Conf. on Neural Networks, IJCNN, 2017, pp. 2384–2391. – start-page: 1 year: 2020 end-page: 14 ident: b74 article-title: Deep Persian sentiment analysis: Cross-lingual training for low-resource languages publication-title: J. Inf. Sci. – reference: X. Dong, G. De Melo, Cross-lingual propagation for deep sentiment analysis, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018. – start-page: 1126 year: 2018 end-page: 1131 ident: b62 article-title: Sentiment analysis for code-mixed Indian social media text with distributed representation publication-title: 2018 Int. Conf. on Advances in Computing, Communications and Informatics – start-page: 417 year: 2002 end-page: 424 ident: b20 article-title: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews publication-title: Proc. of the 40th Annual Meeting on ACL – reference: W.Y. Zou, R. Socher, D. Cer, C.D. Manning, Bilingual word embeddings for phrase-based machine translation, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1393–1398. – volume: 60 start-page: 617 year: 2019 end-page: 663 ident: b88 article-title: A survey of sentiment analysis in social media publication-title: Knowl. Inf. Syst. – reference: D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent neural network for sentiment classification, in: Proc. of the 2015 Conf. on Empirical Methods in NLP, 2015, pp. 1422–1432. – start-page: 245 year: 2016 end-page: 254 ident: b39 article-title: Transfer learning for cross-lingual sentiment classification with weakly shared deep neural networks publication-title: Proc. of the 39th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval – volume: 22 start-page: 8227 year: 2018 end-page: 8242 ident: b47 article-title: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks publication-title: Soft Comput. – start-page: 1 year: 2011 end-page: 19 ident: b45 article-title: Multilingual sentiment and subjectivity analysis publication-title: Multilingual NLP, Vol. 6 – reference: C. Dos Santos, M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts, in: Proc. of COLING 2014, the 25th Int. Conf. on Computational Linguistics: Technical Papers, 2014, pp. 69–78. – volume: 176 start-page: 128 year: 2020 end-page: 137 ident: b72 article-title: Cross-lingual deep neural transfer learning in sentiment analysis publication-title: Procedia Comput. Sci. – reference: S. Ruder, P. Ghaffari, J.G. Breslin, A hierarchical model of reviews for aspect-based sentiment analysis, in: Proc. of the 2016 Conf. on Empirical Methods in NLP, 2016, pp. 999–1005. – volume: 5 start-page: 1 year: 2012 end-page: 167 ident: b4 article-title: Sentiment analysis and opinion mining publication-title: Synth. Lect. Human Lang. Technol. – volume: 30 start-page: e4783 year: 2018 ident: b49 article-title: Evaluating deep learning models for sentiment classification publication-title: Concurr. Comput.: Pract. Exper. – volume: 8 year: 2020 ident: b89 article-title: Sentiment analysis in health and well-being: Systematic review publication-title: JMIR Med. Inform. – reference: T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Neural and Information Processing System, NIPS, 2013. – start-page: 592 year: 2018 end-page: 598 ident: b28 article-title: Double embeddings and CNN-based sequence labeling for aspect extraction publication-title: Proc. of the 56th Annual Meeting of the ACL (Vol. 2: Short Papers) – start-page: 197 year: 2018 end-page: 206 ident: b29 article-title: Aspect level sentiment classification with attention-over-attention neural networks publication-title: Int. Conf. on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation – reference: P. Singhal, P. Bhattacharyya, Borrow a little from your rich cousin: Using embeddings and polarities of English words for multilingual sentiment classification, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 3053–3062. – start-page: 1180 year: 2015 end-page: 1189 ident: b34 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proc. of the 32nd Int. Conf. on Int. Conf. on Machine Learning, Vol. 37 – reference: Z. Li, Y. Zhang, Y. Wei, Y. Wu, Q. Yang, End-to-end adversarial memory network for cross-domain sentiment classification, in: IJCAI, 2017, pp. 2237–2243. – volume: 5 start-page: 292 year: 2015 end-page: 303 ident: b9 article-title: Deep learning for sentiment analysis: successful approaches and future challenges publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – start-page: 12 year: 2017 ident: b56 article-title: A word-character convolutional neural network for language-agnostic Twitter sentiment analysis publication-title: Proc. of the 22nd Australasian Document Computing Symposium – year: 2018 ident: b60 article-title: An ensemble model for sentiment analysis of Hindi-English code-mixed data – year: 2019 ident: b66 article-title: A novel aspect-based sentiment analysis network model based on multilingual hierarchy in online social network publication-title: Comput. J. – start-page: 1 year: 2019 end-page: 4 ident: b69 article-title: Deep learning technique for sentiment analysis of Hindi-English code-mixed text using late fusion of character and word features publication-title: 2019 IEEE 16th India Council Int. Conf. – start-page: 352 year: 2019 end-page: 356 ident: b43 article-title: Review on sentiment analysis of Indian languages with a special focus on code mixed Indian languages publication-title: 2019 Int. Conf. on Automation, Computational and Technology Management – volume: 23 start-page: 237 year: 2018 end-page: 243 ident: b59 article-title: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques publication-title: Wuhan Univ. J. Nat. Sci. – start-page: 237 year: 2020 end-page: 241 ident: b70 article-title: Cross-lingual sentiment analysis via AAE and BiGRU publication-title: 2020 Asia-Pacific Conf. on Image Processing, Electronics and Computers – reference: J.M. Wiebe, R.F. Bruce, T.P. O’Hara, Development and use of a gold-standard data set for subjectivity classifications, in: Proc. of the 37th Annual Meeting of the ACL, 1999, pp. 246–253. – year: 2020 ident: b16 article-title: Sentiment analysis with deep neural networks: comparative study and performance assessment publication-title: Artif. Intell. Rev. – start-page: 1045 year: 2017 end-page: 1052 ident: b50 article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification publication-title: Proc. of the 26th Int. Conf. on World Wide Web – ident: 10.1016/j.asoc.2021.107373_b24 – year: 2020 ident: 10.1016/j.asoc.2021.107373_b36 – start-page: 79 year: 2002 ident: 10.1016/j.asoc.2021.107373_b19 article-title: Thumbs up?: sentiment classification using machine learning techniques – year: 2017 ident: 10.1016/j.asoc.2021.107373_b42 – ident: 10.1016/j.asoc.2021.107373_b32 doi: 10.18653/v1/D15-1167 – volume: 11 issue: 5 year: 2016 ident: 10.1016/j.asoc.2021.107373_b52 article-title: Multilingual Twitter sentiment classification: The role of human annotators publication-title: PLoS One doi: 10.1371/journal.pone.0155036 – ident: 10.1016/j.asoc.2021.107373_b18 doi: 10.3115/1034678.1034721 – year: 2018 ident: 10.1016/j.asoc.2021.107373_b81 – volume: 23 start-page: 237 issue: 3 year: 2018 ident: 10.1016/j.asoc.2021.107373_b59 article-title: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques publication-title: Wuhan Univ. J. Nat. Sci. doi: 10.1007/s11859-018-1316-z – start-page: 1126 year: 2018 ident: 10.1016/j.asoc.2021.107373_b62 article-title: Sentiment analysis for code-mixed Indian social media text with distributed representation – volume: 48 start-page: 499 issue: 4 year: 2017 ident: 10.1016/j.asoc.2021.107373_b1 article-title: Multilingual sentiment analysis: from formal to informal and scarce resource languages publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9508-4 – start-page: 197 year: 2018 ident: 10.1016/j.asoc.2021.107373_b29 article-title: Aspect level sentiment classification with attention-over-attention neural networks – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107373_b69 article-title: Deep learning technique for sentiment analysis of Hindi-English code-mixed text using late fusion of character and word features – year: 2015 ident: 10.1016/j.asoc.2021.107373_b5 – ident: 10.1016/j.asoc.2021.107373_b37 doi: 10.1109/IJCNN.2017.7966145 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2021.107373_b61 article-title: Do deep networks really need complex modules for multilingual sentiment polarity detection and domain classification? – year: 2016 ident: 10.1016/j.asoc.2021.107373_b78 – year: 2019 ident: 10.1016/j.asoc.2021.107373_b66 article-title: A novel aspect-based sentiment analysis network model based on multilingual hierarchy in online social network publication-title: Comput. J. – start-page: 352 year: 2019 ident: 10.1016/j.asoc.2021.107373_b43 article-title: Review on sentiment analysis of Indian languages with a special focus on code mixed Indian languages – volume: 22 start-page: 8227 issue: 24 year: 2018 ident: 10.1016/j.asoc.2021.107373_b47 article-title: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks publication-title: Soft Comput. doi: 10.1007/s00500-017-2766-5 – ident: 10.1016/j.asoc.2021.107373_b64 doi: 10.18653/v1/D18-1031 – volume: 5 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.asoc.2021.107373_b4 article-title: Sentiment analysis and opinion mining publication-title: Synth. Lect. Human Lang. Technol. doi: 10.1007/978-3-031-02145-9 – year: 2016 ident: 10.1016/j.asoc.2021.107373_b11 – start-page: 237 year: 2020 ident: 10.1016/j.asoc.2021.107373_b70 article-title: Cross-lingual sentiment analysis via AAE and BiGRU – start-page: 327 year: 2020 ident: 10.1016/j.asoc.2021.107373_b73 article-title: SAEKCS: Sentiment analysis for English–Kannada code switchtext using deep learning techniques – ident: 10.1016/j.asoc.2021.107373_b57 – volume: 308 start-page: 49 year: 2018 ident: 10.1016/j.asoc.2021.107373_b33 article-title: LSTM with sentence representations for document-level sentiment classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.045 – ident: 10.1016/j.asoc.2021.107373_b26 doi: 10.18653/v1/N18-1202 – ident: 10.1016/j.asoc.2021.107373_b25 doi: 10.3115/v1/D14-1162 – start-page: 1180 year: 2015 ident: 10.1016/j.asoc.2021.107373_b34 article-title: Unsupervised domain adaptation by backpropagation – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107373_b74 article-title: Deep Persian sentiment analysis: Cross-lingual training for low-resource languages publication-title: J. Inf. Sci. – ident: 10.1016/j.asoc.2021.107373_b38 doi: 10.1609/aaai.v28i1.8961 – year: 2012 ident: 10.1016/j.asoc.2021.107373_b44 – ident: 10.1016/j.asoc.2021.107373_b40 – year: 2018 ident: 10.1016/j.asoc.2021.107373_b82 – start-page: 90 year: 2012 ident: 10.1016/j.asoc.2021.107373_b3 article-title: Baselines and bigrams: Simple, good sentiment and topic classification – volume: 5 start-page: 292 issue: 6 year: 2015 ident: 10.1016/j.asoc.2021.107373_b9 article-title: Deep learning for sentiment analysis: successful approaches and future challenges publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – start-page: 1 year: 2011 ident: 10.1016/j.asoc.2021.107373_b45 article-title: Multilingual sentiment and subjectivity analysis – start-page: 12 year: 2017 ident: 10.1016/j.asoc.2021.107373_b56 article-title: A word-character convolutional neural network for language-agnostic Twitter sentiment analysis – ident: 10.1016/j.asoc.2021.107373_b6 – start-page: 1746 year: 2014 ident: 10.1016/j.asoc.2021.107373_b8 article-title: Convolutional neural networks for sentence classification – year: 2019 ident: 10.1016/j.asoc.2021.107373_b46 – start-page: 193 year: 2020 ident: 10.1016/j.asoc.2021.107373_b17 article-title: Multilingual sentiment analysis – ident: 10.1016/j.asoc.2021.107373_b58 doi: 10.1609/aaai.v32i1.12071 – start-page: 2114 year: 2020 ident: 10.1016/j.asoc.2021.107373_b87 article-title: GAN-BERT: Generative adversarial learning for robust text classification with a bunch of labeled examples – year: 2018 ident: 10.1016/j.asoc.2021.107373_b84 article-title: BPEmb: Tokenization-free pre-trained subword embeddings in 275 languages – ident: 10.1016/j.asoc.2021.107373_b79 – ident: 10.1016/j.asoc.2021.107373_b35 doi: 10.24963/ijcai.2017/311 – ident: 10.1016/j.asoc.2021.107373_b65 doi: 10.1162/tacl_a_00039 – volume: 29 issue: 5 year: 2020 ident: 10.1016/j.asoc.2021.107373_b71 article-title: Deep learning based sentiment analysis in a code-mixed English-Hindi and English-Bengali social media corpus publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S0218213020500141 – volume: 63 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.asoc.2021.107373_b15 article-title: Sentiment analysis using deep learning approaches: an overview publication-title: Sci. China Inf. Sci. – volume: 8 issue: 1 year: 2020 ident: 10.1016/j.asoc.2021.107373_b89 article-title: Sentiment analysis in health and well-being: Systematic review publication-title: JMIR Med. Inform. doi: 10.2196/16023 – start-page: 413 year: 2017 ident: 10.1016/j.asoc.2021.107373_b54 article-title: Language-independent Twitter classification using character-based convolutional networks – start-page: 38 year: 2020 ident: 10.1016/j.asoc.2021.107373_b85 article-title: Transformers: State-of-the-art NLP – volume: 10 start-page: 116 issue: 12 year: 2018 ident: 10.1016/j.asoc.2021.107373_b83 article-title: A bi-directional LSTM-CNN model with attention for aspect-level text classification publication-title: Future Internet doi: 10.3390/fi10120116 – ident: 10.1016/j.asoc.2021.107373_b80 – ident: 10.1016/j.asoc.2021.107373_b68 – ident: 10.1016/j.asoc.2021.107373_b41 – year: 2016 ident: 10.1016/j.asoc.2021.107373_b27 – start-page: 205 year: 2017 ident: 10.1016/j.asoc.2021.107373_b55 article-title: Deep learning model for sentiment analysis in multi-lingual corpus – start-page: 245 year: 2016 ident: 10.1016/j.asoc.2021.107373_b39 article-title: Transfer learning for cross-lingual sentiment classification with weakly shared deep neural networks – ident: 10.1016/j.asoc.2021.107373_b7 – ident: 10.1016/j.asoc.2021.107373_b31 doi: 10.18653/v1/D16-1103 – start-page: 1045 year: 2017 ident: 10.1016/j.asoc.2021.107373_b50 article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification – ident: 10.1016/j.asoc.2021.107373_b67 doi: 10.18653/v1/P19-2052 – year: 2017 ident: 10.1016/j.asoc.2021.107373_b13 – ident: 10.1016/j.asoc.2021.107373_b30 doi: 10.1609/aaai.v32i1.12048 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2021.107373_b63 article-title: Deriving word embeddings using multilingual transfer learning for opinion mining – volume: 30 start-page: e4783 issue: 21 year: 2018 ident: 10.1016/j.asoc.2021.107373_b49 article-title: Evaluating deep learning models for sentiment classification publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.4783 – volume: 10 start-page: 701 issue: 12 year: 2016 ident: 10.1016/j.asoc.2021.107373_b10 article-title: Deep learning for sentiment analysis publication-title: Lang. Linguist. Compass doi: 10.1111/lnc3.12228 – year: 2017 ident: 10.1016/j.asoc.2021.107373_b23 article-title: SemEval-2017 task 4: Sentiment analysis in Twitter – start-page: 592 year: 2018 ident: 10.1016/j.asoc.2021.107373_b28 article-title: Double embeddings and CNN-based sequence labeling for aspect extraction – volume: 28 start-page: 15 issue: 2 year: 2013 ident: 10.1016/j.asoc.2021.107373_b22 article-title: New avenues in opinion mining and sentiment analysis publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2013.30 – ident: 10.1016/j.asoc.2021.107373_b51 – volume: 60 start-page: 617 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107373_b88 article-title: A survey of sentiment analysis in social media publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1236-4 – year: 2018 ident: 10.1016/j.asoc.2021.107373_b60 – year: 2020 ident: 10.1016/j.asoc.2021.107373_b16 article-title: Sentiment analysis with deep neural networks: comparative study and performance assessment publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09845-2 – start-page: 417 year: 2002 ident: 10.1016/j.asoc.2021.107373_b20 article-title: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews – start-page: 4996 year: 2019 ident: 10.1016/j.asoc.2021.107373_b86 article-title: How multilingual is multilingual BERT? – start-page: 103 year: 2018 ident: 10.1016/j.asoc.2021.107373_b48 – volume: 8 start-page: 424 issue: 6 year: 2017 ident: 10.1016/j.asoc.2021.107373_b12 article-title: Sentiment analysis using deep learning techniques: a review publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: 10.1016/j.asoc.2021.107373_b76 doi: 10.3115/v1/P15-1162 – volume: 8 year: 2018 ident: 10.1016/j.asoc.2021.107373_b14 article-title: Deep learning for sentiment analysis: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1253 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2021.107373_b53 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 56 start-page: 82 issue: 4 year: 2013 ident: 10.1016/j.asoc.2021.107373_b21 article-title: Techniques and applications for sentiment analysis publication-title: Commun. ACM doi: 10.1145/2436256.2436274 – volume: 2 start-page: 1 issue: 1–2 year: 2008 ident: 10.1016/j.asoc.2021.107373_b2 article-title: Opinion mining and sentiment analysis publication-title: Found. Trends® Inf. Retr. doi: 10.1561/1500000011 – volume: 176 start-page: 128 year: 2020 ident: 10.1016/j.asoc.2021.107373_b72 article-title: Cross-lingual deep neural transfer learning in sentiment analysis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.08.014 – ident: 10.1016/j.asoc.2021.107373_b77 – ident: 10.1016/j.asoc.2021.107373_b75 doi: 10.18653/v1/S16-1002 |
SSID | ssj0016928 |
Score | 2.5634613 |
Snippet | Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107373 |
SubjectTerms | Code-switching Cross-lingual Deep learning Multilingual Natural language processing (NLP) Sentiment analysis Social media |
Title | Deep learning and multilingual sentiment analysis on social media data: An overview |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107373 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3qVubNEm9jemYHwxxE3YrTZrIRLoh29W_3bwkHQqyg6fS9CWUH8n7aH_vPYQuSaFYQQnU2KcmoqWRUSY5jwwXpiy0sRbZsS1GbPhKH6bptIH6dS4M0CqD7vc63WnrMNIJaHYWs1lnbCMPQTPKEqgimjFI4qOUwy6__lrTPGKWuf6qIByBdEic8RyvwiJgY8QktgOccPK3cfphcAZ7aCd4irjnX2YfNXR1gHbrLgw4HMpDNL7VeoFD94c3XFQldixByDNf2QUgu8iV8LePfAESPK-w_1aOXeIIBproDe5VGPic8K_gCE0Gd5P-MAqtEiJFGFtGmhtr7FiZFiZRXUMljyXNiGZKpDag0irVqdRS2tOtKKOlFAklklv_QgoRa3KMmtW80icIm1SZkhAtYmIosZLMrtcttEpIyUUmWiiuIcpVKCMO3Sw-8pov9p4DrDnAmntYW-hqPWfhi2hslE5r5PNfWyG3Wn7DvNN_zjtD23DnWX3nqLn8XOkL62ksZdttpTba6vVfnp7hev84HH0DP3PVXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW3ybg56krm3SJBU8LOqyPi-u4C00aSIrUhddES_-KH-hkzYVBfEgeG0epF_TmUz7zXwAWzQ3PGfU19hnLmKF01GmhYickK7IrUOPXLEtLnn3mp3epDcj8N7kwnhaZbD9tU2vrHW40gpotgb9fusKIw_JMsYTX0U041lgVp7Z1xeM254OTo7wIW8nSee4d9iNgrRAZCjnw8gKh86BF2nuErPnmBaxZhm13MgUAxBrUptqqzW-DYZxVmiZMKoF-mMtZWwpTjsK4wythVdN2H37pJXEPKv0XP3iIr-6kKhTc8pyRBxj0iTGC4IK-rMz_OLgOjMwFU6mpF3f_CyM2HIOphvVBxKMwDxcHVk7IEFt4pbkZUEqVqLPa3_GCXw2UyUZgE11wRPyUJL62zypElWIp6Xuk3ZJPH_U_5tYgN5_4LcIY-VDaZeAuNS4glIrY-oYxZ4c59vLrUloIWQmlyFuIFImlC336hn3quGn3SkPq_KwqhrWZdj5HDOoi3b82jttkFfftp5Cr_LLuJU_jtuEiW7v4lydn1yercKkb6kZhWswNnx8tut4yhnqjWpbEVD_vI0_ALM-EBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+multilingual+sentiment+analysis+on+social+media+data%3A+An+overview&rft.jtitle=Applied+soft+computing&rft.au=Ag%C3%BCero-Torales%2C+Marvin+M.&rft.au=Abreu+Salas%2C+Jos%C3%A9+I.&rft.au=L%C3%B3pez-Herrera%2C+Antonio+G.&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=107&rft_id=info:doi/10.1016%2Fj.asoc.2021.107373&rft.externalDocID=S1568494621002969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |