Deep learning and multilingual sentiment analysis on social media data: An overview

Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the unde...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 107; p. 107373
Main Authors Agüero-Torales, Marvin M., Abreu Salas, José I., López-Herrera, Antonio G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the underlying ideas and commonalities behind the different solutions to achieve multilingual sentiment analysis. Interesting findings of our research are (i) the shift of research interest to cross-lingual and code-switching approaches, (ii) the apparent stagnation of the less complex architectures derived from a backbone featuring an embedding layer, a feature extractor based on a single CNN or LSTM and a classifier, (iii) the lack of approaches tackling multilingual aspect-based sentiment analysis through deep learning, and, surprisingly, (iv) the lack of more complex architectures such as the transformers-based, despite results suggest the more difficult tasks requires more elaborated architectures. •Review of applications of Deep Learning to tackle Multilingual Sentiment Analysis.•Fast-growing interest in this field, 24 related papers since 2017 to 2020.•Coverage of 23 different languages and 11 social media data or corpus.•Mixed performance, but word embeddings and CNN or LSTM as trending choices.•Embeddings>feature extractor>classifier, prevailing architecture except for aspect SA.
AbstractList Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual sentiment analysis of social media. We improve over previous reviews with wider coverage from 2017 to 2020 as well as a study focused on the underlying ideas and commonalities behind the different solutions to achieve multilingual sentiment analysis. Interesting findings of our research are (i) the shift of research interest to cross-lingual and code-switching approaches, (ii) the apparent stagnation of the less complex architectures derived from a backbone featuring an embedding layer, a feature extractor based on a single CNN or LSTM and a classifier, (iii) the lack of approaches tackling multilingual aspect-based sentiment analysis through deep learning, and, surprisingly, (iv) the lack of more complex architectures such as the transformers-based, despite results suggest the more difficult tasks requires more elaborated architectures. •Review of applications of Deep Learning to tackle Multilingual Sentiment Analysis.•Fast-growing interest in this field, 24 related papers since 2017 to 2020.•Coverage of 23 different languages and 11 social media data or corpus.•Mixed performance, but word embeddings and CNN or LSTM as trending choices.•Embeddings>feature extractor>classifier, prevailing architecture except for aspect SA.
ArticleNumber 107373
Author Agüero-Torales, Marvin M.
Abreu Salas, José I.
López-Herrera, Antonio G.
Author_xml – sequence: 1
  givenname: Marvin M.
  surname: Agüero-Torales
  fullname: Agüero-Torales, Marvin M.
  email: maguero@correo.ugr.es
  organization: Department of Computer Science and Artificial Intelligence, University of Granada, Calle Daniel Saucedo Aranda, s/n, 18071, Granada, Spain
– sequence: 2
  givenname: José I.
  surname: Abreu Salas
  fullname: Abreu Salas, José I.
  email: ji.abreu@ua.es
  organization: University Institute for Computing Research, University of Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Valencia, Spain
– sequence: 3
  givenname: Antonio G.
  surname: López-Herrera
  fullname: López-Herrera, Antonio G.
  email: lopez-herrera@decsai.ugr.es
  organization: Department of Computer Science and Artificial Intelligence, University of Granada, Calle Daniel Saucedo Aranda, s/n, 18071, Granada, Spain
BookMark eNp9kEtuwyAQQFGVSk3SXqArLuCUj41x1U2UfqVIXTR7hPG4IrIhApIqty9Ruuoim2GG4Q2aN0MT5x0gdE_JghIqHrYLHb1ZMMJovqh5za_QlMqaFY2QdJLzSsiibEpxg2YxbkmGGian6OsZYIcH0MFZ94216_C4H5IdcrXXA47gkh1zyC09HKON2Duc_7K5OUJnNe500o946bA_QDhY-LlF170eItz9nXO0eX3ZrN6L9efbx2q5LgwXIhVQ9wCd6CrdM0P6sq1pWzYchJFV00gwFVQttC0nlSlF2bWSlbytSX4mJQU-R_I81gQfY4BeGZt0st6loO2gKFEnN2qrTm7UyY06u8ko-4fugh11OF6Gns4Q5J3ynkFFY8GZLCGASarz9hL-Cx-1gSY
CitedBy_id crossref_primary_10_1007_s10462_022_10386_z
crossref_primary_10_1016_j_ipm_2022_103058
crossref_primary_10_58635_ufuksbedergi_1285729
crossref_primary_10_3390_app12178662
crossref_primary_10_1109_ACCESS_2024_3386362
crossref_primary_10_1016_j_techsoc_2021_101724
crossref_primary_10_7717_peerj_cs_1876
crossref_primary_10_1080_03155986_2024_2303907
crossref_primary_10_2478_amns_2024_1453
crossref_primary_10_3390_math10183236
crossref_primary_10_1111_exsy_13291
crossref_primary_10_1007_s10462_022_10183_8
crossref_primary_10_1186_s12544_024_00651_3
crossref_primary_10_1007_s10462_024_10967_0
crossref_primary_10_1007_s10489_022_03384_9
crossref_primary_10_1109_ACCESS_2024_3458815
crossref_primary_10_2478_jsiot_2022_0008
crossref_primary_10_1016_j_asoc_2021_108246
crossref_primary_10_1145_3627820
crossref_primary_10_1016_j_asoc_2022_109377
crossref_primary_10_32628_CSEIT25111203
crossref_primary_10_1016_j_eswa_2024_123247
crossref_primary_10_3233_MGS_221511
crossref_primary_10_17671_gazibtd_999960
crossref_primary_10_1155_2022_5687003
crossref_primary_10_1002_cpe_7374
crossref_primary_10_1016_j_cageo_2023_105405
crossref_primary_10_1051_e3sconf_202344802004
crossref_primary_10_1016_j_aej_2023_08_062
crossref_primary_10_1016_j_datak_2022_102106
crossref_primary_10_1109_ACCESS_2022_3208164
crossref_primary_10_1155_2024_6669491
crossref_primary_10_1016_j_neucom_2025_129862
crossref_primary_10_3390_encyclopedia4040104
crossref_primary_10_3390_info12090374
crossref_primary_10_3390_data8060096
crossref_primary_10_32604_cmc_2022_031732
crossref_primary_10_1016_j_eswa_2022_118246
crossref_primary_10_7717_peerj_cs_2349
crossref_primary_10_1016_j_asoc_2022_108461
crossref_primary_10_1145_3604605
crossref_primary_10_1007_s10579_023_09661_4
crossref_primary_10_1109_JSTSP_2024_3387274
crossref_primary_10_1051_e3sconf_202235905001
crossref_primary_10_1007_s41060_024_00594_x
crossref_primary_10_1145_3605152
crossref_primary_10_1109_ACCESS_2024_3398635
crossref_primary_10_1145_3572783
crossref_primary_10_1016_j_ins_2023_119918
crossref_primary_10_1007_s10844_022_00714_8
crossref_primary_10_1007_s11042_024_20184_0
crossref_primary_10_1007_s10462_023_10419_1
crossref_primary_10_1007_s11277_022_10081_w
crossref_primary_10_1016_j_eij_2024_100601
crossref_primary_10_1016_j_asoc_2023_110745
crossref_primary_10_1145_3589131
crossref_primary_10_1016_j_neucom_2023_02_015
crossref_primary_10_1109_ACCESS_2022_3224136
Cites_doi 10.18653/v1/D15-1167
10.1371/journal.pone.0155036
10.3115/1034678.1034721
10.1007/s11859-018-1316-z
10.1007/s10462-016-9508-4
10.1109/IJCNN.2017.7966145
10.1007/s00500-017-2766-5
10.18653/v1/D18-1031
10.1007/978-3-031-02145-9
10.1016/j.neucom.2018.04.045
10.18653/v1/N18-1202
10.3115/v1/D14-1162
10.1609/aaai.v28i1.8961
10.1609/aaai.v32i1.12071
10.24963/ijcai.2017/311
10.1162/tacl_a_00039
10.1142/S0218213020500141
10.2196/16023
10.3390/fi10120116
10.18653/v1/D16-1103
10.18653/v1/P19-2052
10.1609/aaai.v32i1.12048
10.1002/cpe.4783
10.1111/lnc3.12228
10.1109/MIS.2013.30
10.1007/s10115-018-1236-4
10.1007/s10462-020-09845-2
10.3115/v1/P15-1162
10.1002/widm.1253
10.1162/neco.1997.9.8.1735
10.1145/2436256.2436274
10.1561/1500000011
10.1016/j.procs.2020.08.014
10.18653/v1/S16-1002
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107373
S1568494621002969
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-e7feed6d5af2c0f4b71b493e6c85998ec5e5bebb305c464db8243b7071b881e3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:09 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Fri Feb 23 02:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Sentiment analysis
Cross-lingual
91D30
Social media
68T07
Natural language processing (NLP)
Multilingual
68-02
68T50
Code-switching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-e7feed6d5af2c0f4b71b493e6c85998ec5e5bebb305c464db8243b7071b881e3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107373
crossref_primary_10_1016_j_asoc_2021_107373
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cambria, Schuller, Xia, Havasi (b22) 2013; 28
Liu (b4) 2012; 5
Ganin, Lempitsky (b34) 2015
Liu, Huang, Liu, Yang (b66) 2019
J. Wehrmann, W. Becker, H.E.L. Cagnini, R.C. Barros, A character-based convolutional neural network for language-agnostic Twitter sentiment analysis, in: 2017 Int. Joint Conf. on Neural Networks, IJCNN, 2017, pp. 2384–2391.
W. Wang, S. Feng, W. Gao, D. Wang, Y. Zhang, Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 338–348.
Chundi, Hulipalled, Simha (b73) 2020
D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent neural network for sentiment classification, in: Proc. of the 2015 Conf. on Empirical Methods in NLP, 2015, pp. 1422–1432.
Rao, Huang, Feng, Cong (b33) 2018; 308
N. Choudhary, R. Singh, I. Bindlish, M. Shrivastava, Sentiment analysis of code-mixed languages leveraging resource rich languages, in: 19th Int. Conf. on Computational Linguistics and Intelligent Text Processing, CICLing-2018, 2018.
Shalini, Ganesh, Kumar, Soman (b62) 2018
Y.K. Lal, V. Kumar, M. Dhar, M. Shrivastava, P. Koehn, De-mixing sentiment from code-mixed text, in: Proc. of the 57th Annual Meeting of the ACL: Student Research Workshop, 2019, pp. 371–377.
Tromp (b44) 2012
Zhang, Zhang, Chan (b56) 2017
Roncal (b46) 2019
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Neural and Information Processing System, NIPS, 2013.
J.T. Zhou, S.J. Pan, I.W. Tsang, Y. Yan, Hybrid heterogeneous transfer learning through deep learning, in: Twenty-Eighth AAAI Conf. on Artificial Intelligence, 2014.
Liu (b5) 2015
Shen, Liao, Lei (b70) 2020
M. Jabreel, N. Maaroof, A. Valls, A. Moreno, UniSent: Universal sentiment analysis system for low-resource languages, in: CCIA, 2019, pp. 387–396.
Xu, Liu, Shu, Yu (b28) 2018
Mukherjee (b69) 2019
Rosenthal, Farra, Nakov (b23) 2017
Zunic, Corcoran, Spasic (b89) 2020; 8
Z. Li, Y. Zhang, Y. Wei, Y. Wu, Q. Yang, End-to-end adversarial memory network for cross-domain sentiment classification, in: IJCAI, 2017, pp. 2237–2243.
Agarwal, Nayak, Mittal, Patnaik (b36) 2020
Medrouk, Pappa (b55) 2017
C. Dos Santos, M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts, in: Proc. of COLING 2014, the 25th Int. Conf. on Computational Linguistics: Technical Papers, 2014, pp. 69–78.
Z. Wang, Y. Zhang, S. Lee, S. Li, G. Zhou, A bilingual attention network for code-switched emotion prediction, in: Proc. of COLING 2016, The 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 1624–1634.
Pang, Lee, Vaithyanathan (b19) 2002
Feldman (b21) 2013; 56
Zhou, Zeng, Huang, He (b39) 2016
M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daumé, III, Deep unordered composition rivals syntactic methods for text classification, in: Proc. of the 53rd Annual Meeting of the ACL and the 7th Int. Joint Conf. on NLP (Vol. 1: Long Papers), 2015, pp. 1681–1691.
G. Lample, A. Conneau, M. Ranzato, L. Denoyer, H. Jégou, Word translation without parallel data, in: Int. Conf. on Learning Representations, 2018.
Kanclerz, Miłkowski, Kocoń (b72) 2020; 176
Zhu, Gao, Zhang, Liu, Zhang (b83) 2018; 10
X. Dong, G. De Melo, Cross-lingual propagation for deep sentiment analysis, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018.
Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018.
X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, K. Weinberger, Adversarial deep averaging networks for cross-lingual sentiment classification, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 557–570.
Singhal, Bhattacharyya (b11) 2016
W.Y. Zou, R. Socher, D. Cer, C.D. Manning, Bilingual word embeddings for phrase-based machine translation, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1393–1398.
Zhang, Wang, Liu (b14) 2018; 8
Abdullah (b48) 2018
Banea, Mihalcea, Wiebe (b45) 2011
Zhang, Zhang, Chan (b54) 2017
Pires, Schlinger, Garrette (b86) 2019
J.M. Wiebe, R.F. Bruce, T.P. O’Hara, Development and use of a gold-standard data set for subjectivity classifications, in: Proc. of the 37th Annual Meeting of the ACL, 1999, pp. 246–253.
R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1631–1642.
Pang, Lee (b2) 2008; 2
Heinzerling, Strube (b84) 2018
Deriu, Lucchi, De Luca, Severyn, Müller, Cieliebak, Hofmann, Jaggi (b50) 2017
Patra, Das, Das (b81) 2018
Ghosh, Ghosh, Das (b42) 2017
Ghasemi, Ashrafi Asli, Momtazi (b74) 2020
Habimana, Li, Li, Gu, Yu (b15) 2019; 63
Wolf, Debut, Sanh, Chaumond, Delangue, Moi, Cistac, Rault, Louf, Funtowicz, Davison, Shleifer, von Platen, Ma, Jernite, Plu, Xu, Le Scao, Gugger, Drame, Lhoest, Rush (b85) 2020
M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis, in: Proc. of the 10th Int. Workshop on Semantic Evaluation, SemEval-2016, 2016, pp. 19–30.
P. Singhal, P. Bhattacharyya, Borrow a little from your rich cousin: Using embeddings and polarities of English words for multilingual sentiment classification, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 3053–3062.
Ahmad, Singla, Nikita (b43) 2019
A. Joshi, A. Prabhu, M. Shrivastava, V. Varma, Towards sub-word level compositions for sentiment analysis of Hindi-English code mixed text, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 2482–2491.
Wadawadagi, Pagi (b16) 2020
Steiner-Correa, Viedma-del Jesus, Lopez-Herrera (b47) 2018; 22
Yu, Jiang (b27) 2016
Mozetič, Grčar, Smailović (b52) 2016; 11
Rojas-Barahona (b10) 2016; 10
Ay Karakuş, Talo, Hallaç, Aydin (b49) 2018; 30
Ain, Ali, Riaz, Noureen, Kamran, Hayat, Rehman (b12) 2017; 8
Kim (b8) 2014
Jamatia, Swamy, Gambäck, Das, Debbarma (b71) 2020; 29
Tang, Qin, Liu (b9) 2015; 5
Konate, Du (b59) 2018; 23
Gopal Jhanwar, Das (b60) 2018
Nankani, Dutta, Shrivastava, Krishna, Mahata, Shah (b17) 2020
Makhzani, Shlens, Jaitly, Goodfellow, Frey (b78) 2016
Wang, Manning (b3) 2012
Croce, Castellucci, Basili (b87) 2020
Huang, Ou, Carley (b29) 2018
S. Ruder, P. Ghaffari, J.G. Breslin, A hierarchical model of reviews for aspect-based sentiment analysis, in: Proc. of the 2016 Conf. on Empirical Methods in NLP, 2016, pp. 999–1005.
Devlin, Chang, Lee, Toutanova (b82) 2018
Yue, Chen, Li, Zuo, Yin (b88) 2019; 60
Hochreiter, Schmidhuber (b53) 1997; 9
Turney (b20) 2002
Vilares (b13) 2017
Stavridis, Koloniari, Keramopoulos (b63) 2018
Lo, Cambria, Chiong, Cornforth (b1) 2017; 48
J. Pennington, R. Socher, C.D. Manning, GloVe: Global vectors for word representation, in: Empirical Methods in NLP, EMNLP, 2014, pp. 1532–1543.
Medrouk, Pappa (b61) 2018
M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, in: Proc. of NAACL-HLT, 2018, pp. 2227–2237.
W. Becker, J. Wehrmann, H.E. Cagnini, R.C. Barros, An efficient deep neural architecture for multilingual sentiment analysis in Twitter, in: The Thirtieth Int. Flairs Conf., 2017.
10.1016/j.asoc.2021.107373_b64
10.1016/j.asoc.2021.107373_b65
Tromp (10.1016/j.asoc.2021.107373_b44) 2012
10.1016/j.asoc.2021.107373_b67
10.1016/j.asoc.2021.107373_b24
10.1016/j.asoc.2021.107373_b68
10.1016/j.asoc.2021.107373_b25
10.1016/j.asoc.2021.107373_b26
Steiner-Correa (10.1016/j.asoc.2021.107373_b47) 2018; 22
Heinzerling (10.1016/j.asoc.2021.107373_b84) 2018
Zhang (10.1016/j.asoc.2021.107373_b54) 2017
Hochreiter (10.1016/j.asoc.2021.107373_b53) 1997; 9
Ghasemi (10.1016/j.asoc.2021.107373_b74) 2020
Abdullah (10.1016/j.asoc.2021.107373_b48) 2018
Pires (10.1016/j.asoc.2021.107373_b86) 2019
Ay Karakuş (10.1016/j.asoc.2021.107373_b49) 2018; 30
Deriu (10.1016/j.asoc.2021.107373_b50) 2017
10.1016/j.asoc.2021.107373_b6
10.1016/j.asoc.2021.107373_b7
Nankani (10.1016/j.asoc.2021.107373_b17) 2020
Singhal (10.1016/j.asoc.2021.107373_b11) 2016
Liu (10.1016/j.asoc.2021.107373_b4) 2012; 5
Roncal (10.1016/j.asoc.2021.107373_b46) 2019
Wadawadagi (10.1016/j.asoc.2021.107373_b16) 2020
Shalini (10.1016/j.asoc.2021.107373_b62) 2018
Ain (10.1016/j.asoc.2021.107373_b12) 2017; 8
Patra (10.1016/j.asoc.2021.107373_b81) 2018
10.1016/j.asoc.2021.107373_b30
10.1016/j.asoc.2021.107373_b31
10.1016/j.asoc.2021.107373_b75
Pang (10.1016/j.asoc.2021.107373_b19) 2002
10.1016/j.asoc.2021.107373_b32
10.1016/j.asoc.2021.107373_b76
Medrouk (10.1016/j.asoc.2021.107373_b61) 2018
10.1016/j.asoc.2021.107373_b77
Tang (10.1016/j.asoc.2021.107373_b9) 2015; 5
Kim (10.1016/j.asoc.2021.107373_b8) 2014
10.1016/j.asoc.2021.107373_b35
10.1016/j.asoc.2021.107373_b79
10.1016/j.asoc.2021.107373_b37
Konate (10.1016/j.asoc.2021.107373_b59) 2018; 23
10.1016/j.asoc.2021.107373_b38
Feldman (10.1016/j.asoc.2021.107373_b21) 2013; 56
Banea (10.1016/j.asoc.2021.107373_b45) 2011
Ghosh (10.1016/j.asoc.2021.107373_b42) 2017
Zhu (10.1016/j.asoc.2021.107373_b83) 2018; 10
Kanclerz (10.1016/j.asoc.2021.107373_b72) 2020; 176
Zhang (10.1016/j.asoc.2021.107373_b56) 2017
Mozetič (10.1016/j.asoc.2021.107373_b52) 2016; 11
Pang (10.1016/j.asoc.2021.107373_b2) 2008; 2
Rao (10.1016/j.asoc.2021.107373_b33) 2018; 308
Ahmad (10.1016/j.asoc.2021.107373_b43) 2019
Agarwal (10.1016/j.asoc.2021.107373_b36) 2020
Chundi (10.1016/j.asoc.2021.107373_b73) 2020
10.1016/j.asoc.2021.107373_b80
Stavridis (10.1016/j.asoc.2021.107373_b63) 2018
10.1016/j.asoc.2021.107373_b40
10.1016/j.asoc.2021.107373_b41
Lo (10.1016/j.asoc.2021.107373_b1) 2017; 48
Wolf (10.1016/j.asoc.2021.107373_b85) 2020
Huang (10.1016/j.asoc.2021.107373_b29) 2018
Habimana (10.1016/j.asoc.2021.107373_b15) 2019; 63
Mukherjee (10.1016/j.asoc.2021.107373_b69) 2019
Wang (10.1016/j.asoc.2021.107373_b3) 2012
Yu (10.1016/j.asoc.2021.107373_b27) 2016
Ganin (10.1016/j.asoc.2021.107373_b34) 2015
Rojas-Barahona (10.1016/j.asoc.2021.107373_b10) 2016; 10
Cambria (10.1016/j.asoc.2021.107373_b22) 2013; 28
Rosenthal (10.1016/j.asoc.2021.107373_b23) 2017
Zunic (10.1016/j.asoc.2021.107373_b89) 2020; 8
Liu (10.1016/j.asoc.2021.107373_b66) 2019
Liu (10.1016/j.asoc.2021.107373_b5) 2015
10.1016/j.asoc.2021.107373_b51
Yue (10.1016/j.asoc.2021.107373_b88) 2019; 60
Turney (10.1016/j.asoc.2021.107373_b20) 2002
Makhzani (10.1016/j.asoc.2021.107373_b78) 2016
10.1016/j.asoc.2021.107373_b57
Croce (10.1016/j.asoc.2021.107373_b87) 2020
Zhou (10.1016/j.asoc.2021.107373_b39) 2016
10.1016/j.asoc.2021.107373_b58
Gopal Jhanwar (10.1016/j.asoc.2021.107373_b60) 2018
10.1016/j.asoc.2021.107373_b18
Jamatia (10.1016/j.asoc.2021.107373_b71) 2020; 29
Zhang (10.1016/j.asoc.2021.107373_b14) 2018; 8
Xu (10.1016/j.asoc.2021.107373_b28) 2018
Devlin (10.1016/j.asoc.2021.107373_b82) 2018
Shen (10.1016/j.asoc.2021.107373_b70) 2020
Vilares (10.1016/j.asoc.2021.107373_b13) 2017
Medrouk (10.1016/j.asoc.2021.107373_b55) 2017
References_xml – reference: Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018.
– year: 2017
  ident: b13
  article-title: Compositional Language Processing for Multilingual Sentiment Analysis
– year: 2020
  ident: b36
  article-title: Deep Learning-Based Approaches for Sentiment Analysis
– reference: M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis, in: Proc. of the 10th Int. Workshop on Semantic Evaluation, SemEval-2016, 2016, pp. 19–30.
– year: 2017
  ident: b42
  article-title: Sentiment identification in code-mixed social media text
– reference: W. Wang, S. Feng, W. Gao, D. Wang, Y. Zhang, Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 338–348.
– start-page: 2114
  year: 2020
  end-page: 2119
  ident: b87
  article-title: GAN-BERT: Generative adversarial learning for robust text classification with a bunch of labeled examples
  publication-title: Proc. of the 58th Annual Meeting of the ACL
– reference: J. Pennington, R. Socher, C.D. Manning, GloVe: Global vectors for word representation, in: Empirical Methods in NLP, EMNLP, 2014, pp. 1532–1543.
– start-page: 4996
  year: 2019
  end-page: 5001
  ident: b86
  article-title: How multilingual is multilingual BERT?
  publication-title: Proc. of the 57th Annual Meeting of the ACL
– start-page: 1746
  year: 2014
  end-page: 1751
  ident: b8
  article-title: Convolutional neural networks for sentence classification
  publication-title: Proc. of the 2014 Conf. on Empirical Methods in NLP
– volume: 8
  year: 2018
  ident: b14
  article-title: Deep learning for sentiment analysis: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– reference: A. Joshi, A. Prabhu, M. Shrivastava, V. Varma, Towards sub-word level compositions for sentiment analysis of Hindi-English code mixed text, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 2482–2491.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b53
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 205
  year: 2017
  end-page: 212
  ident: b55
  article-title: Deep learning model for sentiment analysis in multi-lingual corpus
  publication-title: Int. Conf. on Neural Information Processing
– start-page: 79
  year: 2002
  end-page: 86
  ident: b19
  article-title: Thumbs up?: sentiment classification using machine learning techniques
  publication-title: Proc. of the ACL-02 Conf. on Empirical Methods in NLP, Vol. 10
– start-page: 103
  year: 2018
  ident: b48
  article-title: Deep Learning for Sentiment and Emotion Detection in Multilingual Contexts
– year: 2018
  ident: b81
  article-title: Sentiment analysis of code-mixed Indian languages: an overview of SAIL_Code-Mixed Shared Task@ ICON-2017
– volume: 48
  start-page: 499
  year: 2017
  end-page: 527
  ident: b1
  article-title: Multilingual sentiment analysis: from formal to informal and scarce resource languages
  publication-title: Artif. Intell. Rev.
– reference: M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, in: Proc. of NAACL-HLT, 2018, pp. 2227–2237.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b63
  article-title: Deriving word embeddings using multilingual transfer learning for opinion mining
  publication-title: 2018 South-Eastern European Design Automation, Computer Engineering, Computer Networks and Society Media Conf.
– start-page: 38
  year: 2020
  end-page: 45
  ident: b85
  article-title: Transformers: State-of-the-art NLP
  publication-title: Proc. of the 2020 Conf. on Empirical Methods in NLP: System Demonstrations
– volume: 308
  start-page: 49
  year: 2018
  end-page: 57
  ident: b33
  article-title: LSTM with sentence representations for document-level sentiment classification
  publication-title: Neurocomputing
– reference: X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, K. Weinberger, Adversarial deep averaging networks for cross-lingual sentiment classification, in: Proc. of the 2018 Conf. on Empirical Methods in NLP, 2018, pp. 557–570.
– volume: 10
  start-page: 116
  year: 2018
  ident: b83
  article-title: A bi-directional LSTM-CNN model with attention for aspect-level text classification
  publication-title: Future Internet
– year: 2019
  ident: b46
  article-title: Multilingual Sentiment Analysis in Social Media
– year: 2017
  ident: b23
  article-title: SemEval-2017 task 4: Sentiment analysis in Twitter
  publication-title: Proc. of the 11th Int. Workshop on Semantic Evaluation
– start-page: 413
  year: 2017
  end-page: 425
  ident: b54
  article-title: Language-independent Twitter classification using character-based convolutional networks
  publication-title: Int. Conf. on Advanced Data Mining and Applications
– volume: 10
  start-page: 701
  year: 2016
  end-page: 719
  ident: b10
  article-title: Deep learning for sentiment analysis
  publication-title: Lang. Linguist. Compass
– reference: M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daumé, III, Deep unordered composition rivals syntactic methods for text classification, in: Proc. of the 53rd Annual Meeting of the ACL and the 7th Int. Joint Conf. on NLP (Vol. 1: Long Papers), 2015, pp. 1681–1691.
– reference: N. Choudhary, R. Singh, I. Bindlish, M. Shrivastava, Sentiment analysis of code-mixed languages leveraging resource rich languages, in: 19th Int. Conf. on Computational Linguistics and Intelligent Text Processing, CICLing-2018, 2018.
– year: 2015
  ident: b5
  article-title: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions
– year: 2018
  ident: b84
  article-title: BPEmb: Tokenization-free pre-trained subword embeddings in 275 languages
  publication-title: Proc. of the Eleventh Int. Conf. on Language Resources and Evaluation
– year: 2016
  ident: b78
  article-title: Adversarial autoencoders
– volume: 8
  start-page: 424
  year: 2017
  ident: b12
  article-title: Sentiment analysis using deep learning techniques: a review
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 327
  year: 2020
  end-page: 331
  ident: b73
  article-title: SAEKCS: Sentiment analysis for English–Kannada code switchtext using deep learning techniques
  publication-title: 2020 Int. Conf. on Smart Technologies in Computing, Electrical and Electronics
– volume: 29
  year: 2020
  ident: b71
  article-title: Deep learning based sentiment analysis in a code-mixed English-Hindi and English-Bengali social media corpus
  publication-title: Int. J. Artif. Intell. Tools
– reference: J.T. Zhou, S.J. Pan, I.W. Tsang, Y. Yan, Hybrid heterogeneous transfer learning through deep learning, in: Twenty-Eighth AAAI Conf. on Artificial Intelligence, 2014.
– volume: 63
  start-page: 1
  year: 2019
  end-page: 36
  ident: b15
  article-title: Sentiment analysis using deep learning approaches: an overview
  publication-title: Sci. China Inf. Sci.
– reference: W. Becker, J. Wehrmann, H.E. Cagnini, R.C. Barros, An efficient deep neural architecture for multilingual sentiment analysis in Twitter, in: The Thirtieth Int. Flairs Conf., 2017.
– year: 2012
  ident: b44
  article-title: Multilingual Sentiment Analysis on Social Media
– volume: 2
  start-page: 1
  year: 2008
  end-page: 135
  ident: b2
  article-title: Opinion mining and sentiment analysis
  publication-title: Found. Trends® Inf. Retr.
– reference: R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1631–1642.
– year: 2016
  ident: b11
  article-title: Sentiment Analysis and Deep Learning: A Survey
– volume: 56
  start-page: 82
  year: 2013
  end-page: 89
  ident: b21
  article-title: Techniques and applications for sentiment analysis
  publication-title: Commun. ACM
– reference: Z. Wang, Y. Zhang, S. Lee, S. Li, G. Zhou, A bilingual attention network for code-switched emotion prediction, in: Proc. of COLING 2016, The 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 1624–1634.
– reference: Y.K. Lal, V. Kumar, M. Dhar, M. Shrivastava, P. Koehn, De-mixing sentiment from code-mixed text, in: Proc. of the 57th Annual Meeting of the ACL: Student Research Workshop, 2019, pp. 371–377.
– reference: G. Lample, A. Conneau, M. Ranzato, L. Denoyer, H. Jégou, Word translation without parallel data, in: Int. Conf. on Learning Representations, 2018.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b61
  article-title: Do deep networks really need complex modules for multilingual sentiment polarity detection and domain classification?
  publication-title: 2018 Int. Joint Conf. on Neural Networks
– start-page: 90
  year: 2012
  end-page: 94
  ident: b3
  article-title: Baselines and bigrams: Simple, good sentiment and topic classification
  publication-title: Proc. of the 50th Annual Meeting of the ACL: Short Papers, Vol. 2
– volume: 28
  start-page: 15
  year: 2013
  end-page: 21
  ident: b22
  article-title: New avenues in opinion mining and sentiment analysis
  publication-title: IEEE Intell. Syst.
– year: 2018
  ident: b82
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– year: 2016
  ident: b27
  article-title: Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification
– start-page: 193
  year: 2020
  end-page: 236
  ident: b17
  article-title: Multilingual sentiment analysis
  publication-title: Deep Learning-Based Approaches for Sentiment Analysis
– reference: M. Jabreel, N. Maaroof, A. Valls, A. Moreno, UniSent: Universal sentiment analysis system for low-resource languages, in: CCIA, 2019, pp. 387–396.
– volume: 11
  year: 2016
  ident: b52
  article-title: Multilingual Twitter sentiment classification: The role of human annotators
  publication-title: PLoS One
– reference: J. Wehrmann, W. Becker, H.E.L. Cagnini, R.C. Barros, A character-based convolutional neural network for language-agnostic Twitter sentiment analysis, in: 2017 Int. Joint Conf. on Neural Networks, IJCNN, 2017, pp. 2384–2391.
– start-page: 1
  year: 2020
  end-page: 14
  ident: b74
  article-title: Deep Persian sentiment analysis: Cross-lingual training for low-resource languages
  publication-title: J. Inf. Sci.
– reference: X. Dong, G. De Melo, Cross-lingual propagation for deep sentiment analysis, in: Thirty-Second AAAI Conf. on Artificial Intelligence, 2018.
– start-page: 1126
  year: 2018
  end-page: 1131
  ident: b62
  article-title: Sentiment analysis for code-mixed Indian social media text with distributed representation
  publication-title: 2018 Int. Conf. on Advances in Computing, Communications and Informatics
– start-page: 417
  year: 2002
  end-page: 424
  ident: b20
  article-title: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews
  publication-title: Proc. of the 40th Annual Meeting on ACL
– reference: W.Y. Zou, R. Socher, D. Cer, C.D. Manning, Bilingual word embeddings for phrase-based machine translation, in: Proc. of the 2013 Conf. on Empirical Methods in NLP, 2013, pp. 1393–1398.
– volume: 60
  start-page: 617
  year: 2019
  end-page: 663
  ident: b88
  article-title: A survey of sentiment analysis in social media
  publication-title: Knowl. Inf. Syst.
– reference: D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent neural network for sentiment classification, in: Proc. of the 2015 Conf. on Empirical Methods in NLP, 2015, pp. 1422–1432.
– start-page: 245
  year: 2016
  end-page: 254
  ident: b39
  article-title: Transfer learning for cross-lingual sentiment classification with weakly shared deep neural networks
  publication-title: Proc. of the 39th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval
– volume: 22
  start-page: 8227
  year: 2018
  end-page: 8242
  ident: b47
  article-title: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks
  publication-title: Soft Comput.
– start-page: 1
  year: 2011
  end-page: 19
  ident: b45
  article-title: Multilingual sentiment and subjectivity analysis
  publication-title: Multilingual NLP, Vol. 6
– reference: C. Dos Santos, M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts, in: Proc. of COLING 2014, the 25th Int. Conf. on Computational Linguistics: Technical Papers, 2014, pp. 69–78.
– volume: 176
  start-page: 128
  year: 2020
  end-page: 137
  ident: b72
  article-title: Cross-lingual deep neural transfer learning in sentiment analysis
  publication-title: Procedia Comput. Sci.
– reference: S. Ruder, P. Ghaffari, J.G. Breslin, A hierarchical model of reviews for aspect-based sentiment analysis, in: Proc. of the 2016 Conf. on Empirical Methods in NLP, 2016, pp. 999–1005.
– volume: 5
  start-page: 1
  year: 2012
  end-page: 167
  ident: b4
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Human Lang. Technol.
– volume: 30
  start-page: e4783
  year: 2018
  ident: b49
  article-title: Evaluating deep learning models for sentiment classification
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 8
  year: 2020
  ident: b89
  article-title: Sentiment analysis in health and well-being: Systematic review
  publication-title: JMIR Med. Inform.
– reference: T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Neural and Information Processing System, NIPS, 2013.
– start-page: 592
  year: 2018
  end-page: 598
  ident: b28
  article-title: Double embeddings and CNN-based sequence labeling for aspect extraction
  publication-title: Proc. of the 56th Annual Meeting of the ACL (Vol. 2: Short Papers)
– start-page: 197
  year: 2018
  end-page: 206
  ident: b29
  article-title: Aspect level sentiment classification with attention-over-attention neural networks
  publication-title: Int. Conf. on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation
– reference: P. Singhal, P. Bhattacharyya, Borrow a little from your rich cousin: Using embeddings and polarities of English words for multilingual sentiment classification, in: Proc. of COLING 2016, the 26th Int. Conf. on Computational Linguistics: Technical Papers, 2016, pp. 3053–3062.
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b34
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proc. of the 32nd Int. Conf. on Int. Conf. on Machine Learning, Vol. 37
– reference: Z. Li, Y. Zhang, Y. Wei, Y. Wu, Q. Yang, End-to-end adversarial memory network for cross-domain sentiment classification, in: IJCAI, 2017, pp. 2237–2243.
– volume: 5
  start-page: 292
  year: 2015
  end-page: 303
  ident: b9
  article-title: Deep learning for sentiment analysis: successful approaches and future challenges
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 12
  year: 2017
  ident: b56
  article-title: A word-character convolutional neural network for language-agnostic Twitter sentiment analysis
  publication-title: Proc. of the 22nd Australasian Document Computing Symposium
– year: 2018
  ident: b60
  article-title: An ensemble model for sentiment analysis of Hindi-English code-mixed data
– year: 2019
  ident: b66
  article-title: A novel aspect-based sentiment analysis network model based on multilingual hierarchy in online social network
  publication-title: Comput. J.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b69
  article-title: Deep learning technique for sentiment analysis of Hindi-English code-mixed text using late fusion of character and word features
  publication-title: 2019 IEEE 16th India Council Int. Conf.
– start-page: 352
  year: 2019
  end-page: 356
  ident: b43
  article-title: Review on sentiment analysis of Indian languages with a special focus on code mixed Indian languages
  publication-title: 2019 Int. Conf. on Automation, Computational and Technology Management
– volume: 23
  start-page: 237
  year: 2018
  end-page: 243
  ident: b59
  article-title: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques
  publication-title: Wuhan Univ. J. Nat. Sci.
– start-page: 237
  year: 2020
  end-page: 241
  ident: b70
  article-title: Cross-lingual sentiment analysis via AAE and BiGRU
  publication-title: 2020 Asia-Pacific Conf. on Image Processing, Electronics and Computers
– reference: J.M. Wiebe, R.F. Bruce, T.P. O’Hara, Development and use of a gold-standard data set for subjectivity classifications, in: Proc. of the 37th Annual Meeting of the ACL, 1999, pp. 246–253.
– year: 2020
  ident: b16
  article-title: Sentiment analysis with deep neural networks: comparative study and performance assessment
  publication-title: Artif. Intell. Rev.
– start-page: 1045
  year: 2017
  end-page: 1052
  ident: b50
  article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification
  publication-title: Proc. of the 26th Int. Conf. on World Wide Web
– ident: 10.1016/j.asoc.2021.107373_b24
– year: 2020
  ident: 10.1016/j.asoc.2021.107373_b36
– start-page: 79
  year: 2002
  ident: 10.1016/j.asoc.2021.107373_b19
  article-title: Thumbs up?: sentiment classification using machine learning techniques
– year: 2017
  ident: 10.1016/j.asoc.2021.107373_b42
– ident: 10.1016/j.asoc.2021.107373_b32
  doi: 10.18653/v1/D15-1167
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2021.107373_b52
  article-title: Multilingual Twitter sentiment classification: The role of human annotators
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155036
– ident: 10.1016/j.asoc.2021.107373_b18
  doi: 10.3115/1034678.1034721
– year: 2018
  ident: 10.1016/j.asoc.2021.107373_b81
– volume: 23
  start-page: 237
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b59
  article-title: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques
  publication-title: Wuhan Univ. J. Nat. Sci.
  doi: 10.1007/s11859-018-1316-z
– start-page: 1126
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b62
  article-title: Sentiment analysis for code-mixed Indian social media text with distributed representation
– volume: 48
  start-page: 499
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b1
  article-title: Multilingual sentiment analysis: from formal to informal and scarce resource languages
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9508-4
– start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b29
  article-title: Aspect level sentiment classification with attention-over-attention neural networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107373_b69
  article-title: Deep learning technique for sentiment analysis of Hindi-English code-mixed text using late fusion of character and word features
– year: 2015
  ident: 10.1016/j.asoc.2021.107373_b5
– ident: 10.1016/j.asoc.2021.107373_b37
  doi: 10.1109/IJCNN.2017.7966145
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b61
  article-title: Do deep networks really need complex modules for multilingual sentiment polarity detection and domain classification?
– year: 2016
  ident: 10.1016/j.asoc.2021.107373_b78
– year: 2019
  ident: 10.1016/j.asoc.2021.107373_b66
  article-title: A novel aspect-based sentiment analysis network model based on multilingual hierarchy in online social network
  publication-title: Comput. J.
– start-page: 352
  year: 2019
  ident: 10.1016/j.asoc.2021.107373_b43
  article-title: Review on sentiment analysis of Indian languages with a special focus on code mixed Indian languages
– volume: 22
  start-page: 8227
  issue: 24
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b47
  article-title: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2766-5
– ident: 10.1016/j.asoc.2021.107373_b64
  doi: 10.18653/v1/D18-1031
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2021.107373_b4
  article-title: Sentiment analysis and opinion mining
  publication-title: Synth. Lect. Human Lang. Technol.
  doi: 10.1007/978-3-031-02145-9
– year: 2016
  ident: 10.1016/j.asoc.2021.107373_b11
– start-page: 237
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b70
  article-title: Cross-lingual sentiment analysis via AAE and BiGRU
– start-page: 327
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b73
  article-title: SAEKCS: Sentiment analysis for English–Kannada code switchtext using deep learning techniques
– ident: 10.1016/j.asoc.2021.107373_b57
– volume: 308
  start-page: 49
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b33
  article-title: LSTM with sentence representations for document-level sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.045
– ident: 10.1016/j.asoc.2021.107373_b26
  doi: 10.18653/v1/N18-1202
– ident: 10.1016/j.asoc.2021.107373_b25
  doi: 10.3115/v1/D14-1162
– start-page: 1180
  year: 2015
  ident: 10.1016/j.asoc.2021.107373_b34
  article-title: Unsupervised domain adaptation by backpropagation
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b74
  article-title: Deep Persian sentiment analysis: Cross-lingual training for low-resource languages
  publication-title: J. Inf. Sci.
– ident: 10.1016/j.asoc.2021.107373_b38
  doi: 10.1609/aaai.v28i1.8961
– year: 2012
  ident: 10.1016/j.asoc.2021.107373_b44
– ident: 10.1016/j.asoc.2021.107373_b40
– year: 2018
  ident: 10.1016/j.asoc.2021.107373_b82
– start-page: 90
  year: 2012
  ident: 10.1016/j.asoc.2021.107373_b3
  article-title: Baselines and bigrams: Simple, good sentiment and topic classification
– volume: 5
  start-page: 292
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2021.107373_b9
  article-title: Deep learning for sentiment analysis: successful approaches and future challenges
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.107373_b45
  article-title: Multilingual sentiment and subjectivity analysis
– start-page: 12
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b56
  article-title: A word-character convolutional neural network for language-agnostic Twitter sentiment analysis
– ident: 10.1016/j.asoc.2021.107373_b6
– start-page: 1746
  year: 2014
  ident: 10.1016/j.asoc.2021.107373_b8
  article-title: Convolutional neural networks for sentence classification
– year: 2019
  ident: 10.1016/j.asoc.2021.107373_b46
– start-page: 193
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b17
  article-title: Multilingual sentiment analysis
– ident: 10.1016/j.asoc.2021.107373_b58
  doi: 10.1609/aaai.v32i1.12071
– start-page: 2114
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b87
  article-title: GAN-BERT: Generative adversarial learning for robust text classification with a bunch of labeled examples
– year: 2018
  ident: 10.1016/j.asoc.2021.107373_b84
  article-title: BPEmb: Tokenization-free pre-trained subword embeddings in 275 languages
– ident: 10.1016/j.asoc.2021.107373_b79
– ident: 10.1016/j.asoc.2021.107373_b35
  doi: 10.24963/ijcai.2017/311
– ident: 10.1016/j.asoc.2021.107373_b65
  doi: 10.1162/tacl_a_00039
– volume: 29
  issue: 5
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b71
  article-title: Deep learning based sentiment analysis in a code-mixed English-Hindi and English-Bengali social media corpus
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213020500141
– volume: 63
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107373_b15
  article-title: Sentiment analysis using deep learning approaches: an overview
  publication-title: Sci. China Inf. Sci.
– volume: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b89
  article-title: Sentiment analysis in health and well-being: Systematic review
  publication-title: JMIR Med. Inform.
  doi: 10.2196/16023
– start-page: 413
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b54
  article-title: Language-independent Twitter classification using character-based convolutional networks
– start-page: 38
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b85
  article-title: Transformers: State-of-the-art NLP
– volume: 10
  start-page: 116
  issue: 12
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b83
  article-title: A bi-directional LSTM-CNN model with attention for aspect-level text classification
  publication-title: Future Internet
  doi: 10.3390/fi10120116
– ident: 10.1016/j.asoc.2021.107373_b80
– ident: 10.1016/j.asoc.2021.107373_b68
– ident: 10.1016/j.asoc.2021.107373_b41
– year: 2016
  ident: 10.1016/j.asoc.2021.107373_b27
– start-page: 205
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b55
  article-title: Deep learning model for sentiment analysis in multi-lingual corpus
– start-page: 245
  year: 2016
  ident: 10.1016/j.asoc.2021.107373_b39
  article-title: Transfer learning for cross-lingual sentiment classification with weakly shared deep neural networks
– ident: 10.1016/j.asoc.2021.107373_b7
– ident: 10.1016/j.asoc.2021.107373_b31
  doi: 10.18653/v1/D16-1103
– start-page: 1045
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b50
  article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification
– ident: 10.1016/j.asoc.2021.107373_b67
  doi: 10.18653/v1/P19-2052
– year: 2017
  ident: 10.1016/j.asoc.2021.107373_b13
– ident: 10.1016/j.asoc.2021.107373_b30
  doi: 10.1609/aaai.v32i1.12048
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b63
  article-title: Deriving word embeddings using multilingual transfer learning for opinion mining
– volume: 30
  start-page: e4783
  issue: 21
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b49
  article-title: Evaluating deep learning models for sentiment classification
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.4783
– volume: 10
  start-page: 701
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2021.107373_b10
  article-title: Deep learning for sentiment analysis
  publication-title: Lang. Linguist. Compass
  doi: 10.1111/lnc3.12228
– year: 2017
  ident: 10.1016/j.asoc.2021.107373_b23
  article-title: SemEval-2017 task 4: Sentiment analysis in Twitter
– start-page: 592
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b28
  article-title: Double embeddings and CNN-based sequence labeling for aspect extraction
– volume: 28
  start-page: 15
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2021.107373_b22
  article-title: New avenues in opinion mining and sentiment analysis
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2013.30
– ident: 10.1016/j.asoc.2021.107373_b51
– volume: 60
  start-page: 617
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107373_b88
  article-title: A survey of sentiment analysis in social media
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1236-4
– year: 2018
  ident: 10.1016/j.asoc.2021.107373_b60
– year: 2020
  ident: 10.1016/j.asoc.2021.107373_b16
  article-title: Sentiment analysis with deep neural networks: comparative study and performance assessment
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09845-2
– start-page: 417
  year: 2002
  ident: 10.1016/j.asoc.2021.107373_b20
  article-title: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews
– start-page: 4996
  year: 2019
  ident: 10.1016/j.asoc.2021.107373_b86
  article-title: How multilingual is multilingual BERT?
– start-page: 103
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b48
– volume: 8
  start-page: 424
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2021.107373_b12
  article-title: Sentiment analysis using deep learning techniques: a review
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: 10.1016/j.asoc.2021.107373_b76
  doi: 10.3115/v1/P15-1162
– volume: 8
  year: 2018
  ident: 10.1016/j.asoc.2021.107373_b14
  article-title: Deep learning for sentiment analysis: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1253
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2021.107373_b53
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 56
  start-page: 82
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2021.107373_b21
  article-title: Techniques and applications for sentiment analysis
  publication-title: Commun. ACM
  doi: 10.1145/2436256.2436274
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 10.1016/j.asoc.2021.107373_b2
  article-title: Opinion mining and sentiment analysis
  publication-title: Found. Trends® Inf. Retr.
  doi: 10.1561/1500000011
– volume: 176
  start-page: 128
  year: 2020
  ident: 10.1016/j.asoc.2021.107373_b72
  article-title: Cross-lingual deep neural transfer learning in sentiment analysis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.08.014
– ident: 10.1016/j.asoc.2021.107373_b77
– ident: 10.1016/j.asoc.2021.107373_b75
  doi: 10.18653/v1/S16-1002
SSID ssj0016928
Score 2.5634613
Snippet Twenty-four studies on twenty-three distinct languages and eleven social media illustrate the steady interest in deep learning approaches for multilingual...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107373
SubjectTerms Code-switching
Cross-lingual
Deep learning
Multilingual
Natural language processing (NLP)
Sentiment analysis
Social media
Title Deep learning and multilingual sentiment analysis on social media data: An overview
URI https://dx.doi.org/10.1016/j.asoc.2021.107373
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3qVubNEm9jemYHwxxE3YrTZrIRLoh29W_3bwkHQqyg6fS9CWUH8n7aH_vPYQuSaFYQQnU2KcmoqWRUSY5jwwXpiy0sRbZsS1GbPhKH6bptIH6dS4M0CqD7vc63WnrMNIJaHYWs1lnbCMPQTPKEqgimjFI4qOUwy6__lrTPGKWuf6qIByBdEic8RyvwiJgY8QktgOccPK3cfphcAZ7aCd4irjnX2YfNXR1gHbrLgw4HMpDNL7VeoFD94c3XFQldixByDNf2QUgu8iV8LePfAESPK-w_1aOXeIIBproDe5VGPic8K_gCE0Gd5P-MAqtEiJFGFtGmhtr7FiZFiZRXUMljyXNiGZKpDag0irVqdRS2tOtKKOlFAklklv_QgoRa3KMmtW80icIm1SZkhAtYmIosZLMrtcttEpIyUUmWiiuIcpVKCMO3Sw-8pov9p4DrDnAmntYW-hqPWfhi2hslE5r5PNfWyG3Wn7DvNN_zjtD23DnWX3nqLn8XOkL62ksZdttpTba6vVfnp7hev84HH0DP3PVXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW3ybg56krm3SJBU8LOqyPi-u4C00aSIrUhddES_-KH-hkzYVBfEgeG0epF_TmUz7zXwAWzQ3PGfU19hnLmKF01GmhYickK7IrUOPXLEtLnn3mp3epDcj8N7kwnhaZbD9tU2vrHW40gpotgb9fusKIw_JMsYTX0U041lgVp7Z1xeM254OTo7wIW8nSee4d9iNgrRAZCjnw8gKh86BF2nuErPnmBaxZhm13MgUAxBrUptqqzW-DYZxVmiZMKoF-mMtZWwpTjsK4wythVdN2H37pJXEPKv0XP3iIr-6kKhTc8pyRBxj0iTGC4IK-rMz_OLgOjMwFU6mpF3f_CyM2HIOphvVBxKMwDxcHVk7IEFt4pbkZUEqVqLPa3_GCXw2UyUZgE11wRPyUJL62zypElWIp6Xuk3ZJPH_U_5tYgN5_4LcIY-VDaZeAuNS4glIrY-oYxZ4c59vLrUloIWQmlyFuIFImlC336hn3quGn3SkPq_KwqhrWZdj5HDOoi3b82jttkFfftp5Cr_LLuJU_jtuEiW7v4lydn1yercKkb6kZhWswNnx8tut4yhnqjWpbEVD_vI0_ALM-EBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+multilingual+sentiment+analysis+on+social+media+data%3A+An+overview&rft.jtitle=Applied+soft+computing&rft.au=Ag%C3%BCero-Torales%2C+Marvin+M.&rft.au=Abreu+Salas%2C+Jos%C3%A9+I.&rft.au=L%C3%B3pez-Herrera%2C+Antonio+G.&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=107&rft_id=info:doi/10.1016%2Fj.asoc.2021.107373&rft.externalDocID=S1568494621002969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon