Marginal zone B cells acquire dendritic cell functions by trogocytosis
Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocy...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 375; no. 6581; p. eabf7470 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
11.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells. |
---|---|
AbstractList | MZ B cells take on “a-gnaw-ther” roleMarginal zone (MZ) B cells are a subset of lymphoid tissue–resident B cells specializing in the rapid production of polyreactive immunoglobulin M antibodies. Schriek et al. found that MZ B cells can also emulate conventional dendritic cells (cDCs), which present antigens to T cells. Complement receptor 2 (CR2) expressed by MZ B cells recognizes complement component 3 (C3) bound to peptide-loaded major histocompatibility complex class II molecules (pMHC II) on the surface of cDCs. MZ B cells can then “nibble” pMHCII–C3 complexes from cDCs and display them on their own membranes in a process called trogocytosis. A ubiquitin ligase, MARCH1, limits the damage to cDCs by regulating the levels of pMHCII–C3 complexes expressed on the surface of cDCs. —STSINTRODUCTIONEffective immunity is multilayered, requiring the cooperation of various types of molecules and cells. Some types are components of the fast-responding innate arm of the immune system, like the molecules that constitute the complement system and marginal zone (MZ) B cells. Other types of molecules and cells participate in adaptive immune responses that provide long-term protection. These include conventional dendritic cells (cDCs) and major histocompatibility complex class II (MHC II) molecules. This study describes molecular linkages between complement and MHC II molecules that enable MZ B cells and cDCs to carry out cooperatively immunological functions that neither cell type can perform on its own.RATIONALEThe initiation of adaptive immunity against infections requires cDCs to detect, capture, degrade, and present pathogen antigens. cDCs use their MHC II molecules to bind and display peptide fragments derived from these antigens. Recognition of the resulting pMHC II complexes by the antigen receptor of T cells elicits adaptive immune responses and, eventually, the establishment of protective immunological memory against the infectious agent. MZ B cells are specialized in the production of polyreactive antibodies that protect newborns and infants from different types of microorganisms. In some instances, MZ B cells require “help” from T cells to perform this function, which they obtain by displaying pMHC II complexes. This suggests that MZ B cells may be able to emulate the antigen-presenting activity of cDCs.RESULTSComplement component 3 (C3) is an abundant serum protein that constitutively adopts a reactive form in the absence of pathogens by a mechanism known as tickover. We determined that C3 binds to pMHC II exposed on the surface of mouse and human cDCs, forming a covalent bond with the carbohydrate moiety of the MHC II α chain. Because C3 can damage healthy cells, it is converted to inactive C3dg while still bound to pMHC II. These pMHC II–C3dg complexes are recognized by complement receptor 2 (CR2), which is highly expressed by MZ B cells. Interaction between CR2 and C3dg triggers the transfer of pMHC II–C3dg complexes, along with associated cDC membrane and additional proteins embedded in the membrane, from cDCs to MZ B cells—a process termed trogocytosis. The trogocytic MZ B cells are thus able to present pMHC II complexes to T cells they do not generate themselves but acquire from cDCs.Although trogocytosis is beneficial for MZ B cell function, it must be limited to prevent excessive damage and elimination of the trogocytosed cDCs. This takes place through an evolutionarily conserved mechanism, namely pMHC II–C3dg ubiquitination by a highly specialized ubiquitin ligase, MARCH1, embedded in the cDC plasma membrane. The ubiquitinated pMHC II–C3dg complexes are endocytosed and degraded intracellularly, reducing the number exposed on the cDC surface in the steady state.CONCLUSIONOur results describe how C3 and MHC II interact and how this interaction enables MZ B cells and cDCs to cooperatively carry out functions they cannot perform individually. We demonstrate how an evolutionarily conserved mechanism for the constitutive elimination of potentially damaging C3 has been co-opted by cDCs to tag pMHC II complexes for capture by MZ B cells via trogocytosis. This mechanism expands the range of antigens that MZ B cells can present to T lymphocytes. The beneficial and deleterious consequences of trogocytosis are balanced by MARCH1 ubiquitination. Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II–C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II–C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells. Marginal zone (MZ) B cells are a subset of lymphoid tissue–resident B cells specializing in the rapid production of polyreactive immunoglobulin M antibodies. Schriek et al . found that MZ B cells can also emulate conventional dendritic cells (cDCs), which present antigens to T cells. Complement receptor 2 (CR2) expressed by MZ B cells recognizes complement component 3 (C3) bound to peptide-loaded major histocompatibility complex class II molecules (pMHC II) on the surface of cDCs. MZ B cells can then “nibble” pMHCII–C3 complexes from cDCs and display them on their own membranes in a process called trogocytosis. A ubiquitin ligase, MARCH1, limits the damage to cDCs by regulating the levels of pMHCII–C3 complexes expressed on the surface of cDCs. —STS Marginal zone B cells trogocytose dendritic cell membranes, which enables them to present antigens to T cells. Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells. |
Author | Hosking, Laine M Ishido, Satoshi Schriek, Patrick Lahoud, Mireille H Moily, Nagaraj S Holers, V Michael Beattie, Lynette Villadangos, Jose A Ching, Alan C Moffat, Jessica Heath, William R Steiner, Thiago M Mintern, Justine D Thurman, Joshua M Caminschi, Irina |
Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0002-0875-884X surname: Schriek fullname: Schriek, Patrick organization: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 2 givenname: Alan C orcidid: 0000-0001-9188-1824 surname: Ching fullname: Ching, Alan C organization: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 3 givenname: Nagaraj S orcidid: 0000-0002-3045-9563 surname: Moily fullname: Moily, Nagaraj S organization: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 4 givenname: Jessica surname: Moffat fullname: Moffat, Jessica organization: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 5 givenname: Lynette orcidid: 0000-0002-5794-7233 surname: Beattie fullname: Beattie, Lynette organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 6 givenname: Thiago M orcidid: 0000-0002-8385-4532 surname: Steiner fullname: Steiner, Thiago M organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 7 givenname: Laine M surname: Hosking fullname: Hosking, Laine M organization: Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC 3052, Australia – sequence: 8 givenname: Joshua M orcidid: 0000-0001-9062-3559 surname: Thurman fullname: Thurman, Joshua M organization: Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 9 givenname: V Michael orcidid: 0000-0002-5634-7746 surname: Holers fullname: Holers, V Michael organization: Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA – sequence: 10 givenname: Satoshi orcidid: 0000-0001-5893-3354 surname: Ishido fullname: Ishido, Satoshi organization: Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan – sequence: 11 givenname: Mireille H orcidid: 0000-0001-8472-6201 surname: Lahoud fullname: Lahoud, Mireille H organization: Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia – sequence: 12 givenname: Irina orcidid: 0000-0002-9027-2098 surname: Caminschi fullname: Caminschi, Irina organization: Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia – sequence: 13 givenname: William R orcidid: 0000-0001-9670-259X surname: Heath fullname: Heath, William R organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 14 givenname: Justine D orcidid: 0000-0002-3797-8577 surname: Mintern fullname: Mintern, Justine D organization: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia – sequence: 15 givenname: Jose A orcidid: 0000-0001-6771-8891 surname: Villadangos fullname: Villadangos, Jose A organization: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143312$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkDtPwzAURi0Eog-Y2ZAlFpa0fiROPEJFAamIBebIduzKVWq3djKUX49LAwPTlXyPP333TMC5804DcIPRDGPC5lFZ7ZSeCWnKvERnYIwRLzJOED0HY4QoyypUFiMwiXGDUNpxeglGtMA5pZiMwfJNhLV1ooVfKRk-QqXbNkKh9r0NGjbaNcF2Vv28Q9M71VnvIpQH2AW_9urQ-WjjFbgwoo36ephT8Ll8-li8ZKv359fFwypTlLEu07nOuRGGpRpYYc2oQCQvqcIVliR10obSRipaEiVZQ7REgmNWiNI0EitKp-D-lLsLft_r2NVbG4_VhNO-jzVhpCK8xLhK6N0_dOP7kC49UrRCrOIcJ2p-olTwMQZt6l2wWxEONUb1UXE9KK4HxenH7ZDby61u_vhfp_Qbye163A |
CitedBy_id | crossref_primary_10_1038_s41590_023_01571_5 crossref_primary_10_1016_j_xcrm_2024_101483 crossref_primary_10_1186_s12967_024_05292_7 crossref_primary_10_3389_fimmu_2022_892169 crossref_primary_10_3389_fimmu_2023_1233085 crossref_primary_10_4049_jimmunol_2200074 crossref_primary_10_1002_ctm2_1199 crossref_primary_10_1016_j_jaut_2022_102856 crossref_primary_10_1097_MOT_0000000000001002 crossref_primary_10_1007_s40259_022_00567_1 crossref_primary_10_1016_j_it_2022_03_008 crossref_primary_10_1016_j_coi_2023_102325 crossref_primary_10_1016_j_smim_2023_101710 crossref_primary_10_1038_s41541_024_00854_8 crossref_primary_10_1038_s41467_022_33117_y crossref_primary_10_1016_j_mucimm_2023_11_001 crossref_primary_10_1146_annurev_pathol_042320_110411 crossref_primary_10_1038_s41577_023_00926_1 crossref_primary_10_3389_fneur_2024_1396520 crossref_primary_10_1146_annurev_immunol_101320_031931 crossref_primary_10_1016_j_celrep_2024_113754 crossref_primary_10_3389_fcvm_2024_1420067 crossref_primary_10_1002_cti2_1418 crossref_primary_10_1126_sciadv_add2337 crossref_primary_10_3389_fimmu_2023_1272918 crossref_primary_10_3389_fimmu_2024_1380211 crossref_primary_10_1084_jem_20221391 crossref_primary_10_1093_infdis_jiad358 crossref_primary_10_3389_fimmu_2023_1194088 crossref_primary_10_1093_cei_uxac101 crossref_primary_10_1016_j_xpro_2022_101425 crossref_primary_10_1016_j_bcp_2022_115285 crossref_primary_10_15252_embr_202256131 crossref_primary_10_1016_j_jconrel_2024_02_029 crossref_primary_10_1111_imr_13147 crossref_primary_10_1016_j_molimm_2022_05_122 crossref_primary_10_3389_fimmu_2023_1079495 crossref_primary_10_1016_j_coi_2023_102331 |
Cites_doi | 10.1093/intimm/5.8.957 10.12688/f1000research.9005.3 10.1038/ni1542 10.1093/bioinformatics/bts635 10.1016/j.celrep.2018.05.082 10.1038/sj.emboj.7601556 10.1093/database/bar011 10.1016/j.coi.2019.04.003 10.1038/nmeth.1322 10.4049/jimmunol.0902178 10.1093/nar/gky379 10.1523/JNEUROSCI.1698-15.2015 10.4049/jimmunol.2000549 10.1073/pnas.93.8.3357 10.1146/annurev-immunol-032713-120154 10.1172/JCI65861 10.1093/bioinformatics/btp616 10.1186/gb-2014-15-2-r29 10.4049/jimmunol.127.4.1478 10.1016/j.crimmu.2021.10.004 10.1007/978-1-59745-570-1_10 10.1016/j.exer.2016.08.007 10.1016/S0021-9258(17)44258-X 10.1093/nar/gkv007 10.1186/gb-2010-11-3-r25 10.1093/bioinformatics/btq401 10.1371/journal.pone.0200540 10.1038/ni.1856 10.1146/annurev-immunol-032713-120140 10.1038/ni0903-815 10.1038/nprot.2006.400 10.1016/j.coi.2019.03.001 10.1093/bioinformatics/btt199 10.1093/nar/gkt214 10.1038/nri2020 10.1038/cmi.2015.97 10.1016/j.molimm.2007.11.003 10.1038/nri3383 10.1007/s00251-002-0521-1 10.1016/j.vaccine.2008.11.023 10.1016/S0161-5890(01)00069-4 10.1182/blood-2008-05-155176 10.1038/32588 10.4049/jimmunol.2000975 10.1038/353660a0 10.4049/jimmunol.1901328 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abf7470 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | eabf7470 |
ExternalDocumentID | 10_1126_science_abf7470 35143312 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK125823 – fundername: NIDDK NIH HHS grantid: R01 DK076690 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADDRP ADUKH AEGBM AENEX AEUPB AFFNX AFHKK AFQFN AFRAH AFRQD AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF B-7 BKF BLC C45 CGR CS3 CUY CVF DB2 DU5 EBS ECM EIF EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD ACUHS C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c366t-e4e49faf65931c1e63a02473c181b2143ef33dbc372cb6d2eb0a9165a7fdb1c33 |
ISSN | 0036-8075 |
IngestDate | Wed Dec 04 04:54:47 EST 2024 Sun Dec 15 12:53:46 EST 2024 Fri Dec 06 04:05:44 EST 2024 Sat Sep 28 08:17:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6581 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-e4e49faf65931c1e63a02473c181b2143ef33dbc372cb6d2eb0a9165a7fdb1c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9188-1824 0000-0001-6771-8891 0000-0001-5893-3354 0000-0002-5794-7233 0000-0002-5634-7746 0000-0001-9670-259X 0000-0002-8385-4532 0000-0001-9062-3559 0000-0002-3797-8577 0000-0001-8472-6201 0000-0002-0875-884X 0000-0002-9027-2098 0000-0002-3045-9563 |
OpenAccessLink | https://www.science.org/doi/pdf/10.1126/science.abf7470?download=true |
PMID | 35143312 |
PQID | 2638068991 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2628297118 proquest_journals_2638068991 crossref_primary_10_1126_science_abf7470 pubmed_primary_35143312 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-11 20220211 |
PublicationDateYYYYMMDD | 2022-02-11 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – sequence: 0 name: The American Association for the Advancement of Science |
References | 35379581 - Trends Immunol. 2022 May;43(5):340-342 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 Cullen S. E. (e_1_3_2_24_2) 1981; 127 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Mach N. (e_1_3_2_46_2) 2000; 60 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_30_2 doi: 10.1093/intimm/5.8.957 – ident: e_1_3_2_44_2 doi: 10.12688/f1000research.9005.3 – ident: e_1_3_2_26_2 doi: 10.1038/ni1542 – ident: e_1_3_2_35_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_2_27_2 doi: 10.1016/j.celrep.2018.05.082 – ident: e_1_3_2_28_2 doi: 10.1038/sj.emboj.7601556 – ident: e_1_3_2_38_2 doi: 10.1093/database/bar011 – ident: e_1_3_2_20_2 doi: 10.1016/j.coi.2019.04.003 – ident: e_1_3_2_47_2 doi: 10.1038/nmeth.1322 – ident: e_1_3_2_15_2 doi: 10.4049/jimmunol.0902178 – ident: e_1_3_2_37_2 doi: 10.1093/nar/gky379 – ident: e_1_3_2_29_2 doi: 10.1523/JNEUROSCI.1698-15.2015 – ident: e_1_3_2_48_2 doi: 10.4049/jimmunol.2000549 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.93.8.3357 – ident: e_1_3_2_6_2 doi: 10.1146/annurev-immunol-032713-120154 – ident: e_1_3_2_33_2 doi: 10.1172/JCI65861 – ident: e_1_3_2_40_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_2_43_2 doi: 10.1186/gb-2014-15-2-r29 – volume: 127 start-page: 1478 year: 1981 ident: e_1_3_2_24_2 article-title: Differential glycosylation of murine B cell and spleen adherent cell Ia antigens publication-title: J. Immunol. doi: 10.4049/jimmunol.127.4.1478 contributor: fullname: Cullen S. E. – ident: e_1_3_2_13_2 doi: 10.1016/j.crimmu.2021.10.004 – ident: e_1_3_2_32_2 doi: 10.1007/978-1-59745-570-1_10 – ident: e_1_3_2_34_2 doi: 10.1016/j.exer.2016.08.007 – ident: e_1_3_2_23_2 doi: 10.1016/S0021-9258(17)44258-X – ident: e_1_3_2_41_2 doi: 10.1093/nar/gkv007 – ident: e_1_3_2_42_2 doi: 10.1186/gb-2010-11-3-r25 – ident: e_1_3_2_45_2 doi: 10.1093/bioinformatics/btq401 – ident: e_1_3_2_4_2 doi: 10.1371/journal.pone.0200540 – ident: e_1_3_2_25_2 doi: 10.1038/ni.1856 – ident: e_1_3_2_21_2 doi: 10.1146/annurev-immunol-032713-120140 – ident: e_1_3_2_11_2 doi: 10.1038/ni0903-815 – ident: e_1_3_2_10_2 doi: 10.1038/nprot.2006.400 – ident: e_1_3_2_3_2 doi: 10.1016/j.coi.2019.03.001 – ident: e_1_3_2_39_2 doi: 10.1093/bioinformatics/btt199 – ident: e_1_3_2_36_2 doi: 10.1093/nar/gkt214 – ident: e_1_3_2_12_2 doi: 10.1038/nri2020 – ident: e_1_3_2_14_2 doi: 10.1038/cmi.2015.97 – ident: e_1_3_2_8_2 doi: 10.1016/j.molimm.2007.11.003 – ident: e_1_3_2_9_2 doi: 10.1038/nri3383 – ident: e_1_3_2_16_2 doi: 10.1007/s00251-002-0521-1 – ident: e_1_3_2_7_2 doi: 10.1016/j.vaccine.2008.11.023 – ident: e_1_3_2_2_2 doi: 10.1016/S0161-5890(01)00069-4 – ident: e_1_3_2_18_2 doi: 10.1182/blood-2008-05-155176 – volume: 60 start-page: 3239 year: 2000 ident: e_1_3_2_46_2 article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand publication-title: Cancer Res. contributor: fullname: Mach N. – ident: e_1_3_2_19_2 doi: 10.1038/32588 – ident: e_1_3_2_5_2 doi: 10.4049/jimmunol.2000975 – ident: e_1_3_2_17_2 doi: 10.1038/353660a0 – ident: e_1_3_2_22_2 doi: 10.4049/jimmunol.1901328 |
SSID | ssj0009593 |
Score | 2.5863972 |
Snippet | Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B... MZ B cells take on “a-gnaw-ther” roleMarginal zone (MZ) B cells are a subset of lymphoid tissue–resident B cells specializing in the rapid production of... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | eabf7470 |
SubjectTerms | Adaptive immunity Adult Animals Antibodies Antigen Presentation Antigens B-Lymphocytes - immunology B-Lymphocytes - metabolism Carbohydrates Cell Membrane - metabolism Complement Complement Activation Complement C3 - immunology Complement C3 - metabolism Complement component C3 Complement receptor 2 Complement system Covalent bonds Damage prevention Dendritic cells Dendritic Cells - immunology Dendritic Cells - metabolism Dendritic structure Female Histocompatibility Antigens Class II - metabolism HLA-D Antigens - immunology HLA-D Antigens - metabolism Humans Immune system Immunity Immunoglobulin M Immunological memory Immunology Lymphocytes Lymphocytes B Lymphocytes T Lymphoid tissue Lymphoid Tissue - immunology Major histocompatibility complex Male Membranes Memory cells Mice Mice, Inbred BALB C Mice, Inbred C3H Mice, Inbred C57BL Microorganisms Middle Aged Neonates Pathogens Peptides Plasma membranes Proteins Receptors Receptors, Complement 3d - immunology Receptors, Complement 3d - metabolism Serum proteins T-Lymphocytes - immunology Trogocytosis Ubiquitin Ubiquitin-protein ligase Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | Marginal zone B cells acquire dendritic cell functions by trogocytosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35143312 https://www.proquest.com/docview/2638068991 https://search.proquest.com/docview/2628297118 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviI2vwkBG4mGoyhTbidM8dkApH52Q1kl9i2zHLgPUoCZ96P4h_k3OsfOBtCHGS1S5qZv4Lr7fXe7uh9ArlY4Fk7EJTKRVEBE5DgSnIgCEpGWYjkmc2Hrn-SmfnUcfl_FyMPjVy1raVvJYXV5ZV_I_UoUxkKutkr2BZNtJYQA-g3zhCBKG4z_J2LLU1qxWlwVgxZORjcKXI6Fsdq-th1rnNZFBPT6yFsylvVnEuSlWhdpVRXlR9vFp86gD7mzf5fQk2CYlTlzqQJNJ4H_WCyucqa_ghH_vWADaiiDL2L1ytTUweRuknRcXP_x-vxIb8a2Lyc4LY4R7ZWJzdn1ukY9UgJNreVO6SMWiK5W5yaX3d2_fPNnZLrdhh5Zrkoasv6Mzf4pTXcBY5Gpj0aO31MdCGnCtws4uNrkAs8lZ9uXtNPv84fTTLXTbdly0JA3vl-Ta7s6-h1SvOquZ_k_4c41PU2ObxX10zzsleOI0bB8N9PoA3XE0pbsDtO_XqMRHvkv56wdo2igftsqHT3CtfNgrH26Vrx7HrfJhucN95XuIzqfvFm9mgSflCBTjvAp0pKPUCMPhlokimjMBMC9hCqCipIC-tWEsl4olVEmeU3jiBbggsUhMLoli7BHaW8N1PUE4pinJAYOKPIEZaC4kOA-CSJMqaxz4EB01a5X9dL1XstpnpTzzy5r5ZR2iw2YtM_-AlhkF2xLyMXhAQ_Sy_Rq2T3vjYq2LrT3HphIk4GYP0WMng_a_bJELY4Q-_fvkz9DdTtsP0V612erngFQr-aLWkt_MI5kh |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+zone+B+cells+acquire+dendritic+cell+functions+by+trogocytosis&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Schriek%2C+Patrick&rft.au=Ching%2C+Alan+C&rft.au=Moily%2C+Nagaraj+S&rft.au=Moffat%2C+Jessica&rft.date=2022-02-11&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=375&rft.issue=6581&rft_id=info:doi/10.1126%2Fscience.abf7470&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |