Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods

In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 2; no. 7; pp. 1149 - 1154
Main Authors Dutta, Dimple P, Jayakumar, O. D, Tyagi, A. K, Girija, K. G, Pillai, C. G. S, Sharma, G
Format Journal Article
LanguageEnglish
Published England 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO 3 nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO 3 . The saturation magnetization of these BiFeO 3 nanostructures has been found to increase on doping with various metal ions (Ba 2+ , Ca 2+ , Mn 2+ , Cr 3+ ), reaching a maximum value of 1.35 emu g −1 for the Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 nanostructures. However, saturation of electric polarization was observed only in case of the Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 nanostructures. Morphological changes and superior multiferroic properties have been observed in sonochemically synthesized doped nano Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 compared to undoped BiFeO 3 .
AbstractList In this study we report the synthesis of BiFeO3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi0.9Ba0.1Fe0.9Mn0.1O3 and Bi0.9Ca0.1Fe0.9Cr0.1O3 samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO3 nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO3. The saturation magnetization of these BiFeO3 nanostructures has been found to increase on doping with various metal ions (Ba2+, Ca2+, Mn2+, Cr3+), reaching a maximum value of 1.35 emu g-1 for the Bi0.9Ba0.1Fe0.9Mn0.1O3 nanostructures. However, saturation of electric polarization was observed only in case of the Bi0.9Ca0.1Fe0.9Cr0.1O3 nanostructures.
In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures.In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures.
In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures.
In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO 3 nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO 3 . The saturation magnetization of these BiFeO 3 nanostructures has been found to increase on doping with various metal ions (Ba 2+ , Ca 2+ , Mn 2+ , Cr 3+ ), reaching a maximum value of 1.35 emu g −1 for the Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 nanostructures. However, saturation of electric polarization was observed only in case of the Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 nanostructures. Morphological changes and superior multiferroic properties have been observed in sonochemically synthesized doped nano Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 compared to undoped BiFeO 3 .
Author Girija, K. G
Sharma, G
Tyagi, A. K
Dutta, Dimple P
Pillai, C. G. S
Jayakumar, O. D
AuthorAffiliation Mechanical Metallurgy Section
Bhabha Atomic Research Centre
Chemistry Division
AuthorAffiliation_xml – name: Bhabha Atomic Research Centre
– name: Mechanical Metallurgy Section
– name: Chemistry Division
Author_xml – sequence: 1
  givenname: Dimple P
  surname: Dutta
  fullname: Dutta, Dimple P
– sequence: 2
  givenname: O. D
  surname: Jayakumar
  fullname: Jayakumar, O. D
– sequence: 3
  givenname: A. K
  surname: Tyagi
  fullname: Tyagi, A. K
– sequence: 4
  givenname: K. G
  surname: Girija
  fullname: Girija, K. G
– sequence: 5
  givenname: C. G. S
  surname: Pillai
  fullname: Pillai, C. G. S
– sequence: 6
  givenname: G
  surname: Sharma
  fullname: Sharma, G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20648341$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LHTEQB_BQlPqjXrxX0lOh8Owks5vdHFW0LQgi6HnJy06eKbvJmuQd_O9defYJUtpTJsznO4TMAdsJMRBjxwJOBaD-biEkAAGw-sD2JVSwQGzkzrZW1R47yPk3gNKo8CPbk6CqFiuxz24vnSNbeHS8j5MPKx4DLw_Ex5imhzjE1RM3oefjeijeUUrRWz6lOFEqnvJL7txf0Q3yYEJMsc-f2K4zQ6aj1_OQ3V9d3l38XFzf_Ph1cXa9sKhUWZDEpl6iXmoE3TdqqVsptQJSRs233ggU1DpZS6GQQPTSOmHrVrdQSVcLPGRfN3Pn1zyuKZdu9NnSMJhAcZ07rbDVVaPUf2WDFQC2Nc7y5FWulyP13ZT8aNJT9-e_ZvBtA2yKOSdyWyKge1lG97aMGcM7bH0xxcdQkvHD3yNfNpGU7Xb0W7-bejebz_8y-Ax6c5-U
CitedBy_id crossref_primary_10_1007_s10854_017_8437_6
crossref_primary_10_1016_j_jallcom_2018_12_381
crossref_primary_10_1016_j_matchemphys_2021_125096
crossref_primary_10_1039_C5DT00638D
crossref_primary_10_1039_C6RA10861J
crossref_primary_10_1111_jace_12782
crossref_primary_10_1142_S2010135X21300012
crossref_primary_10_1016_j_ssc_2011_12_037
crossref_primary_10_1109_TED_2017_2761783
crossref_primary_10_1007_s10854_015_3669_9
crossref_primary_10_1039_D0NA00255K
crossref_primary_10_3390_molecules27217565
crossref_primary_10_1098_rsos_200642
crossref_primary_10_1007_s10854_014_2126_5
crossref_primary_10_1039_c2ra01158a
crossref_primary_10_1016_j_ceramint_2019_01_035
crossref_primary_10_1016_j_mtcomm_2023_105624
crossref_primary_10_1021_acsami_8b15703
crossref_primary_10_1007_s10854_021_05762_4
crossref_primary_10_1007_s10854_016_4830_9
crossref_primary_10_1016_j_apsusc_2018_04_202
crossref_primary_10_3389_fphy_2020_00282
crossref_primary_10_1016_j_pmatsci_2016_09_001
crossref_primary_10_1021_acs_inorgchem_5b01654
crossref_primary_10_1021_acsomega_9b02359
crossref_primary_10_1063_1_4721810
crossref_primary_10_1142_S0217984924502786
crossref_primary_10_1016_j_ceramint_2022_02_011
crossref_primary_10_1016_j_jallcom_2019_05_082
crossref_primary_10_1002_advs_201500358
crossref_primary_10_1063_1_5134741
crossref_primary_10_1016_j_ceramint_2015_01_145
crossref_primary_10_1016_j_jphotochem_2021_113334
crossref_primary_10_1039_c3ra44085k
crossref_primary_10_1007_s10854_016_5911_5
crossref_primary_10_1007_s00339_022_06290_6
crossref_primary_10_1007_s11051_013_2155_7
crossref_primary_10_1016_j_mssp_2022_107086
crossref_primary_10_1039_c3tc00597f
crossref_primary_10_1038_srep18203
crossref_primary_10_1016_j_gee_2018_05_001
crossref_primary_10_1016_j_jmmm_2015_10_022
crossref_primary_10_1039_c3nr33346a
crossref_primary_10_1039_c1nr10288e
crossref_primary_10_1016_j_mssp_2015_06_090
crossref_primary_10_1088_0964_1726_23_8_085030
crossref_primary_10_1016_j_jallcom_2014_03_122
crossref_primary_10_1039_c3dt52779d
crossref_primary_10_1016_j_jallcom_2012_09_010
crossref_primary_10_1039_C5CP01640A
crossref_primary_10_3390_condmat9040039
crossref_primary_10_1016_j_ceramint_2023_07_238
crossref_primary_10_1016_j_matchemphys_2023_127790
crossref_primary_10_1021_jp407334d
crossref_primary_10_1007_s10854_021_06384_6
crossref_primary_10_1039_C3NR05973A
crossref_primary_10_1007_s42341_018_0057_1
crossref_primary_10_1002_pssc_201600253
crossref_primary_10_1016_j_jmmm_2017_06_025
crossref_primary_10_1016_j_progsolidstchem_2012_03_001
crossref_primary_10_1016_j_jallcom_2019_04_106
crossref_primary_10_1016_j_jlumin_2013_11_071
crossref_primary_10_1016_j_jpcs_2020_109737
crossref_primary_10_1088_1742_6596_1191_1_012041
crossref_primary_10_1016_j_jallcom_2019_05_025
crossref_primary_10_1016_j_sna_2018_01_008
crossref_primary_10_1039_C6RA27025E
crossref_primary_10_3390_cryst13050724
crossref_primary_10_1088_0022_3727_46_9_095004
crossref_primary_10_1016_j_matchemphys_2015_05_048
crossref_primary_10_1016_j_mset_2023_10_003
crossref_primary_10_3390_nano8090711
crossref_primary_10_1016_j_jallcom_2016_03_017
crossref_primary_10_1016_j_jallcom_2025_179229
crossref_primary_10_1016_j_jmst_2022_05_046
crossref_primary_10_1039_c6pp00212a
crossref_primary_10_1016_j_jhazmat_2016_03_052
crossref_primary_10_1007_s10854_020_03126_y
crossref_primary_10_1016_j_jallcom_2017_02_288
crossref_primary_10_1007_s10854_013_1414_9
crossref_primary_10_1039_C4CP04901B
crossref_primary_10_1016_j_matchemphys_2017_07_039
crossref_primary_10_1021_jp310710p
crossref_primary_10_1016_j_apsusc_2016_05_043
crossref_primary_10_3389_fnano_2021_640861
crossref_primary_10_1088_1361_6463_acc4d6
crossref_primary_10_1016_j_solidstatesciences_2017_10_009
crossref_primary_10_1007_s40145_013_0051_3
crossref_primary_10_1016_j_apcata_2022_118737
crossref_primary_10_1016_j_physleta_2022_128019
crossref_primary_10_1039_C4RA08854A
crossref_primary_10_1039_C4NR03148B
crossref_primary_10_1515_nanoph_2019_0119
crossref_primary_10_1039_C5CP07327H
crossref_primary_10_1039_C6RA12949H
crossref_primary_10_1016_j_jallcom_2015_08_010
crossref_primary_10_1016_j_jmmm_2015_07_098
crossref_primary_10_1007_s10854_017_7474_5
crossref_primary_10_1016_j_mseb_2019_02_009
crossref_primary_10_1016_j_jmmm_2021_167807
crossref_primary_10_1016_j_physleta_2015_03_035
crossref_primary_10_1002_adma_201004676
crossref_primary_10_1016_j_tsf_2014_11_030
crossref_primary_10_1111_jace_12296
crossref_primary_10_1007_s12034_020_2045_4
crossref_primary_10_1016_j_ceramint_2012_05_051
crossref_primary_10_1039_D3RA06962A
crossref_primary_10_1088_0022_3727_48_39_395302
crossref_primary_10_1016_j_jmmm_2020_167062
crossref_primary_10_1016_j_materresbull_2013_12_005
crossref_primary_10_1039_C1NR11099C
crossref_primary_10_1007_s41779_016_0009_3
crossref_primary_10_1016_j_jallcom_2013_09_117
crossref_primary_10_1039_C8TA01964A
crossref_primary_10_1007_s10854_021_05520_6
crossref_primary_10_1007_s11467_011_0210_3
crossref_primary_10_1016_j_matchemphys_2012_06_005
crossref_primary_10_1039_c2nr00039c
crossref_primary_10_1016_j_jallcom_2011_12_122
crossref_primary_10_1016_j_chemosphere_2023_139678
crossref_primary_10_1016_j_ceramint_2021_07_077
Cites_doi 10.1038/nature02572
10.1021/ja0512576
10.1063/1.3280043
10.1002/adma.200600072
10.1002/adma.200602377
10.1063/1.2763964
10.1063/1.2798256
10.1126/science.1080615
10.1088/0022-3719/15/23/020
10.1063/1.2720349
10.1021/nl063039w
10.1088/0022-3727/41/6/065003
10.1063/1.2769786
10.1063/1.2768201
10.1063/1.2747665
10.1063/1.2189453
10.1016/j.matlet.2006.08.026
10.1016/j.scriptamat.2007.09.001
10.1063/1.1458695
10.1063/1.2229667
10.1063/1.2433709
10.1021/cg900481m
10.1038/nature05023
10.1063/1.2208266
10.1063/1.2147719
10.1063/1.126468
10.1088/0022-3727/42/6/065004
10.1063/1.2345825
10.1038/nature01077
10.1007/s12043-002-0207-0
10.1016/j.matlet.2009.03.010
10.1126/science.247.4949.1439
10.1016/0925-4005(91)80167-I
10.1016/j.jmmm.2006.10.287
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/c0nr00100g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1154
ExternalDocumentID 20648341
10_1039_c0nr00100g
c0nr00100g
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c366t-e2375b39b9309d76b9822960e6a676bda131e8f252163e01d2cf1c5898042f513
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 12:08:34 EDT 2025
Fri Jul 11 00:30:45 EDT 2025
Mon Jul 21 05:52:25 EDT 2025
Tue Jul 01 02:44:28 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Thu May 19 04:21:33 EDT 2016
Thu May 30 17:48:35 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-e2375b39b9309d76b9822960e6a676bda131e8f252163e01d2cf1c5898042f513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20648341
PQID 734003853
PQPubID 23479
PageCount 6
ParticipantIDs pubmed_primary_20648341
crossref_primary_10_1039_c0nr00100g
crossref_citationtrail_10_1039_c0nr00100g
proquest_miscellaneous_734003853
proquest_miscellaneous_963894766
rsc_primary_c0nr00100g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-00
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2010
References Kang (c0nr00100g-(cit11)/*[position()=1]) 2009; 63
Suslick (c0nr00100g-(cit20)/*[position()=1]) 1990; 247
Schmid (c0nr00100g-(cit1)/*[position()=1]) 1994; 162
Popov (c0nr00100g-(cit7)/*[position()=1]) 1993; 57
Wei (c0nr00100g-(cit28)/*[position()=1]) 2008; 58
Gao (c0nr00100g-(cit29)/*[position()=1]) 2006; 89
Yu (c0nr00100g-(cit14)/*[position()=1]) 2008; 41
Bhushan (c0nr00100g-(cit26)/*[position()=1]) 2009; 42
Palkar (c0nr00100g-(cit37)/*[position()=1]) 2002; 58
Azuma (c0nr00100g-(cit12)/*[position()=1]) 2005; 127
Jayakumar (c0nr00100g-(cit30)/*[position()=1]) 2009; 9
Wang (c0nr00100g-(cit16)/*[position()=1]) 2006; 88
Azuma (c0nr00100g-(cit25)/*[position()=1]) 2007; 310
Kim (c0nr00100g-(cit24)/*[position()=1]) 2007; 91
Hur (c0nr00100g-(cit4)/*[position()=1]) 2004; 429
Li (c0nr00100g-(cit13)/*[position()=1]) 2007; 90
Yuan (c0nr00100g-(cit15)/*[position()=1]) 2007; 101
Chen (c0nr00100g-(cit18)/*[position()=1]) 2007; 91
Kim (c0nr00100g-(cit22)/*[position()=1]) 2006; 88
Lee (c0nr00100g-(cit23)/*[position()=1]) 2007; 102
Khomchenko (c0nr00100g-(cit17)/*[position()=1]) 2007; 90
Kumar (c0nr00100g-(cit36)/*[position()=1]) 2000; 76
Palkar (c0nr00100g-(cit35)/*[position()=1]) 2002; 80
Gao (c0nr00100g-(cit32)/*[position()=1]) 2007; 19
Mazumder (c0nr00100g-(cit9)/*[position()=1]) 2006; 100
Park (c0nr00100g-(cit8)/*[position()=1]) 2007; 7
Eerenstein (c0nr00100g-(cit2)/*[position()=1]) 2006; 442
Zhang (c0nr00100g-(cit31)/*[position()=1]) 2005; 87
Fiebig (c0nr00100g-(cit3)/*[position()=1]) 2002; 419
Mazumder (c0nr00100g-(cit10)/*[position()=1]) 2007; 91
Han (c0nr00100g-(cit27)/*[position()=1]) 2006; 18
Kharel (c0nr00100g-(cit33)/*[position()=1]) 2009; 21
Jayakumar (c0nr00100g-(cit34)/*[position()=1]) 2010; 96
Poghossian (c0nr00100g-(cit38)/*[position()=1]) 1991; 4
Das (c0nr00100g-(cit21)/*[position()=1]) 2007; 61
Wang (c0nr00100g-(cit5)/*[position()=1]) 2003; 299
Sosnowska (c0nr00100g-(cit6)/*[position()=1]) 1982; 15
References_xml – end-page: 67
  publication-title: Encyclopedia of Nanoscience and Nanotechnology
  doi: Sundar Manoharan Rao
– issn: 1997
  publication-title: Electroceramics: Materials, Properties & Application
  doi: Moulson Herbert
– volume: 429
  start-page: 392
  year: 2004
  ident: c0nr00100g-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02572
– volume: 127
  start-page: 8889
  year: 2005
  ident: c0nr00100g-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0512576
– volume: 96
  start-page: 032903
  year: 2010
  ident: c0nr00100g-(cit34)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3280043
– volume: 18
  start-page: 2145
  year: 2006
  ident: c0nr00100g-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600072
– volume: 19
  start-page: 2889
  year: 2007
  ident: c0nr00100g-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602377
– volume: 57
  start-page: 69
  year: 1993
  ident: c0nr00100g-(cit7)/*[position()=1]
  publication-title: JETP Lett.
– volume: 91
  start-page: 042906
  year: 2007
  ident: c0nr00100g-(cit24)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2763964
– volume: 91
  start-page: 182903
  year: 2007
  ident: c0nr00100g-(cit18)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2798256
– volume: 299
  start-page: 1719
  year: 2003
  ident: c0nr00100g-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1080615
– volume: 15
  start-page: 4835
  year: 1982
  ident: c0nr00100g-(cit6)/*[position()=1]
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/15/23/020
– volume: 90
  start-page: 162513
  year: 2007
  ident: c0nr00100g-(cit13)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2720349
– volume: 7
  start-page: 766
  year: 2007
  ident: c0nr00100g-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl063039w
– volume: 41
  start-page: 065003
  year: 2008
  ident: c0nr00100g-(cit14)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/6/065003
– volume: 102
  start-page: 044107
  year: 2007
  ident: c0nr00100g-(cit23)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2769786
– volume: 91
  start-page: 062510
  year: 2007
  ident: c0nr00100g-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2768201
– volume: 90
  start-page: 242901
  year: 2007
  ident: c0nr00100g-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2747665
– volume: 88
  start-page: 132901
  year: 2006
  ident: c0nr00100g-(cit22)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2189453
– volume: 61
  start-page: 2100
  year: 2007
  ident: c0nr00100g-(cit21)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.08.026
– volume: 58
  start-page: 45
  year: 2008
  ident: c0nr00100g-(cit28)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2007.09.001
– volume: 80
  start-page: 1628
  year: 2002
  ident: c0nr00100g-(cit35)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1458695
– volume: 100
  start-page: 033908
  year: 2006
  ident: c0nr00100g-(cit9)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2229667
– volume: 101
  start-page: 064101
  year: 2007
  ident: c0nr00100g-(cit15)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2433709
– volume: 9
  start-page: 4450
  year: 2009
  ident: c0nr00100g-(cit30)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg900481m
– volume: 442
  start-page: 759
  year: 2006
  ident: c0nr00100g-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05023
– volume: 162
  start-page: 19
  year: 1994
  ident: c0nr00100g-(cit1)/*[position()=1]
  publication-title: Ferroelectrics
– volume: 88
  start-page: 212907
  year: 2006
  ident: c0nr00100g-(cit16)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2208266
– volume: 87
  start-page: 262907
  year: 2005
  ident: c0nr00100g-(cit31)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2147719
– volume: 76
  start-page: 2764
  year: 2000
  ident: c0nr00100g-(cit36)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126468
– volume: 42
  start-page: 065004
  year: 2009
  ident: c0nr00100g-(cit26)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/6/065004
– volume: 89
  start-page: 102506
  year: 2006
  ident: c0nr00100g-(cit29)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2345825
– volume: 419
  start-page: 818
  year: 2002
  ident: c0nr00100g-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01077
– volume: 58
  start-page: 1003
  year: 2002
  ident: c0nr00100g-(cit37)/*[position()=1]
  publication-title: Pramana
  doi: 10.1007/s12043-002-0207-0
– volume: 63
  start-page: 1344
  year: 2009
  ident: c0nr00100g-(cit11)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.03.010
– volume: 247
  start-page: 1439
  year: 1990
  ident: c0nr00100g-(cit20)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.247.4949.1439
– volume: 4
  start-page: 545
  year: 1991
  ident: c0nr00100g-(cit38)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/0925-4005(91)80167-I
– volume: 21
  start-page: 036001
  year: 2009
  ident: c0nr00100g-(cit33)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 310
  start-page: 1177
  year: 2007
  ident: c0nr00100g-(cit25)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.287
SSID ssj0069363
Score 2.3709795
Snippet In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and...
In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and...
In this study we report the synthesis of BiFeO3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1149
SubjectTerms Aspect ratio
Bismuth - chemistry
Doping
Iron Compounds - chemistry
Nanocomposites
Nanomaterials
Nanorods
Nanostructure
Nanotubes - chemistry
Saturation (magnetic)
X-Ray Diffraction
Title Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods
URI https://www.ncbi.nlm.nih.gov/pubmed/20648341
https://www.proquest.com/docview/734003853
https://www.proquest.com/docview/963894766
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4rXQ5SFLcEGrhMRO7Pi4PJbVSrACtaicosSPVXkkVUgPy69nHCdxVnQl4BK1jtNU_pLxN_bMNwg9T1MVsSyRQangbUpokQaCkCwoZCKBQKtIK5s7_P4DO1kmp6t05QsXdtklbRnKXzvzSv4HVWgDXG2W7D8gO_4oNMBnwBeOgDAc_wrjXnoY-J5yeU9u5f_wRw2j58WVuqBBo5umXksbkLWxsdRObPbV-lif0cOqqGqwpL7I_LZ1rPLN2qoH-ySw0-Ki-DZEZZ-FPl54cVGcd4EBR6FfOX23btZfXc5Z2Bfx6hcY7N44HxYYOjtEbNAhpU5sPNTTNn7JkJLJ88InRhFcLjGZYK0A0E7jHVGrfSqjqrGeanTup6gxcNCfvI72CHgGZIb2Pn1err4M0y8TtCufN_7rQZOWipf-6sss5A_XAohGMxSA6YjG4ja61XsI-MjBfQdd09VddHOiG3kPfXTA49pgBzyuKwzAYw88BuDxFHjsgbfXOeDxAPx9tDx-u3h9EvS1MQJJGWsDTShPSypKQSOhOCutDiN4o5oVDL6pIqaxzgwBdsaojmJFpIllmokMrLRJY7qPZlVd6YcIR5FUMuUmy8AXTzNjKV_MOTMmLolKyjl6MYxVLnvheFu_5HveBTBQkftxnaNnY9-Nk0vZ2QsPQ56DNbNbVEWl6-3PnNOk26umV3exM4ZIOGNz9MChNd6JAL_OgJbN0T7ANzZPb3yw-0S-UebgqqseoRv-vXiMZm2z1U-Airbl0_7h-w00-oYH
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+doping+on+the+morphology+and+multiferroic+properties+of+BiFeO3+nanorods&rft.au=Dutta%2C+Dimple+P&rft.au=Jayakumar%2C+O.+D&rft.au=Tyagi%2C+A.+K&rft.au=Girija%2C+K.+G&rft.date=2010-07-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=2&rft.issue=7&rft.spage=1149&rft.epage=1154&rft_id=info:doi/10.1039%2Fc0nr00100g&rft.externalDocID=c0nr00100g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon