Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods
In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9...
Saved in:
Published in | Nanoscale Vol. 2; no. 7; pp. 1149 - 1154 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study we report the synthesis of BiFeO
3
nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi
0.9
Ba
0.1
Fe
0.9
Mn
0.1
O
3
and Bi
0.9
Ca
0.1
Fe
0.9
Cr
0.1
O
3
samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO
3
nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO
3
. The saturation magnetization of these BiFeO
3
nanostructures has been found to increase on doping with various metal ions (Ba
2+
, Ca
2+
, Mn
2+
, Cr
3+
), reaching a maximum value of 1.35 emu g
−1
for the Bi
0.9
Ba
0.1
Fe
0.9
Mn
0.1
O
3
nanostructures. However, saturation of electric polarization was observed only in case of the Bi
0.9
Ca
0.1
Fe
0.9
Cr
0.1
O
3
nanostructures.
Morphological changes and superior multiferroic properties have been observed in sonochemically synthesized doped nano Bi
0.9
Ba
0.1
Fe
0.9
Mn
0.1
O
3
and Bi
0.9
Ca
0.1
Fe
0.9
Cr
0.1
O
3
compared to undoped BiFeO
3
. |
---|---|
AbstractList | In this study we report the synthesis of BiFeO3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi0.9Ba0.1Fe0.9Mn0.1O3 and Bi0.9Ca0.1Fe0.9Cr0.1O3 samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO3 nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO3. The saturation magnetization of these BiFeO3 nanostructures has been found to increase on doping with various metal ions (Ba2+, Ca2+, Mn2+, Cr3+), reaching a maximum value of 1.35 emu g-1 for the Bi0.9Ba0.1Fe0.9Mn0.1O3 nanostructures. However, saturation of electric polarization was observed only in case of the Bi0.9Ca0.1Fe0.9Cr0.1O3 nanostructures. In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures.In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures. In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) and Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO(3) nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO(3). The saturation magnetization of these BiFeO(3) nanostructures has been found to increase on doping with various metal ions (Ba(2+), Ca(2+), Mn(2+), Cr(3+)), reaching a maximum value of 1.35 emu g(-1) for the Bi(0.9)Ba(0.1)Fe(0.9)Mn(0.1)O(3) nanostructures. However, saturation of electric polarization was observed only in case of the Bi(0.9)Ca(0.1)Fe(0.9)Cr(0.1)O(3) nanostructures. In this study we report the synthesis of BiFeO 3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and exhibit aspect ratios in the range of 5-10. However, after doping, the TEM images of Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 samples show that the aspect ratios of both the double doped samples have reduced considerably, while retaining the crystallinity of the particles. BiFeO 3 nanorods show a weak ferromagnetic order at room temperature, which is quite different from the linear M-H relationship reported for bulk BiFeO 3 . The saturation magnetization of these BiFeO 3 nanostructures has been found to increase on doping with various metal ions (Ba 2+ , Ca 2+ , Mn 2+ , Cr 3+ ), reaching a maximum value of 1.35 emu g −1 for the Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 nanostructures. However, saturation of electric polarization was observed only in case of the Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 nanostructures. Morphological changes and superior multiferroic properties have been observed in sonochemically synthesized doped nano Bi 0.9 Ba 0.1 Fe 0.9 Mn 0.1 O 3 and Bi 0.9 Ca 0.1 Fe 0.9 Cr 0.1 O 3 compared to undoped BiFeO 3 . |
Author | Girija, K. G Sharma, G Tyagi, A. K Dutta, Dimple P Pillai, C. G. S Jayakumar, O. D |
AuthorAffiliation | Mechanical Metallurgy Section Bhabha Atomic Research Centre Chemistry Division |
AuthorAffiliation_xml | – name: Bhabha Atomic Research Centre – name: Mechanical Metallurgy Section – name: Chemistry Division |
Author_xml | – sequence: 1 givenname: Dimple P surname: Dutta fullname: Dutta, Dimple P – sequence: 2 givenname: O. D surname: Jayakumar fullname: Jayakumar, O. D – sequence: 3 givenname: A. K surname: Tyagi fullname: Tyagi, A. K – sequence: 4 givenname: K. G surname: Girija fullname: Girija, K. G – sequence: 5 givenname: C. G. S surname: Pillai fullname: Pillai, C. G. S – sequence: 6 givenname: G surname: Sharma fullname: Sharma, G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20648341$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9LHTEQB_BQlPqjXrxX0lOh8Owks5vdHFW0LQgi6HnJy06eKbvJmuQd_O9defYJUtpTJsznO4TMAdsJMRBjxwJOBaD-biEkAAGw-sD2JVSwQGzkzrZW1R47yPk3gNKo8CPbk6CqFiuxz24vnSNbeHS8j5MPKx4DLw_Ex5imhzjE1RM3oefjeijeUUrRWz6lOFEqnvJL7txf0Q3yYEJMsc-f2K4zQ6aj1_OQ3V9d3l38XFzf_Ph1cXa9sKhUWZDEpl6iXmoE3TdqqVsptQJSRs233ggU1DpZS6GQQPTSOmHrVrdQSVcLPGRfN3Pn1zyuKZdu9NnSMJhAcZ07rbDVVaPUf2WDFQC2Nc7y5FWulyP13ZT8aNJT9-e_ZvBtA2yKOSdyWyKge1lG97aMGcM7bH0xxcdQkvHD3yNfNpGU7Xb0W7-bejebz_8y-Ax6c5-U |
CitedBy_id | crossref_primary_10_1007_s10854_017_8437_6 crossref_primary_10_1016_j_jallcom_2018_12_381 crossref_primary_10_1016_j_matchemphys_2021_125096 crossref_primary_10_1039_C5DT00638D crossref_primary_10_1039_C6RA10861J crossref_primary_10_1111_jace_12782 crossref_primary_10_1142_S2010135X21300012 crossref_primary_10_1016_j_ssc_2011_12_037 crossref_primary_10_1109_TED_2017_2761783 crossref_primary_10_1007_s10854_015_3669_9 crossref_primary_10_1039_D0NA00255K crossref_primary_10_3390_molecules27217565 crossref_primary_10_1098_rsos_200642 crossref_primary_10_1007_s10854_014_2126_5 crossref_primary_10_1039_c2ra01158a crossref_primary_10_1016_j_ceramint_2019_01_035 crossref_primary_10_1016_j_mtcomm_2023_105624 crossref_primary_10_1021_acsami_8b15703 crossref_primary_10_1007_s10854_021_05762_4 crossref_primary_10_1007_s10854_016_4830_9 crossref_primary_10_1016_j_apsusc_2018_04_202 crossref_primary_10_3389_fphy_2020_00282 crossref_primary_10_1016_j_pmatsci_2016_09_001 crossref_primary_10_1021_acs_inorgchem_5b01654 crossref_primary_10_1021_acsomega_9b02359 crossref_primary_10_1063_1_4721810 crossref_primary_10_1142_S0217984924502786 crossref_primary_10_1016_j_ceramint_2022_02_011 crossref_primary_10_1016_j_jallcom_2019_05_082 crossref_primary_10_1002_advs_201500358 crossref_primary_10_1063_1_5134741 crossref_primary_10_1016_j_ceramint_2015_01_145 crossref_primary_10_1016_j_jphotochem_2021_113334 crossref_primary_10_1039_c3ra44085k crossref_primary_10_1007_s10854_016_5911_5 crossref_primary_10_1007_s00339_022_06290_6 crossref_primary_10_1007_s11051_013_2155_7 crossref_primary_10_1016_j_mssp_2022_107086 crossref_primary_10_1039_c3tc00597f crossref_primary_10_1038_srep18203 crossref_primary_10_1016_j_gee_2018_05_001 crossref_primary_10_1016_j_jmmm_2015_10_022 crossref_primary_10_1039_c3nr33346a crossref_primary_10_1039_c1nr10288e crossref_primary_10_1016_j_mssp_2015_06_090 crossref_primary_10_1088_0964_1726_23_8_085030 crossref_primary_10_1016_j_jallcom_2014_03_122 crossref_primary_10_1039_c3dt52779d crossref_primary_10_1016_j_jallcom_2012_09_010 crossref_primary_10_1039_C5CP01640A crossref_primary_10_3390_condmat9040039 crossref_primary_10_1016_j_ceramint_2023_07_238 crossref_primary_10_1016_j_matchemphys_2023_127790 crossref_primary_10_1021_jp407334d crossref_primary_10_1007_s10854_021_06384_6 crossref_primary_10_1039_C3NR05973A crossref_primary_10_1007_s42341_018_0057_1 crossref_primary_10_1002_pssc_201600253 crossref_primary_10_1016_j_jmmm_2017_06_025 crossref_primary_10_1016_j_progsolidstchem_2012_03_001 crossref_primary_10_1016_j_jallcom_2019_04_106 crossref_primary_10_1016_j_jlumin_2013_11_071 crossref_primary_10_1016_j_jpcs_2020_109737 crossref_primary_10_1088_1742_6596_1191_1_012041 crossref_primary_10_1016_j_jallcom_2019_05_025 crossref_primary_10_1016_j_sna_2018_01_008 crossref_primary_10_1039_C6RA27025E crossref_primary_10_3390_cryst13050724 crossref_primary_10_1088_0022_3727_46_9_095004 crossref_primary_10_1016_j_matchemphys_2015_05_048 crossref_primary_10_1016_j_mset_2023_10_003 crossref_primary_10_3390_nano8090711 crossref_primary_10_1016_j_jallcom_2016_03_017 crossref_primary_10_1016_j_jallcom_2025_179229 crossref_primary_10_1016_j_jmst_2022_05_046 crossref_primary_10_1039_c6pp00212a crossref_primary_10_1016_j_jhazmat_2016_03_052 crossref_primary_10_1007_s10854_020_03126_y crossref_primary_10_1016_j_jallcom_2017_02_288 crossref_primary_10_1007_s10854_013_1414_9 crossref_primary_10_1039_C4CP04901B crossref_primary_10_1016_j_matchemphys_2017_07_039 crossref_primary_10_1021_jp310710p crossref_primary_10_1016_j_apsusc_2016_05_043 crossref_primary_10_3389_fnano_2021_640861 crossref_primary_10_1088_1361_6463_acc4d6 crossref_primary_10_1016_j_solidstatesciences_2017_10_009 crossref_primary_10_1007_s40145_013_0051_3 crossref_primary_10_1016_j_apcata_2022_118737 crossref_primary_10_1016_j_physleta_2022_128019 crossref_primary_10_1039_C4RA08854A crossref_primary_10_1039_C4NR03148B crossref_primary_10_1515_nanoph_2019_0119 crossref_primary_10_1039_C5CP07327H crossref_primary_10_1039_C6RA12949H crossref_primary_10_1016_j_jallcom_2015_08_010 crossref_primary_10_1016_j_jmmm_2015_07_098 crossref_primary_10_1007_s10854_017_7474_5 crossref_primary_10_1016_j_mseb_2019_02_009 crossref_primary_10_1016_j_jmmm_2021_167807 crossref_primary_10_1016_j_physleta_2015_03_035 crossref_primary_10_1002_adma_201004676 crossref_primary_10_1016_j_tsf_2014_11_030 crossref_primary_10_1111_jace_12296 crossref_primary_10_1007_s12034_020_2045_4 crossref_primary_10_1016_j_ceramint_2012_05_051 crossref_primary_10_1039_D3RA06962A crossref_primary_10_1088_0022_3727_48_39_395302 crossref_primary_10_1016_j_jmmm_2020_167062 crossref_primary_10_1016_j_materresbull_2013_12_005 crossref_primary_10_1039_C1NR11099C crossref_primary_10_1007_s41779_016_0009_3 crossref_primary_10_1016_j_jallcom_2013_09_117 crossref_primary_10_1039_C8TA01964A crossref_primary_10_1007_s10854_021_05520_6 crossref_primary_10_1007_s11467_011_0210_3 crossref_primary_10_1016_j_matchemphys_2012_06_005 crossref_primary_10_1039_c2nr00039c crossref_primary_10_1016_j_jallcom_2011_12_122 crossref_primary_10_1016_j_chemosphere_2023_139678 crossref_primary_10_1016_j_ceramint_2021_07_077 |
Cites_doi | 10.1038/nature02572 10.1021/ja0512576 10.1063/1.3280043 10.1002/adma.200600072 10.1002/adma.200602377 10.1063/1.2763964 10.1063/1.2798256 10.1126/science.1080615 10.1088/0022-3719/15/23/020 10.1063/1.2720349 10.1021/nl063039w 10.1088/0022-3727/41/6/065003 10.1063/1.2769786 10.1063/1.2768201 10.1063/1.2747665 10.1063/1.2189453 10.1016/j.matlet.2006.08.026 10.1016/j.scriptamat.2007.09.001 10.1063/1.1458695 10.1063/1.2229667 10.1063/1.2433709 10.1021/cg900481m 10.1038/nature05023 10.1063/1.2208266 10.1063/1.2147719 10.1063/1.126468 10.1088/0022-3727/42/6/065004 10.1063/1.2345825 10.1038/nature01077 10.1007/s12043-002-0207-0 10.1016/j.matlet.2009.03.010 10.1126/science.247.4949.1439 10.1016/0925-4005(91)80167-I 10.1016/j.jmmm.2006.10.287 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/c0nr00100g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1154 |
ExternalDocumentID | 20648341 10_1039_c0nr00100g c0nr00100g |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c366t-e2375b39b9309d76b9822960e6a676bda131e8f252163e01d2cf1c5898042f513 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 12:08:34 EDT 2025 Fri Jul 11 00:30:45 EDT 2025 Mon Jul 21 05:52:25 EDT 2025 Tue Jul 01 02:44:28 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Thu May 19 04:21:33 EDT 2016 Thu May 30 17:48:35 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-e2375b39b9309d76b9822960e6a676bda131e8f252163e01d2cf1c5898042f513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20648341 |
PQID | 734003853 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_20648341 crossref_primary_10_1039_c0nr00100g crossref_citationtrail_10_1039_c0nr00100g proquest_miscellaneous_734003853 proquest_miscellaneous_963894766 rsc_primary_c0nr00100g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-07-00 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2010 |
References | Kang (c0nr00100g-(cit11)/*[position()=1]) 2009; 63 Suslick (c0nr00100g-(cit20)/*[position()=1]) 1990; 247 Schmid (c0nr00100g-(cit1)/*[position()=1]) 1994; 162 Popov (c0nr00100g-(cit7)/*[position()=1]) 1993; 57 Wei (c0nr00100g-(cit28)/*[position()=1]) 2008; 58 Gao (c0nr00100g-(cit29)/*[position()=1]) 2006; 89 Yu (c0nr00100g-(cit14)/*[position()=1]) 2008; 41 Bhushan (c0nr00100g-(cit26)/*[position()=1]) 2009; 42 Palkar (c0nr00100g-(cit37)/*[position()=1]) 2002; 58 Azuma (c0nr00100g-(cit12)/*[position()=1]) 2005; 127 Jayakumar (c0nr00100g-(cit30)/*[position()=1]) 2009; 9 Wang (c0nr00100g-(cit16)/*[position()=1]) 2006; 88 Azuma (c0nr00100g-(cit25)/*[position()=1]) 2007; 310 Kim (c0nr00100g-(cit24)/*[position()=1]) 2007; 91 Hur (c0nr00100g-(cit4)/*[position()=1]) 2004; 429 Li (c0nr00100g-(cit13)/*[position()=1]) 2007; 90 Yuan (c0nr00100g-(cit15)/*[position()=1]) 2007; 101 Chen (c0nr00100g-(cit18)/*[position()=1]) 2007; 91 Kim (c0nr00100g-(cit22)/*[position()=1]) 2006; 88 Lee (c0nr00100g-(cit23)/*[position()=1]) 2007; 102 Khomchenko (c0nr00100g-(cit17)/*[position()=1]) 2007; 90 Kumar (c0nr00100g-(cit36)/*[position()=1]) 2000; 76 Palkar (c0nr00100g-(cit35)/*[position()=1]) 2002; 80 Gao (c0nr00100g-(cit32)/*[position()=1]) 2007; 19 Mazumder (c0nr00100g-(cit9)/*[position()=1]) 2006; 100 Park (c0nr00100g-(cit8)/*[position()=1]) 2007; 7 Eerenstein (c0nr00100g-(cit2)/*[position()=1]) 2006; 442 Zhang (c0nr00100g-(cit31)/*[position()=1]) 2005; 87 Fiebig (c0nr00100g-(cit3)/*[position()=1]) 2002; 419 Mazumder (c0nr00100g-(cit10)/*[position()=1]) 2007; 91 Han (c0nr00100g-(cit27)/*[position()=1]) 2006; 18 Kharel (c0nr00100g-(cit33)/*[position()=1]) 2009; 21 Jayakumar (c0nr00100g-(cit34)/*[position()=1]) 2010; 96 Poghossian (c0nr00100g-(cit38)/*[position()=1]) 1991; 4 Das (c0nr00100g-(cit21)/*[position()=1]) 2007; 61 Wang (c0nr00100g-(cit5)/*[position()=1]) 2003; 299 Sosnowska (c0nr00100g-(cit6)/*[position()=1]) 1982; 15 |
References_xml | – end-page: 67 publication-title: Encyclopedia of Nanoscience and Nanotechnology doi: Sundar Manoharan Rao – issn: 1997 publication-title: Electroceramics: Materials, Properties & Application doi: Moulson Herbert – volume: 429 start-page: 392 year: 2004 ident: c0nr00100g-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/nature02572 – volume: 127 start-page: 8889 year: 2005 ident: c0nr00100g-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0512576 – volume: 96 start-page: 032903 year: 2010 ident: c0nr00100g-(cit34)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3280043 – volume: 18 start-page: 2145 year: 2006 ident: c0nr00100g-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200600072 – volume: 19 start-page: 2889 year: 2007 ident: c0nr00100g-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602377 – volume: 57 start-page: 69 year: 1993 ident: c0nr00100g-(cit7)/*[position()=1] publication-title: JETP Lett. – volume: 91 start-page: 042906 year: 2007 ident: c0nr00100g-(cit24)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2763964 – volume: 91 start-page: 182903 year: 2007 ident: c0nr00100g-(cit18)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2798256 – volume: 299 start-page: 1719 year: 2003 ident: c0nr00100g-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1080615 – volume: 15 start-page: 4835 year: 1982 ident: c0nr00100g-(cit6)/*[position()=1] publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/15/23/020 – volume: 90 start-page: 162513 year: 2007 ident: c0nr00100g-(cit13)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2720349 – volume: 7 start-page: 766 year: 2007 ident: c0nr00100g-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl063039w – volume: 41 start-page: 065003 year: 2008 ident: c0nr00100g-(cit14)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/6/065003 – volume: 102 start-page: 044107 year: 2007 ident: c0nr00100g-(cit23)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2769786 – volume: 91 start-page: 062510 year: 2007 ident: c0nr00100g-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2768201 – volume: 90 start-page: 242901 year: 2007 ident: c0nr00100g-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2747665 – volume: 88 start-page: 132901 year: 2006 ident: c0nr00100g-(cit22)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2189453 – volume: 61 start-page: 2100 year: 2007 ident: c0nr00100g-(cit21)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.08.026 – volume: 58 start-page: 45 year: 2008 ident: c0nr00100g-(cit28)/*[position()=1] publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.09.001 – volume: 80 start-page: 1628 year: 2002 ident: c0nr00100g-(cit35)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1458695 – volume: 100 start-page: 033908 year: 2006 ident: c0nr00100g-(cit9)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2229667 – volume: 101 start-page: 064101 year: 2007 ident: c0nr00100g-(cit15)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2433709 – volume: 9 start-page: 4450 year: 2009 ident: c0nr00100g-(cit30)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg900481m – volume: 442 start-page: 759 year: 2006 ident: c0nr00100g-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature05023 – volume: 162 start-page: 19 year: 1994 ident: c0nr00100g-(cit1)/*[position()=1] publication-title: Ferroelectrics – volume: 88 start-page: 212907 year: 2006 ident: c0nr00100g-(cit16)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2208266 – volume: 87 start-page: 262907 year: 2005 ident: c0nr00100g-(cit31)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2147719 – volume: 76 start-page: 2764 year: 2000 ident: c0nr00100g-(cit36)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.126468 – volume: 42 start-page: 065004 year: 2009 ident: c0nr00100g-(cit26)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/6/065004 – volume: 89 start-page: 102506 year: 2006 ident: c0nr00100g-(cit29)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2345825 – volume: 419 start-page: 818 year: 2002 ident: c0nr00100g-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature01077 – volume: 58 start-page: 1003 year: 2002 ident: c0nr00100g-(cit37)/*[position()=1] publication-title: Pramana doi: 10.1007/s12043-002-0207-0 – volume: 63 start-page: 1344 year: 2009 ident: c0nr00100g-(cit11)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.03.010 – volume: 247 start-page: 1439 year: 1990 ident: c0nr00100g-(cit20)/*[position()=1] publication-title: Science doi: 10.1126/science.247.4949.1439 – volume: 4 start-page: 545 year: 1991 ident: c0nr00100g-(cit38)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/0925-4005(91)80167-I – volume: 21 start-page: 036001 year: 2009 ident: c0nr00100g-(cit33)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 310 start-page: 1177 year: 2007 ident: c0nr00100g-(cit25)/*[position()=1] publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.287 |
SSID | ssj0069363 |
Score | 2.3709795 |
Snippet | In this study we report the synthesis of BiFeO
3
nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and... In this study we report the synthesis of BiFeO(3) nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and... In this study we report the synthesis of BiFeO3 nanorods using a sonochemical technique. The nanorods had a diameter of 20-50 nm, a length of 100-500 nm and... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1149 |
SubjectTerms | Aspect ratio Bismuth - chemistry Doping Iron Compounds - chemistry Nanocomposites Nanomaterials Nanorods Nanostructure Nanotubes - chemistry Saturation (magnetic) X-Ray Diffraction |
Title | Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20648341 https://www.proquest.com/docview/734003853 https://www.proquest.com/docview/963894766 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4rXQ5SFLcEGrhMRO7Pi4PJbVSrACtaicosSPVXkkVUgPy69nHCdxVnQl4BK1jtNU_pLxN_bMNwg9T1MVsSyRQangbUpokQaCkCwoZCKBQKtIK5s7_P4DO1kmp6t05QsXdtklbRnKXzvzSv4HVWgDXG2W7D8gO_4oNMBnwBeOgDAc_wrjXnoY-J5yeU9u5f_wRw2j58WVuqBBo5umXksbkLWxsdRObPbV-lif0cOqqGqwpL7I_LZ1rPLN2qoH-ySw0-Ki-DZEZZ-FPl54cVGcd4EBR6FfOX23btZfXc5Z2Bfx6hcY7N44HxYYOjtEbNAhpU5sPNTTNn7JkJLJ88InRhFcLjGZYK0A0E7jHVGrfSqjqrGeanTup6gxcNCfvI72CHgGZIb2Pn1err4M0y8TtCufN_7rQZOWipf-6sss5A_XAohGMxSA6YjG4ja61XsI-MjBfQdd09VddHOiG3kPfXTA49pgBzyuKwzAYw88BuDxFHjsgbfXOeDxAPx9tDx-u3h9EvS1MQJJGWsDTShPSypKQSOhOCutDiN4o5oVDL6pIqaxzgwBdsaojmJFpIllmokMrLRJY7qPZlVd6YcIR5FUMuUmy8AXTzNjKV_MOTMmLolKyjl6MYxVLnvheFu_5HveBTBQkftxnaNnY9-Nk0vZ2QsPQ56DNbNbVEWl6-3PnNOk26umV3exM4ZIOGNz9MChNd6JAL_OgJbN0T7ANzZPb3yw-0S-UebgqqseoRv-vXiMZm2z1U-Airbl0_7h-w00-oYH |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+doping+on+the+morphology+and+multiferroic+properties+of+BiFeO3+nanorods&rft.au=Dutta%2C+Dimple+P&rft.au=Jayakumar%2C+O.+D&rft.au=Tyagi%2C+A.+K&rft.au=Girija%2C+K.+G&rft.date=2010-07-01&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=2&rft.issue=7&rft.spage=1149&rft.epage=1154&rft_id=info:doi/10.1039%2Fc0nr00100g&rft.externalDocID=c0nr00100g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |