Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering

[Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial cont...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 583; pp. 499 - 509
Main Authors Feng, Yalan, Zhang, Zisheng, Zhao, Kai, Lin, Shuanglong, Li, Hong, Gao, Xin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial control of the content of surface oxygen vacancies. As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L−1·g−1·h−1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.
AbstractList As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi₂O₂CO₃ (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N₂ activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH₄⁺ yield, reaching 1178 μmol·L⁻¹·g⁻¹·h⁻¹, which is 10 times than that of pristine Bi₂O₂CO₃. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.
[Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial control of the content of surface oxygen vacancies. As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L−1·g−1·h−1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.
As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L-1·g-1·h-1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L-1·g-1·h-1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.
Author Zhao, Kai
Feng, Yalan
Gao, Xin
Zhang, Zisheng
Li, Hong
Lin, Shuanglong
Author_xml – sequence: 1
  givenname: Yalan
  surname: Feng
  fullname: Feng, Yalan
  organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
– sequence: 2
  givenname: Zisheng
  surname: Zhang
  fullname: Zhang, Zisheng
  email: zzhang@uottawa.ca
  organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
– sequence: 3
  givenname: Kai
  orcidid: 0000-0001-6286-0987
  surname: Zhao
  fullname: Zhao, Kai
  email: zhaokai2017@tju.edu.cn
  organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
– sequence: 4
  givenname: Shuanglong
  orcidid: 0000-0002-6326-8966
  surname: Lin
  fullname: Lin, Shuanglong
  organization: School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, PR China
– sequence: 5
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
– sequence: 6
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
  email: gaoxin@tju.edu.cn
  organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
BookMark eNqFkTFv2zAQhYnCAWon_QOdOHaRQlKULBZdWqNNAgRwhnQmKPJknyGTLkk7MZAfHznu1CEdDnc4vO-Ae29GJj54IOQzZyVnvLnelBuLqRRMsJKpkrXqA5lypupizlk1IVPGBC_UXM0_kllKG8Y4r2s1JS8P65CDNdkMx4yWeswxrMDTHp9NxuC_0uXz8bQ4GGu8PdJtcNgjOOrDAQa6RRtD4Y0PaQ2Qacpxb_M-Av2BYikWy4o-YV7TznhHV2ZHwa_QA0T0qyty0Zshwae__ZL8_vXzcXFb3C9v7hbf7wtbNU0ugM2lcW3XOSmblsu2dspyOX7mhKt4x2tjlFRO8a5_q9aKvm5gnEA621WX5Mv57i6GP3tIWW8xWRgG4yHskxa1kBWTXLL_S6VUSom6aUZpe5aOBqQUodcW85tnORocNGf6lI3e6FM2-pSNZkqP2Yyo-AfdRdyaeHwf-naGYLTqgBB1sgjegsMINmsX8D38FbpTrNo
CitedBy_id crossref_primary_10_1016_j_seppur_2021_119032
crossref_primary_10_1016_j_mssp_2024_109249
crossref_primary_10_1002_adsu_202400903
crossref_primary_10_1016_j_cej_2023_147969
crossref_primary_10_1007_s11356_021_16185_3
crossref_primary_10_1016_j_cjche_2023_03_028
crossref_primary_10_1016_j_inoche_2023_111485
crossref_primary_10_1016_j_jece_2021_106176
crossref_primary_10_1002_ange_202101894
crossref_primary_10_1016_j_apsusc_2024_159658
crossref_primary_10_1039_D2NJ01156E
crossref_primary_10_1039_D3NR02116E
crossref_primary_10_1016_j_ceramint_2021_06_019
crossref_primary_10_1007_s12274_021_3725_0
crossref_primary_10_1016_j_colsurfa_2022_128758
crossref_primary_10_1016_j_apcata_2024_119776
crossref_primary_10_1016_j_jallcom_2023_168992
crossref_primary_10_1016_j_materresbull_2022_112091
crossref_primary_10_1016_j_cej_2021_132740
crossref_primary_10_1016_j_colsurfa_2024_134510
crossref_primary_10_1016_j_mssp_2022_106939
crossref_primary_10_1016_j_jallcom_2024_176050
crossref_primary_10_2139_ssrn_4173991
crossref_primary_10_1016_j_colsurfa_2021_126224
crossref_primary_10_1039_d0pp00247j
crossref_primary_10_1016_j_colsurfa_2021_126988
crossref_primary_10_1016_j_chemosphere_2023_141046
crossref_primary_10_1016_j_jallcom_2021_163450
crossref_primary_10_1021_acs_langmuir_3c01725
crossref_primary_10_1016_j_seppur_2025_131424
crossref_primary_10_1016_j_cclet_2022_107841
crossref_primary_10_1007_s40843_024_3199_9
crossref_primary_10_1007_s42864_023_00229_x
crossref_primary_10_1016_j_cej_2022_139327
crossref_primary_10_1016_j_cej_2022_140157
crossref_primary_10_1016_j_seppur_2023_123554
crossref_primary_10_1021_acsanm_1c02043
crossref_primary_10_1016_j_jcis_2022_03_051
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_1039_D4EN00136B
crossref_primary_10_1016_j_colsurfa_2022_128810
crossref_primary_10_1021_acs_iecr_3c01779
crossref_primary_10_1016_j_ccr_2022_214665
crossref_primary_10_1016_j_envres_2023_117771
crossref_primary_10_3390_nano13050794
crossref_primary_10_3390_nano13050830
crossref_primary_10_1002_anie_202101894
crossref_primary_10_1016_j_seppur_2024_129606
crossref_primary_10_2139_ssrn_4054185
crossref_primary_10_1016_j_jiec_2021_12_021
crossref_primary_10_1016_j_snb_2021_130982
crossref_primary_10_1016_j_scitotenv_2024_177903
crossref_primary_10_1016_j_apsusc_2023_156632
crossref_primary_10_1016_j_apsusc_2023_157447
crossref_primary_10_1016_j_colsurfa_2022_130469
crossref_primary_10_1039_D2NR00198E
crossref_primary_10_1021_acs_energyfuels_2c01390
crossref_primary_10_1039_D1NJ04580F
crossref_primary_10_1039_D1RA02739E
crossref_primary_10_1002_cssc_202300675
crossref_primary_10_1002_inf2_12375
crossref_primary_10_1016_j_seppur_2023_124665
crossref_primary_10_1007_s11051_022_05413_7
crossref_primary_10_1007_s11144_022_02341_4
crossref_primary_10_1016_j_jcis_2021_09_145
crossref_primary_10_1016_j_mtener_2024_101622
crossref_primary_10_1016_j_apt_2022_103481
crossref_primary_10_1016_j_cej_2023_145575
crossref_primary_10_1016_j_cplett_2023_140797
crossref_primary_10_1360_nso_20220028
crossref_primary_10_1021_acs_iecr_2c03700
crossref_primary_10_1016_j_apcatb_2022_121879
crossref_primary_10_1039_D4QI03182B
crossref_primary_10_1016_j_cej_2023_145616
crossref_primary_10_1016_j_chemosphere_2022_135507
crossref_primary_10_1016_j_optmat_2023_113560
crossref_primary_10_1002_aoc_7727
crossref_primary_10_1016_j_apsusc_2024_160192
crossref_primary_10_1016_j_fuel_2023_130307
crossref_primary_10_1039_D1RA08002D
crossref_primary_10_1007_s10904_022_02399_6
crossref_primary_10_1016_j_colsurfa_2022_130756
crossref_primary_10_1016_j_jcis_2023_07_086
crossref_primary_10_1016_j_colsurfa_2021_126262
crossref_primary_10_1016_j_mssp_2021_106230
crossref_primary_10_1002_advs_202408829
crossref_primary_10_2139_ssrn_3969016
crossref_primary_10_1021_acs_energyfuels_2c02982
crossref_primary_10_1021_acscatal_1c01251
crossref_primary_10_1016_j_apsusc_2022_152891
crossref_primary_10_1016_j_cej_2023_141885
crossref_primary_10_1016_j_seppur_2021_120164
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1016_j_ijhydene_2022_09_147
crossref_primary_10_1016_j_est_2024_113189
crossref_primary_10_1016_j_rser_2022_112967
crossref_primary_10_48130_cas_0024_0014
crossref_primary_10_1016_j_colsurfa_2025_136464
crossref_primary_10_1016_j_jallcom_2024_175686
crossref_primary_10_3390_molecules28062666
crossref_primary_10_1016_j_apsusc_2024_159517
crossref_primary_10_3389_fchem_2022_1102528
crossref_primary_10_1007_s11705_021_2120_4
crossref_primary_10_1016_j_cis_2025_103467
crossref_primary_10_1016_j_surfin_2021_101470
Cites_doi 10.1016/j.apcatb.2018.06.066
10.1002/anie.201915537
10.1021/am5051907
10.1016/j.apcatb.2019.118029
10.1021/ja109181n
10.1002/smtd.201800388
10.1021/acscatal.7b00439
10.1038/ncomms7731
10.1021/jp200418j
10.1007/s11051-015-3103-5
10.1039/c3ta10689f
10.1016/j.apcatb.2019.05.005
10.1002/adma.201802091
10.1016/j.apsusc.2014.06.071
10.1039/C7TA09897A
10.1126/science.1186120
10.1016/S1872-2067(19)63279-1
10.1039/C9MH01668F
10.1021/acsaem.8b00829
10.1016/j.cogsc.2017.05.005
10.1039/C9TA06435D
10.1021/acsami.8b05925
10.1021/jacs.7b06634
10.1016/j.jhazmat.2019.120822
10.1016/j.colsurfa.2019.124034
10.1002/adma.201606459
10.1016/j.apcatb.2016.08.005
10.1021/ja0269643
10.1021/acscatal.9b03246
10.1016/j.nanoen.2020.104645
10.1039/C8NR04277B
10.1021/ja00464a015
10.1039/C8QI00122G
10.1021/am507089x
10.1039/C7MH00557A
10.1021/acscatal.5b00444
10.1021/jacs.5b03105
10.1038/nature02311
10.1016/j.apcatb.2018.12.047
10.1038/nmat3696
10.1016/j.apcatb.2020.118740
10.1039/c1nr10854a
10.1039/C8CY00143J
10.1016/j.jhazmat.2018.10.063
10.1039/C3CS60206K
10.1016/j.apcatb.2018.01.037
10.1021/cr400641x
10.1016/j.cej.2018.07.116
10.1016/j.apcatb.2017.12.074
10.1039/C6TA09275F
10.1016/j.ccr.2013.02.010
10.1039/C2CE26639C
10.1016/j.apcatb.2015.11.043
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2020.09.089
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 509
ExternalDocumentID 10_1016_j_jcis_2020_09_089
S0021979720312789
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c366t-e074ad8bbd44681485d9c14710d2d31b15aa949d91bf91bf98c2f56ebf9e4dcb3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 05:25:57 EDT 2025
Mon Jul 21 10:53:44 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 01:18:57 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nitrogen fixation
Active sites
Photocatalysis
Bi2O2CO3
Surface oxygen vacancies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-e074ad8bbd44681485d9c14710d2d31b15aa949d91bf91bf98c2f56ebf9e4dcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6326-8966
0000-0001-6286-0987
PQID 2449992566
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2524304140
proquest_miscellaneous_2449992566
crossref_citationtrail_10_1016_j_jcis_2020_09_089
crossref_primary_10_1016_j_jcis_2020_09_089
elsevier_sciencedirect_doi_10_1016_j_jcis_2020_09_089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hoffman, Lukoyanov, Yang, Dean, Seefeldt (b0010) 2014; 114
Liu, Chen, Yuan, Zhang, Huang, Wang, Dong (b0135) 2019; 40
Schrauzer, Guth (b0030) 1977; 99
Medford, Hatzell (b0040) 2017; 7
Tanabe, Nishibayashi (b0035) 2013; 257
Zhao, Zhang, Feng, Lin, Li, Gao (b0095) 2020; 268
Sun, Liang, Qian, Xu, Han, Tian (b0105) 2020
Strauss, Pastorello, Sigoli, Silva, Mazali (b0150) 2014; 319
Pal, Mathews, Sanchez-Mora, Pal, Paraguay-Delgado, Mathew (b0155) 2015; 17
Madhusudan, Zhang, Cheng, Liu (b0185) 2013; 15
Chae, Siberio-Perez, Kim, Go, Eddaoudi, Matzger, O'Keeffe, Yaghi (b0025) 2004; 427
Liu, Ding, Liu, An, Lin, Liang, Cui (b0245) 2017; 201
Zhu, Zhang, Ruther, Hamers (b0115) 2013; 12
Li, Ivanenko, Meng, Zhang (b0065) 2019; 380
Canfield, Glazer, Falkowski (b0005) 2010; 330
Cao, Fan, Feng, Chen, Jiang, Wang (b0225) 2018; 353
Li, Zhang (b0075) 2017; 6
Chen, Li, Kong, Ong, Zhao (b0090) 2018; 5
Zhang, Sewell, Zhang, Mi, Lin (b0270) 2020; 71
Cheng, Xiao, Xie (b0110) 2019; 7
Jia, Quadrelli (b0070) 2014; 43
Shi, Zhao, Waterhouse, Zhang, Zhang (b0080) 2019; 9
Ding, Di, Chen, Zhao, Gu, Zhang, Yin, Liu, Xia, Li (b0145) 2019; 245
Kitano, Kanbara, Inoue, Kuganathan, Sushko, Yokoyama, Hara, Hosono (b0230) 2015; 6
Hirakawa, Hashimoto, Shiraishi, Hirai (b0020) 2017; 139
Li, Shang, Ai, Zhang (b0015) 2015; 137
Li, Huang, Low, Goo, Long, Xiong (b0060) 2019; 3
Mi, Li, Zhang, Du, Hou (b0175) 2018; 8
de Moraes, Valim, da Silva Rocha, da Silva, Campos, Thim, Rodrigues (b0160) 2020
Xu, Qiu, Li, Chen, Jiang, Wang (b0240) 2018; 10
Zhou, Fu (b0085) 2018; 5
Ying, Chen, Zhang, Peng, Li (b0255) 2019; 254
Shiraishi, Shiota, Kofuji, Hashimoto, Chishiro, Hirakawa, Tanaka, Ichikawa, Hirai (b0045) 2018; 1
Wu, Chen, Lou, Hng (b0120) 2011; 3
Hao, Liu, Jia, Wang, Arandiyan, Wei, Ni (b0265) 2020; 7
Zhu, Diao (b0125) 2011; 115
Tan, Zhao, Zhu, Coker, Li, Zheng, Yu, Fan, Sun (b0210) 2014; 6
Xu, Ding, Yang, Wang, Li, Lu, Chen (b0235) 2019; 364
Huang, Li, Wang, Dong, Chu, Zhang, Zhang (b0205) 2015; 5
Huang, Fan, Long, Li, Zhao, Liu, Tong, Ji (b0140) 2016; 185
Yu, Zhang, Dong, Li, Zhang, Huang (b0220) 2018; 226
Li, Mao, Shang, Yang, Ai, Zhang (b0055) 2018; 10
Zhao, Zhou, Wang, Zhang, Yu, Cao (b0195) 2015; 7
Gong, Shu, Jiang, Lu, Xu, Wang, Deng (b0180) 2020; 59
Kang, Cao, Zhang, Liu, Xu, Ye (b0260) 2013; 1
Cui, Wang, Xu, Ren, Wang, Yu, Du, Hao (b0190) 2018; 6
Xu, Bai, Yin (b0100) 2018; 30
Tanaka, Sasada, Kouno, Yuki, Miyake, Nakanishi, Nishibayashi, Yoshizawa (b0050) 2011; 133
Tian, Min, Wang (b0215) 2019; 259
Ishikawa, Takata, Kondo, Hara, Hisayoshi Kobayashi (b0250) 2002; 124
Yan, Li, Huo, Chen, Dai, Wang (b0130) 2017; 29
Sun, An, Wang, Zhang, Liu (b0200) 2017; 5
Di, Chen, Zhu, Ji, Xia, Yan, Hao, Li, Li, Liu (b0170) 2018; 238
Shakeel, Li, Arif, Yasin, Rehman, Khan, Khan, Khan, Ali (b0165) 2018; 227
Chen (10.1016/j.jcis.2020.09.089_b0090) 2018; 5
Zhu (10.1016/j.jcis.2020.09.089_b0125) 2011; 115
Ishikawa (10.1016/j.jcis.2020.09.089_b0250) 2002; 124
Liu (10.1016/j.jcis.2020.09.089_b0245) 2017; 201
Hirakawa (10.1016/j.jcis.2020.09.089_b0020) 2017; 139
Chae (10.1016/j.jcis.2020.09.089_b0025) 2004; 427
Sun (10.1016/j.jcis.2020.09.089_b0200) 2017; 5
Cheng (10.1016/j.jcis.2020.09.089_b0110) 2019; 7
Schrauzer (10.1016/j.jcis.2020.09.089_b0030) 1977; 99
Ying (10.1016/j.jcis.2020.09.089_b0255) 2019; 254
Di (10.1016/j.jcis.2020.09.089_b0170) 2018; 238
Shiraishi (10.1016/j.jcis.2020.09.089_b0045) 2018; 1
Li (10.1016/j.jcis.2020.09.089_b0060) 2019; 3
Hao (10.1016/j.jcis.2020.09.089_b0265) 2020; 7
Huang (10.1016/j.jcis.2020.09.089_b0205) 2015; 5
Jia (10.1016/j.jcis.2020.09.089_b0070) 2014; 43
Li (10.1016/j.jcis.2020.09.089_b0075) 2017; 6
Pal (10.1016/j.jcis.2020.09.089_b0155) 2015; 17
Shi (10.1016/j.jcis.2020.09.089_b0080) 2019; 9
Sun (10.1016/j.jcis.2020.09.089_b0105) 2020
Li (10.1016/j.jcis.2020.09.089_b0055) 2018; 10
Tanaka (10.1016/j.jcis.2020.09.089_b0050) 2011; 133
Liu (10.1016/j.jcis.2020.09.089_b0135) 2019; 40
Zhu (10.1016/j.jcis.2020.09.089_b0115) 2013; 12
Shakeel (10.1016/j.jcis.2020.09.089_b0165) 2018; 227
Zhao (10.1016/j.jcis.2020.09.089_b0095) 2020; 268
Kang (10.1016/j.jcis.2020.09.089_b0260) 2013; 1
Yan (10.1016/j.jcis.2020.09.089_b0130) 2017; 29
Mi (10.1016/j.jcis.2020.09.089_b0175) 2018; 8
Tian (10.1016/j.jcis.2020.09.089_b0215) 2019; 259
Ding (10.1016/j.jcis.2020.09.089_b0145) 2019; 245
Cui (10.1016/j.jcis.2020.09.089_b0190) 2018; 6
Xu (10.1016/j.jcis.2020.09.089_b0240) 2018; 10
Madhusudan (10.1016/j.jcis.2020.09.089_b0185) 2013; 15
Yu (10.1016/j.jcis.2020.09.089_b0220) 2018; 226
Kitano (10.1016/j.jcis.2020.09.089_b0230) 2015; 6
Wu (10.1016/j.jcis.2020.09.089_b0120) 2011; 3
Medford (10.1016/j.jcis.2020.09.089_b0040) 2017; 7
Xu (10.1016/j.jcis.2020.09.089_b0100) 2018; 30
Tan (10.1016/j.jcis.2020.09.089_b0210) 2014; 6
Gong (10.1016/j.jcis.2020.09.089_b0180) 2020; 59
Zhang (10.1016/j.jcis.2020.09.089_b0270) 2020; 71
Huang (10.1016/j.jcis.2020.09.089_b0140) 2016; 185
de Moraes (10.1016/j.jcis.2020.09.089_b0160) 2020
Li (10.1016/j.jcis.2020.09.089_b0015) 2015; 137
Xu (10.1016/j.jcis.2020.09.089_b0235) 2019; 364
Canfield (10.1016/j.jcis.2020.09.089_b0005) 2010; 330
Tanabe (10.1016/j.jcis.2020.09.089_b0035) 2013; 257
Zhao (10.1016/j.jcis.2020.09.089_b0195) 2015; 7
Zhou (10.1016/j.jcis.2020.09.089_b0085) 2018; 5
Cao (10.1016/j.jcis.2020.09.089_b0225) 2018; 353
Hoffman (10.1016/j.jcis.2020.09.089_b0010) 2014; 114
Li (10.1016/j.jcis.2020.09.089_b0065) 2019; 380
Strauss (10.1016/j.jcis.2020.09.089_b0150) 2014; 319
References_xml – volume: 6
  start-page: 19184
  year: 2014
  end-page: 19190
  ident: b0210
  article-title: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3)
  publication-title: ACS Appl. Mater. Inter.
– volume: 5
  start-page: 1240
  year: 2018
  end-page: 1254
  ident: b0085
  article-title: Defect-mediated electron–hole separation in semiconductor photocatalysis
  publication-title: Inorg. Chem. Front.
– volume: 6
  start-page: 2193
  year: 2018
  end-page: 2199
  ident: b0190
  article-title: Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 48
  year: 2017
  end-page: 56
  ident: b0075
  article-title: Photocatalytic performance of different exposed crystal facets of BiOCl
  publication-title: Curr. Opin. Green Sustain. Chem.
– year: 2020
  ident: b0160
  article-title: Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A
  publication-title: Colloids Surf., A
– volume: 254
  start-page: 351
  year: 2019
  end-page: 359
  ident: b0255
  article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 1014
  year: 2020
  end-page: 1029
  ident: b0265
  article-title: Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 9
  year: 2018
  end-page: 27
  ident: b0090
  article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects
  publication-title: Mater. Horiz.
– volume: 133
  start-page: 3498
  year: 2011
  end-page: 3506
  ident: b0050
  article-title: Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 4041
  year: 2014
  end-page: 4062
  ident: b0010
  article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage
  publication-title: Chem. Rev.
– volume: 201
  start-page: 92
  year: 2017
  end-page: 104
  ident: b0245
  article-title: A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 201
  year: 2017
  end-page: 209
  ident: b0200
  article-title: Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 2624
  year: 2017
  end-page: 2643
  ident: b0040
  article-title: Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook
  publication-title: ACS Catal.
– volume: 29
  year: 2017
  ident: b0130
  article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions
  publication-title: Adv. Mater.
– volume: 10
  start-page: 25321
  year: 2018
  end-page: 25328
  ident: b0240
  article-title: Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9739
  year: 2019
  end-page: 9750
  ident: b0080
  article-title: Defect engineering in photocatalytic nitrogen fixation
  publication-title: ACS Catal.
– volume: 227
  start-page: 433
  year: 2018
  end-page: 445
  ident: b0165
  article-title: Controlled synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants
  publication-title: Appl. Catal. B
– volume: 115
  start-page: 18923
  year: 2011
  end-page: 18934
  ident: b0125
  article-title: Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 4082
  year: 2011
  end-page: 4084
  ident: b0120
  article-title: Asymmetric anatase TiO(2) nanocrystals with exposed high-index facets and their excellent lithium storage properties
  publication-title: Nanoscale
– volume: 71
  year: 2020
  ident: b0270
  article-title: Nanostructured photocatalysts for nitrogen fixation
  publication-title: Nano Energy
– year: 2020
  ident: b0105
  article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS
  publication-title: ACS Appl. Mater. Inter.
– volume: 319
  start-page: 151
  year: 2014
  end-page: 157
  ident: b0150
  article-title: Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2
  publication-title: Appl. Surf. Sci.
– volume: 259
  year: 2019
  ident: b0215
  article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution
  publication-title: Appl. Catal. B
– volume: 380
  start-page: 120822
  year: 2019
  ident: b0065
  article-title: Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors
  publication-title: J. Hazard. Mater.
– volume: 99
  start-page: 7189
  year: 1977
  end-page: 7193
  ident: b0030
  article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 257
  start-page: 2551
  year: 2013
  end-page: 2564
  ident: b0035
  article-title: Developing more sustainable processes for ammonia synthesis
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 2588
  year: 2018
  end-page: 2597
  ident: b0175
  article-title: Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes
  publication-title: Catal. Sci. Technol.
– volume: 139
  start-page: 10929
  year: 2017
  end-page: 10936
  ident: b0020
  article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 268
  year: 2020
  ident: b0095
  article-title: Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface
  publication-title: Appl. Catal. B
– volume: 245
  start-page: 325
  year: 2019
  end-page: 333
  ident: b0145
  article-title: Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: a tale of two strategies
  publication-title: Appl. Catal. B
– volume: 137
  start-page: 6393
  year: 2015
  end-page: 6399
  ident: b0015
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 730
  year: 2015
  end-page: 737
  ident: b0195
  article-title: Polyaniline-decorated 001 facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity
  publication-title: ACS Appl. Mater. Inter.
– volume: 330
  start-page: 192
  year: 2010
  end-page: 196
  ident: b0005
  article-title: The evolution and future of earth's nitrogen cycle
  publication-title: Science
– volume: 43
  start-page: 547
  year: 2014
  end-page: 564
  ident: b0070
  article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen
  publication-title: Chem. Soc. Rev.
– volume: 124
  start-page: 13547
  year: 2002
  end-page: 13553
  ident: b0250
  article-title: Domen oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ < 650 nm)
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 6731
  year: 2015
  ident: b0230
  article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis
  publication-title: Nat. Commun.
– volume: 40
  start-page: 620
  year: 2019
  end-page: 630
  ident: b0135
  article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets
  publication-title: Chin. J. Catal.
– volume: 353
  start-page: 147
  year: 2018
  end-page: 156
  ident: b0225
  article-title: Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 15429
  year: 2018
  end-page: 15435
  ident: b0055
  article-title: New opportunities for efficient N2 fixation by nanosheet photocatalysts
  publication-title: Nanoscale
– volume: 364
  start-page: 691
  year: 2019
  end-page: 699
  ident: b0235
  article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study
  publication-title: J. Hazard. Mater.
– volume: 238
  start-page: 119
  year: 2018
  end-page: 125
  ident: b0170
  article-title: Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution
  publication-title: Appl. Catal. B
– volume: 427
  start-page: 523
  year: 2004
  end-page: 527
  ident: b0025
  article-title: A route to high surface area, porosity and inclusion of large molecules in crystals
  publication-title: Nature
– volume: 7
  start-page: 19616
  year: 2019
  end-page: 19633
  ident: b0110
  article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 231
  year: 2013
  end-page: 240
  ident: b0185
  article-title: Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3microstructures under visible-light
  publication-title: CrystEngComm
– volume: 30
  start-page: e1802091
  year: 2018
  ident: b0100
  article-title: Surface engineering of nanostructured energy materials
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4094
  year: 2015
  end-page: 4103
  ident: b0205
  article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3
  publication-title: ACS Catal.
– volume: 17
  year: 2015
  ident: b0155
  article-title: Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity
  publication-title: J. Nanopart. Res.
– volume: 3
  start-page: 17
  year: 2019
  ident: b0060
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
– volume: 1
  start-page: 4169
  year: 2018
  end-page: 4177
  ident: b0045
  article-title: Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency
  publication-title: ACS Appl. Energ. Mater.
– volume: 59
  start-page: 5326
  year: 2020
  end-page: 5331
  ident: b0180
  article-title: Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 1
  year: 2013
  ident: b0260
  article-title: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A
– volume: 226
  start-page: 441
  year: 2018
  end-page: 450
  ident: b0220
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance
  publication-title: Appl. Catal. B
– volume: 12
  start-page: 836
  year: 2013
  end-page: 841
  ident: b0115
  article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
  publication-title: Nat. Mater.
– volume: 185
  start-page: 68
  year: 2016
  end-page: 76
  ident: b0140
  article-title: Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions
  publication-title: Appl. Catal. B-Environ.
– volume: 238
  start-page: 119
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0170
  article-title: Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.06.066
– volume: 59
  start-page: 5326
  year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0180
  article-title: Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201915537
– volume: 6
  start-page: 19184
  year: 2014
  ident: 10.1016/j.jcis.2020.09.089_b0210
  article-title: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3)
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am5051907
– year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0105
  article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS
  publication-title: ACS Appl. Mater. Inter.
– volume: 259
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0215
  article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118029
– volume: 133
  start-page: 3498
  year: 2011
  ident: 10.1016/j.jcis.2020.09.089_b0050
  article-title: Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109181n
– volume: 3
  start-page: 17
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0060
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
  doi: 10.1002/smtd.201800388
– volume: 7
  start-page: 2624
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0040
  article-title: Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00439
– volume: 6
  start-page: 6731
  year: 2015
  ident: 10.1016/j.jcis.2020.09.089_b0230
  article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7731
– volume: 115
  start-page: 18923
  year: 2011
  ident: 10.1016/j.jcis.2020.09.089_b0125
  article-title: Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200418j
– volume: 17
  year: 2015
  ident: 10.1016/j.jcis.2020.09.089_b0155
  article-title: Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-015-3103-5
– volume: 1
  year: 2013
  ident: 10.1016/j.jcis.2020.09.089_b0260
  article-title: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10689f
– volume: 254
  start-page: 351
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0255
  article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.05.005
– volume: 30
  start-page: e1802091
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0100
  article-title: Surface engineering of nanostructured energy materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802091
– volume: 319
  start-page: 151
  year: 2014
  ident: 10.1016/j.jcis.2020.09.089_b0150
  article-title: Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.06.071
– volume: 6
  start-page: 2193
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0190
  article-title: Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09897A
– volume: 330
  start-page: 192
  year: 2010
  ident: 10.1016/j.jcis.2020.09.089_b0005
  article-title: The evolution and future of earth's nitrogen cycle
  publication-title: Science
  doi: 10.1126/science.1186120
– volume: 40
  start-page: 620
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0135
  article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63279-1
– volume: 7
  start-page: 1014
  year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0265
  article-title: Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01668F
– volume: 1
  start-page: 4169
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0045
  article-title: Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.8b00829
– volume: 6
  start-page: 48
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0075
  article-title: Photocatalytic performance of different exposed crystal facets of BiOCl
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2017.05.005
– volume: 7
  start-page: 19616
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0110
  article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06435D
– volume: 10
  start-page: 25321
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0240
  article-title: Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05925
– volume: 139
  start-page: 10929
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0020
  article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06634
– volume: 380
  start-page: 120822
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0065
  article-title: Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.120822
– year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0160
  article-title: Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2019.124034
– volume: 29
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0130
  article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606459
– volume: 201
  start-page: 92
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0245
  article-title: A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.08.005
– volume: 124
  start-page: 13547
  year: 2002
  ident: 10.1016/j.jcis.2020.09.089_b0250
  article-title: Domen oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ < 650 nm)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0269643
– volume: 9
  start-page: 9739
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0080
  article-title: Defect engineering in photocatalytic nitrogen fixation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 71
  year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0270
  article-title: Nanostructured photocatalysts for nitrogen fixation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104645
– volume: 10
  start-page: 15429
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0055
  article-title: New opportunities for efficient N2 fixation by nanosheet photocatalysts
  publication-title: Nanoscale
  doi: 10.1039/C8NR04277B
– volume: 99
  start-page: 7189
  year: 1977
  ident: 10.1016/j.jcis.2020.09.089_b0030
  article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 5
  start-page: 1240
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0085
  article-title: Defect-mediated electron–hole separation in semiconductor photocatalysis
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00122G
– volume: 7
  start-page: 730
  year: 2015
  ident: 10.1016/j.jcis.2020.09.089_b0195
  article-title: Polyaniline-decorated 001 facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am507089x
– volume: 5
  start-page: 9
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0090
  article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00557A
– volume: 5
  start-page: 4094
  year: 2015
  ident: 10.1016/j.jcis.2020.09.089_b0205
  article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00444
– volume: 137
  start-page: 6393
  year: 2015
  ident: 10.1016/j.jcis.2020.09.089_b0015
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 427
  start-page: 523
  year: 2004
  ident: 10.1016/j.jcis.2020.09.089_b0025
  article-title: A route to high surface area, porosity and inclusion of large molecules in crystals
  publication-title: Nature
  doi: 10.1038/nature02311
– volume: 245
  start-page: 325
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0145
  article-title: Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: a tale of two strategies
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.12.047
– volume: 12
  start-page: 836
  year: 2013
  ident: 10.1016/j.jcis.2020.09.089_b0115
  article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3696
– volume: 268
  year: 2020
  ident: 10.1016/j.jcis.2020.09.089_b0095
  article-title: Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118740
– volume: 3
  start-page: 4082
  year: 2011
  ident: 10.1016/j.jcis.2020.09.089_b0120
  article-title: Asymmetric anatase TiO(2) nanocrystals with exposed high-index facets and their excellent lithium storage properties
  publication-title: Nanoscale
  doi: 10.1039/c1nr10854a
– volume: 8
  start-page: 2588
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0175
  article-title: Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY00143J
– volume: 364
  start-page: 691
  year: 2019
  ident: 10.1016/j.jcis.2020.09.089_b0235
  article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.063
– volume: 43
  start-page: 547
  year: 2014
  ident: 10.1016/j.jcis.2020.09.089_b0070
  article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60206K
– volume: 227
  start-page: 433
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0165
  article-title: Controlled synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.01.037
– volume: 114
  start-page: 4041
  year: 2014
  ident: 10.1016/j.jcis.2020.09.089_b0010
  article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage
  publication-title: Chem. Rev.
  doi: 10.1021/cr400641x
– volume: 353
  start-page: 147
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0225
  article-title: Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.116
– volume: 226
  start-page: 441
  year: 2018
  ident: 10.1016/j.jcis.2020.09.089_b0220
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.12.074
– volume: 5
  start-page: 201
  year: 2017
  ident: 10.1016/j.jcis.2020.09.089_b0200
  article-title: Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09275F
– volume: 257
  start-page: 2551
  year: 2013
  ident: 10.1016/j.jcis.2020.09.089_b0035
  article-title: Developing more sustainable processes for ammonia synthesis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2013.02.010
– volume: 15
  start-page: 231
  year: 2013
  ident: 10.1016/j.jcis.2020.09.089_b0185
  article-title: Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3microstructures under visible-light
  publication-title: CrystEngComm
  doi: 10.1039/C2CE26639C
– volume: 185
  start-page: 68
  year: 2016
  ident: 10.1016/j.jcis.2020.09.089_b0140
  article-title: Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.11.043
SSID ssj0011559
Score 2.6268234
Snippet [Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle...
As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 499
SubjectTerms Active sites
ambient temperature
ammonia
Bi2O2CO3
energy
light
nanosheets
Nitrogen fixation
oxygen
Photocatalysis
Surface oxygen vacancies
Title Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering
URI https://dx.doi.org/10.1016/j.jcis.2020.09.089
https://www.proquest.com/docview/2449992566
https://www.proquest.com/docview/2524304140
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFNBG9S3aRpt_Wmi7Iquh4UvIU8taLtoqsoiL_dmT58IXvwUChlQkq-ycwk8yJkM7U81l6zAGufByJ2Hvac9wHXUaK5t6HSmI18ehZ3L8XxVXQ1QjpNLgyGVdayv5LppbSuv-zUq7nTzzLM8YXd1k7Rj8gwnxMz2EUbuXz7_TPMg6HbrQrzYAFS14kzVYzXrcmwZDdvlbVOsdX738rpl5gudc_hNJmqjUa6V_3XDBlx-SwZ7zS92mbJ5LeygnPk7fymGBTlxcwrjKCwax8KYBTqs5cSiF3ae3nFD8_KoHSl94XNPBijNC-e3R29xyi9IFd58Xjj3IBWRWafHhzdz3iPd3ohxftbqlVu6bXqU_c1_Ty5PDy46HSDustCYMI4HgQOjAhlE60tnAwTOB1FNjUMdFbLchsyzSKlUpHalGlfPonhPoodvDlhjQ4XyGhe5G6RUCMYenFU20ReGKsS70SiU26xDhhgtURYs7zS1CXIsRPGnWxizW4lQiIREtlKJUCyRLY-x_SrAhxDqaMGNfmDjSRoiKHjNhqIJUCHThOVu-IJiASeCcEwjIfQRFyELQFn1eV_zr9CJjhyaBkOvkpGAVa3BtbOQK-X7LxOxvaOTrpnHwr9AYo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_g8YA-GEWNfKg18c1suHbbZdc3uEAOgTsfIOGt6acsgd0LHgQS_3hn9gPRmHvwYZPNppNu-ptOp52ZXwE-FV5kNlqeEPd5IrMQcc7FmAirciuiT42lauTjSTY-lV_P1NkSjPpaGEqr7Gx_a9Mba9192epGc2tWllTji7Ntu6A4Iqd6ziewTOxUagDLOweH48lDMIEib22mB09IoKudadO8LlxJrN1i2NCd0m3v_16f_rLUzfKz_wKed34j22l_7SUshWoVVkb9dW2r8OwRs-Ar-PntvJ7XzdnMPUownLjXNeoKi-Vdg8UXNr27pw-3xpGBZVe1LyP6o6yqb8Mlu6JEvaQyVf3jPIQ5a3lmb64D2y3FVIymKaMjXGZN5dl3M2Phd_ev4XR_72Q0TrqLFhKXZtk8CehHGJ9b63FzmOMGSfnCcVy2hl74lFuujClk4QtuY_PkTkSVBXwL0jubvoFBVVfhLTAnOQVyzLZTUTpv8hhkbgvhiQoM4VoD3g-vdh0LOV2Gcan7dLMLTZBogkQPC42QrMHnB5lZy8GxsLXqUdN_aJLGRWKh3MceYo3QUdzEVKG-wUaStoXoG2YL2igh06HE7er6f_b_AVbGJ8dH-uhgcrgBTwVpa5MdvgkDhDi8Q-dnbt93yv0L09oEOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+nitrogen+fixation%3A+Oxygen+vacancy+modified+novel+micro-nanosheet+structure+Bi2O2CO3+with+band+gap+engineering&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Feng%2C+Yalan&rft.au=Zhang%2C+Zisheng&rft.au=Zhao%2C+Kai&rft.au=Lin%2C+Shuanglong&rft.date=2021-02-01&rft.issn=0021-9797&rft.volume=583&rft.spage=499&rft.epage=509&rft_id=info:doi/10.1016%2Fj.jcis.2020.09.089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2020_09_089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon