Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering
[Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial cont...
Saved in:
Published in | Journal of colloid and interface science Vol. 583; pp. 499 - 509 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial control of the content of surface oxygen vacancies.
As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L−1·g−1·h−1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis. |
---|---|
AbstractList | As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi₂O₂CO₃ (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N₂ activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH₄⁺ yield, reaching 1178 μmol·L⁻¹·g⁻¹·h⁻¹, which is 10 times than that of pristine Bi₂O₂CO₃. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis. [Display omitted] •Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle stability.•N2 activation by joint effects of surface effect and surface oxygen vacancies.•Band gaps were consecutively tuned by artificial control of the content of surface oxygen vacancies. As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L−1·g−1·h−1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis. As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L-1·g-1·h-1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis.As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the suboptimal efficiency. Herein, novel surface oxygen vacancies modified micro-nanosheet structure Bi2O2CO3 (namely BOC/OV) were successfully synthesized via facile formation under room temperature. These defects-rich nanosheets exhibit outstanding performance for photocatalytic nitrogen fixation under visible light. The surface oxygen vacancies provide abundant active sites for molecular N2 activation, and the effect of scattered nanometer-size could facilitate the separation of photo-generated charges. Moreover, the energy band can be consecutively tuned with the accumulation of surface oxygen vacancies by lowering the conduction band position. Among all as-prepared samples, BOC/OV3 exhibited the highest NH4+ yield, reaching 1178 μmol·L-1·g-1·h-1, which is 10 times than that of pristine Bi2O2CO3. In this work, all samples synthesis and defects formation were conducted without requiring any secondary energy, which is of great significance for realizing green and efficient artificial ammonia synthesis. |
Author | Zhao, Kai Feng, Yalan Gao, Xin Zhang, Zisheng Li, Hong Lin, Shuanglong |
Author_xml | – sequence: 1 givenname: Yalan surname: Feng fullname: Feng, Yalan organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China – sequence: 2 givenname: Zisheng surname: Zhang fullname: Zhang, Zisheng email: zzhang@uottawa.ca organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China – sequence: 3 givenname: Kai orcidid: 0000-0001-6286-0987 surname: Zhao fullname: Zhao, Kai email: zhaokai2017@tju.edu.cn organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China – sequence: 4 givenname: Shuanglong orcidid: 0000-0002-6326-8966 surname: Lin fullname: Lin, Shuanglong organization: School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, PR China – sequence: 5 givenname: Hong surname: Li fullname: Li, Hong organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China – sequence: 6 givenname: Xin surname: Gao fullname: Gao, Xin email: gaoxin@tju.edu.cn organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China |
BookMark | eNqFkTFv2zAQhYnCAWon_QOdOHaRQlKULBZdWqNNAgRwhnQmKPJknyGTLkk7MZAfHznu1CEdDnc4vO-Ae29GJj54IOQzZyVnvLnelBuLqRRMsJKpkrXqA5lypupizlk1IVPGBC_UXM0_kllKG8Y4r2s1JS8P65CDNdkMx4yWeswxrMDTHp9NxuC_0uXz8bQ4GGu8PdJtcNgjOOrDAQa6RRtD4Y0PaQ2Qacpxb_M-Av2BYikWy4o-YV7TznhHV2ZHwa_QA0T0qyty0Zshwae__ZL8_vXzcXFb3C9v7hbf7wtbNU0ugM2lcW3XOSmblsu2dspyOX7mhKt4x2tjlFRO8a5_q9aKvm5gnEA621WX5Mv57i6GP3tIWW8xWRgG4yHskxa1kBWTXLL_S6VUSom6aUZpe5aOBqQUodcW85tnORocNGf6lI3e6FM2-pSNZkqP2Yyo-AfdRdyaeHwf-naGYLTqgBB1sgjegsMINmsX8D38FbpTrNo |
CitedBy_id | crossref_primary_10_1016_j_seppur_2021_119032 crossref_primary_10_1016_j_mssp_2024_109249 crossref_primary_10_1002_adsu_202400903 crossref_primary_10_1016_j_cej_2023_147969 crossref_primary_10_1007_s11356_021_16185_3 crossref_primary_10_1016_j_cjche_2023_03_028 crossref_primary_10_1016_j_inoche_2023_111485 crossref_primary_10_1016_j_jece_2021_106176 crossref_primary_10_1002_ange_202101894 crossref_primary_10_1016_j_apsusc_2024_159658 crossref_primary_10_1039_D2NJ01156E crossref_primary_10_1039_D3NR02116E crossref_primary_10_1016_j_ceramint_2021_06_019 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1016_j_colsurfa_2022_128758 crossref_primary_10_1016_j_apcata_2024_119776 crossref_primary_10_1016_j_jallcom_2023_168992 crossref_primary_10_1016_j_materresbull_2022_112091 crossref_primary_10_1016_j_cej_2021_132740 crossref_primary_10_1016_j_colsurfa_2024_134510 crossref_primary_10_1016_j_mssp_2022_106939 crossref_primary_10_1016_j_jallcom_2024_176050 crossref_primary_10_2139_ssrn_4173991 crossref_primary_10_1016_j_colsurfa_2021_126224 crossref_primary_10_1039_d0pp00247j crossref_primary_10_1016_j_colsurfa_2021_126988 crossref_primary_10_1016_j_chemosphere_2023_141046 crossref_primary_10_1016_j_jallcom_2021_163450 crossref_primary_10_1021_acs_langmuir_3c01725 crossref_primary_10_1016_j_seppur_2025_131424 crossref_primary_10_1016_j_cclet_2022_107841 crossref_primary_10_1007_s40843_024_3199_9 crossref_primary_10_1007_s42864_023_00229_x crossref_primary_10_1016_j_cej_2022_139327 crossref_primary_10_1016_j_cej_2022_140157 crossref_primary_10_1016_j_seppur_2023_123554 crossref_primary_10_1021_acsanm_1c02043 crossref_primary_10_1016_j_jcis_2022_03_051 crossref_primary_10_1002_adfm_202106713 crossref_primary_10_1039_D4EN00136B crossref_primary_10_1016_j_colsurfa_2022_128810 crossref_primary_10_1021_acs_iecr_3c01779 crossref_primary_10_1016_j_ccr_2022_214665 crossref_primary_10_1016_j_envres_2023_117771 crossref_primary_10_3390_nano13050794 crossref_primary_10_3390_nano13050830 crossref_primary_10_1002_anie_202101894 crossref_primary_10_1016_j_seppur_2024_129606 crossref_primary_10_2139_ssrn_4054185 crossref_primary_10_1016_j_jiec_2021_12_021 crossref_primary_10_1016_j_snb_2021_130982 crossref_primary_10_1016_j_scitotenv_2024_177903 crossref_primary_10_1016_j_apsusc_2023_156632 crossref_primary_10_1016_j_apsusc_2023_157447 crossref_primary_10_1016_j_colsurfa_2022_130469 crossref_primary_10_1039_D2NR00198E crossref_primary_10_1021_acs_energyfuels_2c01390 crossref_primary_10_1039_D1NJ04580F crossref_primary_10_1039_D1RA02739E crossref_primary_10_1002_cssc_202300675 crossref_primary_10_1002_inf2_12375 crossref_primary_10_1016_j_seppur_2023_124665 crossref_primary_10_1007_s11051_022_05413_7 crossref_primary_10_1007_s11144_022_02341_4 crossref_primary_10_1016_j_jcis_2021_09_145 crossref_primary_10_1016_j_mtener_2024_101622 crossref_primary_10_1016_j_apt_2022_103481 crossref_primary_10_1016_j_cej_2023_145575 crossref_primary_10_1016_j_cplett_2023_140797 crossref_primary_10_1360_nso_20220028 crossref_primary_10_1021_acs_iecr_2c03700 crossref_primary_10_1016_j_apcatb_2022_121879 crossref_primary_10_1039_D4QI03182B crossref_primary_10_1016_j_cej_2023_145616 crossref_primary_10_1016_j_chemosphere_2022_135507 crossref_primary_10_1016_j_optmat_2023_113560 crossref_primary_10_1002_aoc_7727 crossref_primary_10_1016_j_apsusc_2024_160192 crossref_primary_10_1016_j_fuel_2023_130307 crossref_primary_10_1039_D1RA08002D crossref_primary_10_1007_s10904_022_02399_6 crossref_primary_10_1016_j_colsurfa_2022_130756 crossref_primary_10_1016_j_jcis_2023_07_086 crossref_primary_10_1016_j_colsurfa_2021_126262 crossref_primary_10_1016_j_mssp_2021_106230 crossref_primary_10_1002_advs_202408829 crossref_primary_10_2139_ssrn_3969016 crossref_primary_10_1021_acs_energyfuels_2c02982 crossref_primary_10_1021_acscatal_1c01251 crossref_primary_10_1016_j_apsusc_2022_152891 crossref_primary_10_1016_j_cej_2023_141885 crossref_primary_10_1016_j_seppur_2021_120164 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1016_j_ijhydene_2022_09_147 crossref_primary_10_1016_j_est_2024_113189 crossref_primary_10_1016_j_rser_2022_112967 crossref_primary_10_48130_cas_0024_0014 crossref_primary_10_1016_j_colsurfa_2025_136464 crossref_primary_10_1016_j_jallcom_2024_175686 crossref_primary_10_3390_molecules28062666 crossref_primary_10_1016_j_apsusc_2024_159517 crossref_primary_10_3389_fchem_2022_1102528 crossref_primary_10_1007_s11705_021_2120_4 crossref_primary_10_1016_j_cis_2025_103467 crossref_primary_10_1016_j_surfin_2021_101470 |
Cites_doi | 10.1016/j.apcatb.2018.06.066 10.1002/anie.201915537 10.1021/am5051907 10.1016/j.apcatb.2019.118029 10.1021/ja109181n 10.1002/smtd.201800388 10.1021/acscatal.7b00439 10.1038/ncomms7731 10.1021/jp200418j 10.1007/s11051-015-3103-5 10.1039/c3ta10689f 10.1016/j.apcatb.2019.05.005 10.1002/adma.201802091 10.1016/j.apsusc.2014.06.071 10.1039/C7TA09897A 10.1126/science.1186120 10.1016/S1872-2067(19)63279-1 10.1039/C9MH01668F 10.1021/acsaem.8b00829 10.1016/j.cogsc.2017.05.005 10.1039/C9TA06435D 10.1021/acsami.8b05925 10.1021/jacs.7b06634 10.1016/j.jhazmat.2019.120822 10.1016/j.colsurfa.2019.124034 10.1002/adma.201606459 10.1016/j.apcatb.2016.08.005 10.1021/ja0269643 10.1021/acscatal.9b03246 10.1016/j.nanoen.2020.104645 10.1039/C8NR04277B 10.1021/ja00464a015 10.1039/C8QI00122G 10.1021/am507089x 10.1039/C7MH00557A 10.1021/acscatal.5b00444 10.1021/jacs.5b03105 10.1038/nature02311 10.1016/j.apcatb.2018.12.047 10.1038/nmat3696 10.1016/j.apcatb.2020.118740 10.1039/c1nr10854a 10.1039/C8CY00143J 10.1016/j.jhazmat.2018.10.063 10.1039/C3CS60206K 10.1016/j.apcatb.2018.01.037 10.1021/cr400641x 10.1016/j.cej.2018.07.116 10.1016/j.apcatb.2017.12.074 10.1039/C6TA09275F 10.1016/j.ccr.2013.02.010 10.1039/C2CE26639C 10.1016/j.apcatb.2015.11.043 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2020.09.089 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 509 |
ExternalDocumentID | 10_1016_j_jcis_2020_09_089 S0021979720312789 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-e074ad8bbd44681485d9c14710d2d31b15aa949d91bf91bf98c2f56ebf9e4dcb3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 05:25:57 EDT 2025 Mon Jul 21 10:53:44 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 01:18:57 EDT 2025 Fri Feb 23 02:45:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrogen fixation Active sites Photocatalysis Bi2O2CO3 Surface oxygen vacancies |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-e074ad8bbd44681485d9c14710d2d31b15aa949d91bf91bf98c2f56ebf9e4dcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6326-8966 0000-0001-6286-0987 |
PQID | 2449992566 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2524304140 proquest_miscellaneous_2449992566 crossref_citationtrail_10_1016_j_jcis_2020_09_089 crossref_primary_10_1016_j_jcis_2020_09_089 elsevier_sciencedirect_doi_10_1016_j_jcis_2020_09_089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hoffman, Lukoyanov, Yang, Dean, Seefeldt (b0010) 2014; 114 Liu, Chen, Yuan, Zhang, Huang, Wang, Dong (b0135) 2019; 40 Schrauzer, Guth (b0030) 1977; 99 Medford, Hatzell (b0040) 2017; 7 Tanabe, Nishibayashi (b0035) 2013; 257 Zhao, Zhang, Feng, Lin, Li, Gao (b0095) 2020; 268 Sun, Liang, Qian, Xu, Han, Tian (b0105) 2020 Strauss, Pastorello, Sigoli, Silva, Mazali (b0150) 2014; 319 Pal, Mathews, Sanchez-Mora, Pal, Paraguay-Delgado, Mathew (b0155) 2015; 17 Madhusudan, Zhang, Cheng, Liu (b0185) 2013; 15 Chae, Siberio-Perez, Kim, Go, Eddaoudi, Matzger, O'Keeffe, Yaghi (b0025) 2004; 427 Liu, Ding, Liu, An, Lin, Liang, Cui (b0245) 2017; 201 Zhu, Zhang, Ruther, Hamers (b0115) 2013; 12 Li, Ivanenko, Meng, Zhang (b0065) 2019; 380 Canfield, Glazer, Falkowski (b0005) 2010; 330 Cao, Fan, Feng, Chen, Jiang, Wang (b0225) 2018; 353 Li, Zhang (b0075) 2017; 6 Chen, Li, Kong, Ong, Zhao (b0090) 2018; 5 Zhang, Sewell, Zhang, Mi, Lin (b0270) 2020; 71 Cheng, Xiao, Xie (b0110) 2019; 7 Jia, Quadrelli (b0070) 2014; 43 Shi, Zhao, Waterhouse, Zhang, Zhang (b0080) 2019; 9 Ding, Di, Chen, Zhao, Gu, Zhang, Yin, Liu, Xia, Li (b0145) 2019; 245 Kitano, Kanbara, Inoue, Kuganathan, Sushko, Yokoyama, Hara, Hosono (b0230) 2015; 6 Hirakawa, Hashimoto, Shiraishi, Hirai (b0020) 2017; 139 Li, Shang, Ai, Zhang (b0015) 2015; 137 Li, Huang, Low, Goo, Long, Xiong (b0060) 2019; 3 Mi, Li, Zhang, Du, Hou (b0175) 2018; 8 de Moraes, Valim, da Silva Rocha, da Silva, Campos, Thim, Rodrigues (b0160) 2020 Xu, Qiu, Li, Chen, Jiang, Wang (b0240) 2018; 10 Zhou, Fu (b0085) 2018; 5 Ying, Chen, Zhang, Peng, Li (b0255) 2019; 254 Shiraishi, Shiota, Kofuji, Hashimoto, Chishiro, Hirakawa, Tanaka, Ichikawa, Hirai (b0045) 2018; 1 Wu, Chen, Lou, Hng (b0120) 2011; 3 Hao, Liu, Jia, Wang, Arandiyan, Wei, Ni (b0265) 2020; 7 Zhu, Diao (b0125) 2011; 115 Tan, Zhao, Zhu, Coker, Li, Zheng, Yu, Fan, Sun (b0210) 2014; 6 Xu, Ding, Yang, Wang, Li, Lu, Chen (b0235) 2019; 364 Huang, Li, Wang, Dong, Chu, Zhang, Zhang (b0205) 2015; 5 Huang, Fan, Long, Li, Zhao, Liu, Tong, Ji (b0140) 2016; 185 Yu, Zhang, Dong, Li, Zhang, Huang (b0220) 2018; 226 Li, Mao, Shang, Yang, Ai, Zhang (b0055) 2018; 10 Zhao, Zhou, Wang, Zhang, Yu, Cao (b0195) 2015; 7 Gong, Shu, Jiang, Lu, Xu, Wang, Deng (b0180) 2020; 59 Kang, Cao, Zhang, Liu, Xu, Ye (b0260) 2013; 1 Cui, Wang, Xu, Ren, Wang, Yu, Du, Hao (b0190) 2018; 6 Xu, Bai, Yin (b0100) 2018; 30 Tanaka, Sasada, Kouno, Yuki, Miyake, Nakanishi, Nishibayashi, Yoshizawa (b0050) 2011; 133 Tian, Min, Wang (b0215) 2019; 259 Ishikawa, Takata, Kondo, Hara, Hisayoshi Kobayashi (b0250) 2002; 124 Yan, Li, Huo, Chen, Dai, Wang (b0130) 2017; 29 Sun, An, Wang, Zhang, Liu (b0200) 2017; 5 Di, Chen, Zhu, Ji, Xia, Yan, Hao, Li, Li, Liu (b0170) 2018; 238 Shakeel, Li, Arif, Yasin, Rehman, Khan, Khan, Khan, Ali (b0165) 2018; 227 Chen (10.1016/j.jcis.2020.09.089_b0090) 2018; 5 Zhu (10.1016/j.jcis.2020.09.089_b0125) 2011; 115 Ishikawa (10.1016/j.jcis.2020.09.089_b0250) 2002; 124 Liu (10.1016/j.jcis.2020.09.089_b0245) 2017; 201 Hirakawa (10.1016/j.jcis.2020.09.089_b0020) 2017; 139 Chae (10.1016/j.jcis.2020.09.089_b0025) 2004; 427 Sun (10.1016/j.jcis.2020.09.089_b0200) 2017; 5 Cheng (10.1016/j.jcis.2020.09.089_b0110) 2019; 7 Schrauzer (10.1016/j.jcis.2020.09.089_b0030) 1977; 99 Ying (10.1016/j.jcis.2020.09.089_b0255) 2019; 254 Di (10.1016/j.jcis.2020.09.089_b0170) 2018; 238 Shiraishi (10.1016/j.jcis.2020.09.089_b0045) 2018; 1 Li (10.1016/j.jcis.2020.09.089_b0060) 2019; 3 Hao (10.1016/j.jcis.2020.09.089_b0265) 2020; 7 Huang (10.1016/j.jcis.2020.09.089_b0205) 2015; 5 Jia (10.1016/j.jcis.2020.09.089_b0070) 2014; 43 Li (10.1016/j.jcis.2020.09.089_b0075) 2017; 6 Pal (10.1016/j.jcis.2020.09.089_b0155) 2015; 17 Shi (10.1016/j.jcis.2020.09.089_b0080) 2019; 9 Sun (10.1016/j.jcis.2020.09.089_b0105) 2020 Li (10.1016/j.jcis.2020.09.089_b0055) 2018; 10 Tanaka (10.1016/j.jcis.2020.09.089_b0050) 2011; 133 Liu (10.1016/j.jcis.2020.09.089_b0135) 2019; 40 Zhu (10.1016/j.jcis.2020.09.089_b0115) 2013; 12 Shakeel (10.1016/j.jcis.2020.09.089_b0165) 2018; 227 Zhao (10.1016/j.jcis.2020.09.089_b0095) 2020; 268 Kang (10.1016/j.jcis.2020.09.089_b0260) 2013; 1 Yan (10.1016/j.jcis.2020.09.089_b0130) 2017; 29 Mi (10.1016/j.jcis.2020.09.089_b0175) 2018; 8 Tian (10.1016/j.jcis.2020.09.089_b0215) 2019; 259 Ding (10.1016/j.jcis.2020.09.089_b0145) 2019; 245 Cui (10.1016/j.jcis.2020.09.089_b0190) 2018; 6 Xu (10.1016/j.jcis.2020.09.089_b0240) 2018; 10 Madhusudan (10.1016/j.jcis.2020.09.089_b0185) 2013; 15 Yu (10.1016/j.jcis.2020.09.089_b0220) 2018; 226 Kitano (10.1016/j.jcis.2020.09.089_b0230) 2015; 6 Wu (10.1016/j.jcis.2020.09.089_b0120) 2011; 3 Medford (10.1016/j.jcis.2020.09.089_b0040) 2017; 7 Xu (10.1016/j.jcis.2020.09.089_b0100) 2018; 30 Tan (10.1016/j.jcis.2020.09.089_b0210) 2014; 6 Gong (10.1016/j.jcis.2020.09.089_b0180) 2020; 59 Zhang (10.1016/j.jcis.2020.09.089_b0270) 2020; 71 Huang (10.1016/j.jcis.2020.09.089_b0140) 2016; 185 de Moraes (10.1016/j.jcis.2020.09.089_b0160) 2020 Li (10.1016/j.jcis.2020.09.089_b0015) 2015; 137 Xu (10.1016/j.jcis.2020.09.089_b0235) 2019; 364 Canfield (10.1016/j.jcis.2020.09.089_b0005) 2010; 330 Tanabe (10.1016/j.jcis.2020.09.089_b0035) 2013; 257 Zhao (10.1016/j.jcis.2020.09.089_b0195) 2015; 7 Zhou (10.1016/j.jcis.2020.09.089_b0085) 2018; 5 Cao (10.1016/j.jcis.2020.09.089_b0225) 2018; 353 Hoffman (10.1016/j.jcis.2020.09.089_b0010) 2014; 114 Li (10.1016/j.jcis.2020.09.089_b0065) 2019; 380 Strauss (10.1016/j.jcis.2020.09.089_b0150) 2014; 319 |
References_xml | – volume: 6 start-page: 19184 year: 2014 end-page: 19190 ident: b0210 article-title: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3) publication-title: ACS Appl. Mater. Inter. – volume: 5 start-page: 1240 year: 2018 end-page: 1254 ident: b0085 article-title: Defect-mediated electron–hole separation in semiconductor photocatalysis publication-title: Inorg. Chem. Front. – volume: 6 start-page: 2193 year: 2018 end-page: 2199 ident: b0190 article-title: Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation publication-title: J. Mater. Chem. A – volume: 6 start-page: 48 year: 2017 end-page: 56 ident: b0075 article-title: Photocatalytic performance of different exposed crystal facets of BiOCl publication-title: Curr. Opin. Green Sustain. Chem. – year: 2020 ident: b0160 article-title: Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A publication-title: Colloids Surf., A – volume: 254 start-page: 351 year: 2019 end-page: 359 ident: b0255 article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping publication-title: Appl. Catal. B – volume: 7 start-page: 1014 year: 2020 end-page: 1029 ident: b0265 article-title: Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects publication-title: Mater. Horiz. – volume: 5 start-page: 9 year: 2018 end-page: 27 ident: b0090 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. – volume: 133 start-page: 3498 year: 2011 end-page: 3506 ident: b0050 article-title: Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 4041 year: 2014 end-page: 4062 ident: b0010 article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage publication-title: Chem. Rev. – volume: 201 start-page: 92 year: 2017 end-page: 104 ident: b0245 article-title: A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation publication-title: Appl. Catal. B – volume: 5 start-page: 201 year: 2017 end-page: 209 ident: b0200 article-title: Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots publication-title: J. Mater. Chem. A – volume: 7 start-page: 2624 year: 2017 end-page: 2643 ident: b0040 article-title: Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook publication-title: ACS Catal. – volume: 29 year: 2017 ident: b0130 article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions publication-title: Adv. Mater. – volume: 10 start-page: 25321 year: 2018 end-page: 25328 ident: b0240 article-title: Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 9739 year: 2019 end-page: 9750 ident: b0080 article-title: Defect engineering in photocatalytic nitrogen fixation publication-title: ACS Catal. – volume: 227 start-page: 433 year: 2018 end-page: 445 ident: b0165 article-title: Controlled synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants publication-title: Appl. Catal. B – volume: 115 start-page: 18923 year: 2011 end-page: 18934 ident: b0125 article-title: Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange publication-title: J. Phys. Chem. C – volume: 3 start-page: 4082 year: 2011 end-page: 4084 ident: b0120 article-title: Asymmetric anatase TiO(2) nanocrystals with exposed high-index facets and their excellent lithium storage properties publication-title: Nanoscale – volume: 71 year: 2020 ident: b0270 article-title: Nanostructured photocatalysts for nitrogen fixation publication-title: Nano Energy – year: 2020 ident: b0105 article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS publication-title: ACS Appl. Mater. Inter. – volume: 319 start-page: 151 year: 2014 end-page: 157 ident: b0150 article-title: Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2 publication-title: Appl. Surf. Sci. – volume: 259 year: 2019 ident: b0215 article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution publication-title: Appl. Catal. B – volume: 380 start-page: 120822 year: 2019 ident: b0065 article-title: Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors publication-title: J. Hazard. Mater. – volume: 99 start-page: 7189 year: 1977 end-page: 7193 ident: b0030 article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J. Am. Chem. Soc. – volume: 257 start-page: 2551 year: 2013 end-page: 2564 ident: b0035 article-title: Developing more sustainable processes for ammonia synthesis publication-title: Coord. Chem. Rev. – volume: 8 start-page: 2588 year: 2018 end-page: 2597 ident: b0175 article-title: Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes publication-title: Catal. Sci. Technol. – volume: 139 start-page: 10929 year: 2017 end-page: 10936 ident: b0020 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. – volume: 268 year: 2020 ident: b0095 article-title: Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface publication-title: Appl. Catal. B – volume: 245 start-page: 325 year: 2019 end-page: 333 ident: b0145 article-title: Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: a tale of two strategies publication-title: Appl. Catal. B – volume: 137 start-page: 6393 year: 2015 end-page: 6399 ident: b0015 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 730 year: 2015 end-page: 737 ident: b0195 article-title: Polyaniline-decorated 001 facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity publication-title: ACS Appl. Mater. Inter. – volume: 330 start-page: 192 year: 2010 end-page: 196 ident: b0005 article-title: The evolution and future of earth's nitrogen cycle publication-title: Science – volume: 43 start-page: 547 year: 2014 end-page: 564 ident: b0070 article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen publication-title: Chem. Soc. Rev. – volume: 124 start-page: 13547 year: 2002 end-page: 13553 ident: b0250 article-title: Domen oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ < 650 nm) publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6731 year: 2015 ident: b0230 article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis publication-title: Nat. Commun. – volume: 40 start-page: 620 year: 2019 end-page: 630 ident: b0135 article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets publication-title: Chin. J. Catal. – volume: 353 start-page: 147 year: 2018 end-page: 156 ident: b0225 article-title: Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation publication-title: Chem. Eng. J. – volume: 10 start-page: 15429 year: 2018 end-page: 15435 ident: b0055 article-title: New opportunities for efficient N2 fixation by nanosheet photocatalysts publication-title: Nanoscale – volume: 364 start-page: 691 year: 2019 end-page: 699 ident: b0235 article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study publication-title: J. Hazard. Mater. – volume: 238 start-page: 119 year: 2018 end-page: 125 ident: b0170 article-title: Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution publication-title: Appl. Catal. B – volume: 427 start-page: 523 year: 2004 end-page: 527 ident: b0025 article-title: A route to high surface area, porosity and inclusion of large molecules in crystals publication-title: Nature – volume: 7 start-page: 19616 year: 2019 end-page: 19633 ident: b0110 article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts publication-title: J. Mater. Chem. A – volume: 15 start-page: 231 year: 2013 end-page: 240 ident: b0185 article-title: Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3microstructures under visible-light publication-title: CrystEngComm – volume: 30 start-page: e1802091 year: 2018 ident: b0100 article-title: Surface engineering of nanostructured energy materials publication-title: Adv. Mater. – volume: 5 start-page: 4094 year: 2015 end-page: 4103 ident: b0205 article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3 publication-title: ACS Catal. – volume: 17 year: 2015 ident: b0155 article-title: Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity publication-title: J. Nanopart. Res. – volume: 3 start-page: 17 year: 2019 ident: b0060 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods – volume: 1 start-page: 4169 year: 2018 end-page: 4177 ident: b0045 article-title: Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency publication-title: ACS Appl. Energ. Mater. – volume: 59 start-page: 5326 year: 2020 end-page: 5331 ident: b0180 article-title: Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis publication-title: Angew. Chem. Int. Ed. Engl. – volume: 1 year: 2013 ident: b0260 article-title: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting publication-title: J. Mater. Chem. A – volume: 226 start-page: 441 year: 2018 end-page: 450 ident: b0220 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance publication-title: Appl. Catal. B – volume: 12 start-page: 836 year: 2013 end-page: 841 ident: b0115 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. – volume: 185 start-page: 68 year: 2016 end-page: 76 ident: b0140 article-title: Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions publication-title: Appl. Catal. B-Environ. – volume: 238 start-page: 119 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0170 article-title: Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.06.066 – volume: 59 start-page: 5326 year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0180 article-title: Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201915537 – volume: 6 start-page: 19184 year: 2014 ident: 10.1016/j.jcis.2020.09.089_b0210 article-title: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3) publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am5051907 – year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0105 article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS publication-title: ACS Appl. Mater. Inter. – volume: 259 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0215 article-title: Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118029 – volume: 133 start-page: 3498 year: 2011 ident: 10.1016/j.jcis.2020.09.089_b0050 article-title: Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109181n – volume: 3 start-page: 17 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0060 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods doi: 10.1002/smtd.201800388 – volume: 7 start-page: 2624 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0040 article-title: Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook publication-title: ACS Catal. doi: 10.1021/acscatal.7b00439 – volume: 6 start-page: 6731 year: 2015 ident: 10.1016/j.jcis.2020.09.089_b0230 article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis publication-title: Nat. Commun. doi: 10.1038/ncomms7731 – volume: 115 start-page: 18923 year: 2011 ident: 10.1016/j.jcis.2020.09.089_b0125 article-title: Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange publication-title: J. Phys. Chem. C doi: 10.1021/jp200418j – volume: 17 year: 2015 ident: 10.1016/j.jcis.2020.09.089_b0155 article-title: Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity publication-title: J. Nanopart. Res. doi: 10.1007/s11051-015-3103-5 – volume: 1 year: 2013 ident: 10.1016/j.jcis.2020.09.089_b0260 article-title: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10689f – volume: 254 start-page: 351 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0255 article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.05.005 – volume: 30 start-page: e1802091 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0100 article-title: Surface engineering of nanostructured energy materials publication-title: Adv. Mater. doi: 10.1002/adma.201802091 – volume: 319 start-page: 151 year: 2014 ident: 10.1016/j.jcis.2020.09.089_b0150 article-title: Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.06.071 – volume: 6 start-page: 2193 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0190 article-title: Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09897A – volume: 330 start-page: 192 year: 2010 ident: 10.1016/j.jcis.2020.09.089_b0005 article-title: The evolution and future of earth's nitrogen cycle publication-title: Science doi: 10.1126/science.1186120 – volume: 40 start-page: 620 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0135 article-title: Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63279-1 – volume: 7 start-page: 1014 year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0265 article-title: Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects publication-title: Mater. Horiz. doi: 10.1039/C9MH01668F – volume: 1 start-page: 4169 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0045 article-title: Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.8b00829 – volume: 6 start-page: 48 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0075 article-title: Photocatalytic performance of different exposed crystal facets of BiOCl publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2017.05.005 – volume: 7 start-page: 19616 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0110 article-title: Photocatalytic nitrogen fixation: the role of defects in photocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06435D – volume: 10 start-page: 25321 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0240 article-title: Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05925 – volume: 139 start-page: 10929 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0020 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06634 – volume: 380 start-page: 120822 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0065 article-title: Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120822 – year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0160 article-title: Effect of synthesis medium on structural and photocatalytic properties of ZnO/carbon xerogel composites for solar and visible light degradation of 4-chlorophenol and bisphenol A publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2019.124034 – volume: 29 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0130 article-title: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions publication-title: Adv. Mater. doi: 10.1002/adma.201606459 – volume: 201 start-page: 92 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0245 article-title: A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.08.005 – volume: 124 start-page: 13547 year: 2002 ident: 10.1016/j.jcis.2020.09.089_b0250 article-title: Domen oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ < 650 nm) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0269643 – volume: 9 start-page: 9739 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0080 article-title: Defect engineering in photocatalytic nitrogen fixation publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 71 year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0270 article-title: Nanostructured photocatalysts for nitrogen fixation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104645 – volume: 10 start-page: 15429 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0055 article-title: New opportunities for efficient N2 fixation by nanosheet photocatalysts publication-title: Nanoscale doi: 10.1039/C8NR04277B – volume: 99 start-page: 7189 year: 1977 ident: 10.1016/j.jcis.2020.09.089_b0030 article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 5 start-page: 1240 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0085 article-title: Defect-mediated electron–hole separation in semiconductor photocatalysis publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00122G – volume: 7 start-page: 730 year: 2015 ident: 10.1016/j.jcis.2020.09.089_b0195 article-title: Polyaniline-decorated 001 facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am507089x – volume: 5 start-page: 9 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0090 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. doi: 10.1039/C7MH00557A – volume: 5 start-page: 4094 year: 2015 ident: 10.1016/j.jcis.2020.09.089_b0205 article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00444 – volume: 137 start-page: 6393 year: 2015 ident: 10.1016/j.jcis.2020.09.089_b0015 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 427 start-page: 523 year: 2004 ident: 10.1016/j.jcis.2020.09.089_b0025 article-title: A route to high surface area, porosity and inclusion of large molecules in crystals publication-title: Nature doi: 10.1038/nature02311 – volume: 245 start-page: 325 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0145 article-title: Partially etched Bi2O2CO3 by metal chloride for enhanced reactive oxygen species generation: a tale of two strategies publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.047 – volume: 12 start-page: 836 year: 2013 ident: 10.1016/j.jcis.2020.09.089_b0115 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 268 year: 2020 ident: 10.1016/j.jcis.2020.09.089_b0095 article-title: Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118740 – volume: 3 start-page: 4082 year: 2011 ident: 10.1016/j.jcis.2020.09.089_b0120 article-title: Asymmetric anatase TiO(2) nanocrystals with exposed high-index facets and their excellent lithium storage properties publication-title: Nanoscale doi: 10.1039/c1nr10854a – volume: 8 start-page: 2588 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0175 article-title: Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00143J – volume: 364 start-page: 691 year: 2019 ident: 10.1016/j.jcis.2020.09.089_b0235 article-title: Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.063 – volume: 43 start-page: 547 year: 2014 ident: 10.1016/j.jcis.2020.09.089_b0070 article-title: Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60206K – volume: 227 start-page: 433 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0165 article-title: Controlled synthesis of highly proficient and durable hollow hierarchical heterostructured (Ag-AgBr/HHST): A UV and Visible light active photocatalyst in degradation of organic pollutants publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.01.037 – volume: 114 start-page: 4041 year: 2014 ident: 10.1016/j.jcis.2020.09.089_b0010 article-title: Mechanism of nitrogen fixation by nitrogenase: the next stage publication-title: Chem. Rev. doi: 10.1021/cr400641x – volume: 353 start-page: 147 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0225 article-title: Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.116 – volume: 226 start-page: 441 year: 2018 ident: 10.1016/j.jcis.2020.09.089_b0220 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.074 – volume: 5 start-page: 201 year: 2017 ident: 10.1016/j.jcis.2020.09.089_b0200 article-title: Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09275F – volume: 257 start-page: 2551 year: 2013 ident: 10.1016/j.jcis.2020.09.089_b0035 article-title: Developing more sustainable processes for ammonia synthesis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2013.02.010 – volume: 15 start-page: 231 year: 2013 ident: 10.1016/j.jcis.2020.09.089_b0185 article-title: Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3microstructures under visible-light publication-title: CrystEngComm doi: 10.1039/C2CE26639C – volume: 185 start-page: 68 year: 2016 ident: 10.1016/j.jcis.2020.09.089_b0140 article-title: Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.11.043 |
SSID | ssj0011559 |
Score | 2.6268234 |
Snippet | [Display omitted]
•Micro-nanosheet oxygen vacancy modified Bi2O2CO3 were synthesized.•Highly efficient photocatalytic nitrogen fixation activity and recycle... As a promising ammonia synthesis approach to replace the industrial Harber method, the biggest problem restricting photocatalytic nitrogen fixation is the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 499 |
SubjectTerms | Active sites ambient temperature ammonia Bi2O2CO3 energy light nanosheets Nitrogen fixation oxygen Photocatalysis Surface oxygen vacancies |
Title | Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering |
URI | https://dx.doi.org/10.1016/j.jcis.2020.09.089 https://www.proquest.com/docview/2449992566 https://www.proquest.com/docview/2524304140 |
Volume | 583 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFNBG9S3aRpt_Wmi7Iquh4UvIU8taLtoqsoiL_dmT58IXvwUChlQkq-ycwk8yJkM7U81l6zAGufByJ2Hvac9wHXUaK5t6HSmI18ehZ3L8XxVXQ1QjpNLgyGVdayv5LppbSuv-zUq7nTzzLM8YXd1k7Rj8gwnxMz2EUbuXz7_TPMg6HbrQrzYAFS14kzVYzXrcmwZDdvlbVOsdX738rpl5gudc_hNJmqjUa6V_3XDBlx-SwZ7zS92mbJ5LeygnPk7fymGBTlxcwrjKCwax8KYBTqs5cSiF3ae3nFD8_KoHSl94XNPBijNC-e3R29xyi9IFd58Xjj3IBWRWafHhzdz3iPd3ohxftbqlVu6bXqU_c1_Ty5PDy46HSDustCYMI4HgQOjAhlE60tnAwTOB1FNjUMdFbLchsyzSKlUpHalGlfPonhPoodvDlhjQ4XyGhe5G6RUCMYenFU20ReGKsS70SiU26xDhhgtURYs7zS1CXIsRPGnWxizW4lQiIREtlKJUCyRLY-x_SrAhxDqaMGNfmDjSRoiKHjNhqIJUCHThOVu-IJiASeCcEwjIfQRFyELQFn1eV_zr9CJjhyaBkOvkpGAVa3BtbOQK-X7LxOxvaOTrpnHwr9AYo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_g8YA-GEWNfKg18c1suHbbZdc3uEAOgTsfIOGt6acsgd0LHgQS_3hn9gPRmHvwYZPNppNu-ptOp52ZXwE-FV5kNlqeEPd5IrMQcc7FmAirciuiT42lauTjSTY-lV_P1NkSjPpaGEqr7Gx_a9Mba9192epGc2tWllTji7Ntu6A4Iqd6ziewTOxUagDLOweH48lDMIEib22mB09IoKudadO8LlxJrN1i2NCd0m3v_16f_rLUzfKz_wKed34j22l_7SUshWoVVkb9dW2r8OwRs-Ar-PntvJ7XzdnMPUownLjXNeoKi-Vdg8UXNr27pw-3xpGBZVe1LyP6o6yqb8Mlu6JEvaQyVf3jPIQ5a3lmb64D2y3FVIymKaMjXGZN5dl3M2Phd_ev4XR_72Q0TrqLFhKXZtk8CehHGJ9b63FzmOMGSfnCcVy2hl74lFuujClk4QtuY_PkTkSVBXwL0jubvoFBVVfhLTAnOQVyzLZTUTpv8hhkbgvhiQoM4VoD3g-vdh0LOV2Gcan7dLMLTZBogkQPC42QrMHnB5lZy8GxsLXqUdN_aJLGRWKh3MceYo3QUdzEVKG-wUaStoXoG2YL2igh06HE7er6f_b_AVbGJ8dH-uhgcrgBTwVpa5MdvgkDhDi8Q-dnbt93yv0L09oEOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+nitrogen+fixation%3A+Oxygen+vacancy+modified+novel+micro-nanosheet+structure+Bi2O2CO3+with+band+gap+engineering&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Feng%2C+Yalan&rft.au=Zhang%2C+Zisheng&rft.au=Zhao%2C+Kai&rft.au=Lin%2C+Shuanglong&rft.date=2021-02-01&rft.issn=0021-9797&rft.volume=583&rft.spage=499&rft.epage=509&rft_id=info:doi/10.1016%2Fj.jcis.2020.09.089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2020_09_089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |