A universal strategy toward flame retardant epoxy resin with ultra-tough and transparent properties
•A simple and universal strategy is proposed to effectively resolve the contradiction between flame retardancy and mechanical properties, realizing a surprising dual performance improvement of epoxy composites.•The modified epoxy resin has a LOI value of 32.3%, a high transmittance of approximately...
Saved in:
Published in | Polymer degradation and stability Vol. 205; p. 110132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A simple and universal strategy is proposed to effectively resolve the contradiction between flame retardancy and mechanical properties, realizing a surprising dual performance improvement of epoxy composites.•The modified epoxy resin has a LOI value of 32.3%, a high transmittance of approximately 92%, an excellent smoke and heat suppression as well as ultra-tough with an increase of 271% (Impact strength).•The flame retardant and strengthening mechanism is analyzed and proposed.
Flame-retardant epoxy composites have important application value in flexible optoelectronic devices, artificial intelligence and 5G fields. The flame retardancy of these composites, however, are often promoted at the expense of mechanical properties and transparency, particularly the toughness. In this work, we propose a simple strategy of introducing proper rigid-flexible groups into phosphorus-based flame retardant which realizes a dual performance improvement simultaneously in epoxy resin. The modified flame retardant epoxy resin has a limiting oxygen index (LOI) value of 32.3%, a high transmittance of approximately 92%, an excellent smoke and heat suppression properties. Remarkably, the addition of phosphorus-based flame retardant containing rigid-flexible groups (TOD) significantly enhances the mechanical properties of epoxy resin, especially the toughness. The impact strength is obviously increased from 6.8 kJ/m2 to 25.2 kJ/m2, with an increase of 271%, which mainly due to the flexible Si-O segment in TOD. This work provides a universal strategy for the design of flame retardant, ultra-tough and transparent epoxy resin, implying its enormous potential to promote the commercial application of epoxy resin. |
---|---|
AbstractList | Flame-retardant epoxy composites have important application value in flexible optoelectronic devices, artificial intelligence and 5G fields. The flame retardancy of these composites, however, are often promoted at the expense of mechanical properties and transparency, particularly the toughness. In this work, we propose a simple strategy of introducing proper rigid-flexible groups into phosphorus-based flame retardant which realizes a dual performance improvement simultaneously in epoxy resin. The modified flame retardant epoxy resin has a limiting oxygen index (LOI) value of 32.3%, a high transmittance of approximately 92%, an excellent smoke and heat suppression properties. Remarkably, the addition of phosphorus-based flame retardant containing rigid-flexible groups (TOD) significantly enhances the mechanical properties of epoxy resin, especially the toughness. The impact strength is obviously increased from 6.8 kJ/m² to 25.2 kJ/m², with an increase of 271%, which mainly due to the flexible Si-O segment in TOD. This work provides a universal strategy for the design of flame retardant, ultra-tough and transparent epoxy resin, implying its enormous potential to promote the commercial application of epoxy resin. •A simple and universal strategy is proposed to effectively resolve the contradiction between flame retardancy and mechanical properties, realizing a surprising dual performance improvement of epoxy composites.•The modified epoxy resin has a LOI value of 32.3%, a high transmittance of approximately 92%, an excellent smoke and heat suppression as well as ultra-tough with an increase of 271% (Impact strength).•The flame retardant and strengthening mechanism is analyzed and proposed. Flame-retardant epoxy composites have important application value in flexible optoelectronic devices, artificial intelligence and 5G fields. The flame retardancy of these composites, however, are often promoted at the expense of mechanical properties and transparency, particularly the toughness. In this work, we propose a simple strategy of introducing proper rigid-flexible groups into phosphorus-based flame retardant which realizes a dual performance improvement simultaneously in epoxy resin. The modified flame retardant epoxy resin has a limiting oxygen index (LOI) value of 32.3%, a high transmittance of approximately 92%, an excellent smoke and heat suppression properties. Remarkably, the addition of phosphorus-based flame retardant containing rigid-flexible groups (TOD) significantly enhances the mechanical properties of epoxy resin, especially the toughness. The impact strength is obviously increased from 6.8 kJ/m2 to 25.2 kJ/m2, with an increase of 271%, which mainly due to the flexible Si-O segment in TOD. This work provides a universal strategy for the design of flame retardant, ultra-tough and transparent epoxy resin, implying its enormous potential to promote the commercial application of epoxy resin. |
ArticleNumber | 110132 |
Author | Chen, Bing Luo, Wenhui Lv, Jiaojiao Zheng, Botuo Zhang, Huagui Chen, Mingfeng Lin, Shufeng |
Author_xml | – sequence: 1 givenname: Bing surname: Chen fullname: Chen, Bing – sequence: 2 givenname: Wenhui surname: Luo fullname: Luo, Wenhui – sequence: 3 givenname: Jiaojiao surname: Lv fullname: Lv, Jiaojiao – sequence: 4 givenname: Shufeng surname: Lin fullname: Lin, Shufeng – sequence: 5 givenname: Botuo surname: Zheng fullname: Zheng, Botuo – sequence: 6 givenname: Huagui surname: Zhang fullname: Zhang, Huagui – sequence: 7 givenname: Mingfeng orcidid: 0000-0002-8561-3716 surname: Chen fullname: Chen, Mingfeng email: cmfjnu@fjnu.edu.cn |
BookMark | eNqNkM1OAjEUhbvARFDfoRsTN4Pt_DGzcEGIogmJG103d9o7UDK0Y9sBeXtLcMWKbm5P7jmn6TchI2MNEvLI2ZQzXj5vp73tjjuFawfKB2imKUvTKY_LLB2RMeM5T7Kas1sy8X7L4skLPiZyTgej9-g8dNQHBwHXRxrsAZyibQc7pA5DFGACxd7-HqP22tCDDhs6dDGRBDusNxSMolEZ34PDaO6d7dEFjf6e3LTQeXz4n3fk--31a_GerD6XH4v5KpFZWYZENZls8xrSXKm6zBtkirVVKatG1sWskm2FZVZBVqNUDWdFUfCUAYu3FpqcNdkdeTr3xqd_BvRB7LSX2HVg0A5epLM0i-4Zr6N1cbZKZ7132AqpAwRtTfyC7gRn4oRVbMUFVnHCKs5YY8vLRUvv9A7c8er88pzHSGWv0QkvNRqJSjuUQSirr2z6AyY6poo |
CitedBy_id | crossref_primary_10_1002_app_56792 crossref_primary_10_1016_j_polymdegradstab_2023_110404 crossref_primary_10_3390_molecules28145354 crossref_primary_10_1016_j_eurpolymj_2024_113636 crossref_primary_10_3390_fire8020063 crossref_primary_10_1016_j_ijbiomac_2024_134275 crossref_primary_10_1016_j_compositesb_2024_111362 crossref_primary_10_1007_s10973_024_13062_2 crossref_primary_10_1016_j_polymdegradstab_2024_110894 crossref_primary_10_1016_j_polymdegradstab_2024_110890 crossref_primary_10_1002_app_55196 crossref_primary_10_1016_j_polymdegradstab_2024_110915 crossref_primary_10_1002_pi_6640 crossref_primary_10_1002_ejoc_202300172 crossref_primary_10_1016_j_eurpolymj_2025_113903 crossref_primary_10_3390_ma17010259 crossref_primary_10_1002_app_55717 crossref_primary_10_1177_09540083251319488 crossref_primary_10_1021_acsapm_3c01752 crossref_primary_10_3390_ijms241814059 crossref_primary_10_1016_j_polymdegradstab_2023_110343 crossref_primary_10_1002_pi_6639 crossref_primary_10_1016_j_cej_2024_149397 crossref_primary_10_1016_j_tca_2024_179830 crossref_primary_10_1016_j_applthermaleng_2023_121668 crossref_primary_10_1016_j_mtcomm_2025_112142 crossref_primary_10_1002_app_54077 crossref_primary_10_1002_fam_3200 crossref_primary_10_1002_app_56971 crossref_primary_10_1002_marc_202401105 crossref_primary_10_1016_j_porgcoat_2023_107967 crossref_primary_10_1002_app_55281 crossref_primary_10_3390_polym15102384 crossref_primary_10_1016_j_cej_2024_152785 crossref_primary_10_1039_D4RE00457D crossref_primary_10_1002_app_56415 crossref_primary_10_1016_j_eurpolymj_2025_113771 crossref_primary_10_1016_j_polymdegradstab_2022_110234 crossref_primary_10_1016_j_eurpolymj_2023_112078 crossref_primary_10_1002_app_54680 crossref_primary_10_1016_j_eurpolymj_2024_112937 crossref_primary_10_1002_marc_202300162 crossref_primary_10_1021_acsapm_4c00822 crossref_primary_10_1016_j_porgcoat_2023_107897 crossref_primary_10_1016_j_polymdegradstab_2023_110444 crossref_primary_10_1016_j_polymdegradstab_2025_111172 crossref_primary_10_1016_j_polymdegradstab_2024_110662 crossref_primary_10_1016_j_reactfunctpolym_2023_105721 crossref_primary_10_1016_j_polymdegradstab_2023_110364 crossref_primary_10_1002_app_55617 crossref_primary_10_1002_app_53956 |
Cites_doi | 10.1016/j.polymdegradstab.2022.110020 10.1016/j.compscitech.2019.107988 10.1021/acsapm.9b00633 10.1016/j.polymdegradstab.2016.06.002 10.1016/j.jhazmat.2020.123342 10.1016/j.compositesb.2020.107925 10.1016/j.jhazmat.2019.121984 10.1016/j.polymdegradstab.2018.11.021 10.1016/j.polymdegradstab.2018.04.037 10.1016/j.polymdegradstab.2019.109023 10.3389/fnins.2018.00659 10.1039/D0GC00449A 10.1016/j.surfcoat.2018.04.063 10.1002/chem.201404271 10.1016/j.ces.2018.11.036 10.1016/j.polymdegradstab.2022.110033 10.1016/j.cej.2017.11.104 10.1016/j.matchemphys.2020.122930 10.1016/j.cej.2017.06.039 10.1002/mame.201800619 10.1016/j.polymdegradstab.2021.109548 10.1007/s10853-020-05691-3 10.1016/j.compositesa.2018.06.030 10.1039/c1jm10233h 10.1016/j.compscitech.2018.12.023 10.1016/j.jhazmat.2019.120793 10.1016/j.jaap.2019.01.015 10.1016/j.jhazmat.2018.09.086 10.1016/j.cej.2020.126881 10.1016/j.compositesb.2021.109043 10.1016/j.polymdegradstab.2022.109840 10.1016/j.cej.2017.04.070 10.1016/j.compositesb.2019.107377 10.1016/j.carbpol.2020.116530 10.1016/j.compositesb.2019.107695 10.1021/acssuschemeng.8b01212 10.1016/j.compositesb.2019.107380 10.1002/pat.4758 10.1021/ma1009337 10.1016/j.firesaf.2020.102994 10.1016/j.polymdegradstab.2019.06.020 10.1039/C6PY00434B 10.1016/j.cej.2017.12.086 10.1016/j.cej.2019.121916 10.1002/pat.5632 10.1039/C4TA04841E 10.1016/j.compositesb.2021.109392 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2022.110132 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_polymdegradstab_2022_110132 S014139102200310X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSH SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-db3cf49a24dd964be0d0f86c8bc9578cf8e638a39ecdb10555120a0105fab40b3 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Sun Aug 24 03:46:06 EDT 2025 Tue Jul 01 02:29:54 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Sun Apr 06 06:54:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transparency Ultra-tough Flame retardant epoxy resin Toughening |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-db3cf49a24dd964be0d0f86c8bc9578cf8e638a39ecdb10555120a0105fab40b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8561-3716 |
PQID | 2723105719 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2723105719 crossref_citationtrail_10_1016_j_polymdegradstab_2022_110132 crossref_primary_10_1016_j_polymdegradstab_2022_110132 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2022_110132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tan, Shao, Yu, Long, Qi, Chen, Wang (bib0002) 2016; 7 Zhang, Mi, Chen, Xu, Zhang, Miao, Wang (bib0026) 2019; 381 Xu, Gao (bib0047) 2011; 43 Li, Fan, Aziz, Bittencourt, Wu, Wang, Dubois (bib0050) 2018; 6 Wang, Yuan, Zhu, Yin, Weng, Wang, Yang, Zhan, Wang, Wang (bib0016) 2021; 227 Zhang, Wang, Yang, Cheng, Ding, Hu, Huo (bib0037) 2020; 113 Xue, Shen, Zheng, Tao, Han, Li, Song, Wang (bib0045) 2020; 183 Wang, Chen, Xiao (bib0042) 2019; 139 Yang, Yu, Xu, Bourbigot, Wang, Song (bib0044) 2020; 22 Liu, Zheng, Dong, He, Chen, Bai, Lin, Jian (bib0017) 2022; 196 Zhang, Yan, Feng, Liu, Yang, Feng, Zhang, He (bib0028) 2021; 222 He, Wang, Pu, Wang, Tang, Cui, Wang, Chen (bib0021) 2019; 195 Klein, Gossler, Paul, Ruther (bib0049) 2018; 12 Chu, Ma, Zhang, Xu, Mu, Cai, Zhou, Ma, Zhou, Hu, Song (bib0029) 2020; 190 Qiao, Su, Liu, Zhang, Chen (bib0040) 2022; 33 Li, Chen, Su, Lin, Liu (bib0008) 2020; 31 Xu, Wang, Tan, Qi, Chen, Wang (bib0033) 2018; 337 Liu, Nie, Chen, Zhang, Meng, Li (bib0001) 2014; 3 Tang, Qian, Qiu, Dong (bib0027) 2018; 153 Qi, Weng, Kou, Song, Li, Wang, Zhang, Liu, Jian (bib0024) 2021; 406 Chen, Lin, Liu, Zhang (bib0005) 2021; 56 Zhang, Wang, Yang, Cheng, Ding, Huo (bib0043) 2019; 177 Jian, He, Li, Wang, Zeng (bib0003) 2017; 326 Li, Chen, Li, Fan, Liu (bib0010) 2019; 304 Yu, Yuen, Xu, Zhang, Yang, Lu, Fei, Yeoh, Song, Wang (bib0034) 2021; 401 Wen, Liu, Li, Zhang, Wang, Szymańska, Chen, Mijowska, Tang (bib0009) 2020; 188 Wang, Nie (bib0025) 2016; 130 Duan, Chen, Ji, Hua, Ma (bib0018) 2019; 375 Zhang, Yang, Wang, Cheng, Zhang, Ding, Hu, Huo (bib0039) 2019; 167 Zhao, Li, Chen, Li, Zhao, Du (bib0013) 2019; 171 Jayan, Saritha, Deeraj, Joseph (bib0014) 2020; 248 Zhong, Zhang, Li, Wu (bib0020) 2018; 347 Zhuo, Gu, Liang, Hu, Yuan, Chen (bib0031) 2011; 21 Khanal, Zhang, Ahmed, Ali, Xu (bib0007) 2018; 112 Chen, Zhang, Zhou, Zhang, Zhang (bib0023) 2018; 334 Huang, Huo, Xu, Chen, Jin, Li, Song, Wang (bib0035) 2019; 177 Cao, Duan, Zou, Zhang, Ma (bib0015) 2021; 187 Hu, Yang, Jiang, He, Liu, Huang, Wan (bib0006) 2019; 379 Chen, Luo, Yu, Tang, Zhou, Zhou (bib0004) 2020; 245 Xu, Wang, Wu, Li, Chen (bib0048) 2019; 363 Varganici, Rosu, Bifulco, Rosu, Mustata, Gaan (bib0011) 2022; 200 Liang, Hemberger, Neisius, Bodi, Grutzmacher, Levalois-Grutzmacher, Gaan (bib0046) 2015; 21 Wang, Chen, Xiao, Zhan (bib0022) 2020; 171 Ma, Qiu, Yu, Wang, Wang, Zeng, Hu (bib0030) 2017; 322 Miao, Fang, Guo, Zhu, Hu, Wang (bib0036) 2019; 1 Huo, Wang, Yang, Li, Wang, Cai (bib0038) 2019; 159 Varganici, Rosu, Bifulco, Rosu, Mustata, Gaan (bib0012) 2022; 202 Huang, Drigo, Wang, Zhao, Lehner, Jovic, Gaan (bib0019) 2022; 202 Huo, Yang, Wang, Cheng, Zhang, Hu, Ding, Zhang, Song (bib0041) 2020; 386 Xu (10.1016/j.polymdegradstab.2022.110132_bib0033) 2018; 337 Qi (10.1016/j.polymdegradstab.2022.110132_bib0024) 2021; 406 Zhang (10.1016/j.polymdegradstab.2022.110132_bib0039) 2019; 167 Chu (10.1016/j.polymdegradstab.2022.110132_bib0029) 2020; 190 Jian (10.1016/j.polymdegradstab.2022.110132_bib0003) 2017; 326 Wang (10.1016/j.polymdegradstab.2022.110132_bib0016) 2021; 227 Duan (10.1016/j.polymdegradstab.2022.110132_bib0018) 2019; 375 Wen (10.1016/j.polymdegradstab.2022.110132_bib0009) 2020; 188 Zhang (10.1016/j.polymdegradstab.2022.110132_bib0043) 2019; 177 Xue (10.1016/j.polymdegradstab.2022.110132_bib0045) 2020; 183 Huo (10.1016/j.polymdegradstab.2022.110132_bib0041) 2020; 386 He (10.1016/j.polymdegradstab.2022.110132_bib0021) 2019; 195 Ma (10.1016/j.polymdegradstab.2022.110132_bib0030) 2017; 322 Xu (10.1016/j.polymdegradstab.2022.110132_bib0048) 2019; 363 Zhao (10.1016/j.polymdegradstab.2022.110132_bib0013) 2019; 171 Li (10.1016/j.polymdegradstab.2022.110132_bib0008) 2020; 31 Wang (10.1016/j.polymdegradstab.2022.110132_bib0042) 2019; 139 Miao (10.1016/j.polymdegradstab.2022.110132_bib0036) 2019; 1 Zhang (10.1016/j.polymdegradstab.2022.110132_bib0028) 2021; 222 Jayan (10.1016/j.polymdegradstab.2022.110132_bib0014) 2020; 248 Xu (10.1016/j.polymdegradstab.2022.110132_bib0047) 2011; 43 Li (10.1016/j.polymdegradstab.2022.110132_bib0050) 2018; 6 Varganici (10.1016/j.polymdegradstab.2022.110132_bib0011) 2022; 200 Liu (10.1016/j.polymdegradstab.2022.110132_bib0017) 2022; 196 Qiao (10.1016/j.polymdegradstab.2022.110132_bib0040) 2022; 33 Li (10.1016/j.polymdegradstab.2022.110132_bib0010) 2019; 304 Khanal (10.1016/j.polymdegradstab.2022.110132_bib0007) 2018; 112 Chen (10.1016/j.polymdegradstab.2022.110132_bib0023) 2018; 334 Liu (10.1016/j.polymdegradstab.2022.110132_bib0001) 2014; 3 Klein (10.1016/j.polymdegradstab.2022.110132_bib0049) 2018; 12 Varganici (10.1016/j.polymdegradstab.2022.110132_bib0012) 2022; 202 Chen (10.1016/j.polymdegradstab.2022.110132_bib0004) 2020; 245 Tang (10.1016/j.polymdegradstab.2022.110132_bib0027) 2018; 153 Hu (10.1016/j.polymdegradstab.2022.110132_bib0006) 2019; 379 Cao (10.1016/j.polymdegradstab.2022.110132_bib0015) 2021; 187 Zhang (10.1016/j.polymdegradstab.2022.110132_bib0026) 2019; 381 Tan (10.1016/j.polymdegradstab.2022.110132_bib0002) 2016; 7 Huang (10.1016/j.polymdegradstab.2022.110132_bib0019) 2022; 202 Zhuo (10.1016/j.polymdegradstab.2022.110132_bib0031) 2011; 21 Huang (10.1016/j.polymdegradstab.2022.110132_bib0035) 2019; 177 Wang (10.1016/j.polymdegradstab.2022.110132_bib0025) 2016; 130 Yang (10.1016/j.polymdegradstab.2022.110132_bib0044) 2020; 22 Wang (10.1016/j.polymdegradstab.2022.110132_bib0022) 2020; 171 Zhang (10.1016/j.polymdegradstab.2022.110132_bib0037) 2020; 113 Chen (10.1016/j.polymdegradstab.2022.110132_bib0005) 2021; 56 Zhong (10.1016/j.polymdegradstab.2022.110132_bib0020) 2018; 347 Liang (10.1016/j.polymdegradstab.2022.110132_bib0046) 2015; 21 Yu (10.1016/j.polymdegradstab.2022.110132_bib0034) 2021; 401 Huo (10.1016/j.polymdegradstab.2022.110132_bib0038) 2019; 159 |
References_xml | – volume: 202 year: 2022 ident: bib0012 article-title: Recent advances in flame retardant epoxy systems from reactive DOPO-based phosphorus additives publication-title: Polym. Degrad. Stab. – volume: 153 start-page: 210 year: 2018 end-page: 219 ident: bib0027 article-title: High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups publication-title: Polym. Degrad. Stab. – volume: 33 start-page: 1695 year: 2022 end-page: 1705 ident: bib0040 article-title: From laboratory to industrialization: eco-friendly flame retardant endowing epoxy resin with excellent flame retardancy, transparency and mechanical properties publication-title: Polym. Advan. Technol. – volume: 130 start-page: 143 year: 2016 end-page: 154 ident: bib0025 article-title: Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products publication-title: Polym. Degrad. Stab. – volume: 3 start-page: 1188 year: 2014 end-page: 1198 ident: bib0001 article-title: Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms publication-title: J. Mater. Chem. – volume: 386 year: 2020 ident: bib0041 article-title: A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances publication-title: J. Hazard. Mater. – volume: 188 year: 2020 ident: bib0009 article-title: Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties publication-title: Compos. Sci. Technol. – volume: 337 start-page: 30 year: 2018 end-page: 39 ident: bib0033 article-title: A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing publication-title: Chem. Eng. J. – volume: 195 start-page: 1 year: 2019 end-page: 10 ident: bib0021 article-title: High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency publication-title: Chem. Eng. Sci. – volume: 183 year: 2020 ident: bib0045 article-title: One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant poly-lactic acid with a submicron-grained structure publication-title: Compos. Part B Eng. – volume: 334 start-page: 1371 year: 2018 end-page: 1382 ident: bib0023 article-title: Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid publication-title: Chem. Eng. J. – volume: 177 year: 2019 ident: bib0035 article-title: Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene publication-title: Compos. Part B-Eng. – volume: 381 year: 2019 ident: bib0026 article-title: A bio-based hyperbranched flame retardant for epoxy resins publication-title: Chem. Eng. J. – volume: 363 start-page: 138 year: 2019 end-page: 151 ident: bib0048 article-title: Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin publication-title: J. Hazard. Mater. – volume: 177 year: 2019 ident: bib0043 article-title: Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide publication-title: Compos. Part B – volume: 113 year: 2020 ident: bib0037 article-title: Synthesis of a P/N/S-based flame retardant and its flame retardant effect on epoxy resin publication-title: Fire. Saf. J. – volume: 159 start-page: 79 year: 2019 end-page: 89 ident: bib0038 article-title: Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin publication-title: Polym. Degrad. Stab. – volume: 12 start-page: 659 year: 2018 ident: bib0049 article-title: High-density μLED-based optical cochlear implant with improved thermomechanical behavior publication-title: Front. Neurosci. – volume: 171 year: 2020 ident: bib0022 article-title: Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin publication-title: Polym. Degrad. Stab. – volume: 196 year: 2022 ident: bib0017 article-title: A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins publication-title: Polym. Degrad. Stab. – volume: 304 year: 2019 ident: bib0010 article-title: Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant publication-title: Macromol. Mater. Eng. – volume: 190 year: 2020 ident: bib0029 article-title: Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset publication-title: Compos. Part B – volume: 347 start-page: 191 year: 2018 end-page: 198 ident: bib0020 article-title: Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability publication-title: Surf. Coat. Technol. – volume: 406 year: 2021 ident: bib0024 article-title: Synthesize and introduce bio-based aromatic striazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers publication-title: Chem. Eng. J. – volume: 401 year: 2021 ident: bib0034 article-title: Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability publication-title: J. Hazard. Mater. – volume: 187 year: 2021 ident: bib0015 article-title: A bio-based phosphorus-containing cocuring agent towards excellent flame retardance and mechanical properties of epoxy resin publication-title: Polym. Degrad. Stab. – volume: 322 start-page: 618 year: 2017 end-page: 631 ident: bib0030 article-title: Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins publication-title: Chem. Eng. J. – volume: 171 start-page: 180 year: 2019 end-page: 189 ident: bib0013 article-title: Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via publication-title: Compos. Sci. Technol. – volume: 379 year: 2019 ident: bib0006 article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin publication-title: J. Hazard. Mater. – volume: 200 year: 2022 ident: bib0011 article-title: Recent advances in flame retardant epoxy systems containing non-reactive DOPO based phosphorus additives publication-title: Polym. Degrad. Stab. – volume: 202 year: 2022 ident: bib0019 article-title: Fire safe epoxy composite with low dielectric properties from a combination of fluoro-phosphonium salt, melamine and copper hydroxystannate publication-title: Polym. Degrad. Stab. – volume: 248 year: 2020 ident: bib0014 article-title: Triblock copolymer grafted Graphene oxide as nanofiller for toughening of epoxy resin publication-title: Mater. Chem. Phys. – volume: 43 start-page: 6716 year: 2011 end-page: 6723 ident: bib0047 article-title: polymerization approach to graphene-reinforced nylon-6 composites publication-title: Macromolecules – volume: 326 start-page: 875 year: 2017 end-page: 885 ident: bib0003 article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins publication-title: Chem. Eng. J. – volume: 167 start-page: 10 year: 2019 end-page: 20 ident: bib0039 article-title: A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy publication-title: Polym. Degrad. Stab. – volume: 31 start-page: 146 year: 2020 end-page: 159 ident: bib0008 article-title: Highly efficient multi-element flame retardant for multi-functional epoxy resin with satisfactory thermal, flame retardant and mechanical properties publication-title: Polym. Adv. Technol. – volume: 1 start-page: 2692 year: 2019 end-page: 2702 ident: bib0036 article-title: Interpenetrating polymer networks of porous organic polymers and polyurethanes for flame resistance and high mechanical properties publication-title: ACS Appl. Polym. Mater. – volume: 245 year: 2020 ident: bib0004 article-title: Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin publication-title: Carbohydr. Polym. – volume: 56 start-page: 5956 year: 2021 end-page: 5974 ident: bib0005 article-title: An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant publication-title: J. Mater. Sci. – volume: 7 start-page: 3003 year: 2016 end-page: 3012 ident: bib0002 article-title: Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property publication-title: Polym. Chem. – volume: 227 year: 2021 ident: bib0016 article-title: High performance epoxy resin composites modified with multifunctional thiophene/phosphaphenanthrene-based flame retardant: excellent flame retardance, strong mechanical property and high transparency publication-title: Compos. Part B – volume: 112 start-page: 444 year: 2018 end-page: 451 ident: bib0007 article-title: Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polypho-sphate on the flame retardant properties of high-density polyethylene composites publication-title: Compos. Part A – volume: 139 start-page: 104 year: 2019 end-page: 113 ident: bib0042 article-title: Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin publication-title: J. Anal. Appl. Pyrolysis – volume: 222 year: 2021 ident: bib0028 article-title: Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature publication-title: Compos. Part B-Eng. – volume: 21 start-page: 1073 year: 2015 end-page: 1080 ident: bib0046 article-title: Elucidating the thermal decomposition of dimethylmethylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms publication-title: Chem. Eur. J. – volume: 21 start-page: 6584 year: 2011 end-page: 6594 ident: bib0031 article-title: Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance publication-title: J. Mater. Chem. – volume: 6 start-page: 8856 year: 2018 end-page: 8867 ident: bib0050 article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties publication-title: ACS Sustain. Chem. Eng. – volume: 22 start-page: 2129 year: 2020 end-page: 2161 ident: bib0044 article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials publication-title: Green Chem – volume: 375 year: 2019 ident: bib0018 article-title: A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties publication-title: Chem. Eng. J. – volume: 202 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110132_bib0012 article-title: Recent advances in flame retardant epoxy systems from reactive DOPO-based phosphorus additives publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2022.110020 – volume: 188 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0009 article-title: Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107988 – volume: 1 start-page: 2692 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0036 article-title: Interpenetrating polymer networks of porous organic polymers and polyurethanes for flame resistance and high mechanical properties publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00633 – volume: 130 start-page: 143 year: 2016 ident: 10.1016/j.polymdegradstab.2022.110132_bib0025 article-title: Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2016.06.002 – volume: 401 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0034 article-title: Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123342 – volume: 190 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0029 article-title: Renewable vanillin-based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset publication-title: Compos. Part B doi: 10.1016/j.compositesb.2020.107925 – volume: 386 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0041 article-title: A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121984 – volume: 159 start-page: 79 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0038 article-title: Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2018.11.021 – volume: 153 start-page: 210 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0027 article-title: High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2018.04.037 – volume: 171 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0022 article-title: Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2019.109023 – volume: 12 start-page: 659 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0049 article-title: High-density μLED-based optical cochlear implant with improved thermomechanical behavior publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00659 – volume: 22 start-page: 2129 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0044 article-title: Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials publication-title: Green Chem doi: 10.1039/D0GC00449A – volume: 347 start-page: 191 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0020 article-title: Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.04.063 – volume: 21 start-page: 1073 year: 2015 ident: 10.1016/j.polymdegradstab.2022.110132_bib0046 article-title: Elucidating the thermal decomposition of dimethylmethylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms publication-title: Chem. Eur. J. doi: 10.1002/chem.201404271 – volume: 195 start-page: 1 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0021 article-title: High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.11.036 – volume: 202 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110132_bib0019 article-title: Fire safe epoxy composite with low dielectric properties from a combination of fluoro-phosphonium salt, melamine and copper hydroxystannate publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2022.110033 – volume: 334 start-page: 1371 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0023 article-title: Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.104 – volume: 248 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0014 article-title: Triblock copolymer grafted Graphene oxide as nanofiller for toughening of epoxy resin publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122930 – volume: 326 start-page: 875 year: 2017 ident: 10.1016/j.polymdegradstab.2022.110132_bib0003 article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.039 – volume: 304 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0010 article-title: Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800619 – volume: 187 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0015 article-title: A bio-based phosphorus-containing cocuring agent towards excellent flame retardance and mechanical properties of epoxy resin publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2021.109548 – volume: 56 start-page: 5956 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0005 article-title: An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05691-3 – volume: 112 start-page: 444 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0007 article-title: Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polypho-sphate on the flame retardant properties of high-density polyethylene composites publication-title: Compos. Part A doi: 10.1016/j.compositesa.2018.06.030 – volume: 21 start-page: 6584 year: 2011 ident: 10.1016/j.polymdegradstab.2022.110132_bib0031 article-title: Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance publication-title: J. Mater. Chem. doi: 10.1039/c1jm10233h – volume: 171 start-page: 180 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0013 article-title: Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.12.023 – volume: 379 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0006 article-title: Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120793 – volume: 139 start-page: 104 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0042 article-title: Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2019.01.015 – volume: 381 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0026 article-title: A bio-based hyperbranched flame retardant for epoxy resins publication-title: Chem. Eng. J. – volume: 363 start-page: 138 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0048 article-title: Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.09.086 – volume: 406 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0024 article-title: Synthesize and introduce bio-based aromatic striazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126881 – volume: 222 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0028 article-title: Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2021.109043 – volume: 196 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110132_bib0017 article-title: A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2022.109840 – volume: 322 start-page: 618 year: 2017 ident: 10.1016/j.polymdegradstab.2022.110132_bib0030 article-title: Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.070 – volume: 177 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0035 article-title: Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke suppression of ABS nanocomposites from multifunctional graphene publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.107377 – volume: 245 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0004 article-title: Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116530 – volume: 183 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0045 article-title: One-pot scalable fabrication of an oligomeric phosphoramide towards high-performance flame retardant poly-lactic acid with a submicron-grained structure publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107695 – volume: 6 start-page: 8856 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0050 article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01212 – volume: 177 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0043 article-title: Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide publication-title: Compos. Part B doi: 10.1016/j.compositesb.2019.107380 – volume: 31 start-page: 146 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0008 article-title: Highly efficient multi-element flame retardant for multi-functional epoxy resin with satisfactory thermal, flame retardant and mechanical properties publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4758 – volume: 43 start-page: 6716 year: 2011 ident: 10.1016/j.polymdegradstab.2022.110132_bib0047 article-title: In situ polymerization approach to graphene-reinforced nylon-6 composites publication-title: Macromolecules doi: 10.1021/ma1009337 – volume: 113 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110132_bib0037 article-title: Synthesis of a P/N/S-based flame retardant and its flame retardant effect on epoxy resin publication-title: Fire. Saf. J. doi: 10.1016/j.firesaf.2020.102994 – volume: 167 start-page: 10 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0039 article-title: A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2019.06.020 – volume: 7 start-page: 3003 year: 2016 ident: 10.1016/j.polymdegradstab.2022.110132_bib0002 article-title: Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property publication-title: Polym. Chem. doi: 10.1039/C6PY00434B – volume: 337 start-page: 30 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110132_bib0033 article-title: A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.086 – volume: 375 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110132_bib0018 article-title: A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121916 – volume: 33 start-page: 1695 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110132_bib0040 article-title: From laboratory to industrialization: eco-friendly flame retardant endowing epoxy resin with excellent flame retardancy, transparency and mechanical properties publication-title: Polym. Advan. Technol. doi: 10.1002/pat.5632 – volume: 200 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110132_bib0011 article-title: Recent advances in flame retardant epoxy systems containing non-reactive DOPO based phosphorus additives publication-title: Polym. Degrad. Stab. – volume: 3 start-page: 1188 year: 2014 ident: 10.1016/j.polymdegradstab.2022.110132_bib0001 article-title: Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms publication-title: J. Mater. Chem. doi: 10.1039/C4TA04841E – volume: 227 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110132_bib0016 article-title: High performance epoxy resin composites modified with multifunctional thiophene/phosphaphenanthrene-based flame retardant: excellent flame retardance, strong mechanical property and high transparency publication-title: Compos. Part B doi: 10.1016/j.compositesb.2021.109392 |
SSID | ssj0000451 |
Score | 2.5814698 |
Snippet | •A simple and universal strategy is proposed to effectively resolve the contradiction between flame retardancy and mechanical properties, realizing a... Flame-retardant epoxy composites have important application value in flexible optoelectronic devices, artificial intelligence and 5G fields. The flame... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110132 |
SubjectTerms | artificial intelligence degradation epoxides Flame retardant epoxy resin flame retardants heat impact strength oxygen polymers smoke Toughening transmittance Transparency Ultra-tough |
Title | A universal strategy toward flame retardant epoxy resin with ultra-tough and transparent properties |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2022.110132 https://www.proquest.com/docview/2723105719 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6kgseDeGK9WEEfY3Ns0wR8sBSlKvqk0Ldlr0ClpqFNwb74253J4QVCwccNmU3YmZ2d3f3mG4AzI02kuW-cSEUBblBc6Shfcce4xmtboqQrCEwfHsP-M78btAdL0KtzYQhWWfn-0qcX3rp60qpGs5UNhy2CJWH4QjuWgt9yQBnsvENWfvH-BfMg_pQSxug59PYKnH9hvLLxaP5qiJXBTClDwcfOCBjvBf5f69Qvj10sQzebsFHFj6xb_uIWLNl0G1Z7ddm2bVj_xjC4A7rLZiX0AoWmJRPtnOUFVpYlaA2WEeBwYnCAGcbib3NsT4cpo_NZNhuhhJNTIR8mU8Pyggmd0sdyltEp_oToWHfh-eb6qdd3qroKjg7CMHeMCnTCY-lzY-KQK-saN4lCHSkd4wTWSWRxVsogttooKqCJQYErqZRmIhV3VbAHjXSc2n1gbV-GEp1q4hvNidk98bhWOjRKRqht2YTLehSFrkjHqfbFSNToshfxSwmClCBKJTQh_BTPSvaNRQWvapWJH-YkcKVYtIvTWtUCVUj3KDK149lU-B0KitsdLz74_2cOYY1aZXrjETTyycweY5yTq5PCkE9guXt733_8AFGwAuw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60gseDeGI9V9DH0BybmIAPlqLUq08KfVv2ClRqWtoU7L93JocXCIKPSZhN2Nmdnd18830AZ0aaWHPfOLGKA9yguNJRvuKOcY0XWqKkKwhMH3tR95nf9cP-AnTqWhiCVVaxv4zpRbSu7rSq3myNB4MWwZIwfaEdS8Fv2V-EJWKnChuw1L697_Y-AzIPS1lC7jlksAznnzCv8Wg4fzVEzGCmVKTgY3uEjfcC_7el6kfQLlaimw1Yr1JI1i6_chMWbLYFK51auW0L1r6QDG6DbrNZib5Ao2lJRjtneQGXZSkOCMsIczgx2McM0_G3OV5PBxmjI1o2G6KFk5OWD5OZYXlBhk4VZDkb00H-hBhZd-D55vqp03UqaQVHB1GUO0YFOuWJ9LkxScSVdY2bxpGOlU5wDus0tjgxZZBYbRRpaGJe4EpS00yl4q4KdqGRjTK7Byz0ZSQxrqa-0ZzI3VOPa6Ujo2SMDpdNuKx7UeiKd5zkL4aiBpi9iB9OEOQEUTqhCdGH-bgk4Pir4VXtMvFtRAlcLP7axGntaoEupF8pMrOj2VT4F5QXhxdesv__15zASvfp8UE83PbuD2CVnpTVjofQyCcze4RpT66Oq2H9DhxMBZ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+strategy+toward+flame+retardant+epoxy+resin+with+ultra-tough+and+transparent+properties&rft.jtitle=Polymer+degradation+and+stability&rft.au=Chen%2C+Bing&rft.au=Luo%2C+Wenhui&rft.au=Lv%2C+Jiaojiao&rft.au=Lin%2C+Shufeng&rft.date=2022-11-01&rft.issn=0141-3910&rft.volume=205+p.110132-&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2022.110132&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |