Tuning the Stacking Modes of Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation

Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 45; p. e202312995
Main Authors Song, Shizheng, Wang, Wei, Zhao, Yali, Wu, Wufeng, Wei, Yanying, Wang, Haihui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.11.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu 2 Br(IN) 2 ] n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H 2 /CH 4 (selectivity >290 with H 2 permeance >520 GPU) and H 2 /CO 2 (selectivity >190 with H 2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H 2 separation.
AbstractList Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.
Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2Br(IN)2]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2/CH4 (selectivity >290 with H2 permeance >520 GPU) and H2/CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H2 separation.
Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu 2 Br(IN) 2 ] n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H 2 /CH 4 (selectivity >290 with H 2 permeance >520 GPU) and H 2 /CO 2 (selectivity >190 with H 2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H 2 separation.
Author Song, Shizheng
Wei, Yanying
Zhao, Yali
Wang, Wei
Wu, Wufeng
Wang, Haihui
Author_xml – sequence: 1
  givenname: Shizheng
  surname: Song
  fullname: Song, Shizheng
  organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
– sequence: 2
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
– sequence: 3
  givenname: Yali
  surname: Zhao
  fullname: Zhao, Yali
  organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
– sequence: 4
  givenname: Wufeng
  surname: Wu
  fullname: Wu, Wufeng
  organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
– sequence: 5
  givenname: Yanying
  surname: Wei
  fullname: Wei, Yanying
  organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
– sequence: 6
  givenname: Haihui
  orcidid: 0000-0002-2917-4739
  surname: Wang
  fullname: Wang, Haihui
  organization: Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing China
BookMark eNp1kbtOJDEQRa0VSMsrJba0ySY92O622x2ueA0Sj4Ahbrnd5RlDtz3YHqHJ-INdiT_kS_DAigCJqFzSubfKdXfRlvMOEDqkZEIJYUfKWZgwwkrKmob_QDuUM1qUdV1u5XdVlkUtOf2JdmO8z7yUROygv7OVs26O0wLwbVL6YdNc-R4i9gbfDSmotLAOz5786_O_EzuCi9Y7NeArSGp4fX65CfM8WeOzoEZ48uEBXyvn4wIgZWbsgnLZzPiAp3a-GNb41BirLbiEp-s--Dk4fAtLlQdl4320bdQQ4eB_3UN3Z6ez42lxeXN-cfznstClEKnoleBMNA30iilOGtn1hquuKqETREoK3HSyroimwpBOk0w3NeO1JkQDM6bcQ78_fJfBP64gpna0UcMw5G39KrZMCl5LKjjP6K8v6L1fhXyCDSVZ3VRcykxVH5QOPsYAptU2vX8pn9AOLSXtJqV2k1L7mVKWTb7IlsGOKqy_E7wBeUCatw
CitedBy_id crossref_primary_10_1039_D4TC02924K
crossref_primary_10_1002_adfm_202425244
crossref_primary_10_1016_j_cej_2024_149504
crossref_primary_10_1016_j_seppur_2025_132253
crossref_primary_10_1016_j_ces_2024_120474
crossref_primary_10_1016_j_advmem_2025_100136
crossref_primary_10_1002_anie_202420086
crossref_primary_10_1016_j_memsci_2025_123777
crossref_primary_10_1002_ange_202407779
crossref_primary_10_1016_j_memsci_2025_123835
crossref_primary_10_1002_adfm_202500706
crossref_primary_10_1016_j_seppur_2024_130282
crossref_primary_10_1016_j_seppur_2024_126744
crossref_primary_10_1016_j_cjche_2024_01_011
crossref_primary_10_1021_acssuschemeng_4c08179
crossref_primary_10_1021_acs_nanolett_4c03650
crossref_primary_10_1016_j_aca_2024_343547
crossref_primary_10_1021_acs_inorgchem_3c04602
crossref_primary_10_1021_acsanm_4c03671
crossref_primary_10_1038_s41467_024_48050_5
crossref_primary_10_1016_j_ijhydene_2024_07_453
crossref_primary_10_1002_ange_202420086
crossref_primary_10_1039_D3CC05545K
crossref_primary_10_1021_acs_iecr_4c03983
crossref_primary_10_1021_jacsau_5c00092
crossref_primary_10_1016_j_memsci_2024_122698
crossref_primary_10_1038_s41467_024_54663_7
crossref_primary_10_1016_j_memsci_2025_123864
crossref_primary_10_1002_anie_202407779
crossref_primary_10_1002_adfm_202315911
crossref_primary_10_1016_j_seppur_2024_129883
crossref_primary_10_1039_D4CC02002B
crossref_primary_10_1002_eem2_12843
crossref_primary_10_1002_smll_202410067
Cites_doi 10.1038/s41560-022-01114-6
10.1039/C9CS00756C
10.1038/ncomms14460
10.1126/sciadv.abm8162
10.1002/anie.201703959
10.1021/cr300014x
10.1021/ja973483o
10.1038/nmat2769
10.1021/jacs.1c02379
10.1016/0021-9517(79)90243-4
10.1021/acsnano.5b07304
10.1039/b919647a
10.1016/0017-9310(96)00119-6
10.1126/science.1236098
10.1016/j.ijthermalsci.2021.107017
10.1038/s41893-022-00974-w
10.1038/nature21421
10.1021/jacs.0c04442
10.1038/nmat2995
10.1126/science.1254227
10.1038/s41893-020-0474-0
10.1016/j.jclepro.2022.134347
10.1021/jacs.0c00927
10.1016/j.expthermflusci.2018.09.021
10.1016/j.cej.2021.129574
10.1038/s41563-020-0634-7
10.1016/j.ijheatmasstransfer.2016.08.105
10.1126/science.1203771
10.1002/anie.202108801
10.1016/j.ijheatmasstransfer.2020.120076
10.1038/nmat4113
10.1038/nphys3643
10.1016/j.ijheatmasstransfer.2020.119980
10.1016/j.ultsonch.2018.06.007
10.1021/jacs.9b13825
10.1038/nmat5025
10.1126/science.aab0530
10.1126/science.1208891
10.1021/ar800124u
10.1103/PhysRevLett.116.064501
10.1016/S0376-7388(00)85132-7
10.1038/s41565-022-01154-9
10.1038/s41467-022-33654-6
10.1016/j.applthermaleng.2019.114703
10.1063/1.5067399
10.1002/adfm.201904535
10.1016/j.rser.2022.112992
10.1038/s41467-017-02529-6
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202312995
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
ExternalDocumentID 10_1002_anie_202312995
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-c366t-da652699eda2a5098bdf5ab43eb60881e5fb8740c16f0bc065297257c00ce2ff3
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:29:32 EDT 2025
Fri Jul 25 11:58:08 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 01:47:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-da652699eda2a5098bdf5ab43eb60881e5fb8740c16f0bc065297257c00ce2ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2917-4739
PQID 2882794588
PQPubID 946352
ParticipantIDs proquest_miscellaneous_2865781655
proquest_journals_2882794588
crossref_citationtrail_10_1002_anie_202312995
crossref_primary_10_1002_anie_202312995
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-06
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-06
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – ident: e_1_2_7_3_1
  doi: 10.1038/s41560-022-01114-6
– ident: e_1_2_7_6_1
  doi: 10.1039/C9CS00756C
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms14460
– ident: e_1_2_7_12_1
  doi: 10.1126/sciadv.abm8162
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201703959
– ident: e_1_2_7_27_1
  doi: 10.1021/cr300014x
– ident: e_1_2_7_36_1
  doi: 10.1021/ja973483o
– ident: e_1_2_7_32_1
  doi: 10.1038/nmat2769
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.1c02379
– ident: e_1_2_7_37_1
  doi: 10.1016/0021-9517(79)90243-4
– ident: e_1_2_7_10_1
  doi: 10.1021/acsnano.5b07304
– ident: e_1_2_7_33_1
  doi: 10.1039/b919647a
– ident: e_1_2_7_38_1
  doi: 10.1016/0017-9310(96)00119-6
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1236098
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ijthermalsci.2021.107017
– ident: e_1_2_7_16_1
  doi: 10.1038/s41893-022-00974-w
– ident: e_1_2_7_13_1
  doi: 10.1038/nature21421
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.0c04442
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2995
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1254227
– ident: e_1_2_7_22_1
  doi: 10.1038/s41893-020-0474-0
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jclepro.2022.134347
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.0c00927
– ident: e_1_2_7_45_1
  doi: 10.1016/j.expthermflusci.2018.09.021
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cej.2021.129574
– ident: e_1_2_7_29_1
  doi: 10.1038/s41563-020-0634-7
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ijheatmasstransfer.2016.08.105
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1203771
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202108801
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ijheatmasstransfer.2020.120076
– ident: e_1_2_7_31_1
  doi: 10.1038/nmat4113
– ident: e_1_2_7_43_1
  doi: 10.1038/nphys3643
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ijheatmasstransfer.2020.119980
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ultsonch.2018.06.007
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.9b13825
– ident: e_1_2_7_11_1
  doi: 10.1038/nmat5025
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aab0530
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1208891
– ident: e_1_2_7_28_1
  doi: 10.1021/ar800124u
– ident: e_1_2_7_42_1
  doi: 10.1103/PhysRevLett.116.064501
– ident: e_1_2_7_30_1
  doi: 10.1016/S0376-7388(00)85132-7
– ident: e_1_2_7_15_1
  doi: 10.1038/s41565-022-01154-9
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-022-33654-6
– ident: e_1_2_7_39_1
  doi: 10.1016/j.applthermaleng.2019.114703
– ident: e_1_2_7_47_1
  doi: 10.1063/1.5067399
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.201904535
– ident: e_1_2_7_4_1
  doi: 10.1016/j.rser.2022.112992
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-017-02529-6
SSID ssj0028806
Score 2.5608888
Snippet Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural...
Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage e202312995
SubjectTerms Carbon dioxide
Gas separation
Membranes
Metal-organic frameworks
Nanosheets
Reluctance
Stacking
Upper bounds
Title Tuning the Stacking Modes of Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation
URI https://www.proquest.com/docview/2882794588
https://www.proquest.com/docview/2865781655
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7W-qAv4hVXq4wg-LCkJpNkkn2UumWRbgWbxfUpJJMZN7Am0m4o7VP_gYJ_xt_TX-KZa7PesL6EkMyGIefbc8s530HoeepXcnZA4BXjQHiRiFKv5FHhCTBnVaI-Ncl8x-yATufRm0W8GAy-96qWunW5w85-21fyP1KFayBX2SV7Bcm6h8IFOAf5whEkDMd_k3HX2G4ncBqZzHqr4WaqPGO-ksSzy7oZZSetq2l4Ldn8NRPHaMbB87Z3Qt2VyaQrq8u1pOZtj5fyo_WMf4KoGrSiqkqUtSGrUzmUuVbtlKPpaXXUwi5B82gqcSNrR9L8kZ8Usm9gpPgJ-E95yElV98sBDk2V8OGyPltyY1lVzl9ff8_rXrpbpXo_QDThlnVqUSfsT01Og4SquY9eQXP2NHYUhl6SGtZabrQ4CUBz6hkpVs1T0oOzprD8xXxoOlrZ278jtwW-kJ4AusnTffA235vv7-fZZJFdQ9cJBCgqmH_niMsIaEXd12Y2Z-lCffJy8-mb7tCmN6BcnOw2umViE_xKA-0OGvDmLrqxa0cC3kNfNOAwAA5bwGEFONwK7ACHAXAX5197UMMKahfn3wzIsAMZdiDDDmQYQIY1yLADGbYgw5cgu4_me5Nsd-qZiR4eCylde1VB5UT7Ma8KUoCrmpaViIsyCnlJwdwFPBalnBHJAir8koF7TMYJGBXm-4wTIcIHaKtpG_4QYRpCLMBA0EnIo4AlJRUEoncWFKBvaMqHyLMvNmeG7l5OXVnlmqib5FIQuRPEEL1w6z9ropc_rty2csqNMjjOQeIETFucpkP0zN0G8cjvb_Dq2k6uoWAfAxrHj_7-iMfo5uW_YhttrY86_gR833X5VMHsB0Sutdc
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Stacking+Modes+of+Ultrathin+Two%E2%80%90Dimensional+Metal%E2%80%93Organic+Framework+Nanosheet+Membranes+for+Highly+Efficient+Hydrogen+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Shizheng&rft.au=Wang%2C+Wei&rft.au=Zhao%2C+Yali&rft.au=Wu%2C+Wufeng&rft.date=2023-11-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202312995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon