Tuning the Stacking Modes of Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation
Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 45; p. e202312995 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.11.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu
2
Br(IN)
2
]
n
(IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H
2
/CH
4
(selectivity >290 with H
2
permeance >520 GPU) and H
2
/CO
2
(selectivity >190 with H
2
permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H
2
separation. |
---|---|
AbstractList | Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation. Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2Br(IN)2]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2/CH4 (selectivity >290 with H2 permeance >520 GPU) and H2/CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H2 separation. Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu 2 Br(IN) 2 ] n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H 2 /CH 4 (selectivity >290 with H 2 permeance >520 GPU) and H 2 /CO 2 (selectivity >190 with H 2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco‐friendly H 2 separation. |
Author | Song, Shizheng Wei, Yanying Zhao, Yali Wang, Wei Wu, Wufeng Wang, Haihui |
Author_xml | – sequence: 1 givenname: Shizheng surname: Song fullname: Song, Shizheng organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China – sequence: 3 givenname: Yali surname: Zhao fullname: Zhao, Yali organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China – sequence: 4 givenname: Wufeng surname: Wu fullname: Wu, Wufeng organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China – sequence: 5 givenname: Yanying surname: Wei fullname: Wei, Yanying organization: School of Chemistry & Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China – sequence: 6 givenname: Haihui orcidid: 0000-0002-2917-4739 surname: Wang fullname: Wang, Haihui organization: Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing China |
BookMark | eNp1kbtOJDEQRa0VSMsrJba0ySY92O622x2ueA0Sj4Ahbrnd5RlDtz3YHqHJ-INdiT_kS_DAigCJqFzSubfKdXfRlvMOEDqkZEIJYUfKWZgwwkrKmob_QDuUM1qUdV1u5XdVlkUtOf2JdmO8z7yUROygv7OVs26O0wLwbVL6YdNc-R4i9gbfDSmotLAOz5786_O_EzuCi9Y7NeArSGp4fX65CfM8WeOzoEZ48uEBXyvn4wIgZWbsgnLZzPiAp3a-GNb41BirLbiEp-s--Dk4fAtLlQdl4320bdQQ4eB_3UN3Z6ez42lxeXN-cfznstClEKnoleBMNA30iilOGtn1hquuKqETREoK3HSyroimwpBOk0w3NeO1JkQDM6bcQ78_fJfBP64gpna0UcMw5G39KrZMCl5LKjjP6K8v6L1fhXyCDSVZ3VRcykxVH5QOPsYAptU2vX8pn9AOLSXtJqV2k1L7mVKWTb7IlsGOKqy_E7wBeUCatw |
CitedBy_id | crossref_primary_10_1039_D4TC02924K crossref_primary_10_1002_adfm_202425244 crossref_primary_10_1016_j_cej_2024_149504 crossref_primary_10_1016_j_seppur_2025_132253 crossref_primary_10_1016_j_ces_2024_120474 crossref_primary_10_1016_j_advmem_2025_100136 crossref_primary_10_1002_anie_202420086 crossref_primary_10_1016_j_memsci_2025_123777 crossref_primary_10_1002_ange_202407779 crossref_primary_10_1016_j_memsci_2025_123835 crossref_primary_10_1002_adfm_202500706 crossref_primary_10_1016_j_seppur_2024_130282 crossref_primary_10_1016_j_seppur_2024_126744 crossref_primary_10_1016_j_cjche_2024_01_011 crossref_primary_10_1021_acssuschemeng_4c08179 crossref_primary_10_1021_acs_nanolett_4c03650 crossref_primary_10_1016_j_aca_2024_343547 crossref_primary_10_1021_acs_inorgchem_3c04602 crossref_primary_10_1021_acsanm_4c03671 crossref_primary_10_1038_s41467_024_48050_5 crossref_primary_10_1016_j_ijhydene_2024_07_453 crossref_primary_10_1002_ange_202420086 crossref_primary_10_1039_D3CC05545K crossref_primary_10_1021_acs_iecr_4c03983 crossref_primary_10_1021_jacsau_5c00092 crossref_primary_10_1016_j_memsci_2024_122698 crossref_primary_10_1038_s41467_024_54663_7 crossref_primary_10_1016_j_memsci_2025_123864 crossref_primary_10_1002_anie_202407779 crossref_primary_10_1002_adfm_202315911 crossref_primary_10_1016_j_seppur_2024_129883 crossref_primary_10_1039_D4CC02002B crossref_primary_10_1002_eem2_12843 crossref_primary_10_1002_smll_202410067 |
Cites_doi | 10.1038/s41560-022-01114-6 10.1039/C9CS00756C 10.1038/ncomms14460 10.1126/sciadv.abm8162 10.1002/anie.201703959 10.1021/cr300014x 10.1021/ja973483o 10.1038/nmat2769 10.1021/jacs.1c02379 10.1016/0021-9517(79)90243-4 10.1021/acsnano.5b07304 10.1039/b919647a 10.1016/0017-9310(96)00119-6 10.1126/science.1236098 10.1016/j.ijthermalsci.2021.107017 10.1038/s41893-022-00974-w 10.1038/nature21421 10.1021/jacs.0c04442 10.1038/nmat2995 10.1126/science.1254227 10.1038/s41893-020-0474-0 10.1016/j.jclepro.2022.134347 10.1021/jacs.0c00927 10.1016/j.expthermflusci.2018.09.021 10.1016/j.cej.2021.129574 10.1038/s41563-020-0634-7 10.1016/j.ijheatmasstransfer.2016.08.105 10.1126/science.1203771 10.1002/anie.202108801 10.1016/j.ijheatmasstransfer.2020.120076 10.1038/nmat4113 10.1038/nphys3643 10.1016/j.ijheatmasstransfer.2020.119980 10.1016/j.ultsonch.2018.06.007 10.1021/jacs.9b13825 10.1038/nmat5025 10.1126/science.aab0530 10.1126/science.1208891 10.1021/ar800124u 10.1103/PhysRevLett.116.064501 10.1016/S0376-7388(00)85132-7 10.1038/s41565-022-01154-9 10.1038/s41467-022-33654-6 10.1016/j.applthermaleng.2019.114703 10.1063/1.5067399 10.1002/adfm.201904535 10.1016/j.rser.2022.112992 10.1038/s41467-017-02529-6 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202312995 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
ExternalDocumentID | 10_1002_anie_202312995 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c366t-da652699eda2a5098bdf5ab43eb60881e5fb8740c16f0bc065297257c00ce2ff3 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:29:32 EDT 2025 Fri Jul 25 11:58:08 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 01:47:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-da652699eda2a5098bdf5ab43eb60881e5fb8740c16f0bc065297257c00ce2ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2917-4739 |
PQID | 2882794588 |
PQPubID | 946352 |
ParticipantIDs | proquest_miscellaneous_2865781655 proquest_journals_2882794588 crossref_citationtrail_10_1002_anie_202312995 crossref_primary_10_1002_anie_202312995 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-06 |
PublicationDateYYYYMMDD | 2023-11-06 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – ident: e_1_2_7_3_1 doi: 10.1038/s41560-022-01114-6 – ident: e_1_2_7_6_1 doi: 10.1039/C9CS00756C – ident: e_1_2_7_19_1 doi: 10.1038/ncomms14460 – ident: e_1_2_7_12_1 doi: 10.1126/sciadv.abm8162 – ident: e_1_2_7_18_1 doi: 10.1002/anie.201703959 – ident: e_1_2_7_27_1 doi: 10.1021/cr300014x – ident: e_1_2_7_36_1 doi: 10.1021/ja973483o – ident: e_1_2_7_32_1 doi: 10.1038/nmat2769 – ident: e_1_2_7_35_1 doi: 10.1021/jacs.1c02379 – ident: e_1_2_7_37_1 doi: 10.1016/0021-9517(79)90243-4 – ident: e_1_2_7_10_1 doi: 10.1021/acsnano.5b07304 – ident: e_1_2_7_33_1 doi: 10.1039/b919647a – ident: e_1_2_7_38_1 doi: 10.1016/0017-9310(96)00119-6 – ident: e_1_2_7_9_1 doi: 10.1126/science.1236098 – ident: e_1_2_7_40_1 doi: 10.1016/j.ijthermalsci.2021.107017 – ident: e_1_2_7_16_1 doi: 10.1038/s41893-022-00974-w – ident: e_1_2_7_13_1 doi: 10.1038/nature21421 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.0c04442 – ident: e_1_2_7_1_1 doi: 10.1038/nmat2995 – ident: e_1_2_7_17_1 doi: 10.1126/science.1254227 – ident: e_1_2_7_22_1 doi: 10.1038/s41893-020-0474-0 – ident: e_1_2_7_2_1 doi: 10.1016/j.jclepro.2022.134347 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.0c00927 – ident: e_1_2_7_45_1 doi: 10.1016/j.expthermflusci.2018.09.021 – ident: e_1_2_7_24_1 doi: 10.1016/j.cej.2021.129574 – ident: e_1_2_7_29_1 doi: 10.1038/s41563-020-0634-7 – ident: e_1_2_7_48_1 doi: 10.1016/j.ijheatmasstransfer.2016.08.105 – ident: e_1_2_7_7_1 doi: 10.1126/science.1203771 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202108801 – ident: e_1_2_7_44_1 doi: 10.1016/j.ijheatmasstransfer.2020.120076 – ident: e_1_2_7_31_1 doi: 10.1038/nmat4113 – ident: e_1_2_7_43_1 doi: 10.1038/nphys3643 – ident: e_1_2_7_46_1 doi: 10.1016/j.ijheatmasstransfer.2020.119980 – ident: e_1_2_7_5_1 doi: 10.1016/j.ultsonch.2018.06.007 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.9b13825 – ident: e_1_2_7_11_1 doi: 10.1038/nmat5025 – ident: e_1_2_7_8_1 doi: 10.1126/science.aab0530 – ident: e_1_2_7_14_1 doi: 10.1126/science.1208891 – ident: e_1_2_7_28_1 doi: 10.1021/ar800124u – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevLett.116.064501 – ident: e_1_2_7_30_1 doi: 10.1016/S0376-7388(00)85132-7 – ident: e_1_2_7_15_1 doi: 10.1038/s41565-022-01154-9 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-022-33654-6 – ident: e_1_2_7_39_1 doi: 10.1016/j.applthermaleng.2019.114703 – ident: e_1_2_7_47_1 doi: 10.1063/1.5067399 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.201904535 – ident: e_1_2_7_4_1 doi: 10.1016/j.rser.2022.112992 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-017-02529-6 |
SSID | ssj0028806 |
Score | 2.5608888 |
Snippet | Two‐dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural... Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | e202312995 |
SubjectTerms | Carbon dioxide Gas separation Membranes Metal-organic frameworks Nanosheets Reluctance Stacking Upper bounds |
Title | Tuning the Stacking Modes of Ultrathin Two‐Dimensional Metal–Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation |
URI | https://www.proquest.com/docview/2882794588 https://www.proquest.com/docview/2865781655 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7W-qAv4hVXq4wg-LCkJpNkkn2UumWRbgWbxfUpJJMZN7Am0m4o7VP_gYJ_xt_TX-KZa7PesL6EkMyGIefbc8s530HoeepXcnZA4BXjQHiRiFKv5FHhCTBnVaI-Ncl8x-yATufRm0W8GAy-96qWunW5w85-21fyP1KFayBX2SV7Bcm6h8IFOAf5whEkDMd_k3HX2G4ncBqZzHqr4WaqPGO-ksSzy7oZZSetq2l4Ldn8NRPHaMbB87Z3Qt2VyaQrq8u1pOZtj5fyo_WMf4KoGrSiqkqUtSGrUzmUuVbtlKPpaXXUwi5B82gqcSNrR9L8kZ8Usm9gpPgJ-E95yElV98sBDk2V8OGyPltyY1lVzl9ff8_rXrpbpXo_QDThlnVqUSfsT01Og4SquY9eQXP2NHYUhl6SGtZabrQ4CUBz6hkpVs1T0oOzprD8xXxoOlrZ278jtwW-kJ4AusnTffA235vv7-fZZJFdQ9cJBCgqmH_niMsIaEXd12Y2Z-lCffJy8-mb7tCmN6BcnOw2umViE_xKA-0OGvDmLrqxa0cC3kNfNOAwAA5bwGEFONwK7ACHAXAX5197UMMKahfn3wzIsAMZdiDDDmQYQIY1yLADGbYgw5cgu4_me5Nsd-qZiR4eCylde1VB5UT7Ma8KUoCrmpaViIsyCnlJwdwFPBalnBHJAir8koF7TMYJGBXm-4wTIcIHaKtpG_4QYRpCLMBA0EnIo4AlJRUEoncWFKBvaMqHyLMvNmeG7l5OXVnlmqib5FIQuRPEEL1w6z9ropc_rty2csqNMjjOQeIETFucpkP0zN0G8cjvb_Dq2k6uoWAfAxrHj_7-iMfo5uW_YhttrY86_gR833X5VMHsB0Sutdc |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Stacking+Modes+of+Ultrathin+Two%E2%80%90Dimensional+Metal%E2%80%93Organic+Framework+Nanosheet+Membranes+for+Highly+Efficient+Hydrogen+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Shizheng&rft.au=Wang%2C+Wei&rft.au=Zhao%2C+Yali&rft.au=Wu%2C+Wufeng&rft.date=2023-11-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202312995&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |