A Distributed Algorithm for Solving a Linear Algebraic Equation

A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 60; no. 11; pp. 2863 - 2878
Main Authors Shaoshuai Mou, Ji Liu, Morse, A. Stephen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2015.2414771

Cover

Loading…
Abstract A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph N(t) whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix A for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" N(t), t = 1, 2, ..., the algorithm causes all agents' estimates to converge exponentially fast to the same solution to Ax = b. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when Ax = b has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to Ax = b, even if A and b are changing with time, provided the rates of change of A and bare sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to Ax = b in a distributed manner, even if Ax = b does not have a solution.
AbstractList A distributed algorithm is described for solving a linear algebraic equation of the form $Ax = b$ assuming the equation has at least one solution. The equation is simultaneously solved by $m$ agents assuming each agent knows only a subset of the rows of the partitioned matrix $[\matrix{A & b}]$, the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph $\BBN(t)$ whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix $A$ for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" $\BBN(t)$, $t = 1, 2, \ldots$, the algorithm causes all agents' estimates to converge exponentially fast to the same solution to $Ax = b$. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when $Ax = b$ has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to $Ax = b$, even if $A$ and $b$ are changing with time, provided the rates of change of $A$ and $b$ are sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to $Ax = b$ in a distributed manner, even if $Ax = b$ does not have a solution.
A distributed algorithm is described for solving a linear algebraic equation of the form [Formula Omitted] assuming the equation has at least one solution. The equation is simultaneously solved by [Formula Omitted] agents assuming each agent knows only a subset of the rows of the partitioned matrix [Formula Omitted], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph [Formula Omitted] whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix [Formula Omitted] for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" [Formula Omitted], [Formula Omitted], the algorithm causes all agents' estimates to converge exponentially fast to the same solution to [Formula Omitted]. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when [Formula Omitted] has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to [Formula Omitted], even if [Formula Omitted] and [Formula Omitted] are changing with time, provided the rates of change of [Formula Omitted] and [Formula Omitted] are sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to [Formula Omitted] in a distributed manner, even if [Formula Omitted] does not have a solution.
A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph N(t) whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix A for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" N(t), t = 1, 2, ..., the algorithm causes all agents' estimates to converge exponentially fast to the same solution to Ax = b. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when Ax = b has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to Ax = b, even if A and b are changing with time, provided the rates of change of A and bare sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to Ax = b in a distributed manner, even if Ax = b does not have a solution.
Author Morse, A. Stephen
Shaoshuai Mou
Ji Liu
Author_xml – sequence: 1
  surname: Shaoshuai Mou
  fullname: Shaoshuai Mou
  email: mous@purdue.edu
  organization: Sch. of Aeronaut. & Astronaut., Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  surname: Ji Liu
  fullname: Ji Liu
  email: jiliu@illinois.edu
  organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA
– sequence: 3
  givenname: A. Stephen
  surname: Morse
  fullname: Morse, A. Stephen
  email: as.morse@yale.edu
  organization: Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
BookMark eNp9kE1LAzEQhoNUsK3eBS8LXrxsnXxskj1JqfUDCh6s5yWbzdaU7aZNdgX_vaktHnqQgRmGed5h5h2hQetag9A1hgnGkN8vp7MJAZxNCMNMCHyGhjjLZEoyQgdoCIBlmhPJL9AohHVsOWN4iB6myaMNnbdl35kqmTYr5233uUlq55N313zZdpWoZGFbo_x-bEqvrE7mu1511rWX6LxWTTBXxzpGH0_z5ewlXbw9v86mi1RTzru0ErTUWoDM6hg607QEbZTJmTQlEUQDB5bTmERVVnWlOAMwBFOQlWI1o2N0d9i79W7Xm9AVGxu0aRrVGteHAgvJcSYhg4jenqBr1_s2XhcpkrO4WcpI8QOlvQvBm7rQtvt9qYsPNgWGYu9rEX0t9r4WR1-jEE6EW283yn__J7k5SKwx5g8XwGmOc_oDO8GC-A
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TAC_2022_3169179
crossref_primary_10_1109_TAC_2018_2800644
crossref_primary_10_1109_TAC_2019_2894588
crossref_primary_10_1109_TAC_2023_3247572
crossref_primary_10_1016_j_automatica_2022_110572
crossref_primary_10_1016_j_automatica_2024_111662
crossref_primary_10_1109_LCSYS_2017_2698179
crossref_primary_10_1016_j_automatica_2023_111421
crossref_primary_10_1016_j_jai_2023_06_003
crossref_primary_10_1109_TAC_2021_3130888
crossref_primary_10_1109_TAC_2023_3339437
crossref_primary_10_1109_TSIPN_2024_3511265
crossref_primary_10_1038_s41598_020_69640_5
crossref_primary_10_1016_j_automatica_2019_108755
crossref_primary_10_1016_j_apenergy_2023_121298
crossref_primary_10_1016_j_automatica_2020_109108
crossref_primary_10_1109_TAC_2019_2932031
crossref_primary_10_1109_TAC_2022_3174650
crossref_primary_10_1016_j_ifacol_2020_12_1136
crossref_primary_10_1109_TSMC_2019_2914385
crossref_primary_10_1109_TAC_2017_2771140
crossref_primary_10_1109_LCSYS_2021_3084555
crossref_primary_10_1016_j_automatica_2024_111531
crossref_primary_10_1109_TAC_2018_2847603
crossref_primary_10_1016_j_automatica_2017_05_004
crossref_primary_10_1016_j_ifacol_2016_10_223
crossref_primary_10_1007_s11227_024_06302_7
crossref_primary_10_1109_TSMC_2020_3034229
crossref_primary_10_1109_TAC_2023_3241237
crossref_primary_10_1016_j_automatica_2019_03_015
crossref_primary_10_1016_j_sysconle_2023_105698
crossref_primary_10_1109_TAC_2024_3419185
crossref_primary_10_31590_ejosat_952456
crossref_primary_10_1002_rnc_3990
crossref_primary_10_1007_s11432_018_9682_4
crossref_primary_10_1016_j_sysconle_2024_106008
crossref_primary_10_1109_TAC_2019_2919101
crossref_primary_10_1109_TAC_2016_2612819
crossref_primary_10_1137_19M1258864
crossref_primary_10_1109_TCNS_2024_3432816
crossref_primary_10_1109_TAC_2023_3312137
crossref_primary_10_1016_j_automatica_2022_110633
crossref_primary_10_31857_S0044466924040078
crossref_primary_10_1016_j_sysconle_2022_105265
crossref_primary_10_1016_j_ifacol_2017_08_441
crossref_primary_10_1137_17M1118609
crossref_primary_10_1016_j_sysconle_2021_105065
crossref_primary_10_1016_j_automatica_2020_109286
crossref_primary_10_1109_TNSE_2019_2901887
crossref_primary_10_1016_j_ins_2016_04_045
crossref_primary_10_1109_TSG_2020_3047949
crossref_primary_10_1109_OJCS_2020_3006807
crossref_primary_10_1007_s12555_020_0096_3
crossref_primary_10_1109_TSMC_2022_3179345
crossref_primary_10_1016_j_sysconle_2016_02_010
crossref_primary_10_1109_TPWRS_2022_3202710
crossref_primary_10_1134_S0965542524700155
crossref_primary_10_1016_j_ifacol_2021_10_402
crossref_primary_10_1109_TCYB_2020_2989835
crossref_primary_10_1016_j_automatica_2021_109737
crossref_primary_10_1109_TAC_2021_3130882
crossref_primary_10_1002_asjc_2284
crossref_primary_10_1109_ACCESS_2025_3532172
crossref_primary_10_1007_s11768_021_00061_z
crossref_primary_10_1109_LCSYS_2019_2923475
crossref_primary_10_1016_j_arcontrol_2020_04_014
crossref_primary_10_1016_j_automatica_2021_110134
crossref_primary_10_1109_TCNS_2021_3050330
crossref_primary_10_1016_j_automatica_2019_108798
crossref_primary_10_1007_s11424_024_3407_6
crossref_primary_10_1016_j_ifacol_2020_12_980
crossref_primary_10_1016_j_automatica_2024_111628
crossref_primary_10_1109_TSMC_2022_3220497
crossref_primary_10_1049_iet_cta_2019_0140
crossref_primary_10_1109_TAC_2020_3004773
crossref_primary_10_1109_TAC_2021_3115455
crossref_primary_10_1016_j_compchemeng_2024_108654
crossref_primary_10_1142_S0217595919500234
crossref_primary_10_1016_j_sysconle_2023_105524
crossref_primary_10_1109_TNSE_2018_2792401
crossref_primary_10_1017_nws_2022_25
crossref_primary_10_1109_LCSYS_2019_2914085
crossref_primary_10_1016_j_ifacol_2017_08_073
crossref_primary_10_1109_TCNS_2020_3005079
crossref_primary_10_1016_j_isatra_2025_02_023
crossref_primary_10_1016_j_jfranklin_2024_106902
crossref_primary_10_1016_j_automatica_2020_109091
crossref_primary_10_1016_j_sysconle_2016_05_011
crossref_primary_10_1007_s11768_024_00223_9
crossref_primary_10_1016_j_automatica_2018_03_044
crossref_primary_10_1016_j_ijepes_2021_107934
crossref_primary_10_1109_LCSYS_2023_3283341
crossref_primary_10_1109_TAC_2022_3187379
crossref_primary_10_1109_TCNS_2018_2797805
crossref_primary_10_1109_TAC_2018_2793164
crossref_primary_10_1109_TCC_2016_2647718
crossref_primary_10_1016_j_arcontrol_2019_04_008
crossref_primary_10_1109_TRO_2022_3193301
crossref_primary_10_1109_LCSYS_2017_2717799
crossref_primary_10_1049_cth2_12550
crossref_primary_10_1049_iet_cta_2018_6134
crossref_primary_10_1109_TSP_2019_2917855
crossref_primary_10_1007_s11424_023_1350_6
crossref_primary_10_1109_TCSI_2018_2877414
crossref_primary_10_1016_j_ifacol_2019_12_584
crossref_primary_10_1109_TCNS_2016_2594487
crossref_primary_10_1109_TNSE_2019_2894990
crossref_primary_10_1109_TCNS_2021_3068361
crossref_primary_10_1109_TAC_2017_2714645
crossref_primary_10_1109_TSMC_2021_3056871
crossref_primary_10_3390_electronics11223752
crossref_primary_10_1016_j_parco_2024_103113
crossref_primary_10_1109_TSG_2016_2533319
crossref_primary_10_1109_TCYB_2020_3000791
crossref_primary_10_1002_asjc_2788
crossref_primary_10_1109_TAC_2019_2910948
crossref_primary_10_3934_naco_2016014
crossref_primary_10_1016_j_ifacol_2022_07_543
crossref_primary_10_1109_TAC_2020_3010261
crossref_primary_10_1109_JSEN_2016_2555761
crossref_primary_10_1109_TIE_2016_2636119
crossref_primary_10_1080_00207721_2024_2408539
crossref_primary_10_1109_TCNS_2023_3293066
crossref_primary_10_1109_TAC_2020_2981930
crossref_primary_10_1016_j_automatica_2021_109658
crossref_primary_10_1016_j_automatica_2018_10_007
crossref_primary_10_1109_LCSYS_2018_2843679
crossref_primary_10_1109_TCSII_2023_3333325
Cites_doi 10.1109/TAC.2008.929387
10.1109/TAC.2010.2041686
10.1109/TAC.2014.2298712
10.1109/TAC.2008.2009515
10.1109/SSP.2007.4301349
10.1109/Allerton.2012.6483272
10.1016/0022-5193(70)90109-8
10.1109/CDC.2005.1582620
10.1109/CDC.2012.6426897
10.1109/TIT.2012.2191450
10.1109/Allerton.2012.6483273
10.1109/TAC.2003.812781
10.1109/TAC.2014.2308612
10.1109/CDC.2012.6426050
10.1109/CDC.2013.6760975
10.1137/060657005
10.1109/TAC.2011.2161027
10.1109/JPROC.2011.2159689
10.1109/CDC.2012.6425938
10.1109/TAC.2004.841888
10.1109/CDC.2012.6426375
10.1109/CDC.2002.1184304
10.1007/978-1-4615-2329-1
10.1109/Allerton.2013.6736534
10.1016/0005-1098(76)90006-6
10.1137/060657029
10.1109/CVPR.2011.5995654
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2015.2414771
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2878
ExternalDocumentID 3856366821
10_1109_TAC_2015_2414771
7063919
Genre orig-research
GrantInformation_xml – fundername: U.S. Air Force Office of Scientific Research
  funderid: 10.13039/100000181
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c366t-d73bcc7085f5f5c5c3b0ceae948eb272c0604936047dbdfda6400e21308da4f43
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Fri Jul 11 10:24:09 EDT 2025
Mon Jun 30 10:26:39 EDT 2025
Tue Jul 01 03:35:37 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Aug 27 02:52:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords distributed algorithms
multi-agent systems
Autonomous agents
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-d73bcc7085f5f5c5c3b0ceae948eb272c0604936047dbdfda6400e21308da4f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://repository.bilkent.edu.tr/bitstreams/e9e527bc-e71b-417d-b4c4-b51c126cc2d8/download
PQID 1729440088
PQPubID 85475
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TAC_2015_2414771
proquest_miscellaneous_1786158050
crossref_primary_10_1109_TAC_2015_2414771
proquest_journals_1729440088
ieee_primary_7063919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Nov.
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref33
ref11
ref32
margaris (ref2) 0
ref1
ref17
ref16
ref19
ref18
lu (ref22) 0
young (ref5) 1950
francis (ref35) 1976; 12
liu (ref10) 0
ref24
ref25
ref20
mou (ref26) 0
ref21
andersson (ref4) 1997
seneta (ref30) 2006
ref28
ref27
ref29
lu (ref23) 0
koc (ref3) 0
ref8
ref9
cao (ref36) 2008; 53
xiao (ref7) 0
ref6
References_xml – volume: 53
  start-page: 1826
  year: 2008
  ident: ref36
  article-title: Agreeing asynchronously
  publication-title: IEEE\ Trans\ \ Autom\ \ Control
  doi: 10.1109/TAC.2008.929387
– ident: ref15
  doi: 10.1109/TAC.2010.2041686
– start-page: 2269
  year: 0
  ident: ref26
  article-title: A fixed-neighbor, distributed algorithm for solving a linear algebraic equation
  publication-title: Proc Eur Control Conf
– ident: ref14
  doi: 10.1109/TAC.2014.2298712
– ident: ref11
  doi: 10.1109/TAC.2008.2009515
– ident: ref9
  doi: 10.1109/SSP.2007.4301349
– ident: ref12
  doi: 10.1109/Allerton.2012.6483272
– start-page: 22
  year: 0
  ident: ref23
  article-title: Distributed asynchronous algorithms for solving positive definite linear equations over networks-part i: Agent networks
  publication-title: Proc 1st IFAC Workshop Estimat Control Netw Syst
– ident: ref6
  doi: 10.1016/0022-5193(70)90109-8
– year: 1950
  ident: ref5
  publication-title: Iteratice Methods for Solving Partial Difference Equations of Elliptical Type
– ident: ref29
  doi: 10.1109/CDC.2005.1582620
– ident: ref20
  doi: 10.1109/CDC.2012.6426897
– start-page: 63
  year: 0
  ident: ref7
  article-title: A scheme for robust distributed sensor fusion based on average consensus
  publication-title: Proc 4th Int Symp Inf Process Sens Netw
– ident: ref8
  doi: 10.1109/TIT.2012.2191450
– year: 1997
  ident: ref4
  publication-title: Solving linear equations on parallel distributed menory architectures by extrapolation
– ident: ref21
  doi: 10.1109/Allerton.2012.6483273
– ident: ref28
  doi: 10.1109/TAC.2003.812781
– ident: ref18
  doi: 10.1109/TAC.2014.2308612
– ident: ref25
  doi: 10.1109/CDC.2012.6426050
– start-page: 258
  year: 0
  ident: ref22
  article-title: Distributed asynchronous algorithms for solving positive definite linear equations over networks-part ii: Wireless networks
  publication-title: Proc 1st IFAC Workshop Estimat Control Netw Syst
– start-page: 161
  year: 0
  ident: ref2
  article-title: Parallel implementation of the jacobi linear algebraic system solver
  publication-title: Proc 3rd Balkan Conf Inf
– ident: ref19
  doi: 10.1109/CDC.2013.6760975
– ident: ref27
  doi: 10.1137/060657005
– ident: ref17
  doi: 10.1109/TAC.2011.2161027
– ident: ref31
  doi: 10.1109/JPROC.2011.2159689
– ident: ref13
  doi: 10.1109/CDC.2012.6425938
– ident: ref33
  doi: 10.1109/TAC.2004.841888
– start-page: 5409
  year: 0
  ident: ref10
  article-title: An asynchronous distributed algorithm for solving a linear algebraic equation
  publication-title: Proc IEEE Conf Decision Control
– ident: ref16
  doi: 10.1109/CDC.2012.6426375
– year: 2006
  ident: ref30
  publication-title: Non-Negative Matrices and Markov Chains
– ident: ref37
  doi: 10.1109/CDC.2002.1184304
– start-page: 1339
  year: 0
  ident: ref3
  article-title: Exact solution of linear equations on distributed-memory processors
  publication-title: Proc 14th IMACS World Congr Comput Appl Math
– ident: ref34
  doi: 10.1007/978-1-4615-2329-1
– ident: ref1
  doi: 10.1109/Allerton.2013.6736534
– volume: 12
  start-page: 457
  year: 1976
  ident: ref35
  article-title: The internal model principle of control theory
  publication-title: Automatics
  doi: 10.1016/0005-1098(76)90006-6
– ident: ref32
  doi: 10.1137/060657029
– ident: ref24
  doi: 10.1109/CVPR.2011.5995654
SSID ssj0016441
Score 2.6022804
Snippet A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation...
A distributed algorithm is described for solving a linear algebraic equation of the form [Formula Omitted] assuming the equation has at least one solution. The...
A distributed algorithm is described for solving a linear algebraic equation of the form $Ax = b$ assuming the equation has at least one solution. The equation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2863
SubjectTerms Algebra
Algorithms
Conferences
Convergence
Distributed algorithms
Equations
Estimates
Facsimile
Graph theory
Graphs
Materials
Mathematical analysis
Meetings
Open Access
Tracking
Title A Distributed Algorithm for Solving a Linear Algebraic Equation
URI https://ieeexplore.ieee.org/document/7063919
https://www.proquest.com/docview/1729440088
https://www.proquest.com/docview/1786158050
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLCF4Eu9tt0yY5yeIDEfSigrfSpFMV162P7sVf70zbLb4QKZRC0ibNZDIzmcw3AHv90CIZXYGH0neetH30SMuIvDjPnTIOdV9xNPLFZXx2I89vo9spOGhjYRCxOnyGXX6sfPlZ4ca8VdZTLE8Z43OaDLc6Vqv1GLBcr1ddYuBAty5J3_SuB0d8hivqkrSSSvW_iKAqp8qPhbiSLqcLcDHpV32o5LE7Lm3XvX-DbPxvxxdhvlEzxaCeF0swhaNlmPsEPrgChwNxzKi5nPAKMzEY3hWvD-X9kyA1VlwVQ95pEKkgY5WYgYvZxfzgxMlLjQ6-CjenJ9dHZ16TTsFzYRyXXqZC65wiHSuny0UutL7DFI3UZF6rwDGOjgnppjKb5VkaE39jQEJOZ6nMZbgGM6NihOsgjA1NaGxuXWClSjOL2uY5reGmyhTud6A3GeHENVjjnPJimFQ2h28SoknCNEkamnRgv33jucbZ-KPuCg9xW68Z3Q5sTYiYNIz4lpB-ZiT9h9Yd2G2LiYXYL5KOsBhzHU16nfYjf-P3L2_CLLdfhyBuwUz5OsZt0kVKu1NNwg-IZdnT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcQPGw8ABug3fhYkHiZRO_6kTbJEzrxodvgeNkh8VY1qcvQblcGvRf-euy2VzE2TVOlqlLSyo3j2I7jnwEOg8giOV2hh9J3nrQBemRlxF5SFE4ZhzpQnI08vkpG1_LrTXyzBEddLgwi1ofPsM-PdSw_L92ct8oGivUpY3yukN6PgyZbq4sZsGZv1l0S4VB3QUnfDCbDEz7FFfdJX0mlgt-UUF1V5Y-luNYv5-swXlDWHCv50Z9Xtu-eXoE2_i_pG7DWGppi2MyMd7CEs_ew-gJ-cBOOh-KUcXO55BXmYji9LR_uqu8_BRmy4ls55b0GkQlyV0kcuJmDzHdOnP1q8MG34Pr8bHIy8tqCCp6LkqTychVZ5xRZWQVdLnaR9R1maKQmB1uFjpF0TEQ3ldu8yLOEJBxDUnM6z2Qho21YnpUz_ADC2MhExhbWhVaqLLeobVHQKm7qWuF-DwaLEU5dizbORS-mae11-CYlnqTMk7TlSQ8-d2_cN0gb_-i7yUPc9WtHtwe7CyamrSg-pmShGUn_oXUPDrpmEiKOjGQzLOfcR5Nlp_3Y__j3L3-CN6PJ-DK9_HJ1sQNvmZYmIXEXlquHOe6RZVLZ_XpCPgMP-N0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Algorithm+for+Solving+a+Linear+Algebraic+Equation&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Mou%2C+Shaoshuai&rft.au=Liu%2C+Ji&rft.au=Morse%2C+AStephen&rft.date=2015-11-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=60&rft.issue=11&rft.spage=2863&rft.epage=2878&rft_id=info:doi/10.1109%2FTAC.2015.2414771&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon