A Distributed Algorithm for Solving a Linear Algebraic Equation
A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimate...
Saved in:
Published in | IEEE transactions on automatic control Vol. 60; no. 11; pp. 2863 - 2878 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2015.2414771 |
Cover
Loading…
Abstract | A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph N(t) whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix A for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" N(t), t = 1, 2, ..., the algorithm causes all agents' estimates to converge exponentially fast to the same solution to Ax = b. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when Ax = b has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to Ax = b, even if A and b are changing with time, provided the rates of change of A and bare sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to Ax = b in a distributed manner, even if Ax = b does not have a solution. |
---|---|
AbstractList | A distributed algorithm is described for solving a linear algebraic equation of the form $Ax = b$ assuming the equation has at least one solution. The equation is simultaneously solved by $m$ agents assuming each agent knows only a subset of the rows of the partitioned matrix $[\matrix{A & b}]$, the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph $\BBN(t)$ whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix $A$ for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" $\BBN(t)$, $t = 1, 2, \ldots$, the algorithm causes all agents' estimates to converge exponentially fast to the same solution to $Ax = b$. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when $Ax = b$ has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to $Ax = b$, even if $A$ and $b$ are changing with time, provided the rates of change of $A$ and $b$ are sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to $Ax = b$ in a distributed manner, even if $Ax = b$ does not have a solution. A distributed algorithm is described for solving a linear algebraic equation of the form [Formula Omitted] assuming the equation has at least one solution. The equation is simultaneously solved by [Formula Omitted] agents assuming each agent knows only a subset of the rows of the partitioned matrix [Formula Omitted], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph [Formula Omitted] whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix [Formula Omitted] for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" [Formula Omitted], [Formula Omitted], the algorithm causes all agents' estimates to converge exponentially fast to the same solution to [Formula Omitted]. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when [Formula Omitted] has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to [Formula Omitted], even if [Formula Omitted] and [Formula Omitted] are changing with time, provided the rates of change of [Formula Omitted] and [Formula Omitted] are sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to [Formula Omitted] in a distributed manner, even if [Formula Omitted] does not have a solution. A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation is simultaneously solved by m agents assuming each agent knows only a subset of the rows of the partitioned matrix [A b], the current estimates of the equation's solution generated by its neighbors, and nothing more. Each agent recursively updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor relations are characterized by a time-dependent directed graph N(t) whose vertices correspond to agents and whose arcs depict neighbor relations. It is shown that for any matrix A for which the equation has a solution and any sequence of "repeatedly jointly strongly connected graphs" N(t), t = 1, 2, ..., the algorithm causes all agents' estimates to converge exponentially fast to the same solution to Ax = b. It is also shown that, under mild assumptions, the neighbor graph sequence must actually be repeatedly jointly strongly connected if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case when Ax = b has a unique solution. It is demonstrated that with minor modification, the algorithm can track the solution to Ax = b, even if A and b are changing with time, provided the rates of change of A and bare sufficiently small. It is also shown that in the absence of communication delays, exponential convergence to a solution occurs even if the times at which each agent updates its estimates are not synchronized with the update times of its neighbors. A modification of the algorithm is outlined which enables it to obtain a least squares solution to Ax = b in a distributed manner, even if Ax = b does not have a solution. |
Author | Morse, A. Stephen Shaoshuai Mou Ji Liu |
Author_xml | – sequence: 1 surname: Shaoshuai Mou fullname: Shaoshuai Mou email: mous@purdue.edu organization: Sch. of Aeronaut. & Astronaut., Purdue Univ., West Lafayette, IN, USA – sequence: 2 surname: Ji Liu fullname: Ji Liu email: jiliu@illinois.edu organization: Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Champaign, IL, USA – sequence: 3 givenname: A. Stephen surname: Morse fullname: Morse, A. Stephen email: as.morse@yale.edu organization: Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA |
BookMark | eNp9kE1LAzEQhoNUsK3eBS8LXrxsnXxskj1JqfUDCh6s5yWbzdaU7aZNdgX_vaktHnqQgRmGed5h5h2hQetag9A1hgnGkN8vp7MJAZxNCMNMCHyGhjjLZEoyQgdoCIBlmhPJL9AohHVsOWN4iB6myaMNnbdl35kqmTYr5233uUlq55N313zZdpWoZGFbo_x-bEqvrE7mu1511rWX6LxWTTBXxzpGH0_z5ewlXbw9v86mi1RTzru0ErTUWoDM6hg607QEbZTJmTQlEUQDB5bTmERVVnWlOAMwBFOQlWI1o2N0d9i79W7Xm9AVGxu0aRrVGteHAgvJcSYhg4jenqBr1_s2XhcpkrO4WcpI8QOlvQvBm7rQtvt9qYsPNgWGYu9rEX0t9r4WR1-jEE6EW283yn__J7k5SKwx5g8XwGmOc_oDO8GC-A |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_TAC_2022_3169179 crossref_primary_10_1109_TAC_2018_2800644 crossref_primary_10_1109_TAC_2019_2894588 crossref_primary_10_1109_TAC_2023_3247572 crossref_primary_10_1016_j_automatica_2022_110572 crossref_primary_10_1016_j_automatica_2024_111662 crossref_primary_10_1109_LCSYS_2017_2698179 crossref_primary_10_1016_j_automatica_2023_111421 crossref_primary_10_1016_j_jai_2023_06_003 crossref_primary_10_1109_TAC_2021_3130888 crossref_primary_10_1109_TAC_2023_3339437 crossref_primary_10_1109_TSIPN_2024_3511265 crossref_primary_10_1038_s41598_020_69640_5 crossref_primary_10_1016_j_automatica_2019_108755 crossref_primary_10_1016_j_apenergy_2023_121298 crossref_primary_10_1016_j_automatica_2020_109108 crossref_primary_10_1109_TAC_2019_2932031 crossref_primary_10_1109_TAC_2022_3174650 crossref_primary_10_1016_j_ifacol_2020_12_1136 crossref_primary_10_1109_TSMC_2019_2914385 crossref_primary_10_1109_TAC_2017_2771140 crossref_primary_10_1109_LCSYS_2021_3084555 crossref_primary_10_1016_j_automatica_2024_111531 crossref_primary_10_1109_TAC_2018_2847603 crossref_primary_10_1016_j_automatica_2017_05_004 crossref_primary_10_1016_j_ifacol_2016_10_223 crossref_primary_10_1007_s11227_024_06302_7 crossref_primary_10_1109_TSMC_2020_3034229 crossref_primary_10_1109_TAC_2023_3241237 crossref_primary_10_1016_j_automatica_2019_03_015 crossref_primary_10_1016_j_sysconle_2023_105698 crossref_primary_10_1109_TAC_2024_3419185 crossref_primary_10_31590_ejosat_952456 crossref_primary_10_1002_rnc_3990 crossref_primary_10_1007_s11432_018_9682_4 crossref_primary_10_1016_j_sysconle_2024_106008 crossref_primary_10_1109_TAC_2019_2919101 crossref_primary_10_1109_TAC_2016_2612819 crossref_primary_10_1137_19M1258864 crossref_primary_10_1109_TCNS_2024_3432816 crossref_primary_10_1109_TAC_2023_3312137 crossref_primary_10_1016_j_automatica_2022_110633 crossref_primary_10_31857_S0044466924040078 crossref_primary_10_1016_j_sysconle_2022_105265 crossref_primary_10_1016_j_ifacol_2017_08_441 crossref_primary_10_1137_17M1118609 crossref_primary_10_1016_j_sysconle_2021_105065 crossref_primary_10_1016_j_automatica_2020_109286 crossref_primary_10_1109_TNSE_2019_2901887 crossref_primary_10_1016_j_ins_2016_04_045 crossref_primary_10_1109_TSG_2020_3047949 crossref_primary_10_1109_OJCS_2020_3006807 crossref_primary_10_1007_s12555_020_0096_3 crossref_primary_10_1109_TSMC_2022_3179345 crossref_primary_10_1016_j_sysconle_2016_02_010 crossref_primary_10_1109_TPWRS_2022_3202710 crossref_primary_10_1134_S0965542524700155 crossref_primary_10_1016_j_ifacol_2021_10_402 crossref_primary_10_1109_TCYB_2020_2989835 crossref_primary_10_1016_j_automatica_2021_109737 crossref_primary_10_1109_TAC_2021_3130882 crossref_primary_10_1002_asjc_2284 crossref_primary_10_1109_ACCESS_2025_3532172 crossref_primary_10_1007_s11768_021_00061_z crossref_primary_10_1109_LCSYS_2019_2923475 crossref_primary_10_1016_j_arcontrol_2020_04_014 crossref_primary_10_1016_j_automatica_2021_110134 crossref_primary_10_1109_TCNS_2021_3050330 crossref_primary_10_1016_j_automatica_2019_108798 crossref_primary_10_1007_s11424_024_3407_6 crossref_primary_10_1016_j_ifacol_2020_12_980 crossref_primary_10_1016_j_automatica_2024_111628 crossref_primary_10_1109_TSMC_2022_3220497 crossref_primary_10_1049_iet_cta_2019_0140 crossref_primary_10_1109_TAC_2020_3004773 crossref_primary_10_1109_TAC_2021_3115455 crossref_primary_10_1016_j_compchemeng_2024_108654 crossref_primary_10_1142_S0217595919500234 crossref_primary_10_1016_j_sysconle_2023_105524 crossref_primary_10_1109_TNSE_2018_2792401 crossref_primary_10_1017_nws_2022_25 crossref_primary_10_1109_LCSYS_2019_2914085 crossref_primary_10_1016_j_ifacol_2017_08_073 crossref_primary_10_1109_TCNS_2020_3005079 crossref_primary_10_1016_j_isatra_2025_02_023 crossref_primary_10_1016_j_jfranklin_2024_106902 crossref_primary_10_1016_j_automatica_2020_109091 crossref_primary_10_1016_j_sysconle_2016_05_011 crossref_primary_10_1007_s11768_024_00223_9 crossref_primary_10_1016_j_automatica_2018_03_044 crossref_primary_10_1016_j_ijepes_2021_107934 crossref_primary_10_1109_LCSYS_2023_3283341 crossref_primary_10_1109_TAC_2022_3187379 crossref_primary_10_1109_TCNS_2018_2797805 crossref_primary_10_1109_TAC_2018_2793164 crossref_primary_10_1109_TCC_2016_2647718 crossref_primary_10_1016_j_arcontrol_2019_04_008 crossref_primary_10_1109_TRO_2022_3193301 crossref_primary_10_1109_LCSYS_2017_2717799 crossref_primary_10_1049_cth2_12550 crossref_primary_10_1049_iet_cta_2018_6134 crossref_primary_10_1109_TSP_2019_2917855 crossref_primary_10_1007_s11424_023_1350_6 crossref_primary_10_1109_TCSI_2018_2877414 crossref_primary_10_1016_j_ifacol_2019_12_584 crossref_primary_10_1109_TCNS_2016_2594487 crossref_primary_10_1109_TNSE_2019_2894990 crossref_primary_10_1109_TCNS_2021_3068361 crossref_primary_10_1109_TAC_2017_2714645 crossref_primary_10_1109_TSMC_2021_3056871 crossref_primary_10_3390_electronics11223752 crossref_primary_10_1016_j_parco_2024_103113 crossref_primary_10_1109_TSG_2016_2533319 crossref_primary_10_1109_TCYB_2020_3000791 crossref_primary_10_1002_asjc_2788 crossref_primary_10_1109_TAC_2019_2910948 crossref_primary_10_3934_naco_2016014 crossref_primary_10_1016_j_ifacol_2022_07_543 crossref_primary_10_1109_TAC_2020_3010261 crossref_primary_10_1109_JSEN_2016_2555761 crossref_primary_10_1109_TIE_2016_2636119 crossref_primary_10_1080_00207721_2024_2408539 crossref_primary_10_1109_TCNS_2023_3293066 crossref_primary_10_1109_TAC_2020_2981930 crossref_primary_10_1016_j_automatica_2021_109658 crossref_primary_10_1016_j_automatica_2018_10_007 crossref_primary_10_1109_LCSYS_2018_2843679 crossref_primary_10_1109_TCSII_2023_3333325 |
Cites_doi | 10.1109/TAC.2008.929387 10.1109/TAC.2010.2041686 10.1109/TAC.2014.2298712 10.1109/TAC.2008.2009515 10.1109/SSP.2007.4301349 10.1109/Allerton.2012.6483272 10.1016/0022-5193(70)90109-8 10.1109/CDC.2005.1582620 10.1109/CDC.2012.6426897 10.1109/TIT.2012.2191450 10.1109/Allerton.2012.6483273 10.1109/TAC.2003.812781 10.1109/TAC.2014.2308612 10.1109/CDC.2012.6426050 10.1109/CDC.2013.6760975 10.1137/060657005 10.1109/TAC.2011.2161027 10.1109/JPROC.2011.2159689 10.1109/CDC.2012.6425938 10.1109/TAC.2004.841888 10.1109/CDC.2012.6426375 10.1109/CDC.2002.1184304 10.1007/978-1-4615-2329-1 10.1109/Allerton.2013.6736534 10.1016/0005-1098(76)90006-6 10.1137/060657029 10.1109/CVPR.2011.5995654 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
DOI | 10.1109/TAC.2015.2414771 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 2878 |
ExternalDocumentID | 3856366821 10_1109_TAC_2015_2414771 7063919 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Air Force Office of Scientific Research funderid: 10.13039/100000181 – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c366t-d73bcc7085f5f5c5c3b0ceae948eb272c0604936047dbdfda6400e21308da4f43 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Fri Jul 11 10:24:09 EDT 2025 Mon Jun 30 10:26:39 EDT 2025 Tue Jul 01 03:35:37 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 27 02:52:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | distributed algorithms multi-agent systems Autonomous agents |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-d73bcc7085f5f5c5c3b0ceae948eb272c0604936047dbdfda6400e21308da4f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://repository.bilkent.edu.tr/bitstreams/e9e527bc-e71b-417d-b4c4-b51c126cc2d8/download |
PQID | 1729440088 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2015_2414771 proquest_miscellaneous_1786158050 crossref_primary_10_1109_TAC_2015_2414771 proquest_journals_1729440088 ieee_primary_7063919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Nov. 2015-11-00 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-Nov. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref33 ref11 ref32 margaris (ref2) 0 ref1 ref17 ref16 ref19 ref18 lu (ref22) 0 young (ref5) 1950 francis (ref35) 1976; 12 liu (ref10) 0 ref24 ref25 ref20 mou (ref26) 0 ref21 andersson (ref4) 1997 seneta (ref30) 2006 ref28 ref27 ref29 lu (ref23) 0 koc (ref3) 0 ref8 ref9 cao (ref36) 2008; 53 xiao (ref7) 0 ref6 |
References_xml | – volume: 53 start-page: 1826 year: 2008 ident: ref36 article-title: Agreeing asynchronously publication-title: IEEE\ Trans\ \ Autom\ \ Control doi: 10.1109/TAC.2008.929387 – ident: ref15 doi: 10.1109/TAC.2010.2041686 – start-page: 2269 year: 0 ident: ref26 article-title: A fixed-neighbor, distributed algorithm for solving a linear algebraic equation publication-title: Proc Eur Control Conf – ident: ref14 doi: 10.1109/TAC.2014.2298712 – ident: ref11 doi: 10.1109/TAC.2008.2009515 – ident: ref9 doi: 10.1109/SSP.2007.4301349 – ident: ref12 doi: 10.1109/Allerton.2012.6483272 – start-page: 22 year: 0 ident: ref23 article-title: Distributed asynchronous algorithms for solving positive definite linear equations over networks-part i: Agent networks publication-title: Proc 1st IFAC Workshop Estimat Control Netw Syst – ident: ref6 doi: 10.1016/0022-5193(70)90109-8 – year: 1950 ident: ref5 publication-title: Iteratice Methods for Solving Partial Difference Equations of Elliptical Type – ident: ref29 doi: 10.1109/CDC.2005.1582620 – ident: ref20 doi: 10.1109/CDC.2012.6426897 – start-page: 63 year: 0 ident: ref7 article-title: A scheme for robust distributed sensor fusion based on average consensus publication-title: Proc 4th Int Symp Inf Process Sens Netw – ident: ref8 doi: 10.1109/TIT.2012.2191450 – year: 1997 ident: ref4 publication-title: Solving linear equations on parallel distributed menory architectures by extrapolation – ident: ref21 doi: 10.1109/Allerton.2012.6483273 – ident: ref28 doi: 10.1109/TAC.2003.812781 – ident: ref18 doi: 10.1109/TAC.2014.2308612 – ident: ref25 doi: 10.1109/CDC.2012.6426050 – start-page: 258 year: 0 ident: ref22 article-title: Distributed asynchronous algorithms for solving positive definite linear equations over networks-part ii: Wireless networks publication-title: Proc 1st IFAC Workshop Estimat Control Netw Syst – start-page: 161 year: 0 ident: ref2 article-title: Parallel implementation of the jacobi linear algebraic system solver publication-title: Proc 3rd Balkan Conf Inf – ident: ref19 doi: 10.1109/CDC.2013.6760975 – ident: ref27 doi: 10.1137/060657005 – ident: ref17 doi: 10.1109/TAC.2011.2161027 – ident: ref31 doi: 10.1109/JPROC.2011.2159689 – ident: ref13 doi: 10.1109/CDC.2012.6425938 – ident: ref33 doi: 10.1109/TAC.2004.841888 – start-page: 5409 year: 0 ident: ref10 article-title: An asynchronous distributed algorithm for solving a linear algebraic equation publication-title: Proc IEEE Conf Decision Control – ident: ref16 doi: 10.1109/CDC.2012.6426375 – year: 2006 ident: ref30 publication-title: Non-Negative Matrices and Markov Chains – ident: ref37 doi: 10.1109/CDC.2002.1184304 – start-page: 1339 year: 0 ident: ref3 article-title: Exact solution of linear equations on distributed-memory processors publication-title: Proc 14th IMACS World Congr Comput Appl Math – ident: ref34 doi: 10.1007/978-1-4615-2329-1 – ident: ref1 doi: 10.1109/Allerton.2013.6736534 – volume: 12 start-page: 457 year: 1976 ident: ref35 article-title: The internal model principle of control theory publication-title: Automatics doi: 10.1016/0005-1098(76)90006-6 – ident: ref32 doi: 10.1137/060657029 – ident: ref24 doi: 10.1109/CVPR.2011.5995654 |
SSID | ssj0016441 |
Score | 2.6022804 |
Snippet | A distributed algorithm is described for solving a linear algebraic equation of the form Ax = b assuming the equation has at least one solution. The equation... A distributed algorithm is described for solving a linear algebraic equation of the form [Formula Omitted] assuming the equation has at least one solution. The... A distributed algorithm is described for solving a linear algebraic equation of the form $Ax = b$ assuming the equation has at least one solution. The equation... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2863 |
SubjectTerms | Algebra Algorithms Conferences Convergence Distributed algorithms Equations Estimates Facsimile Graph theory Graphs Materials Mathematical analysis Meetings Open Access Tracking |
Title | A Distributed Algorithm for Solving a Linear Algebraic Equation |
URI | https://ieeexplore.ieee.org/document/7063919 https://www.proquest.com/docview/1729440088 https://www.proquest.com/docview/1786158050 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLCF4Eu9tt0yY5yeIDEfSigrfSpFMV162P7sVf70zbLb4QKZRC0ibNZDIzmcw3AHv90CIZXYGH0neetH30SMuIvDjPnTIOdV9xNPLFZXx2I89vo9spOGhjYRCxOnyGXX6sfPlZ4ca8VdZTLE8Z43OaDLc6Vqv1GLBcr1ddYuBAty5J3_SuB0d8hivqkrSSSvW_iKAqp8qPhbiSLqcLcDHpV32o5LE7Lm3XvX-DbPxvxxdhvlEzxaCeF0swhaNlmPsEPrgChwNxzKi5nPAKMzEY3hWvD-X9kyA1VlwVQ95pEKkgY5WYgYvZxfzgxMlLjQ6-CjenJ9dHZ16TTsFzYRyXXqZC65wiHSuny0UutL7DFI3UZF6rwDGOjgnppjKb5VkaE39jQEJOZ6nMZbgGM6NihOsgjA1NaGxuXWClSjOL2uY5reGmyhTud6A3GeHENVjjnPJimFQ2h28SoknCNEkamnRgv33jucbZ-KPuCg9xW68Z3Q5sTYiYNIz4lpB-ZiT9h9Yd2G2LiYXYL5KOsBhzHU16nfYjf-P3L2_CLLdfhyBuwUz5OsZt0kVKu1NNwg-IZdnT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcQPGw8ABug3fhYkHiZRO_6kTbJEzrxodvgeNkh8VY1qcvQblcGvRf-euy2VzE2TVOlqlLSyo3j2I7jnwEOg8giOV2hh9J3nrQBemRlxF5SFE4ZhzpQnI08vkpG1_LrTXyzBEddLgwi1ofPsM-PdSw_L92ct8oGivUpY3yukN6PgyZbq4sZsGZv1l0S4VB3QUnfDCbDEz7FFfdJX0mlgt-UUF1V5Y-luNYv5-swXlDWHCv50Z9Xtu-eXoE2_i_pG7DWGppi2MyMd7CEs_ew-gJ-cBOOh-KUcXO55BXmYji9LR_uqu8_BRmy4ls55b0GkQlyV0kcuJmDzHdOnP1q8MG34Pr8bHIy8tqCCp6LkqTychVZ5xRZWQVdLnaR9R1maKQmB1uFjpF0TEQ3ldu8yLOEJBxDUnM6z2Qho21YnpUz_ADC2MhExhbWhVaqLLeobVHQKm7qWuF-DwaLEU5dizbORS-mae11-CYlnqTMk7TlSQ8-d2_cN0gb_-i7yUPc9WtHtwe7CyamrSg-pmShGUn_oXUPDrpmEiKOjGQzLOfcR5Nlp_3Y__j3L3-CN6PJ-DK9_HJ1sQNvmZYmIXEXlquHOe6RZVLZ_XpCPgMP-N0c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Algorithm+for+Solving+a+Linear+Algebraic+Equation&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Mou%2C+Shaoshuai&rft.au=Liu%2C+Ji&rft.au=Morse%2C+AStephen&rft.date=2015-11-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=60&rft.issue=11&rft.spage=2863&rft.epage=2878&rft_id=info:doi/10.1109%2FTAC.2015.2414771&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |