Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease

Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The r...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 12535 - 15
Main Authors Thepbandit, Wannaporn, Papathoti, Narendra Kumar, Hoang, Nguyen Huy, Siriwong, Supatcharee, Sangpueak, Rungthip, Saengchan, Chanon, Laemchiab, Kansinee, Kiddeejing, Dusadee, Tonpho, Kodchaphon, Buensanteai, Kumrai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at − 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60–75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL −1 and at ≥ 50 µg mL −1 , respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000–2800 cm −1 ) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm −1 in the AgNPs treated samples. The second region (1700–1450 cm −1 ) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm −1 in the AgNPs treated samples. The third region (1300–900 cm −1 ), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm −1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
AbstractList Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at − 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60–75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL −1 and at ≥ 50 µg mL −1 , respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000–2800 cm −1 ) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm −1 in the AgNPs treated samples. The second region (1700–1450 cm −1 ) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm −1 in the AgNPs treated samples. The third region (1300–900 cm −1 ), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm −1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
Abstract Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at − 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60–75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL −1 and at ≥ 50 µg mL −1 , respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000–2800 cm −1 ) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm −1 in the AgNPs treated samples. The second region (1700–1450 cm −1 ) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm −1 in the AgNPs treated samples. The third region (1300–900 cm −1 ), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm −1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at − 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60–75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL−1 and at ≥ 50 µg mL−1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000–2800 cm−1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm−1 in the AgNPs treated samples. The second region (1700–1450 cm−1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm−1 in the AgNPs treated samples. The third region (1300–900 cm−1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm−1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL and at ≥ 50 µg mL , respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm ) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm in the AgNPs treated samples. The second region (1700-1450 cm ) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm in the AgNPs treated samples. The third region (1300-900 cm ), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
Abstract Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at − 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60–75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL−1 and at ≥ 50 µg mL−1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000–2800 cm−1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm−1 in the AgNPs treated samples. The second region (1700–1450 cm−1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm−1 in the AgNPs treated samples. The third region (1300–900 cm−1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm−1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).
ArticleNumber 12535
Author Tonpho, Kodchaphon
Papathoti, Narendra Kumar
Thepbandit, Wannaporn
Buensanteai, Kumrai
Kiddeejing, Dusadee
Siriwong, Supatcharee
Laemchiab, Kansinee
Saengchan, Chanon
Sangpueak, Rungthip
Hoang, Nguyen Huy
Author_xml – sequence: 1
  givenname: Wannaporn
  surname: Thepbandit
  fullname: Thepbandit, Wannaporn
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 2
  givenname: Narendra Kumar
  surname: Papathoti
  fullname: Papathoti, Narendra Kumar
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 3
  givenname: Nguyen Huy
  surname: Hoang
  fullname: Hoang, Nguyen Huy
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 4
  givenname: Supatcharee
  surname: Siriwong
  fullname: Siriwong, Supatcharee
  organization: Synchrotron Light Research Institute
– sequence: 5
  givenname: Rungthip
  surname: Sangpueak
  fullname: Sangpueak, Rungthip
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 6
  givenname: Chanon
  surname: Saengchan
  fullname: Saengchan, Chanon
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 7
  givenname: Kansinee
  surname: Laemchiab
  fullname: Laemchiab, Kansinee
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 8
  givenname: Dusadee
  surname: Kiddeejing
  fullname: Kiddeejing, Dusadee
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 9
  givenname: Kodchaphon
  surname: Tonpho
  fullname: Tonpho, Kodchaphon
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
– sequence: 10
  givenname: Kumrai
  surname: Buensanteai
  fullname: Buensanteai, Kumrai
  email: kumrai@sut.ac.th
  organization: School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38821999$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxVeoiJbSL8ABWeLCZcH_1rs-QgW0UiUu5WzN2rOJo8QOnk2l5tPjNqFUHPDBtjy_efbze92cpJywad4K_lFwNXwiLTo7tFzq1nDLVbt_0ZxJrrtWKilPnu1PmwuiFa-jk1YL-6o5VcMghbX2rJm_xNzSfZqXSJEYpMD8Egr4GUvcwxxzYnliFNd3WFiClLdQ5ujXSGwqecNuS_TLHLBsgNEWfawFWEBMNDMPRHAHrOQ812lmIRIC4Zvm5QRrwovjet78_Pb19vKqvfnx_fry803rlTFzG1Tfd7zz2ms1QgDvUaIZwmixr56tkp2RoVMgZeeD59zWH5m4ERamXndcnTfXB92QYeW2JW6g3LsM0T0e5LJwRzOuByOEkHoMI2hAA1OHcrQDKhiFAFW1Phy0tiX_2iHNbhPJ43oNCfOOnOJGaWPsoCv6_h90lXclVacPlOwtt8JWSh4oXzJRwenpgYK7h4jdIWJXI3aPEbt9bXp3lN6NGwxPLX8CrYA6AFRLaYHl793_kf0NF3-09g
Cites_doi 10.3390/molecules24142558
10.1016/j.eti.2022.102336
10.1007/s10681-016-1676-4
10.1016/B978-0-12-817909-3.00010-8
10.1016/s0939-6411(03)00193-0
10.3389/fchem.2018.00237
10.3390/toxins12070457
10.1371/journal.ppat.1007184
10.1016/j.ijfoodmicro.2017.07.020
10.3389/fmicb.2020.00455
10.1186/s12951-018-0334-5
10.1016/j.jpha.2015.11.005
10.3762/bjnano.9.98
10.1016/j.mex.2017.12.003
10.1128/AEM.69.11.6762-6767.2003
10.1016/j.sjbs.2020.04.026
10.24425/jppr.2021.137952
10.1007/978-3-030-66956-0_3
10.1038/srep44421
10.1007/s13762-016-1062-8
10.1016/j.plipres.2015.11.003
10.1007/978-3-319-25001-4_8
10.5941/MYCO.2012.40.1.053
10.1016/j.chemosphere.2020.128580
10.1016/0167-4838(92)90261-B
10.1093/femsec/fiw036
10.1016/j.pbi.2013.06.011
10.3390/mi12121480
10.3390/biom11040535
10.1038/nature05248
10.1186/s11671-016-1311-2
10.1016/j.mimet.2015.09.021
10.1073/pnas.1811267116
10.1128/AEM.01334-07
10.1371/journal.pone.0180680
10.4236/jmp.2015.68111
10.1007/s11356-022-23945-2
10.1007/978-3-030-00683-9_2
10.1111/j.1469-8137.2009.03041.x
10.3389/fnut.2020.00132
10.1186/1475-2859-13-86
10.1080/02648725.2007.10648095
10.1016/j.jab.2017.03.004
10.1128/9781555819583.ch21
10.1088/0957-0233/26/8/085601
10.1007/s11046-004-6156-z
10.1007/978-1-60327-198-1_6
10.1016/B978-0-12-819847-6.00016-4
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-60903-z
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Journals (ProQuest Database)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_7a611124bdba4ae6af5e2b98e3ab11a3
10_1038_s41598_024_60903_z
38821999
Genre Journal Article
GrantInformation_xml – fundername: Suranaree University of Technology, Thailand, for providing financial support. Authors would also like to express sincere thanks to the Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF).
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c366t-d377505c4c43badacce2e68db9e7609932562d53a225cdc009598f0619af74503
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Tue Oct 22 15:03:18 EDT 2024
Sat Oct 26 04:54:53 EDT 2024
Thu Oct 10 16:41:09 EDT 2024
Fri Aug 23 01:35:45 EDT 2024
Tue Oct 29 09:20:02 EDT 2024
Fri Oct 11 20:46:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Green Synthesis Nanoparticle
Cassava Root Rot disease, Lasiodiplodia theobromae, Fusarium solani
FTIR, Plant Biochemical
Antifungal Plant Disease
Silver nanoparticle
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-d377505c4c43badacce2e68db9e7609932562d53a225cdc009598f0619af74503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1038/s41598-024-60903-z
PMID 38821999
PQID 3062790919
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7a611124bdba4ae6af5e2b98e3ab11a3
proquest_miscellaneous_3063466984
proquest_journals_3062790919
crossref_primary_10_1038_s41598_024_60903_z
pubmed_primary_38821999
springer_journals_10_1038_s41598_024_60903_z
PublicationCentury 2000
PublicationDate 2024-05-31
PublicationDateYYYYMMDD 2024-05-31
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Iravani, Korbekandi, Mirmohammadi, Zolfaghari (CR14) 2014; 9
Arzu, Dilek, Muhsin, Larramendy, Soloneski (CR15) 2016
Kumar, Nagar, Anand, Singh (CR9) 2021
Walley, Kliebenstein, Bostock, Dehesh (CR42) 2013; 16
Alsamhary (CR24) 2020; 27
CR36
Oliveira, Pauli, Mascarin, Delalibera (CR23) 2015; 119
Siddiqi, Husen (CR2) 2016; 11
Rozhin (CR17) 2021; 12
Dorcheh, Vahabi, Mérillon, Ramawat (CR19) 2017
Saravanan (CR13) 2021; 264
Makovitzki, Viterbo, Brotman, Chet, Shai (CR29) 2007; 73
Khan (CR12) 2022; 29
Feldman, Yarden, Hadar (CR46) 2020; 11
John (CR30) 2008; 28
Kogkaki (CR31) 2017; 259
Liu, Bastiaan-Net, Wichers (CR47) 2020
Madakka, Jayaraju, Rajesh (CR25) 2018; 5
Balouiri, Sadiki, Ibnsouda (CR28) 2016; 6
Siddiqi, Husen, Rao (CR1) 2018; 16
Jeevanandam, Barhoum, Chan, Dufresne, Danquah (CR8) 2018; 9
Kim (CR22) 2012; 40
Shnoudeh, Tekade (CR37) 2019
Salvatore, Alves, Andolfi (CR41) 2020; 12
Ying (CR7) 2022; 26
Brown, Cowen, di Pietro, Quinn (CR53) 2017
Vladár, Hodoroaba, Hodoroaba, Unger, Shard (CR5) 2020
Shapaval, Afseth, Vogt, Kohler (CR43) 2014; 13
Fariq, Khan, Yasmin (CR16) 2017; 15
Carvalho, Felício, Santos, Gonçalves, Domingues (CR26) 2018; 6
Delvallée, Feltin, Ducourtieux, Trabelsi, Hochepied (CR27) 2015; 26
Saengchan, Phansak, Le Thanh, Papathoti, Buensanteai (CR21) 2021; 61
Singh, Prasad (CR11) 2017; 14
Raval, Rakesh (CR3) 2019
Clogston, Patri (CR38) 2011; 697
Künzler (CR50) 2018; 14
Guilger (CR18) 2017; 7
Contreras-Cornejo, Macías-Rodríguez, del Val, Larsen (CR20) 2016; 92
Boas, Hohenfeld, Oliveira, Santos, Oliveira (CR33) 2016
Bootz, Vogel, Schubert, Kreuter (CR6) 2004; 57
Van Aarle, Olsson (CR39) 2003; 69
Krimm, Bandekar, Anfinsen, Edsall, Richards (CR44) 1986
Kämper (CR48) 2006; 444
Mahmudin, Suharyadi, Utomo, Abraha (CR34) 2015; 06
Skoneczny, Skoneczna, Skoneczny (CR49) 2018
Shang (CR10) 2019; 24
Walter, Nicholson, Doohan (CR54) 2010; 185
Rella, Farnoud, Del Poeta (CR40) 2016; 61
Onyeka, Dixon, Ekpo (CR32) 2005; 159
Mihoubi, Sahli, Gargouri, Amiel (CR51) 2017; 12
Konappa (CR35) 2021; 11
Bandekar (CR45) 1992; 1120
Nobbmann (CR4) 2007; 24
Peyraud, Mbengue, Barbacci, Raffaele (CR52) 2019; 116
S Iravani (60903_CR14) 2014; 9
V Shapaval (60903_CR43) 2014; 13
M Guilger (60903_CR18) 2017; 7
SW Kim (60903_CR22) 2012; 40
J Clogston (60903_CR38) 2011; 697
AJP Brown (60903_CR53) 2017
E Kogkaki (60903_CR31) 2017; 259
A Kumar (60903_CR9) 2021
M Balouiri (60903_CR28) 2016; 6
S Walter (60903_CR54) 2010; 185
L Mahmudin (60903_CR34) 2015; 06
Y Shang (60903_CR10) 2019; 24
JW Walley (60903_CR42) 2013; 16
AE Vladár (60903_CR5) 2020
J Jeevanandam (60903_CR8) 2018; 9
KS Siddiqi (60903_CR1) 2018; 16
A Delvallée (60903_CR27) 2015; 26
M Künzler (60903_CR50) 2018; 14
60903_CR36
DGP Oliveira (60903_CR23) 2015; 119
R Peyraud (60903_CR52) 2019; 116
SK Dorcheh (60903_CR19) 2017
KS Siddiqi (60903_CR2) 2016; 11
A Rozhin (60903_CR17) 2021; 12
Y Liu (60903_CR47) 2020
KI Alsamhary (60903_CR24) 2020; 27
A Bootz (60903_CR6) 2004; 57
AJ Shnoudeh (60903_CR37) 2019
A Rella (60903_CR40) 2016; 61
PM Carvalho (60903_CR26) 2018; 6
A Makovitzki (60903_CR29) 2007; 73
S Boas (60903_CR33) 2016
J Kämper (60903_CR48) 2006; 444
C Saengchan (60903_CR21) 2021; 61
M Skoneczny (60903_CR49) 2018
W Mihoubi (60903_CR51) 2017; 12
TJ Onyeka (60903_CR32) 2005; 159
N Konappa (60903_CR35) 2021; 11
S Krimm (60903_CR44) 1986
M Madakka (60903_CR25) 2018; 5
MM Salvatore (60903_CR41) 2020; 12
HA Contreras-Cornejo (60903_CR20) 2016; 92
Ö Arzu (60903_CR15) 2016
A Saravanan (60903_CR13) 2021; 264
A Fariq (60903_CR16) 2017; 15
U Nobbmann (60903_CR4) 2007; 24
N Raval (60903_CR3) 2019
S Ying (60903_CR7) 2022; 26
I Khan (60903_CR12) 2022; 29
A Singh (60903_CR11) 2017; 14
IM Van Aarle (60903_CR39) 2003; 69
HR John (60903_CR30) 2008; 28
J Bandekar (60903_CR45) 1992; 1120
D Feldman (60903_CR46) 2020; 11
References_xml – volume: 24
  start-page: 2558
  year: 2019
  ident: CR10
  article-title: Applications of nanotechnology in plant growth and crop protection: A review
  publication-title: Molecules
  doi: 10.3390/molecules24142558
  contributor:
    fullname: Shang
– volume: 26
  year: 2022
  ident: CR7
  article-title: Green synthesis of nanoparticles: Current developments and limitations
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2022.102336
  contributor:
    fullname: Ying
– year: 2016
  ident: CR33
  article-title: Sources of resistance to cassava root rot caused by spp.: A genotypic approach
  publication-title: Euphytica
  doi: 10.1007/s10681-016-1676-4
  contributor:
    fullname: Oliveira
– start-page: 369
  year: 2019
  end-page: 400
  ident: CR3
  publication-title: Basic Fundamentals of Drug Delivery
  doi: 10.1016/B978-0-12-817909-3.00010-8
  contributor:
    fullname: Rakesh
– volume: 57
  start-page: 369
  year: 2004
  end-page: 375
  ident: CR6
  article-title: Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (Butyl cyanoacrylate) nanoparticles
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/s0939-6411(03)00193-0
  contributor:
    fullname: Kreuter
– volume: 6
  start-page: 237
  year: 2018
  ident: CR26
  article-title: Application of light scattering techniques to nanoparticle characterization and development
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00237
  contributor:
    fullname: Domingues
– start-page: 181
  year: 1986
  end-page: 364
  ident: CR44
  publication-title: Advances in Protein Chemistry
  contributor:
    fullname: Richards
– volume: 12
  start-page: 457
  year: 2020
  ident: CR41
  article-title: Secondary metabolites of : Distribution, chemical diversity, bioactivity, and implications of their occurrence
  publication-title: Toxins
  doi: 10.3390/toxins12070457
  contributor:
    fullname: Andolfi
– volume: 14
  year: 2018
  ident: CR50
  article-title: How fungi defend themselves against microbial competitors and animal predators
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007184
  contributor:
    fullname: Künzler
– volume: 28
  start-page: 1
  year: 2008
  end-page: 35
  ident: CR30
  article-title: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, approved standard. Second edition. M38–A2
  publication-title: Clin. Lab. Stand. Inst.
  contributor:
    fullname: John
– volume: 259
  start-page: 22
  year: 2017
  end-page: 28
  ident: CR31
  article-title: Differentiation and identification of grape-associated black aspergilli using Fourier transform infrared (FT-IR) spectroscopic analysis of mycelia
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2017.07.020
  contributor:
    fullname: Kogkaki
– volume: 11
  start-page: 455
  year: 2020
  end-page: 455
  ident: CR46
  article-title: Seeking the roles for fungal small-secreted proteins in affecting saprophytic lifestyles
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00455
  contributor:
    fullname: Hadar
– volume: 16
  start-page: 14
  year: 2018
  ident: CR1
  article-title: A review on biosynthesis of silver nanoparticles and their biocidal properties
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0334-5
  contributor:
    fullname: Rao
– volume: 6
  start-page: 71
  year: 2016
  end-page: 79
  ident: CR28
  article-title: Methods for in vitro evaluating antimicrobial activity
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2015.11.005
  contributor:
    fullname: Ibnsouda
– volume: 9
  start-page: 1050
  year: 2018
  end-page: 1074
  ident: CR8
  article-title: Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.98
  contributor:
    fullname: Danquah
– start-page: 7
  year: 2020
  end-page: 27
  ident: CR5
  publication-title: Characterization of Nanoparticles by Scanning Electron Microscopy
  contributor:
    fullname: Shard
– volume: 5
  start-page: 20
  year: 2018
  end-page: 29
  ident: CR25
  article-title: Mycosynthesis of silver nanoparticles and their characterization
  publication-title: MethodsX
  doi: 10.1016/j.mex.2017.12.003
  contributor:
    fullname: Rajesh
– volume: 69
  start-page: 6762
  year: 2003
  end-page: 6767
  ident: CR39
  article-title: Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.11.6762-6767.2003
  contributor:
    fullname: Olsson
– volume: 27
  start-page: 2185
  year: 2020
  end-page: 2191
  ident: CR24
  article-title: Eco-friendly synthesis of silver nanoparticles by and their antibacterial activity
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2020.04.026
  contributor:
    fullname: Alsamhary
– ident: CR36
– volume: 61
  start-page: 302
  year: 2021
  end-page: 310
  ident: CR21
  article-title: Efficacy of salicylic acid and a bioproduct in enhancing growth of cassava and controlling root rot disease
  publication-title: J. Plant Prot. Res.
  doi: 10.24425/jppr.2021.137952
  contributor:
    fullname: Buensanteai
– start-page: 31
  year: 2021
  end-page: 47
  ident: CR9
  publication-title: Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS)
  doi: 10.1007/978-3-030-66956-0_3
  contributor:
    fullname: Singh
– volume: 9
  start-page: 385
  year: 2014
  end-page: 406
  ident: CR14
  article-title: Synthesis of silver nanoparticles: chemical, physical and biological methods
  publication-title: Res. Pharm. Sci.
  contributor:
    fullname: Zolfaghari
– volume: 7
  year: 2017
  ident: CR18
  article-title: Biogenic silver nanoparticles based on : synthesis, characterization, toxicity evaluation and biological activity
  publication-title: Sci. Rep.
  doi: 10.1038/srep44421
  contributor:
    fullname: Guilger
– volume: 14
  start-page: 2277
  year: 2017
  end-page: 2300
  ident: CR11
  article-title: Nanotechnology and its role in agro-ecosystem: A strategic perspective
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-016-1062-8
  contributor:
    fullname: Prasad
– volume: 61
  start-page: 63
  year: 2016
  end-page: 72
  ident: CR40
  article-title: Plasma membrane lipids and their role in fungal virulence
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2015.11.003
  contributor:
    fullname: Del Poeta
– start-page: 395
  year: 2017
  end-page: 414
  ident: CR19
  publication-title: Fungal Metabolites
  doi: 10.1007/978-3-319-25001-4_8
  contributor:
    fullname: Ramawat
– volume: 40
  start-page: 53
  year: 2012
  end-page: 58
  ident: CR22
  article-title: Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi
  publication-title: Mycobiology
  doi: 10.5941/MYCO.2012.40.1.053
  contributor:
    fullname: Kim
– start-page: 527
  year: 2019
  end-page: 612
  ident: CR37
  article-title: Synthesis, characterization, and applications of metal nanoparticles
  publication-title: Biomaterials and Biotechnology
  contributor:
    fullname: Tekade
– volume: 264
  year: 2021
  ident: CR13
  article-title: A review on biosynthesis of metal nanoparticles and its environmental applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128580
  contributor:
    fullname: Saravanan
– volume: 1120
  start-page: 123
  year: 1992
  end-page: 143
  ident: CR45
  article-title: Amide modes and protein conformation
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/0167-4838(92)90261-B
  contributor:
    fullname: Bandekar
– volume: 92
  start-page: fiw036
  year: 2016
  ident: CR20
  article-title: Ecological functions of spp. and their secondary metabolites in the rhizosphere: Interactions with plants
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiw036
  contributor:
    fullname: Larsen
– volume: 16
  start-page: 520
  year: 2013
  end-page: 526
  ident: CR42
  article-title: Fatty acids and early detection of pathogens
  publication-title: Curr. Opin. Plant. Biol.
  doi: 10.1016/j.pbi.2013.06.011
  contributor:
    fullname: Dehesh
– volume: 12
  start-page: 1480
  year: 2021
  ident: CR17
  article-title: Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents
  publication-title: Micromachines
  doi: 10.3390/mi12121480
  contributor:
    fullname: Rozhin
– volume: 11
  start-page: 535
  year: 2021
  ident: CR35
  article-title: Ameliorated antibacterial and antioxidant properties by mediated green synthesis of silver nanoparticles
  publication-title: Biomolecules
  doi: 10.3390/biom11040535
  contributor:
    fullname: Konappa
– year: 2016
  ident: CR15
  publication-title: Environmental Health Risk, Ch. 1
  contributor:
    fullname: Soloneski
– volume: 444
  start-page: 97
  year: 2006
  end-page: 101
  ident: CR48
  article-title: Insights from the genome of the biotrophic fungal plant pathogen
  publication-title: Nature
  doi: 10.1038/nature05248
  contributor:
    fullname: Kämper
– volume: 11
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR2
  article-title: Fabrication of metal nanoparticles from fungi and metal salts: Scope and application
  publication-title: Nanoscale. Res. Lett.
  doi: 10.1186/s11671-016-1311-2
  contributor:
    fullname: Husen
– volume: 119
  start-page: 44
  year: 2015
  end-page: 52
  ident: CR23
  article-title: A protocol for determination of conidial viability of the fungal entomopathogens and from commercial products
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2015.09.021
  contributor:
    fullname: Delalibera
– volume: 116
  start-page: 3193
  issue: 8
  year: 2019
  end-page: 3201
  ident: CR52
  article-title: Intercellular cooperation in a fungal plant pathogen facilitates host colonization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1811267116
  contributor:
    fullname: Raffaele
– volume: 73
  start-page: 6629
  year: 2007
  end-page: 6636
  ident: CR29
  article-title: Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01334-07
  contributor:
    fullname: Shai
– volume: 12
  year: 2017
  ident: CR51
  article-title: FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by extracts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180680
  contributor:
    fullname: Amiel
– volume: 06
  start-page: 1071
  year: 2015
  end-page: 1076
  ident: CR34
  article-title: Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2015.68111
  contributor:
    fullname: Abraha
– volume: 29
  start-page: 89823
  year: 2022
  end-page: 89833
  ident: CR12
  article-title: Nanoparticle's uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: A review
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-022-23945-2
  contributor:
    fullname: Khan
– start-page: 35
  year: 2018
  end-page: 85
  ident: CR49
  publication-title: Stress Response Mechanisms in Fungi: Theoretical and Practical Aspects
  doi: 10.1007/978-3-030-00683-9_2
  contributor:
    fullname: Skoneczny
– volume: 185
  start-page: 54
  issue: 1
  year: 2010
  end-page: 66
  ident: CR54
  article-title: Action and reaction of host and pathogen during Fusarium head blight disease
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03041.x
  contributor:
    fullname: Doohan
– year: 2020
  ident: CR47
  article-title: Current understanding of the structure and function of fungal immunomodulatory proteins
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2020.00132
  contributor:
    fullname: Wichers
– volume: 13
  start-page: 86
  year: 2014
  ident: CR43
  article-title: Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in mucor fungi grown in media with different carbon sources
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-13-86
  contributor:
    fullname: Kohler
– volume: 24
  start-page: 117
  year: 2007
  end-page: 128
  ident: CR4
  article-title: Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies
  publication-title: Biotechnol. Genet. Eng. Rev.
  doi: 10.1080/02648725.2007.10648095
  contributor:
    fullname: Nobbmann
– volume: 15
  start-page: 241
  year: 2017
  end-page: 248
  ident: CR16
  article-title: Microbial synthesis of nanoparticles and their potential applications in biomedicine
  publication-title: J. Appl. Biomed.
  doi: 10.1016/j.jab.2017.03.004
  contributor:
    fullname: Yasmin
– start-page: 463
  year: 2017
  end-page: 485
  ident: CR53
  publication-title: The Fungal Kingdom
  doi: 10.1128/9781555819583.ch21
  contributor:
    fullname: Quinn
– volume: 26
  year: 2015
  ident: CR27
  article-title: Direct comparison of AFM and SEM measurements on the same set of nanoparticles
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/8/085601
  contributor:
    fullname: Hochepied
– volume: 159
  start-page: 461
  year: 2005
  end-page: 467
  ident: CR32
  article-title: Assessment of laboratory methods for evaluating cassava genotypes for resistance to root rot disease
  publication-title: Mycopathologia
  doi: 10.1007/s11046-004-6156-z
  contributor:
    fullname: Ekpo
– volume: 697
  start-page: 63
  year: 2011
  end-page: 70
  ident: CR38
  article-title: Zeta potential measurement
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-198-1_6
  contributor:
    fullname: Patri
– volume: 69
  start-page: 6762
  year: 2003
  ident: 60903_CR39
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.11.6762-6767.2003
  contributor:
    fullname: IM Van Aarle
– volume: 12
  start-page: 457
  year: 2020
  ident: 60903_CR41
  publication-title: Toxins
  doi: 10.3390/toxins12070457
  contributor:
    fullname: MM Salvatore
– volume: 14
  start-page: 2277
  year: 2017
  ident: 60903_CR11
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-016-1062-8
  contributor:
    fullname: A Singh
– start-page: 181
  volume-title: Advances in Protein Chemistry
  year: 1986
  ident: 60903_CR44
  contributor:
    fullname: S Krimm
– volume: 16
  start-page: 14
  year: 2018
  ident: 60903_CR1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0334-5
  contributor:
    fullname: KS Siddiqi
– volume: 6
  start-page: 237
  year: 2018
  ident: 60903_CR26
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00237
  contributor:
    fullname: PM Carvalho
– volume: 28
  start-page: 1
  year: 2008
  ident: 60903_CR30
  publication-title: Clin. Lab. Stand. Inst.
  contributor:
    fullname: HR John
– start-page: 35
  volume-title: Stress Response Mechanisms in Fungi: Theoretical and Practical Aspects
  year: 2018
  ident: 60903_CR49
  doi: 10.1007/978-3-030-00683-9_2
  contributor:
    fullname: M Skoneczny
– volume: 13
  start-page: 86
  year: 2014
  ident: 60903_CR43
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-13-86
  contributor:
    fullname: V Shapaval
– volume: 61
  start-page: 302
  year: 2021
  ident: 60903_CR21
  publication-title: J. Plant Prot. Res.
  doi: 10.24425/jppr.2021.137952
  contributor:
    fullname: C Saengchan
– volume: 119
  start-page: 44
  year: 2015
  ident: 60903_CR23
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2015.09.021
  contributor:
    fullname: DGP Oliveira
– volume: 57
  start-page: 369
  year: 2004
  ident: 60903_CR6
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/s0939-6411(03)00193-0
  contributor:
    fullname: A Bootz
– volume: 116
  start-page: 3193
  issue: 8
  year: 2019
  ident: 60903_CR52
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1811267116
  contributor:
    fullname: R Peyraud
– ident: 60903_CR36
  doi: 10.1016/B978-0-12-819847-6.00016-4
– year: 2020
  ident: 60903_CR47
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2020.00132
  contributor:
    fullname: Y Liu
– volume: 40
  start-page: 53
  year: 2012
  ident: 60903_CR22
  publication-title: Mycobiology
  doi: 10.5941/MYCO.2012.40.1.053
  contributor:
    fullname: SW Kim
– volume: 185
  start-page: 54
  issue: 1
  year: 2010
  ident: 60903_CR54
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03041.x
  contributor:
    fullname: S Walter
– start-page: 31
  volume-title: Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS)
  year: 2021
  ident: 60903_CR9
  doi: 10.1007/978-3-030-66956-0_3
  contributor:
    fullname: A Kumar
– volume-title: Environmental Health Risk, Ch. 1
  year: 2016
  ident: 60903_CR15
  contributor:
    fullname: Ö Arzu
– volume: 24
  start-page: 117
  year: 2007
  ident: 60903_CR4
  publication-title: Biotechnol. Genet. Eng. Rev.
  doi: 10.1080/02648725.2007.10648095
  contributor:
    fullname: U Nobbmann
– start-page: 527
  volume-title: Biomaterials and Biotechnology
  year: 2019
  ident: 60903_CR37
  contributor:
    fullname: AJ Shnoudeh
– volume: 697
  start-page: 63
  year: 2011
  ident: 60903_CR38
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-198-1_6
  contributor:
    fullname: J Clogston
– volume: 11
  start-page: 455
  year: 2020
  ident: 60903_CR46
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00455
  contributor:
    fullname: D Feldman
– start-page: 369
  volume-title: Basic Fundamentals of Drug Delivery
  year: 2019
  ident: 60903_CR3
  doi: 10.1016/B978-0-12-817909-3.00010-8
  contributor:
    fullname: N Raval
– volume: 12
  year: 2017
  ident: 60903_CR51
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180680
  contributor:
    fullname: W Mihoubi
– start-page: 395
  volume-title: Fungal Metabolites
  year: 2017
  ident: 60903_CR19
  doi: 10.1007/978-3-319-25001-4_8
  contributor:
    fullname: SK Dorcheh
– volume: 9
  start-page: 385
  year: 2014
  ident: 60903_CR14
  publication-title: Res. Pharm. Sci.
  contributor:
    fullname: S Iravani
– volume: 1120
  start-page: 123
  year: 1992
  ident: 60903_CR45
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/0167-4838(92)90261-B
  contributor:
    fullname: J Bandekar
– volume: 73
  start-page: 6629
  year: 2007
  ident: 60903_CR29
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01334-07
  contributor:
    fullname: A Makovitzki
– year: 2016
  ident: 60903_CR33
  publication-title: Euphytica
  doi: 10.1007/s10681-016-1676-4
  contributor:
    fullname: S Boas
– volume: 9
  start-page: 1050
  year: 2018
  ident: 60903_CR8
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.98
  contributor:
    fullname: J Jeevanandam
– volume: 259
  start-page: 22
  year: 2017
  ident: 60903_CR31
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2017.07.020
  contributor:
    fullname: E Kogkaki
– volume: 92
  start-page: fiw036
  year: 2016
  ident: 60903_CR20
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiw036
  contributor:
    fullname: HA Contreras-Cornejo
– volume: 444
  start-page: 97
  year: 2006
  ident: 60903_CR48
  publication-title: Nature
  doi: 10.1038/nature05248
  contributor:
    fullname: J Kämper
– volume: 29
  start-page: 89823
  year: 2022
  ident: 60903_CR12
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-022-23945-2
  contributor:
    fullname: I Khan
– volume: 26
  year: 2015
  ident: 60903_CR27
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/8/085601
  contributor:
    fullname: A Delvallée
– volume: 159
  start-page: 461
  year: 2005
  ident: 60903_CR32
  publication-title: Mycopathologia
  doi: 10.1007/s11046-004-6156-z
  contributor:
    fullname: TJ Onyeka
– volume: 24
  start-page: 2558
  year: 2019
  ident: 60903_CR10
  publication-title: Molecules
  doi: 10.3390/molecules24142558
  contributor:
    fullname: Y Shang
– volume: 15
  start-page: 241
  year: 2017
  ident: 60903_CR16
  publication-title: J. Appl. Biomed.
  doi: 10.1016/j.jab.2017.03.004
  contributor:
    fullname: A Fariq
– volume: 264
  year: 2021
  ident: 60903_CR13
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128580
  contributor:
    fullname: A Saravanan
– volume: 14
  year: 2018
  ident: 60903_CR50
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007184
  contributor:
    fullname: M Künzler
– volume: 27
  start-page: 2185
  year: 2020
  ident: 60903_CR24
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2020.04.026
  contributor:
    fullname: KI Alsamhary
– start-page: 463
  volume-title: The Fungal Kingdom
  year: 2017
  ident: 60903_CR53
  doi: 10.1128/9781555819583.ch21
  contributor:
    fullname: AJP Brown
– volume: 06
  start-page: 1071
  year: 2015
  ident: 60903_CR34
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2015.68111
  contributor:
    fullname: L Mahmudin
– volume: 6
  start-page: 71
  year: 2016
  ident: 60903_CR28
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2015.11.005
  contributor:
    fullname: M Balouiri
– volume: 11
  start-page: 535
  year: 2021
  ident: 60903_CR35
  publication-title: Biomolecules
  doi: 10.3390/biom11040535
  contributor:
    fullname: N Konappa
– volume: 5
  start-page: 20
  year: 2018
  ident: 60903_CR25
  publication-title: MethodsX
  doi: 10.1016/j.mex.2017.12.003
  contributor:
    fullname: M Madakka
– volume: 16
  start-page: 520
  year: 2013
  ident: 60903_CR42
  publication-title: Curr. Opin. Plant. Biol.
  doi: 10.1016/j.pbi.2013.06.011
  contributor:
    fullname: JW Walley
– volume: 11
  start-page: 1
  year: 2016
  ident: 60903_CR2
  publication-title: Nanoscale. Res. Lett.
  doi: 10.1186/s11671-016-1311-2
  contributor:
    fullname: KS Siddiqi
– volume: 12
  start-page: 1480
  year: 2021
  ident: 60903_CR17
  publication-title: Micromachines
  doi: 10.3390/mi12121480
  contributor:
    fullname: A Rozhin
– volume: 7
  year: 2017
  ident: 60903_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/srep44421
  contributor:
    fullname: M Guilger
– volume: 26
  year: 2022
  ident: 60903_CR7
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2022.102336
  contributor:
    fullname: S Ying
– start-page: 7
  volume-title: Characterization of Nanoparticles by Scanning Electron Microscopy
  year: 2020
  ident: 60903_CR5
  contributor:
    fullname: AE Vladár
– volume: 61
  start-page: 63
  year: 2016
  ident: 60903_CR40
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2015.11.003
  contributor:
    fullname: A Rella
SSID ssj0000529419
Score 2.46904
Snippet Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This...
Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This...
Abstract Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production....
Abstract Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production....
SourceID doaj
proquest
crossref
pubmed
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 12535
SubjectTerms 631/1647
631/326
631/449
704/158
704/844
Antifungal Agents - chemistry
Antifungal Agents - pharmacology
Antifungal Plant Disease
Carbohydrates
Cassava
Cassava Root Rot disease, Lasiodiplodia theobromae, Fusarium solani
FTIR, Plant Biochemical
Fusarium - drug effects
Green Synthesis Nanoparticle
Humanities and Social Sciences
Hyphae
Hypocreales - drug effects
Hypocreales - metabolism
Light scattering
Lipids
Manihot - chemistry
Manihot - microbiology
Metal Nanoparticles - chemistry
multidisciplinary
Nanoparticles
Nucleic acids
Peptides
Phospholipids
Plant Diseases - microbiology
Plant Roots - microbiology
Polysaccharides
Root rot
Saccharides
Scanning electron microscopy
Science
Science (multidisciplinary)
Silver
Silver - chemistry
Silver - pharmacology
Silver nanoparticle
Silver nitrate
Trichoderma - metabolism
Zeta potential
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFD_IYOCLuPlVnRLBNw1rmzRtHufYGII-bbC3cPKl98FeWTth--s9SXqvExVffCmlTUtyPppfmnN-B-ANIYZU5sjyQVvkEpuODypq3lnZtCqoXsqUnPzxkzq7kB8uu8s7pb5STFihBy6CO-xRkTu20nqLEoPC2IXW6iEItE2Dheez1ncWU4XVu9Wy0UuWTC2Gw4lmqpRN1kqu0r8JfvvLTJQJ-_-EMn_bIc0Tz-lDeLAgRnZUeroH98K4D7ulhuTNI5jpjE83IwG5aTUxHD1zWxLmkmPJ1pFNqxQCzUYcaZW8BMOxlFvCzulL-CVVRPuKLOVd0tKZ4WdcEW5kjqA1fkdG8Hqmw8yW_ZzHcHF6cn58xpdSCtwJpWbuRU_QoHPSSWHRo3OhDWrwVoeexEEgjnCQ7wSSezvvMl_xEGmu1xh72dXiCeyM6zE8AxaEqG3sYxutk11fa6QHek2KFd7Huqng7Uas5lthzDB5p1sMpijBkBJMVoK5reB9kvy2ZWK7zhfIBswiDvMvG6jgYKM3s7jgZEQiYNYEh3QFr7e3yXnSjgiOYX2d2wiplB5kBU-Lvrc9EbT2SBwNFbzbGMDPl_99QM__x4BewP02WWqOUjiAnfnqOrwk8DPbV9nOfwDkbQGY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3La9ZAEB_0K4IX8W1qlRW86dIku9lkT2KlpQgWkRZ6W2Yfqd_BpDZpof3rnU32SxEflxDyYjMzO_PbnRfAW0IMsc2R5Y22yCUWFW9Uq3llZVGqoGopY3LylyN1eCI_n1anacNtSGGVG504KWrfu7hHvitiPV1N1k1_OP_JY9eo6F1NLTTuwlZJK4VyBVt7-0dfvy27LNGPJQudsmVy0ewOZLFiVlkpuYp7FPzmN4s0Fe7_G9r8w1M6GaCDh_AgIUf2cWb1I7gTusdwb-4lef0ERjrjw3VHgG5YDww7z9xSjHnOtWR9y4Z1DIVmHXa0Wk5BcSzmmLBj0ojfY2e0H8hi_iUtoRme4ZrwI3MEsfEKGcHskQ4jS36dp3BysH_86ZCnlgrcCaVG7kVNEKFy0klh0aNzoQyq8VaHmshBYI7wkK8E0jR33k11i5uWbL7GtpZVLp7Bquu78AJYECK3bd2WrXWyqnON9EKticHC-zYvMni3Ias5nytnmMnjLRozM8EQE8zEBHOTwV6k_PJkrHo9Xegvzkwih6lRkWoupfUWJQaFbRVKq5sg0BYFigx2NnwzaSoO5lZwMniz3KZJFD0j2IX-cnpGSKV0IzN4PvN7GYmgNUis1ZDB-40A3H783z-0_f-xvIT7ZZTBKQ5hB1bjxWV4RfBmtK-TDP8CFjb5aQ
  priority: 102
  providerName: ProQuest
Title Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease
URI https://link.springer.com/article/10.1038/s41598-024-60903-z
https://www.ncbi.nlm.nih.gov/pubmed/38821999
https://www.proquest.com/docview/3062790919
https://www.proquest.com/docview/3063466984
https://doaj.org/article/7a611124bdba4ae6af5e2b98e3ab11a3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD64DcEX8bfVeYngmwZvmzRpHt1lYwgOkQ3uWzj5Ub0P9orthO2v9yTtrQzngy-ltElp8yU9X3JyvgPwhhhDSnPkeGMccollzRvVGl47WVYqKi1lCk7-dKZOL-THdb2eZHJSLMwN_71o3vdkYFIQWCW5SksK_HoPDpINTmkaVmo1r6ckj5UszRQXc3vVG7YnS_Tfxiv_8olmU3PyAO5PHJF9GEF9CHdi9wjujlkjrx7DQGe8v-qIuvWbnmEXmJ9ll8eoSrZtWb9Jm55Zhx3Ni6ftbyxFk7Bz-vd9SznQviNLkZY0WWb4FTfEFJknMo2_kBGhHugwsMmD8wQuTo7PV6d8Sp7AvVBq4EFoIgO1l14KhwG9j1VUTXAmamoOom3EfEItkAa0Dz4rFDctWXeDrZb1UjyF_W7bxefAohBL1-q2ap2XtV4apAraEJQihHZZFvB216z2x6iRYbNvWzR2BMESCDaDYK8LOEotP5dM-tb5AsFup-awGhX9hCvpgkOJUWFbx8qZJgp0ZYmigMMdbnYadL0VSXLZEAEyBbyeb9NwST4Q7OL2MpcRUinTyAKejXjPbyJotpFUGQp4t-sAfx7-7w968X_FX8K9KvXJvAPhEPaHn5fxFRGbwS1gT6_1Ag6Ojs8-f1nk_r3IiwS_AX6p9PA
link.rule.ids 315,783,787,867,2109,12070,21402,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,74081,74638
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEjcwGoSO3Z8QoCoFmh72kp7s8aPlD2QlCZFan89Y8e7FeJxiaK85MyMPZ89nm8IeY2IIZY5sqzVFpiAqmGt7DRrrKhqGaQSIiYnHx7JxbH4smpWecFtzNsqN2NiGqj94OIa-R6PfLoavZt-d_qDxapRMbqaS2hcJzciD1fkzlcrtV1jiVEsUemcK1Pydm9EfxVzymrBZFyhYJe_-aNE2_83rPlHnDS5n_275E7GjfT9rOh75Fro75ObcyXJiwdkwjM2XvQI58b1SKH31G2pmOdMSzp0dFzHjdC0hx7nynlLHI0ZJnSJ4-G3WBftO9CYfYkTaAonsEb0SB0CbPgJFEH2hIeJ5qjOQ3K8_2n5ccFyQQXmuJQT81whQGiccIJb8OBcqINsvdVBoTgQyiEa8g0H7OTOu8Ra3Hbo8TV0SjQlf0R2-qEPTwgNnJe2U13dWScaVWrAF5RG9XLvu7IqyJuNWM3pzJthUrybt2ZWgkElmKQEc1mQD1Hy2ycj53W6MJydmCwOo0DiwFwL6y0ICBK6JtRWt4GDrSrgBdnd6M3kjjiaK7MpyKvtbexCMS4CfRjO0zNcSKlbUZDHs763LeE4A4lMDQV5uzGAq4__-4ee_r8tL8mtxfLwwBx8Pvr6jNyuoz2mHQm7ZGc6Ow_PEehM9kWy5l_DBPr0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCMQFsRMoYCRuYL0kduz4hNieylZxaKV3s8ZbeQfySpMitb-eceKXCrFcoiibnJnxzGfPRshzRAypzZFlrbbABFQNa2XUrLGiqmWQSoiUnPxlX-4dio-rZpXjn_ocVrnViaOi9huX9sgXPNXT1Wjd9CLmsIiv75avjn-w1EEqeVpzO43L5IoSaOhQttVKzfstyaMlKp3zZkreLnq0XSm_rBZMpt0Kdv6bbRpL-P8Nd_7hMx1N0fImuZExJH09Mf0WuRS62-Tq1FXy7A4Z8Iz1Zx1Cu37dU-g8dXNZ5inrkm4i7dcpKJp20OG6OYfH0ZRtQg9QN35LPdK-A02ZmLiYpnAEa0SS1CHYhp9AEXAPeBho9vDcJYfL9wdv91hursAcl3JgnisEC40TTnALHpwLdZCttzooJAfCOkRGvuGAE955N1YwbiNafw1Riabk98hOt-nCA0ID56WNKtbROtGoUgO-oDSymnsfy6ogL7ZkNcdTDQ0z-r55ayYmGGSCGZlgzgvyJlF-fjLVvx4vbE6OTCaHUSBRSdfCegsCgoTYhNrqNnCwVQW8ILtbvpk8KXtzIUIFeTbfxumUfCTQhc3p-AwXUupWFOT-xO95JBxXI6lqQ0FebgXg4uP__qGH_x_LU3INBdl8_rD_6RG5XidxHIMTdsnOcHIaHiPmGeyTUZh_AYPP_yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-synthesis+and+characterization+of+silver+nanoparticles+from+Trichoderma+species+against+cassava+root+rot+disease&rft.jtitle=Scientific+reports&rft.au=Thepbandit%2C+Wannaporn&rft.au=Papathoti%2C+Narendra+Kumar&rft.au=Hoang%2C+Nguyen+Huy&rft.au=Siriwong%2C+Supatcharee&rft.date=2024-05-31&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12535&rft_id=info:doi/10.1038%2Fs41598-024-60903-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon