Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance

This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 28; pp. 585 - 596
Main Authors Sun, Jianzhong, Zuo, Hongfu, Wang, Wenbin, Pecht, Michael G.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance. ► A health index is proposed for complex systems monitored by multi-sensors. ► A state space model (SSM) is used for system level prognostics based on the health index. ► A Bayesian method is used to estimate the state and parameters of the SSM jointly. ► Both gradual and sudden changes in degradation are considered.
AbstractList This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance. ► A health index is proposed for complex systems monitored by multi-sensors. ► A state space model (SSM) is used for system level prognostics based on the health index. ► A Bayesian method is used to estimate the state and parameters of the SSM jointly. ► Both gradual and sudden changes in degradation are considered.
This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance.
Author Pecht, Michael G.
Zuo, Hongfu
Sun, Jianzhong
Wang, Wenbin
Author_xml – sequence: 1
  givenname: Jianzhong
  surname: Sun
  fullname: Sun, Jianzhong
  email: sunjianzhong@nuaa.edu.cn
  organization: College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Hongfu
  surname: Zuo
  fullname: Zuo, Hongfu
  organization: College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Wenbin
  surname: Wang
  fullname: Wang, Wenbin
  organization: Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Michael G.
  surname: Pecht
  fullname: Pecht, Michael G.
  organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26136575$$DView record in Pascal Francis
BookMark eNp9kT1vFDEURS0UJDaBX0DjBolmBn_M2OOCIooIIEWigdry2M9Zr2bswXYQW_Df8WZDQ5HKzblHz_deoouYIiD0lpKeEio-HPrjWsrWM0JpT1RPmHqBdpQo0VFGxQXakWmaOs4keYUuSzkQQtRAxA79ud62JVhTQ4o4eWxwqaYCLpuxgNfkYAnxHlew-xh-PgCuCZdjqbDiLaf7mEoNtuDZFHC4KQzeg1nqHofo4Df2KWObogsnf3emVhNihWiihdfopTdLgTdP7xX6cfvp-82X7u7b568313ed5ULUzjE_cjbMhHIvx5lJ8HKQyvnZWSdhGCmb-CS9ZGYEgGkelDBejZKP3Equ-BV6f_a2m9snStVrKBaWxURID0W3EpXgYhSsoe-eUFOsWXxud4aitxxWk4-aCdo4OTZOnTmbUykZvLahPtZYswlLU56sQh_04zT6NI0mSrdpWpb_l_2nfz718ZyC1tSvAFkXG6C16EIGW7VL4dn8Xx1krd8
CitedBy_id crossref_primary_10_3390_pr10051012
crossref_primary_10_1016_j_ymssp_2019_106570
crossref_primary_10_1109_TIM_2015_2444237
crossref_primary_10_1016_j_cirp_2015_05_011
crossref_primary_10_1109_TR_2015_2487578
crossref_primary_10_3390_e20020100
crossref_primary_10_1016_j_microrel_2017_09_009
crossref_primary_10_1016_j_knosys_2020_106555
crossref_primary_10_1007_s10479_017_2745_3
crossref_primary_10_1016_j_ymssp_2022_109336
crossref_primary_10_3390_informatics8040068
crossref_primary_10_1016_j_ress_2023_109404
crossref_primary_10_3390_s17020369
crossref_primary_10_1080_00401706_2017_1341341
crossref_primary_10_1016_j_asoc_2020_106344
crossref_primary_10_1016_j_ast_2017_05_030
crossref_primary_10_17531_ein_2021_2_16
crossref_primary_10_1177_0957650919883718
crossref_primary_10_1016_j_ress_2015_02_001
crossref_primary_10_1002_mawe_201800219
crossref_primary_10_1016_j_ress_2017_06_015
crossref_primary_10_1016_j_ymssp_2019_05_005
crossref_primary_10_1016_j_measurement_2013_04_033
crossref_primary_10_1115_1_4048340
crossref_primary_10_1177_1687814016666747
crossref_primary_10_1016_j_ress_2021_107631
crossref_primary_10_1109_TR_2013_2241232
crossref_primary_10_1016_j_ress_2014_10_003
crossref_primary_10_1109_JSYST_2020_2983376
crossref_primary_10_1109_ACCESS_2018_2882824
crossref_primary_10_1016_j_ress_2019_03_037
crossref_primary_10_1115_1_4032680
crossref_primary_10_1109_TASE_2019_2921285
crossref_primary_10_1016_j_wear_2017_01_012
crossref_primary_10_1080_17517575_2021_2008515
crossref_primary_10_1016_j_jsv_2015_08_013
crossref_primary_10_3390_en9060409
crossref_primary_10_1109_JSEN_2021_3060395
crossref_primary_10_1016_j_ymssp_2016_01_010
crossref_primary_10_1109_TNNLS_2015_2504389
crossref_primary_10_1002_qre_1932
crossref_primary_10_1109_TR_2014_2315956
crossref_primary_10_1016_j_ymssp_2014_10_010
crossref_primary_10_1109_TASE_2012_2227960
crossref_primary_10_1002_qre_2229
crossref_primary_10_1016_j_cja_2018_03_024
crossref_primary_10_1016_j_asoc_2016_11_019
crossref_primary_10_1016_j_ymssp_2015_10_022
crossref_primary_10_1016_j_ymssp_2022_109677
crossref_primary_10_1109_TR_2018_2825470
crossref_primary_10_1016_j_jmsy_2018_05_011
crossref_primary_10_1016_j_ress_2017_02_007
crossref_primary_10_1016_j_ymssp_2012_07_001
crossref_primary_10_1016_j_ress_2023_109344
crossref_primary_10_1016_j_ymssp_2018_02_027
crossref_primary_10_1016_j_ress_2020_107241
crossref_primary_10_3390_s21238047
crossref_primary_10_1016_j_eswa_2020_113952
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1155_2017_6754968
crossref_primary_10_1016_j_cirpj_2022_01_002
crossref_primary_10_1016_j_measurement_2020_108205
crossref_primary_10_1016_j_engappai_2025_110099
crossref_primary_10_1109_ACCESS_2021_3129516
crossref_primary_10_1016_j_cja_2018_11_010
crossref_primary_10_1186_s10033_019_0317_y
crossref_primary_10_1088_0957_0233_26_6_065604
crossref_primary_10_1002_qre_3256
crossref_primary_10_1016_j_energy_2017_04_006
crossref_primary_10_1177_1748006X221118448
crossref_primary_10_1088_1757_899X_714_1_012010
crossref_primary_10_3390_s21227655
crossref_primary_10_1016_j_ymssp_2017_10_006
crossref_primary_10_1016_j_renene_2019_04_111
crossref_primary_10_1088_1361_6501_ac793f
crossref_primary_10_1080_08982112_2023_2218923
crossref_primary_10_1109_TR_2014_2299151
crossref_primary_10_1109_TIE_2016_2515054
crossref_primary_10_1177_1748006X17751494
crossref_primary_10_1016_j_ymssp_2019_106266
crossref_primary_10_1109_TSMC_2019_2944834
crossref_primary_10_1016_j_cja_2019_03_039
crossref_primary_10_1016_j_procir_2018_03_262
crossref_primary_10_1051_matecconf_201713104014
crossref_primary_10_1177_1748006X20929158
crossref_primary_10_1177_1687814016685004
crossref_primary_10_1186_s10033_018_0205_x
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_2514_1_J055201
crossref_primary_10_1016_j_promfg_2020_01_333
crossref_primary_10_1016_j_energy_2020_119198
crossref_primary_10_1109_TIM_2021_3089774
crossref_primary_10_1016_j_jsv_2013_09_040
crossref_primary_10_1016_j_neucom_2019_07_075
crossref_primary_10_1016_j_ymssp_2015_02_016
crossref_primary_10_1365_s40702_017_0378_2
crossref_primary_10_1016_j_ymssp_2013_01_010
crossref_primary_10_3390_app10124120
crossref_primary_10_1016_j_ymssp_2015_03_029
crossref_primary_10_1007_s12273_018_0431_2
crossref_primary_10_1016_j_ymssp_2017_10_021
crossref_primary_10_1109_TIE_2021_3059549
crossref_primary_10_1007_s13042_024_02498_5
crossref_primary_10_1016_j_ress_2017_06_030
crossref_primary_10_1016_j_ymssp_2014_07_005
crossref_primary_10_1016_j_measurement_2020_108878
crossref_primary_10_1109_TCSII_2024_3383393
crossref_primary_10_1016_j_jmsy_2021_08_006
crossref_primary_10_1016_j_cja_2014_08_013
crossref_primary_10_1016_j_jpowsour_2013_03_129
crossref_primary_10_1088_1361_6501_ac026f
crossref_primary_10_1109_TR_2014_2368872
crossref_primary_10_3390_machines8020031
crossref_primary_10_1016_j_measurement_2021_109756
crossref_primary_10_1109_TIM_2014_2351312
crossref_primary_10_1142_S2424922X20500011
crossref_primary_10_1016_j_sna_2017_12_009
crossref_primary_10_1115_1_4033556
crossref_primary_10_2514_1_J062222
crossref_primary_10_1016_j_future_2018_02_011
crossref_primary_10_1177_1687814018784201
Cites_doi 10.1016/j.ymssp.2004.06.007
10.1016/j.ymssp.2005.09.012
10.1109/78.978383
10.1177/0142331208092026
10.1016/j.ejor.2010.11.018
10.1049/ip-f-2.1993.0015
10.1016/j.ymssp.2010.08.012
10.1007/s00170-009-2482-0
10.2307/1269661
10.1016/S0888-3270(03)00079-7
10.1016/j.apenergy.2009.02.011
10.1109/PHM.2008.4711421
10.1109/RAMS.2003.1182008
10.1115/1.2893988
10.1057/palgrave.jors.2602185
10.1111/j.1467-9868.2007.00642.x
10.1109/AERO.2001.931317
10.1017/S0890060401154089
10.1109/PHM.2008.4711414
10.1016/j.ress.2005.01.002
10.1109/TR.2008.916882
10.1109/TCAPT.2003.817654
10.1109/87.508893
10.1057/palgrave.jors.2600863
10.1016/j.ymssp.2008.06.009
10.1016/j.jsv.2009.02.013
10.1007/s00170-004-2131-6
10.1080/09537280412331309208
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2011.09.029
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1096-1216
EndPage 596
ExternalDocumentID 26136575
10_1016_j_ymssp_2011_09_029
S0888327011003979
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c366t-d2f5324b013f75b27ef7479dfbdcd7e45128387f72a5eee8b496af957353c7393
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Tue Aug 05 11:23:37 EDT 2025
Mon Jul 21 09:13:39 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Tue Jul 01 05:15:16 EDT 2025
Fri Feb 23 02:25:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Markov processes
State space model
Sequential Monte Carlo
Health index
Performance degradation
Prognostics
State space
Modeling
Uncertain system
Model matching
Sequential method
State estimation
Bayes estimation
Monte Carlo method
Linear regression
Measurement sensor
Rupture
Durability
Regression analysis
State space method
Forecasting
Preventive maintenance
Break up time
Sheet moulding compound
Gas turbine
Reliability
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-d2f5324b013f75b27ef7479dfbdcd7e45128387f72a5eee8b496af957353c7393
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1019636562
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1019636562
pascalfrancis_primary_26136575
crossref_citationtrail_10_1016_j_ymssp_2011_09_029
crossref_primary_10_1016_j_ymssp_2011_09_029
elsevier_sciencedirect_doi_10_1016_j_ymssp_2011_09_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Mechanical systems and signal processing
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Polson, Stroud, Muller (bib34) 2008; 70
D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, 2001 pp. 2971–2977.
Si, Wang, Hu, Zhou (bib5) 2011; 213
Ramakrishnan, Pecht (bib10) 2003; 26
Kothamasu, Huang, VerDuin (bib2) 2006; 28
Storvik (bib33) 2002; 50
A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Heath Management, PHM2008, 2008.
Lu, Meeker (bib23) 1993; 35
Ray, Tangirala (bib6) 1996; 4
Zhou, Sun, Mathew, Wolff, Ma (bib27) 2011; 25
Crosby (bib38) 1986
D. Frederick, J. De Castro, J. Litt, User's Guide for the Commercial Modular Aero-Propulsion System Simulation (CMAPSS), NASA/ARL, 2007.
Sasahara (bib37) 1986
Pecht (bib11) 2008
Li, Nilkitsaranont (bib35) 2009; 86
Yan, Koc, Lee (bib14) 2004; 76
Wang, Christer (bib21) 2000; 51
West, Harrison (bib29) 1997
Wang (bib25) 2007; 58
Heng, Zhang, Tan, Mathew (bib3) 2009; 23
G.F. Harrison, M.E.F. Smith, J. hurse, Procedure for aeroengine component life usage prediction, in: AIDAA/AAAF/DGLR/RAeS 5th European Propulsion Forum, Pisa, Italy, 1995.
Wang, Miao, Kang (bib22) 2009; 324
Jardine, Lin, Banjevic (bib1) 2006; 20
Orchard, Vachtsevanos (bib16) 2009; 31
Myotyri, Pulkkinen, Simola (bib26) 2006; 91
(accessed 15 August 2010).
R. Valentin, M. Osterman, B. Newman, Remaining life assessment of aging electronics in avionc applications, in: Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), 2003, pp. 313–318.
G. Harrison, Translation of service usage into component life consumption, in: Recommended Practices for Monitoring Gas Turbine Engine Life Consumption, RTO Technical Report 28 (RTO-TR-28, AC/323/(AVT)TP/22), 2000.
Gordon, Salmond, Smith (bib31) 1993; 140
Yang, Widodo (bib19) 2008; 2
A. Saxena, K. Goebel, K., Turbofan Engine degradation simulation data set, Retrieved from NASA Ames Prognostics Data Repository
Kacprzynski, Sarlashkar, Roemer (bib7) 2004; 56
Harvey, Koopman, Shephard (bib30) 2004
Doucet, de Freitas, Gordon (bib32) 2001
Li, Lee (bib8) 2005; 19
Tse, Atherton (bib17) 1999; 121
Wang, Vachtsevanos (bib18) 2001; 15
T. Wang, J. Yu, D. Siegel, J. Lee, A similarity based prognostic approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Heath Management PHM 2008, Denver, USA, 2008.
Wang, Golnaragh, Ismail (bib20) 2004; 18
Peng, Dong, Zuo (bib4) 2010; 50
Xu, Ji, Zhou (bib24) 2008; 57
Ray (10.1016/j.ymssp.2011.09.029_bib6) 1996; 4
Kacprzynski (10.1016/j.ymssp.2011.09.029_bib7) 2004; 56
10.1016/j.ymssp.2011.09.029_bib40
Xu (10.1016/j.ymssp.2011.09.029_bib24) 2008; 57
Storvik (10.1016/j.ymssp.2011.09.029_bib33) 2002; 50
Wang (10.1016/j.ymssp.2011.09.029_bib22) 2009; 324
Yan (10.1016/j.ymssp.2011.09.029_bib14) 2004; 76
Lu (10.1016/j.ymssp.2011.09.029_bib23) 1993; 35
Crosby (10.1016/j.ymssp.2011.09.029_bib38) 1986
Jardine (10.1016/j.ymssp.2011.09.029_bib1) 2006; 20
10.1016/j.ymssp.2011.09.029_bib28
Wang (10.1016/j.ymssp.2011.09.029_bib21) 2000; 51
Wang (10.1016/j.ymssp.2011.09.029_bib25) 2007; 58
Myotyri (10.1016/j.ymssp.2011.09.029_bib26) 2006; 91
Heng (10.1016/j.ymssp.2011.09.029_bib3) 2009; 23
Doucet (10.1016/j.ymssp.2011.09.029_bib32) 2001
Sasahara (10.1016/j.ymssp.2011.09.029_bib37) 1986
Li (10.1016/j.ymssp.2011.09.029_bib35) 2009; 86
Wang (10.1016/j.ymssp.2011.09.029_bib18) 2001; 15
Tse (10.1016/j.ymssp.2011.09.029_bib17) 1999; 121
Si (10.1016/j.ymssp.2011.09.029_bib5) 2011; 213
Orchard (10.1016/j.ymssp.2011.09.029_bib16) 2009; 31
Kothamasu (10.1016/j.ymssp.2011.09.029_bib2) 2006; 28
Pecht (10.1016/j.ymssp.2011.09.029_bib11) 2008
10.1016/j.ymssp.2011.09.029_bib12
10.1016/j.ymssp.2011.09.029_bib13
Yang (10.1016/j.ymssp.2011.09.029_bib19) 2008; 2
10.1016/j.ymssp.2011.09.029_bib36
Ramakrishnan (10.1016/j.ymssp.2011.09.029_bib10) 2003; 26
10.1016/j.ymssp.2011.09.029_bib15
Peng (10.1016/j.ymssp.2011.09.029_bib4) 2010; 50
10.1016/j.ymssp.2011.09.029_bib39
Harvey (10.1016/j.ymssp.2011.09.029_bib30) 2004
West (10.1016/j.ymssp.2011.09.029_bib29) 1997
Li (10.1016/j.ymssp.2011.09.029_bib8) 2005; 19
Wang (10.1016/j.ymssp.2011.09.029_bib20) 2004; 18
Zhou (10.1016/j.ymssp.2011.09.029_bib27) 2011; 25
Polson (10.1016/j.ymssp.2011.09.029_bib34) 2008; 70
Gordon (10.1016/j.ymssp.2011.09.029_bib31) 1993; 140
10.1016/j.ymssp.2011.09.029_bib9
References_xml – volume: 26
  start-page: 625
  year: 2003
  end-page: 634
  ident: bib10
  article-title: A life consumption monitoring methodology for electronic systems
  publication-title: IEEE Trans. Compon. Pack. Technol.
– volume: 35
  start-page: 161
  year: 1993
  end-page: 174
  ident: bib23
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
– reference: A. Saxena, K. Goebel, K., Turbofan Engine degradation simulation data set, Retrieved from NASA Ames Prognostics Data Repository,
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib1
  article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance
  publication-title: Mech. Syst. Signal Proccess.
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: bib3
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib5
  article-title: Remaining useful life estimation—a review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
– reference: D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, 2001 pp. 2971–2977.
– year: 2004
  ident: bib30
  article-title: State Space and Unobserved Component Models: Theory and Applications
– volume: 25
  start-page: 222
  year: 2011
  end-page: 236
  ident: bib27
  article-title: Latent degradation indicators estimation and prediction: a Monte Carlo approach
  publication-title: Mech. Syst. Signal Process.
– volume: 56
  start-page: 29
  year: 2004
  end-page: 35
  ident: bib7
  article-title: Predicting remaining life by fusing the physics of failure modeling with diagnostics
  publication-title: J. Met.
– start-page: 25
  year: 1986
  end-page: 32
  ident: bib37
  article-title: JT9D engine/module performance deterioration results from back to back testing
  publication-title: Turbomach. Perform. Deterior.
– year: 2008
  ident: bib11
  article-title: Prognostics and Health Management of Electronics
– year: 1997
  ident: bib29
  article-title: Bayesian Prediction and Dynamic Models, Springer Series in Statistics
– volume: 28
  start-page: 1012
  year: 2006
  end-page: 1024
  ident: bib2
  article-title: System health monitoring and prognostics—a review of current paradigms and practices
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 70
  start-page: 413
  year: 2008
  end-page: 428
  ident: bib34
  article-title: Practical filtering with sequential parameter learning
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
– reference: G. Harrison, Translation of service usage into component life consumption, in: Recommended Practices for Monitoring Gas Turbine Engine Life Consumption, RTO Technical Report 28 (RTO-TR-28, AC/323/(AVT)TP/22), 2000.
– volume: 91
  start-page: 200
  year: 2006
  end-page: 208
  ident: bib26
  article-title: Application of stochastic filtering for lifetime prediction
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2001
  ident: bib32
  article-title: Sequential Monte Carlo Methods in Practice
– volume: 140
  start-page: 107
  year: 1993
  end-page: 113
  ident: bib31
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: Radar Signal Process. IEE Proc. F
– volume: 121
  start-page: 355
  year: 1999
  end-page: 362
  ident: bib17
  article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
  publication-title: Trans. ASME: J. Vib. Acoust.
– volume: 4
  start-page: 443
  year: 1996
  end-page: 451
  ident: bib6
  article-title: Stochasticmodeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 51
  start-page: 145
  year: 2000
  end-page: 155
  ident: bib21
  article-title: Towards a general condition based maintenance model for a stochastic dynamic system
  publication-title: J. Oper. Res. Soc.
– volume: 19
  start-page: 836
  year: 2005
  end-page: 846
  ident: bib8
  article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
  publication-title: Mech. Syst. Signal Process.
– volume: 76
  start-page: 796
  year: 2004
  end-page: 801
  ident: bib14
  article-title: A prognostic algorithm for machine performance assessment and its application
  publication-title: Prod. Plan. Control
– volume: 2
  start-page: 12
  year: 2008
  end-page: 23
  ident: bib19
  article-title: Support vector machine for machine fault diagnosis and prognosis
  publication-title: J. Syst. Des. Dyn.
– reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Heath Management, PHM2008, 2008.
– volume: 58
  start-page: 887
  year: 2007
  end-page: 893
  ident: bib25
  article-title: A prognosis model for wear prediction based on oil-based monitoring
  publication-title: J. Oper. Res. Soc.
– volume: 18
  start-page: 813
  year: 2004
  end-page: 831
  ident: bib20
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mech. Syst. Signal Process.
– reference: (accessed 15 August 2010).
– volume: 324
  start-page: 1141
  year: 2009
  end-page: 1157
  ident: bib22
  article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
  publication-title: J. Sound Vib.
– volume: 50
  start-page: 281
  year: 2002
  end-page: 289
  ident: bib33
  article-title: Particle filters in state space models with the presence of unknown static parameters
  publication-title: IEEE Trans. Signal Process.
– volume: 50
  start-page: 297
  year: 2010
  end-page: 313
  ident: bib4
  article-title: Current status of machine prognostics in condition-based maintenance: a review
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: D. Frederick, J. De Castro, J. Litt, User's Guide for the Commercial Modular Aero-Propulsion System Simulation (CMAPSS), NASA/ARL, 2007.
– volume: 86
  start-page: 2152
  year: 2009
  end-page: 2161
  ident: bib35
  article-title: Gas turbine performance prognostic for condition-based maintenance
  publication-title: Appl. Energy
– start-page: 41
  year: 1986
  end-page: 47
  ident: bib38
  article-title: Factors relating to deterioration based on Rolls-Royce RB211 in service performance
  publication-title: Turbomach. Perform. Deterior.
– reference: T. Wang, J. Yu, D. Siegel, J. Lee, A similarity based prognostic approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Heath Management PHM 2008, Denver, USA, 2008.
– reference: G.F. Harrison, M.E.F. Smith, J. hurse, Procedure for aeroengine component life usage prediction, in: AIDAA/AAAF/DGLR/RAeS 5th European Propulsion Forum, Pisa, Italy, 1995.
– volume: 15
  start-page: 349
  year: 2001
  end-page: 365
  ident: bib18
  article-title: Fault prognostics using dynamic wavelet neural networks
  publication-title: Artif. Intell. Eng. Des. Anal. Manuf.
– reference: R. Valentin, M. Osterman, B. Newman, Remaining life assessment of aging electronics in avionc applications, in: Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), 2003, pp. 313–318.
– volume: 31
  start-page: 221
  year: 2009
  end-page: 224
  ident: bib16
  article-title: A particle-filtering approach for on-line fault diagnosis and failure prognosis
  publication-title: Trans. Inst. Meas. Control
– volume: 57
  start-page: 230
  year: 2008
  end-page: 242
  ident: bib24
  article-title: Real-time reliability prediction for a dynamic system based on hidden degradation process identification
  publication-title: IEEE Trans. Reliab.
– volume: 19
  start-page: 836
  year: 2005
  ident: 10.1016/j.ymssp.2011.09.029_bib8
  article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.06.007
– volume: 20
  start-page: 1483
  year: 2006
  ident: 10.1016/j.ymssp.2011.09.029_bib1
  article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance
  publication-title: Mech. Syst. Signal Proccess.
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 56
  start-page: 29
  year: 2004
  ident: 10.1016/j.ymssp.2011.09.029_bib7
  article-title: Predicting remaining life by fusing the physics of failure modeling with diagnostics
  publication-title: J. Met.
– volume: 50
  start-page: 281
  year: 2002
  ident: 10.1016/j.ymssp.2011.09.029_bib33
  article-title: Particle filters in state space models with the presence of unknown static parameters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.978383
– volume: 31
  start-page: 221
  issue: 4
  year: 2009
  ident: 10.1016/j.ymssp.2011.09.029_bib16
  article-title: A particle-filtering approach for on-line fault diagnosis and failure prognosis
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331208092026
– volume: 213
  start-page: 1
  year: 2011
  ident: 10.1016/j.ymssp.2011.09.029_bib5
  article-title: Remaining useful life estimation—a review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– volume: 140
  start-page: 107
  year: 1993
  ident: 10.1016/j.ymssp.2011.09.029_bib31
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: Radar Signal Process. IEE Proc. F
  doi: 10.1049/ip-f-2.1993.0015
– volume: 25
  start-page: 222
  year: 2011
  ident: 10.1016/j.ymssp.2011.09.029_bib27
  article-title: Latent degradation indicators estimation and prediction: a Monte Carlo approach
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.08.012
– volume: 50
  start-page: 297
  year: 2010
  ident: 10.1016/j.ymssp.2011.09.029_bib4
  article-title: Current status of machine prognostics in condition-based maintenance: a review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2482-0
– volume: 35
  start-page: 161
  year: 1993
  ident: 10.1016/j.ymssp.2011.09.029_bib23
  article-title: Using degradation measures to estimate a time-to-failure distribution
  publication-title: Technometrics
  doi: 10.2307/1269661
– year: 2008
  ident: 10.1016/j.ymssp.2011.09.029_bib11
– volume: 18
  start-page: 813
  year: 2004
  ident: 10.1016/j.ymssp.2011.09.029_bib20
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/S0888-3270(03)00079-7
– volume: 86
  start-page: 2152
  year: 2009
  ident: 10.1016/j.ymssp.2011.09.029_bib35
  article-title: Gas turbine performance prognostic for condition-based maintenance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.02.011
– ident: 10.1016/j.ymssp.2011.09.029_bib28
  doi: 10.1109/PHM.2008.4711421
– ident: 10.1016/j.ymssp.2011.09.029_bib9
  doi: 10.1109/RAMS.2003.1182008
– volume: 121
  start-page: 355
  issue: 3
  year: 1999
  ident: 10.1016/j.ymssp.2011.09.029_bib17
  article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
  publication-title: Trans. ASME: J. Vib. Acoust.
  doi: 10.1115/1.2893988
– volume: 58
  start-page: 887
  year: 2007
  ident: 10.1016/j.ymssp.2011.09.029_bib25
  article-title: A prognosis model for wear prediction based on oil-based monitoring
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2602185
– ident: 10.1016/j.ymssp.2011.09.029_bib13
– start-page: 41
  year: 1986
  ident: 10.1016/j.ymssp.2011.09.029_bib38
  article-title: Factors relating to deterioration based on Rolls-Royce RB211 in service performance
  publication-title: Turbomach. Perform. Deterior.
– volume: 70
  start-page: 413
  year: 2008
  ident: 10.1016/j.ymssp.2011.09.029_bib34
  article-title: Practical filtering with sequential parameter learning
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2007.00642.x
– ident: 10.1016/j.ymssp.2011.09.029_bib15
  doi: 10.1109/AERO.2001.931317
– volume: 15
  start-page: 349
  year: 2001
  ident: 10.1016/j.ymssp.2011.09.029_bib18
  article-title: Fault prognostics using dynamic wavelet neural networks
  publication-title: Artif. Intell. Eng. Des. Anal. Manuf.
  doi: 10.1017/S0890060401154089
– ident: 10.1016/j.ymssp.2011.09.029_bib36
  doi: 10.1109/PHM.2008.4711414
– year: 1997
  ident: 10.1016/j.ymssp.2011.09.029_bib29
– volume: 91
  start-page: 200
  year: 2006
  ident: 10.1016/j.ymssp.2011.09.029_bib26
  article-title: Application of stochastic filtering for lifetime prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.01.002
– year: 2001
  ident: 10.1016/j.ymssp.2011.09.029_bib32
– ident: 10.1016/j.ymssp.2011.09.029_bib40
– volume: 57
  start-page: 230
  issue: 2
  year: 2008
  ident: 10.1016/j.ymssp.2011.09.029_bib24
  article-title: Real-time reliability prediction for a dynamic system based on hidden degradation process identification
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2008.916882
– volume: 26
  start-page: 625
  year: 2003
  ident: 10.1016/j.ymssp.2011.09.029_bib10
  article-title: A life consumption monitoring methodology for electronic systems
  publication-title: IEEE Trans. Compon. Pack. Technol.
  doi: 10.1109/TCAPT.2003.817654
– year: 2004
  ident: 10.1016/j.ymssp.2011.09.029_bib30
– volume: 4
  start-page: 443
  year: 1996
  ident: 10.1016/j.ymssp.2011.09.029_bib6
  article-title: Stochasticmodeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/87.508893
– volume: 51
  start-page: 145
  year: 2000
  ident: 10.1016/j.ymssp.2011.09.029_bib21
  article-title: Towards a general condition based maintenance model for a stochastic dynamic system
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600863
– volume: 23
  start-page: 724
  year: 2009
  ident: 10.1016/j.ymssp.2011.09.029_bib3
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 2
  start-page: 12
  issue: 1
  year: 2008
  ident: 10.1016/j.ymssp.2011.09.029_bib19
  article-title: Support vector machine for machine fault diagnosis and prognosis
  publication-title: J. Syst. Des. Dyn.
– volume: 324
  start-page: 1141
  issue: 3–5
  year: 2009
  ident: 10.1016/j.ymssp.2011.09.029_bib22
  article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.02.013
– ident: 10.1016/j.ymssp.2011.09.029_bib12
– ident: 10.1016/j.ymssp.2011.09.029_bib39
– volume: 28
  start-page: 1012
  year: 2006
  ident: 10.1016/j.ymssp.2011.09.029_bib2
  article-title: System health monitoring and prognostics—a review of current paradigms and practices
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2131-6
– start-page: 25
  year: 1986
  ident: 10.1016/j.ymssp.2011.09.029_bib37
  article-title: JT9D engine/module performance deterioration results from back to back testing
  publication-title: Turbomach. Perform. Deterior.
– volume: 76
  start-page: 796
  year: 2004
  ident: 10.1016/j.ymssp.2011.09.029_bib14
  article-title: A prognostic algorithm for machine performance assessment and its application
  publication-title: Prod. Plan. Control
  doi: 10.1080/09537280412331309208
SSID ssj0009406
Score 2.4277813
Snippet This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 585
SubjectTerms Applied sciences
Computer simulation
Degradation
Exact sciences and technology
Failure
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Gas turbines
Health
Health index
Industrial metrology. Testing
Maintenance
Markov processes
Mathematical models
Mechanical engineering. Machine design
Monte Carlo methods
Performance degradation
Physics
Prognostics
Sequential Monte Carlo
Solid mechanics
State space model
Structural and continuum mechanics
Title Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
URI https://dx.doi.org/10.1016/j.ymssp.2011.09.029
https://www.proquest.com/docview/1019636562
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QewEhtMtDDLAjI-2RMiVNm-Y4QotmdyUuLBK3KM1DAkE7YoYDB_jt2Gk7gEAcOLZykip2bKe2PzP2y6bCmYAnLZSmSoQLJqms9QkPwprSRRtO2RZnxeRC_L3ML5fYSV8LQ2mVne5vdXrU1t2bUbebo-nV1egczweKo4ygZxSdogp2IUnKj55e0jyUiP01iTgh6h55KOZ4PdzOZtMOx1MdpdHP_NA6rU3NDPcstM0u3untaIxOv7P1zouEcfuhP9iSrzfY6itswU32OH4JTUMTwECsHQLUINZDbICDdLDAcIV5Ay2sM1DOVt1EAGcgK-cApzDQlkxCxFcE9HUBr9IuZnwlLdWtIfAJQvDwW-zi9Pf_k0nS9VpIbFYU88TxkCNf6K9okHnFpQ940VAuVM466QX6BWVWyiC5yb33ZSVUYYLKZZZnllD1ttly3dR-hwGvSqHQEUmDUjguK3N5rEThUq94kZlywHi_x9p2QOTUD-NG9xln1zoyRhNjdKo0MmbADheDpi0Ox-fkRc88_UacNFqKzwcO37B6sRjeNDMKUg3YQc97jSeRwium9s39jKZEbYb-Md_96up7bAWfeJsZtM-W53f3_ic6PfNqGKV6yL6N__ybnD0DxGIEFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAKIZ7q8iiDBDfSDY7z8IFDBVRbWnqhlXozjh9SEU1WZCvUA_wp_iAzTrKlAvWA1GtiO5Y_e2Ycf_4G4IVNpTOBVlqoTJ1IF0xSW-sTEaQ1lYs-nNkW-8XsUH44yo9W4Nd4F4ZplYPt7216tNbDk-kwmtP58fH0E60Pmo5lFD3j06mBWbnrz77Tvq17s_OOQH4pxPb7g7ezZEgtkNisKBaJEyGnbvBPwFDmtSh9oLhauVA760ovyQ1WWVWGUpjce1_VUhUmqLzM8syyiBy1ew2uSzIXnDZh8-c5r0TJmNCTe5dw90apo0gqOzvpuvkgHKo20xjY_tMd3pqbjkAKfXaNvxxF9H7bd-D2ELbiVj8yd2HFN_dg7Q8xw_vwY-v8LBzbgAbjZSUkk2U9xow7VA6XorG4aLHXkUYmiTVtVIxGdqsOqQmD_R1NjIKOSME10t7dRYpZ0pc6Max2wZIh_gEcXgkCD2G1aRu_DijqSiqKfNKgFNXLqrx8rWThUq9EkZlqAmIcY20H5XNOwPFVjxS3LzoCoxkYnSpNwEzg1bLSvBf-uLx4MYKnL8xfTa7p8oobF6Befoy2thmfik3g-Yi9pqXP5zmm8e1px02S-aSAXDz6368_gxuzg497em9nf_cx3KQ3oqclPYHVxbdT_5QirkW9EWc4wuerXlK_AbLdP2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+state+space+modeling+technique+to+system+prognostics+based+on+a+health+index+for+condition-based+maintenance&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sun%2C+Jianzhong&rft.au=Zuo%2C+Hongfu&rft.au=Wang%2C+Wenbin&rft.au=Pecht%2C+Michael+G.&rft.date=2012-04-01&rft.issn=0888-3270&rft.volume=28&rft.spage=585&rft.epage=596&rft_id=info:doi/10.1016%2Fj.ymssp.2011.09.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2011_09_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon