Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on...
Saved in:
Published in | Mechanical systems and signal processing Vol. 28; pp. 585 - 596 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance.
► A health index is proposed for complex systems monitored by multi-sensors. ► A state space model (SSM) is used for system level prognostics based on the health index. ► A Bayesian method is used to estimate the state and parameters of the SSM jointly. ► Both gradual and sudden changes in degradation are considered. |
---|---|
AbstractList | This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance.
► A health index is proposed for complex systems monitored by multi-sensors. ► A state space model (SSM) is used for system level prognostics based on the health index. ► A Bayesian method is used to estimate the state and parameters of the SSM jointly. ► Both gradual and sudden changes in degradation are considered. This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is inferred from a set of sensor signals to characterize the hidden health state of the system. Bayesian state estimation and prediction formulas, on the basis of the health indices modeled by the linear regression of observed signals, are carried out to sequentially update the current health state and then predict the future health state of the system. A Sequential Monte Carlo (SMC) method is used for computation. If a failure is defined in terms of a specified level of degradation, a time-to-failure distribution can be obtained based on the predicted degradation. The method is applied to a gas turbine that is simulated via a gas turbine software package and is subject to both gradual performance deterioration and abrupt faults in service. The analysis of the case study shows that the method can provide an estimate of Remaining Useful Life (RUL) with uncertainty as well as other reliability indices of interest for operators to plan effective condition-based maintenance. |
Author | Pecht, Michael G. Zuo, Hongfu Sun, Jianzhong Wang, Wenbin |
Author_xml | – sequence: 1 givenname: Jianzhong surname: Sun fullname: Sun, Jianzhong email: sunjianzhong@nuaa.edu.cn organization: College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Hongfu surname: Zuo fullname: Zuo, Hongfu organization: College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Wenbin surname: Wang fullname: Wang, Wenbin organization: Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Michael G. surname: Pecht fullname: Pecht, Michael G. organization: Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26136575$$DView record in Pascal Francis |
BookMark | eNp9kT1vFDEURS0UJDaBX0DjBolmBn_M2OOCIooIIEWigdry2M9Zr2bswXYQW_Df8WZDQ5HKzblHz_deoouYIiD0lpKeEio-HPrjWsrWM0JpT1RPmHqBdpQo0VFGxQXakWmaOs4keYUuSzkQQtRAxA79ud62JVhTQ4o4eWxwqaYCLpuxgNfkYAnxHlew-xh-PgCuCZdjqbDiLaf7mEoNtuDZFHC4KQzeg1nqHofo4Df2KWObogsnf3emVhNihWiihdfopTdLgTdP7xX6cfvp-82X7u7b568313ed5ULUzjE_cjbMhHIvx5lJ8HKQyvnZWSdhGCmb-CS9ZGYEgGkelDBejZKP3Equ-BV6f_a2m9snStVrKBaWxURID0W3EpXgYhSsoe-eUFOsWXxud4aitxxWk4-aCdo4OTZOnTmbUykZvLahPtZYswlLU56sQh_04zT6NI0mSrdpWpb_l_2nfz718ZyC1tSvAFkXG6C16EIGW7VL4dn8Xx1krd8 |
CitedBy_id | crossref_primary_10_3390_pr10051012 crossref_primary_10_1016_j_ymssp_2019_106570 crossref_primary_10_1109_TIM_2015_2444237 crossref_primary_10_1016_j_cirp_2015_05_011 crossref_primary_10_1109_TR_2015_2487578 crossref_primary_10_3390_e20020100 crossref_primary_10_1016_j_microrel_2017_09_009 crossref_primary_10_1016_j_knosys_2020_106555 crossref_primary_10_1007_s10479_017_2745_3 crossref_primary_10_1016_j_ymssp_2022_109336 crossref_primary_10_3390_informatics8040068 crossref_primary_10_1016_j_ress_2023_109404 crossref_primary_10_3390_s17020369 crossref_primary_10_1080_00401706_2017_1341341 crossref_primary_10_1016_j_asoc_2020_106344 crossref_primary_10_1016_j_ast_2017_05_030 crossref_primary_10_17531_ein_2021_2_16 crossref_primary_10_1177_0957650919883718 crossref_primary_10_1016_j_ress_2015_02_001 crossref_primary_10_1002_mawe_201800219 crossref_primary_10_1016_j_ress_2017_06_015 crossref_primary_10_1016_j_ymssp_2019_05_005 crossref_primary_10_1016_j_measurement_2013_04_033 crossref_primary_10_1115_1_4048340 crossref_primary_10_1177_1687814016666747 crossref_primary_10_1016_j_ress_2021_107631 crossref_primary_10_1109_TR_2013_2241232 crossref_primary_10_1016_j_ress_2014_10_003 crossref_primary_10_1109_JSYST_2020_2983376 crossref_primary_10_1109_ACCESS_2018_2882824 crossref_primary_10_1016_j_ress_2019_03_037 crossref_primary_10_1115_1_4032680 crossref_primary_10_1109_TASE_2019_2921285 crossref_primary_10_1016_j_wear_2017_01_012 crossref_primary_10_1080_17517575_2021_2008515 crossref_primary_10_1016_j_jsv_2015_08_013 crossref_primary_10_3390_en9060409 crossref_primary_10_1109_JSEN_2021_3060395 crossref_primary_10_1016_j_ymssp_2016_01_010 crossref_primary_10_1109_TNNLS_2015_2504389 crossref_primary_10_1002_qre_1932 crossref_primary_10_1109_TR_2014_2315956 crossref_primary_10_1016_j_ymssp_2014_10_010 crossref_primary_10_1109_TASE_2012_2227960 crossref_primary_10_1002_qre_2229 crossref_primary_10_1016_j_cja_2018_03_024 crossref_primary_10_1016_j_asoc_2016_11_019 crossref_primary_10_1016_j_ymssp_2015_10_022 crossref_primary_10_1016_j_ymssp_2022_109677 crossref_primary_10_1109_TR_2018_2825470 crossref_primary_10_1016_j_jmsy_2018_05_011 crossref_primary_10_1016_j_ress_2017_02_007 crossref_primary_10_1016_j_ymssp_2012_07_001 crossref_primary_10_1016_j_ress_2023_109344 crossref_primary_10_1016_j_ymssp_2018_02_027 crossref_primary_10_1016_j_ress_2020_107241 crossref_primary_10_3390_s21238047 crossref_primary_10_1016_j_eswa_2020_113952 crossref_primary_10_1016_j_ymssp_2017_11_016 crossref_primary_10_1155_2017_6754968 crossref_primary_10_1016_j_cirpj_2022_01_002 crossref_primary_10_1016_j_measurement_2020_108205 crossref_primary_10_1016_j_engappai_2025_110099 crossref_primary_10_1109_ACCESS_2021_3129516 crossref_primary_10_1016_j_cja_2018_11_010 crossref_primary_10_1186_s10033_019_0317_y crossref_primary_10_1088_0957_0233_26_6_065604 crossref_primary_10_1002_qre_3256 crossref_primary_10_1016_j_energy_2017_04_006 crossref_primary_10_1177_1748006X221118448 crossref_primary_10_1088_1757_899X_714_1_012010 crossref_primary_10_3390_s21227655 crossref_primary_10_1016_j_ymssp_2017_10_006 crossref_primary_10_1016_j_renene_2019_04_111 crossref_primary_10_1088_1361_6501_ac793f crossref_primary_10_1080_08982112_2023_2218923 crossref_primary_10_1109_TR_2014_2299151 crossref_primary_10_1109_TIE_2016_2515054 crossref_primary_10_1177_1748006X17751494 crossref_primary_10_1016_j_ymssp_2019_106266 crossref_primary_10_1109_TSMC_2019_2944834 crossref_primary_10_1016_j_cja_2019_03_039 crossref_primary_10_1016_j_procir_2018_03_262 crossref_primary_10_1051_matecconf_201713104014 crossref_primary_10_1177_1748006X20929158 crossref_primary_10_1177_1687814016685004 crossref_primary_10_1186_s10033_018_0205_x crossref_primary_10_1016_j_measurement_2021_110565 crossref_primary_10_2514_1_J055201 crossref_primary_10_1016_j_promfg_2020_01_333 crossref_primary_10_1016_j_energy_2020_119198 crossref_primary_10_1109_TIM_2021_3089774 crossref_primary_10_1016_j_jsv_2013_09_040 crossref_primary_10_1016_j_neucom_2019_07_075 crossref_primary_10_1016_j_ymssp_2015_02_016 crossref_primary_10_1365_s40702_017_0378_2 crossref_primary_10_1016_j_ymssp_2013_01_010 crossref_primary_10_3390_app10124120 crossref_primary_10_1016_j_ymssp_2015_03_029 crossref_primary_10_1007_s12273_018_0431_2 crossref_primary_10_1016_j_ymssp_2017_10_021 crossref_primary_10_1109_TIE_2021_3059549 crossref_primary_10_1007_s13042_024_02498_5 crossref_primary_10_1016_j_ress_2017_06_030 crossref_primary_10_1016_j_ymssp_2014_07_005 crossref_primary_10_1016_j_measurement_2020_108878 crossref_primary_10_1109_TCSII_2024_3383393 crossref_primary_10_1016_j_jmsy_2021_08_006 crossref_primary_10_1016_j_cja_2014_08_013 crossref_primary_10_1016_j_jpowsour_2013_03_129 crossref_primary_10_1088_1361_6501_ac026f crossref_primary_10_1109_TR_2014_2368872 crossref_primary_10_3390_machines8020031 crossref_primary_10_1016_j_measurement_2021_109756 crossref_primary_10_1109_TIM_2014_2351312 crossref_primary_10_1142_S2424922X20500011 crossref_primary_10_1016_j_sna_2017_12_009 crossref_primary_10_1115_1_4033556 crossref_primary_10_2514_1_J062222 crossref_primary_10_1016_j_future_2018_02_011 crossref_primary_10_1177_1687814018784201 |
Cites_doi | 10.1016/j.ymssp.2004.06.007 10.1016/j.ymssp.2005.09.012 10.1109/78.978383 10.1177/0142331208092026 10.1016/j.ejor.2010.11.018 10.1049/ip-f-2.1993.0015 10.1016/j.ymssp.2010.08.012 10.1007/s00170-009-2482-0 10.2307/1269661 10.1016/S0888-3270(03)00079-7 10.1016/j.apenergy.2009.02.011 10.1109/PHM.2008.4711421 10.1109/RAMS.2003.1182008 10.1115/1.2893988 10.1057/palgrave.jors.2602185 10.1111/j.1467-9868.2007.00642.x 10.1109/AERO.2001.931317 10.1017/S0890060401154089 10.1109/PHM.2008.4711414 10.1016/j.ress.2005.01.002 10.1109/TR.2008.916882 10.1109/TCAPT.2003.817654 10.1109/87.508893 10.1057/palgrave.jors.2600863 10.1016/j.ymssp.2008.06.009 10.1016/j.jsv.2009.02.013 10.1007/s00170-004-2131-6 10.1080/09537280412331309208 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2011.09.029 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1096-1216 |
EndPage | 596 |
ExternalDocumentID | 26136575 10_1016_j_ymssp_2011_09_029 S0888327011003979 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c366t-d2f5324b013f75b27ef7479dfbdcd7e45128387f72a5eee8b496af957353c7393 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Tue Aug 05 11:23:37 EDT 2025 Mon Jul 21 09:13:39 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 05:15:16 EDT 2025 Fri Feb 23 02:25:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Markov processes State space model Sequential Monte Carlo Health index Performance degradation Prognostics State space Modeling Uncertain system Model matching Sequential method State estimation Bayes estimation Monte Carlo method Linear regression Measurement sensor Rupture Durability Regression analysis State space method Forecasting Preventive maintenance Break up time Sheet moulding compound Gas turbine Reliability |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-d2f5324b013f75b27ef7479dfbdcd7e45128387f72a5eee8b496af957353c7393 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1019636562 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1019636562 pascalfrancis_primary_26136575 crossref_citationtrail_10_1016_j_ymssp_2011_09_029 crossref_primary_10_1016_j_ymssp_2011_09_029 elsevier_sciencedirect_doi_10_1016_j_ymssp_2011_09_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Polson, Stroud, Muller (bib34) 2008; 70 D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, 2001 pp. 2971–2977. Si, Wang, Hu, Zhou (bib5) 2011; 213 Ramakrishnan, Pecht (bib10) 2003; 26 Kothamasu, Huang, VerDuin (bib2) 2006; 28 Storvik (bib33) 2002; 50 A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Heath Management, PHM2008, 2008. Lu, Meeker (bib23) 1993; 35 Ray, Tangirala (bib6) 1996; 4 Zhou, Sun, Mathew, Wolff, Ma (bib27) 2011; 25 Crosby (bib38) 1986 D. Frederick, J. De Castro, J. Litt, User's Guide for the Commercial Modular Aero-Propulsion System Simulation (CMAPSS), NASA/ARL, 2007. Sasahara (bib37) 1986 Pecht (bib11) 2008 Li, Nilkitsaranont (bib35) 2009; 86 Yan, Koc, Lee (bib14) 2004; 76 Wang, Christer (bib21) 2000; 51 West, Harrison (bib29) 1997 Wang (bib25) 2007; 58 Heng, Zhang, Tan, Mathew (bib3) 2009; 23 G.F. Harrison, M.E.F. Smith, J. hurse, Procedure for aeroengine component life usage prediction, in: AIDAA/AAAF/DGLR/RAeS 5th European Propulsion Forum, Pisa, Italy, 1995. Wang, Miao, Kang (bib22) 2009; 324 Jardine, Lin, Banjevic (bib1) 2006; 20 Orchard, Vachtsevanos (bib16) 2009; 31 Myotyri, Pulkkinen, Simola (bib26) 2006; 91 (accessed 15 August 2010). R. Valentin, M. Osterman, B. Newman, Remaining life assessment of aging electronics in avionc applications, in: Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), 2003, pp. 313–318. G. Harrison, Translation of service usage into component life consumption, in: Recommended Practices for Monitoring Gas Turbine Engine Life Consumption, RTO Technical Report 28 (RTO-TR-28, AC/323/(AVT)TP/22), 2000. Gordon, Salmond, Smith (bib31) 1993; 140 Yang, Widodo (bib19) 2008; 2 A. Saxena, K. Goebel, K., Turbofan Engine degradation simulation data set, Retrieved from NASA Ames Prognostics Data Repository Kacprzynski, Sarlashkar, Roemer (bib7) 2004; 56 Harvey, Koopman, Shephard (bib30) 2004 Doucet, de Freitas, Gordon (bib32) 2001 Li, Lee (bib8) 2005; 19 Tse, Atherton (bib17) 1999; 121 Wang, Vachtsevanos (bib18) 2001; 15 T. Wang, J. Yu, D. Siegel, J. Lee, A similarity based prognostic approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Heath Management PHM 2008, Denver, USA, 2008. Wang, Golnaragh, Ismail (bib20) 2004; 18 Peng, Dong, Zuo (bib4) 2010; 50 Xu, Ji, Zhou (bib24) 2008; 57 Ray (10.1016/j.ymssp.2011.09.029_bib6) 1996; 4 Kacprzynski (10.1016/j.ymssp.2011.09.029_bib7) 2004; 56 10.1016/j.ymssp.2011.09.029_bib40 Xu (10.1016/j.ymssp.2011.09.029_bib24) 2008; 57 Storvik (10.1016/j.ymssp.2011.09.029_bib33) 2002; 50 Wang (10.1016/j.ymssp.2011.09.029_bib22) 2009; 324 Yan (10.1016/j.ymssp.2011.09.029_bib14) 2004; 76 Lu (10.1016/j.ymssp.2011.09.029_bib23) 1993; 35 Crosby (10.1016/j.ymssp.2011.09.029_bib38) 1986 Jardine (10.1016/j.ymssp.2011.09.029_bib1) 2006; 20 10.1016/j.ymssp.2011.09.029_bib28 Wang (10.1016/j.ymssp.2011.09.029_bib21) 2000; 51 Wang (10.1016/j.ymssp.2011.09.029_bib25) 2007; 58 Myotyri (10.1016/j.ymssp.2011.09.029_bib26) 2006; 91 Heng (10.1016/j.ymssp.2011.09.029_bib3) 2009; 23 Doucet (10.1016/j.ymssp.2011.09.029_bib32) 2001 Sasahara (10.1016/j.ymssp.2011.09.029_bib37) 1986 Li (10.1016/j.ymssp.2011.09.029_bib35) 2009; 86 Wang (10.1016/j.ymssp.2011.09.029_bib18) 2001; 15 Tse (10.1016/j.ymssp.2011.09.029_bib17) 1999; 121 Si (10.1016/j.ymssp.2011.09.029_bib5) 2011; 213 Orchard (10.1016/j.ymssp.2011.09.029_bib16) 2009; 31 Kothamasu (10.1016/j.ymssp.2011.09.029_bib2) 2006; 28 Pecht (10.1016/j.ymssp.2011.09.029_bib11) 2008 10.1016/j.ymssp.2011.09.029_bib12 10.1016/j.ymssp.2011.09.029_bib13 Yang (10.1016/j.ymssp.2011.09.029_bib19) 2008; 2 10.1016/j.ymssp.2011.09.029_bib36 Ramakrishnan (10.1016/j.ymssp.2011.09.029_bib10) 2003; 26 10.1016/j.ymssp.2011.09.029_bib15 Peng (10.1016/j.ymssp.2011.09.029_bib4) 2010; 50 10.1016/j.ymssp.2011.09.029_bib39 Harvey (10.1016/j.ymssp.2011.09.029_bib30) 2004 West (10.1016/j.ymssp.2011.09.029_bib29) 1997 Li (10.1016/j.ymssp.2011.09.029_bib8) 2005; 19 Wang (10.1016/j.ymssp.2011.09.029_bib20) 2004; 18 Zhou (10.1016/j.ymssp.2011.09.029_bib27) 2011; 25 Polson (10.1016/j.ymssp.2011.09.029_bib34) 2008; 70 Gordon (10.1016/j.ymssp.2011.09.029_bib31) 1993; 140 10.1016/j.ymssp.2011.09.029_bib9 |
References_xml | – volume: 26 start-page: 625 year: 2003 end-page: 634 ident: bib10 article-title: A life consumption monitoring methodology for electronic systems publication-title: IEEE Trans. Compon. Pack. Technol. – volume: 35 start-page: 161 year: 1993 end-page: 174 ident: bib23 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics – reference: A. Saxena, K. Goebel, K., Turbofan Engine degradation simulation data set, Retrieved from NASA Ames Prognostics Data Repository, – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: bib1 article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance publication-title: Mech. Syst. Signal Proccess. – volume: 23 start-page: 724 year: 2009 end-page: 739 ident: bib3 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mech. Syst. Signal Process. – volume: 213 start-page: 1 year: 2011 end-page: 14 ident: bib5 article-title: Remaining useful life estimation—a review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. – reference: D.C. Swanson, A general prognostic tracking algorithm for predictive maintenance, in: IEEE Aerospace Conference, 2001 pp. 2971–2977. – year: 2004 ident: bib30 article-title: State Space and Unobserved Component Models: Theory and Applications – volume: 25 start-page: 222 year: 2011 end-page: 236 ident: bib27 article-title: Latent degradation indicators estimation and prediction: a Monte Carlo approach publication-title: Mech. Syst. Signal Process. – volume: 56 start-page: 29 year: 2004 end-page: 35 ident: bib7 article-title: Predicting remaining life by fusing the physics of failure modeling with diagnostics publication-title: J. Met. – start-page: 25 year: 1986 end-page: 32 ident: bib37 article-title: JT9D engine/module performance deterioration results from back to back testing publication-title: Turbomach. Perform. Deterior. – year: 2008 ident: bib11 article-title: Prognostics and Health Management of Electronics – year: 1997 ident: bib29 article-title: Bayesian Prediction and Dynamic Models, Springer Series in Statistics – volume: 28 start-page: 1012 year: 2006 end-page: 1024 ident: bib2 article-title: System health monitoring and prognostics—a review of current paradigms and practices publication-title: Int. J. Adv. Manuf. Technol. – volume: 70 start-page: 413 year: 2008 end-page: 428 ident: bib34 article-title: Practical filtering with sequential parameter learning publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) – reference: G. Harrison, Translation of service usage into component life consumption, in: Recommended Practices for Monitoring Gas Turbine Engine Life Consumption, RTO Technical Report 28 (RTO-TR-28, AC/323/(AVT)TP/22), 2000. – volume: 91 start-page: 200 year: 2006 end-page: 208 ident: bib26 article-title: Application of stochastic filtering for lifetime prediction publication-title: Reliab. Eng. Syst. Saf. – year: 2001 ident: bib32 article-title: Sequential Monte Carlo Methods in Practice – volume: 140 start-page: 107 year: 1993 end-page: 113 ident: bib31 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: Radar Signal Process. IEE Proc. F – volume: 121 start-page: 355 year: 1999 end-page: 362 ident: bib17 article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks publication-title: Trans. ASME: J. Vib. Acoust. – volume: 4 start-page: 443 year: 1996 end-page: 451 ident: bib6 article-title: Stochasticmodeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Trans. Control Syst. Technol. – volume: 51 start-page: 145 year: 2000 end-page: 155 ident: bib21 article-title: Towards a general condition based maintenance model for a stochastic dynamic system publication-title: J. Oper. Res. Soc. – volume: 19 start-page: 836 year: 2005 end-page: 846 ident: bib8 article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics publication-title: Mech. Syst. Signal Process. – volume: 76 start-page: 796 year: 2004 end-page: 801 ident: bib14 article-title: A prognostic algorithm for machine performance assessment and its application publication-title: Prod. Plan. Control – volume: 2 start-page: 12 year: 2008 end-page: 23 ident: bib19 article-title: Support vector machine for machine fault diagnosis and prognosis publication-title: J. Syst. Des. Dyn. – reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Heath Management, PHM2008, 2008. – volume: 58 start-page: 887 year: 2007 end-page: 893 ident: bib25 article-title: A prognosis model for wear prediction based on oil-based monitoring publication-title: J. Oper. Res. Soc. – volume: 18 start-page: 813 year: 2004 end-page: 831 ident: bib20 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mech. Syst. Signal Process. – reference: (accessed 15 August 2010). – volume: 324 start-page: 1141 year: 2009 end-page: 1157 ident: bib22 article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition publication-title: J. Sound Vib. – volume: 50 start-page: 281 year: 2002 end-page: 289 ident: bib33 article-title: Particle filters in state space models with the presence of unknown static parameters publication-title: IEEE Trans. Signal Process. – volume: 50 start-page: 297 year: 2010 end-page: 313 ident: bib4 article-title: Current status of machine prognostics in condition-based maintenance: a review publication-title: Int. J. Adv. Manuf. Technol. – reference: D. Frederick, J. De Castro, J. Litt, User's Guide for the Commercial Modular Aero-Propulsion System Simulation (CMAPSS), NASA/ARL, 2007. – volume: 86 start-page: 2152 year: 2009 end-page: 2161 ident: bib35 article-title: Gas turbine performance prognostic for condition-based maintenance publication-title: Appl. Energy – start-page: 41 year: 1986 end-page: 47 ident: bib38 article-title: Factors relating to deterioration based on Rolls-Royce RB211 in service performance publication-title: Turbomach. Perform. Deterior. – reference: T. Wang, J. Yu, D. Siegel, J. Lee, A similarity based prognostic approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Heath Management PHM 2008, Denver, USA, 2008. – reference: G.F. Harrison, M.E.F. Smith, J. hurse, Procedure for aeroengine component life usage prediction, in: AIDAA/AAAF/DGLR/RAeS 5th European Propulsion Forum, Pisa, Italy, 1995. – volume: 15 start-page: 349 year: 2001 end-page: 365 ident: bib18 article-title: Fault prognostics using dynamic wavelet neural networks publication-title: Artif. Intell. Eng. Des. Anal. Manuf. – reference: R. Valentin, M. Osterman, B. Newman, Remaining life assessment of aging electronics in avionc applications, in: Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), 2003, pp. 313–318. – volume: 31 start-page: 221 year: 2009 end-page: 224 ident: bib16 article-title: A particle-filtering approach for on-line fault diagnosis and failure prognosis publication-title: Trans. Inst. Meas. Control – volume: 57 start-page: 230 year: 2008 end-page: 242 ident: bib24 article-title: Real-time reliability prediction for a dynamic system based on hidden degradation process identification publication-title: IEEE Trans. Reliab. – volume: 19 start-page: 836 year: 2005 ident: 10.1016/j.ymssp.2011.09.029_bib8 article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2004.06.007 – volume: 20 start-page: 1483 year: 2006 ident: 10.1016/j.ymssp.2011.09.029_bib1 article-title: A review on machinery diagnostics and prognostics implementing condition based maintenance publication-title: Mech. Syst. Signal Proccess. doi: 10.1016/j.ymssp.2005.09.012 – volume: 56 start-page: 29 year: 2004 ident: 10.1016/j.ymssp.2011.09.029_bib7 article-title: Predicting remaining life by fusing the physics of failure modeling with diagnostics publication-title: J. Met. – volume: 50 start-page: 281 year: 2002 ident: 10.1016/j.ymssp.2011.09.029_bib33 article-title: Particle filters in state space models with the presence of unknown static parameters publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.978383 – volume: 31 start-page: 221 issue: 4 year: 2009 ident: 10.1016/j.ymssp.2011.09.029_bib16 article-title: A particle-filtering approach for on-line fault diagnosis and failure prognosis publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331208092026 – volume: 213 start-page: 1 year: 2011 ident: 10.1016/j.ymssp.2011.09.029_bib5 article-title: Remaining useful life estimation—a review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.018 – volume: 140 start-page: 107 year: 1993 ident: 10.1016/j.ymssp.2011.09.029_bib31 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: Radar Signal Process. IEE Proc. F doi: 10.1049/ip-f-2.1993.0015 – volume: 25 start-page: 222 year: 2011 ident: 10.1016/j.ymssp.2011.09.029_bib27 article-title: Latent degradation indicators estimation and prediction: a Monte Carlo approach publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.08.012 – volume: 50 start-page: 297 year: 2010 ident: 10.1016/j.ymssp.2011.09.029_bib4 article-title: Current status of machine prognostics in condition-based maintenance: a review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2482-0 – volume: 35 start-page: 161 year: 1993 ident: 10.1016/j.ymssp.2011.09.029_bib23 article-title: Using degradation measures to estimate a time-to-failure distribution publication-title: Technometrics doi: 10.2307/1269661 – year: 2008 ident: 10.1016/j.ymssp.2011.09.029_bib11 – volume: 18 start-page: 813 year: 2004 ident: 10.1016/j.ymssp.2011.09.029_bib20 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/S0888-3270(03)00079-7 – volume: 86 start-page: 2152 year: 2009 ident: 10.1016/j.ymssp.2011.09.029_bib35 article-title: Gas turbine performance prognostic for condition-based maintenance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.02.011 – ident: 10.1016/j.ymssp.2011.09.029_bib28 doi: 10.1109/PHM.2008.4711421 – ident: 10.1016/j.ymssp.2011.09.029_bib9 doi: 10.1109/RAMS.2003.1182008 – volume: 121 start-page: 355 issue: 3 year: 1999 ident: 10.1016/j.ymssp.2011.09.029_bib17 article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks publication-title: Trans. ASME: J. Vib. Acoust. doi: 10.1115/1.2893988 – volume: 58 start-page: 887 year: 2007 ident: 10.1016/j.ymssp.2011.09.029_bib25 article-title: A prognosis model for wear prediction based on oil-based monitoring publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2602185 – ident: 10.1016/j.ymssp.2011.09.029_bib13 – start-page: 41 year: 1986 ident: 10.1016/j.ymssp.2011.09.029_bib38 article-title: Factors relating to deterioration based on Rolls-Royce RB211 in service performance publication-title: Turbomach. Perform. Deterior. – volume: 70 start-page: 413 year: 2008 ident: 10.1016/j.ymssp.2011.09.029_bib34 article-title: Practical filtering with sequential parameter learning publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2007.00642.x – ident: 10.1016/j.ymssp.2011.09.029_bib15 doi: 10.1109/AERO.2001.931317 – volume: 15 start-page: 349 year: 2001 ident: 10.1016/j.ymssp.2011.09.029_bib18 article-title: Fault prognostics using dynamic wavelet neural networks publication-title: Artif. Intell. Eng. Des. Anal. Manuf. doi: 10.1017/S0890060401154089 – ident: 10.1016/j.ymssp.2011.09.029_bib36 doi: 10.1109/PHM.2008.4711414 – year: 1997 ident: 10.1016/j.ymssp.2011.09.029_bib29 – volume: 91 start-page: 200 year: 2006 ident: 10.1016/j.ymssp.2011.09.029_bib26 article-title: Application of stochastic filtering for lifetime prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.01.002 – year: 2001 ident: 10.1016/j.ymssp.2011.09.029_bib32 – ident: 10.1016/j.ymssp.2011.09.029_bib40 – volume: 57 start-page: 230 issue: 2 year: 2008 ident: 10.1016/j.ymssp.2011.09.029_bib24 article-title: Real-time reliability prediction for a dynamic system based on hidden degradation process identification publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2008.916882 – volume: 26 start-page: 625 year: 2003 ident: 10.1016/j.ymssp.2011.09.029_bib10 article-title: A life consumption monitoring methodology for electronic systems publication-title: IEEE Trans. Compon. Pack. Technol. doi: 10.1109/TCAPT.2003.817654 – year: 2004 ident: 10.1016/j.ymssp.2011.09.029_bib30 – volume: 4 start-page: 443 year: 1996 ident: 10.1016/j.ymssp.2011.09.029_bib6 article-title: Stochasticmodeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/87.508893 – volume: 51 start-page: 145 year: 2000 ident: 10.1016/j.ymssp.2011.09.029_bib21 article-title: Towards a general condition based maintenance model for a stochastic dynamic system publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2600863 – volume: 23 start-page: 724 year: 2009 ident: 10.1016/j.ymssp.2011.09.029_bib3 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.06.009 – volume: 2 start-page: 12 issue: 1 year: 2008 ident: 10.1016/j.ymssp.2011.09.029_bib19 article-title: Support vector machine for machine fault diagnosis and prognosis publication-title: J. Syst. Des. Dyn. – volume: 324 start-page: 1141 issue: 3–5 year: 2009 ident: 10.1016/j.ymssp.2011.09.029_bib22 article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.02.013 – ident: 10.1016/j.ymssp.2011.09.029_bib12 – ident: 10.1016/j.ymssp.2011.09.029_bib39 – volume: 28 start-page: 1012 year: 2006 ident: 10.1016/j.ymssp.2011.09.029_bib2 article-title: System health monitoring and prognostics—a review of current paradigms and practices publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2131-6 – start-page: 25 year: 1986 ident: 10.1016/j.ymssp.2011.09.029_bib37 article-title: JT9D engine/module performance deterioration results from back to back testing publication-title: Turbomach. Perform. Deterior. – volume: 76 start-page: 796 year: 2004 ident: 10.1016/j.ymssp.2011.09.029_bib14 article-title: A prognostic algorithm for machine performance assessment and its application publication-title: Prod. Plan. Control doi: 10.1080/09537280412331309208 |
SSID | ssj0009406 |
Score | 2.4277813 |
Snippet | This paper presents the application of a state space model (SSM) for prognostics of an engineering system subject to degradation. A health index (HI) is... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 585 |
SubjectTerms | Applied sciences Computer simulation Degradation Exact sciences and technology Failure Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Gas turbines Health Health index Industrial metrology. Testing Maintenance Markov processes Mathematical models Mechanical engineering. Machine design Monte Carlo methods Performance degradation Physics Prognostics Sequential Monte Carlo Solid mechanics State space model Structural and continuum mechanics |
Title | Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance |
URI | https://dx.doi.org/10.1016/j.ymssp.2011.09.029 https://www.proquest.com/docview/1019636562 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QewEhtMtDDLAjI-2RMiVNm-Y4QotmdyUuLBK3KM1DAkE7YoYDB_jt2Gk7gEAcOLZykip2bKe2PzP2y6bCmYAnLZSmSoQLJqms9QkPwprSRRtO2RZnxeRC_L3ML5fYSV8LQ2mVne5vdXrU1t2bUbebo-nV1egczweKo4ygZxSdogp2IUnKj55e0jyUiP01iTgh6h55KOZ4PdzOZtMOx1MdpdHP_NA6rU3NDPcstM0u3untaIxOv7P1zouEcfuhP9iSrzfY6itswU32OH4JTUMTwECsHQLUINZDbICDdLDAcIV5Ay2sM1DOVt1EAGcgK-cApzDQlkxCxFcE9HUBr9IuZnwlLdWtIfAJQvDwW-zi9Pf_k0nS9VpIbFYU88TxkCNf6K9okHnFpQ940VAuVM466QX6BWVWyiC5yb33ZSVUYYLKZZZnllD1ttly3dR-hwGvSqHQEUmDUjguK3N5rEThUq94kZlywHi_x9p2QOTUD-NG9xln1zoyRhNjdKo0MmbADheDpi0Ox-fkRc88_UacNFqKzwcO37B6sRjeNDMKUg3YQc97jSeRwium9s39jKZEbYb-Md_96up7bAWfeJsZtM-W53f3_ic6PfNqGKV6yL6N__ybnD0DxGIEFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAKIZ7q8iiDBDfSDY7z8IFDBVRbWnqhlXozjh9SEU1WZCvUA_wp_iAzTrKlAvWA1GtiO5Y_e2Ycf_4G4IVNpTOBVlqoTJ1IF0xSW-sTEaQ1lYs-nNkW-8XsUH44yo9W4Nd4F4ZplYPt7216tNbDk-kwmtP58fH0E60Pmo5lFD3j06mBWbnrz77Tvq17s_OOQH4pxPb7g7ezZEgtkNisKBaJEyGnbvBPwFDmtSh9oLhauVA760ovyQ1WWVWGUpjce1_VUhUmqLzM8syyiBy1ew2uSzIXnDZh8-c5r0TJmNCTe5dw90apo0gqOzvpuvkgHKo20xjY_tMd3pqbjkAKfXaNvxxF9H7bd-D2ELbiVj8yd2HFN_dg7Q8xw_vwY-v8LBzbgAbjZSUkk2U9xow7VA6XorG4aLHXkUYmiTVtVIxGdqsOqQmD_R1NjIKOSME10t7dRYpZ0pc6Max2wZIh_gEcXgkCD2G1aRu_DijqSiqKfNKgFNXLqrx8rWThUq9EkZlqAmIcY20H5XNOwPFVjxS3LzoCoxkYnSpNwEzg1bLSvBf-uLx4MYKnL8xfTa7p8oobF6Befoy2thmfik3g-Yi9pqXP5zmm8e1px02S-aSAXDz6368_gxuzg497em9nf_cx3KQ3oqclPYHVxbdT_5QirkW9EWc4wuerXlK_AbLdP2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+state+space+modeling+technique+to+system+prognostics+based+on+a+health+index+for+condition-based+maintenance&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Sun%2C+Jianzhong&rft.au=Zuo%2C+Hongfu&rft.au=Wang%2C+Wenbin&rft.au=Pecht%2C+Michael+G.&rft.date=2012-04-01&rft.issn=0888-3270&rft.volume=28&rft.spage=585&rft.epage=596&rft_id=info:doi/10.1016%2Fj.ymssp.2011.09.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2011_09_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |