The origin of lunar crater rays
Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well...
Saved in:
Published in | Icarus (New York, N.Y. 1962) Vol. 170; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-1035 1090-2643 |
DOI | 10.1016/j.icarus.2004.02.013 |
Cover
Loading…
Abstract | Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO
2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican–Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican–Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period. |
---|---|
AbstractList | Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO sub(2), and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature 'compositional' rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. 'Immaturity' rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third ('combination') class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican- Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period. Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO 2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican–Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican–Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period. Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature 'compositional' rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. 'Immaturity' rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third ('combination') class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican- Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period. |
Author | Lucey, P.G. Campbell, B.A. Robinson, M.S. Hawke, B.Ray Bell, J.F. Blewett, D.T. Smith, G.A. |
Author_xml | – sequence: 1 givenname: B.Ray surname: Hawke fullname: Hawke, B.Ray email: hawke@higp.hawaii.edu organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA – sequence: 2 givenname: D.T. surname: Blewett fullname: Blewett, D.T. organization: NovaSol, 1100 Alakea Street, 23rd Floor, Honolulu, HI 96813, USA – sequence: 3 givenname: P.G. surname: Lucey fullname: Lucey, P.G. organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA – sequence: 4 givenname: G.A. surname: Smith fullname: Smith, G.A. organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA – sequence: 5 givenname: J.F. surname: Bell fullname: Bell, J.F. organization: Department of Astronomy, Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA – sequence: 6 givenname: B.A. surname: Campbell fullname: Campbell, B.A. organization: Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA – sequence: 7 givenname: M.S. surname: Robinson fullname: Robinson, M.S. organization: Center for Planetary Sciences, Northwestern University, 1847 Sheridan Road, Evanston, IL 60208, USA |
BookMark | eNqFkL1OwzAYRS0EEm3hDZDIxJbw-S91GJBQxZ9UiaXMlmN_AVdpXOwEqW9PqjIx0Oku95zhTMlpFzok5IpCQYGWt-vCWxOHVDAAUQArgPITMqFQQc5KwU_JBIBWOQUuz8k0pTUASFXxCblefWIWov_wXRaarB06EzMbTY8xi2aXLshZY9qEl787I-9Pj6vFS758e35dPCxzy8uyz21dO9WoCiyimktJee0QSydKkJwJx7hTAmvFaknnaBDAGCorpoQsmTNzPiM3B-82hq8BU683PllsW9NhGJIenwyqCo4eqQKulNgb7w5HG0NKERttfW96H7o-Gt9qCnofT6_1IZ7ex9PA9BhvhMUfeBv9xsTdMez-gOGY6ttj1Ml67Cw6H9H22gX_v-AH2YqLjQ |
CitedBy_id | crossref_primary_10_1360_N072022_0258 crossref_primary_10_3847_PSJ_ad293d crossref_primary_10_1016_j_icarus_2012_05_012 crossref_primary_10_3390_rs15235605 crossref_primary_10_1029_2019JE006112 crossref_primary_10_1016_j_pss_2012_03_015 crossref_primary_10_1029_2019JE005932 crossref_primary_10_1016_j_icarus_2016_01_005 crossref_primary_10_1029_2018JE005872 crossref_primary_10_1016_j_icarus_2012_01_002 crossref_primary_10_1029_2024EA003541 crossref_primary_10_1016_j_icarus_2017_05_022 crossref_primary_10_1111_j_1755_6724_2012_00611_x crossref_primary_10_1016_j_icarus_2018_05_023 crossref_primary_10_1016_j_icarus_2019_05_029 crossref_primary_10_1002_2013JE004527 crossref_primary_10_1002_2016JE005051 crossref_primary_10_1126_sciadv_1700207 crossref_primary_10_1103_Physics_11_64 crossref_primary_10_1016_j_icarus_2014_10_052 crossref_primary_10_1016_j_icarus_2016_02_036 crossref_primary_10_1029_2021JE007039 crossref_primary_10_1002_jgre_20043 crossref_primary_10_1016_j_icarus_2006_09_026 crossref_primary_10_1002_jgre_20166 crossref_primary_10_1016_j_icarus_2024_116329 crossref_primary_10_1016_j_epsl_2009_02_021 crossref_primary_10_1016_j_icarus_2018_11_014 crossref_primary_10_1029_2007JE002904 crossref_primary_10_1029_2005JE002639 crossref_primary_10_1016_j_icarus_2016_05_010 crossref_primary_10_1029_2019JE006113 crossref_primary_10_5140_JASS_2015_32_2_161 crossref_primary_10_1029_2005JE002598 crossref_primary_10_1007_s11433_010_4174_z crossref_primary_10_1088_1674_4527_20_1_8 crossref_primary_10_1016_j_icarus_2022_115166 crossref_primary_10_1016_j_pss_2019_104741 crossref_primary_10_1029_2020JE006634 crossref_primary_10_1016_j_pss_2017_12_002 crossref_primary_10_1016_j_pss_2010_08_020 crossref_primary_10_1029_2004JE002366 crossref_primary_10_1029_2009JE003491 crossref_primary_10_1016_j_pss_2011_04_004 crossref_primary_10_1016_j_icarus_2009_10_005 crossref_primary_10_3847_PSJ_ad320d crossref_primary_10_1007_s11214_017_0353_9 crossref_primary_10_1029_2007EO020002 crossref_primary_10_1016_j_pss_2011_02_003 crossref_primary_10_1016_j_icarus_2020_113991 crossref_primary_10_1111_maps_12925 crossref_primary_10_1126_science_aar4058 crossref_primary_10_1016_j_lssr_2019_07_006 crossref_primary_10_1016_j_asr_2007_06_018 crossref_primary_10_1016_j_pss_2018_03_014 crossref_primary_10_1029_2018JE005552 crossref_primary_10_1029_2018JE005545 crossref_primary_10_1029_2006JE002713 crossref_primary_10_1029_2008JE003283 crossref_primary_10_1016_j_icarus_2018_04_015 crossref_primary_10_2138_rmg_2023_89_14 crossref_primary_10_1007_s11084_016_9498_x crossref_primary_10_1007_s11038_014_9431_0 crossref_primary_10_1109_JSTARS_2015_2481407 crossref_primary_10_1007_s11430_022_1183_4 crossref_primary_10_1111_maps_13008 crossref_primary_10_1016_j_icarus_2016_02_007 crossref_primary_10_2138_rmg_2023_89_10 crossref_primary_10_1016_j_icarus_2006_08_011 crossref_primary_10_1016_j_icarus_2014_06_027 crossref_primary_10_1029_2010JE003656 crossref_primary_10_1029_2019JE006269 crossref_primary_10_1016_j_pss_2010_10_017 crossref_primary_10_1111_j_1945_5100_2011_01324_x crossref_primary_10_1016_j_icarus_2019_113590 crossref_primary_10_1016_j_epsl_2021_116855 crossref_primary_10_1016_j_epsl_2010_03_036 crossref_primary_10_1029_2005JE002600 crossref_primary_10_11728_cjss2022_01_201014091 crossref_primary_10_1002_2016JE005254 crossref_primary_10_1111_j_1945_5100_2009_tb01211_x crossref_primary_10_1038_s41467_023_36771_y crossref_primary_10_1029_2004JE002380 crossref_primary_10_1103_PhysRevLett_120_264501 crossref_primary_10_1016_j_icarus_2014_01_035 crossref_primary_10_3847_PSJ_ac3a6d crossref_primary_10_1016_j_pss_2018_02_002 crossref_primary_10_1016_j_pss_2025_106052 crossref_primary_10_3847_2041_8213_ad8f3b crossref_primary_10_1007_s11433_014_5399_z crossref_primary_10_1029_2018JE005729 crossref_primary_10_1029_2021JE006933 crossref_primary_10_1029_2019JE006091 crossref_primary_10_1029_2017JE005516 crossref_primary_10_1029_2004JE002295 crossref_primary_10_1029_2020JE006797 crossref_primary_10_1080_08120090500170443 crossref_primary_10_1016_j_icarus_2016_08_012 crossref_primary_10_1029_2018JE005577 crossref_primary_10_1016_j_icarus_2009_03_018 crossref_primary_10_1016_j_icarus_2020_114083 crossref_primary_10_1038_s41561_019_0323_9 crossref_primary_10_1088_0067_0049_221_1_16 crossref_primary_10_1016_j_pss_2014_04_013 crossref_primary_10_1016_j_asr_2007_05_038 crossref_primary_10_1088_1538_3873_128_964_062001 crossref_primary_10_1002_jgre_20143 crossref_primary_10_1038_s41550_024_02258_z crossref_primary_10_1016_j_actaastro_2025_03_004 crossref_primary_10_1016_j_icarus_2022_114963 crossref_primary_10_1029_2021GL092960 crossref_primary_10_1029_2017JE005496 crossref_primary_10_1029_2018JE005741 crossref_primary_10_1016_j_icarus_2014_11_030 crossref_primary_10_1007_BF02715951 crossref_primary_10_1007_s11432_019_2768_1 crossref_primary_10_1038_s41467_020_16653_3 crossref_primary_10_1002_2014JE004639 crossref_primary_10_1038_s43247_024_01820_x crossref_primary_10_1109_TGRS_2018_2852717 crossref_primary_10_1007_s11214_007_9234_y crossref_primary_10_1029_2021EA001814 |
Cites_doi | 10.1029/97JE00114 10.1029/RG013i002p00337 10.1029/1999JE001160 10.1029/JB090iB05p03701 10.1126/science.268.5214.1150 10.1111/j.1945-5100.2001.tb01909.x 10.1126/science.158.3808.1529 10.1007/BF00562752 10.1029/1999JE001110 10.1029/JB074i025p06081 10.1029/JB076i023p05719 10.1029/1999JE001117 10.1007/BF00562017 10.1029/JB079i032p04829 10.1007/BF00054324 10.1007/BF02626332 10.1029/95JE01409 10.1029/2002JE001985 10.1038/302233a0 10.1029/97JE03019 10.1130/0091-7613(1991)019<0143:PAOAAC>2.3.CO;2 10.1029/93JE01137 10.1016/0019-1035(77)90123-3 10.3133/pp1348 10.1029/JB090iB14p12393 10.1016/0031-9201(77)90030-9 10.1029/JB086iB11p10883 10.1007/BF00561880 10.1029/97JE01505 10.1023/A:1011937020193 10.1016/0016-7037(94)90181-3 |
ContentType | Journal Article |
Copyright | 2004 Elsevier Inc. |
Copyright_xml | – notice: 2004 Elsevier Inc. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M |
DOI | 10.1016/j.icarus.2004.02.013 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1090-2643 |
EndPage | 16 |
ExternalDocumentID | 10_1016_j_icarus_2004_02_013 S0019103504000703 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNCT ACNNM ACRLP ACSBN ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMA HME HVGLF HZ~ IHE IMUCA J1W KOM LG5 LY3 LZ4 M41 MO0 MVM N9A O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PVJ Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SEP SES SEW SHN SPC SPCBC SSE SSQ SSZ T5K TAE UQL VOH WUQ XJT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TG EFKBS KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-c366t-cbbd8f890cee875513bdee6d4605324d23d84eb82b517eae00aa159284562da73 |
IEDL.DBID | .~1 |
ISSN | 0019-1035 |
IngestDate | Fri Sep 05 05:34:49 EDT 2025 Fri Sep 05 02:33:13 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 00:28:29 EDT 2025 Fri Feb 23 02:29:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Impact processes Cratering Spectroscopy Moon Radar |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-cbbd8f890cee875513bdee6d4605324d23d84eb82b517eae00aa159284562da73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 18038847 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_28420990 proquest_miscellaneous_18038847 crossref_citationtrail_10_1016_j_icarus_2004_02_013 crossref_primary_10_1016_j_icarus_2004_02_013 elsevier_sciencedirect_doi_10_1016_j_icarus_2004_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-07-01 |
PublicationDateYYYYMMDD | 2004-07-01 |
PublicationDate_xml | – month: 07 year: 2004 text: 2004-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Icarus (New York, N.Y. 1962) |
PublicationYear | 2004 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Allen (BIB002) 1977; 15 McEwen, Moore, Shoemaker (BIB030) 1997; 102 Hiesinger, Head, Wolf, Jaumann, Neukum (BIB019) 2003; 108 Schultz, Spudis (BIB042) 1983; 203 Grier, McEwen, Lucey, Milazzo, Strom (BIB015) 2001; 106 Lucey, Blewett, Taylor, Hawke (BIB026) 2000; 105 Johnson, Smith, Adams (BIB020) 1985 Oberbeck (BIB034) 1971; 2 De Hon (BIB011) 1979 Trask, Rowan (BIB051) 1967; 158 Whitaker (BIB052) 1966 Andre, Wolfe, Adler (BIB003) 1979 Bogard, Garrison, Shih, Nyquist (BIB009) 1994; 58 McCord, Clark, Hawke, McFadden, Owensby, Pieters, Adams (BIB028) 1981; 86 Schultz, Gault (BIB041) 1985; 90 Hawke, Blewett, Bell, Lucey, Campbell, Robinson (BIB016) 1996 Pieters, Adams, Mouginis-Mark, Zisk, Smith, Head, McCord (BIB037) 1985; 90 Adams (BIB001) 1974; 79 Lucchitta (BIB021) 1977; 30 Lucey, Blewett, Jolliff (BIB025) 2000; 105 Nasmyth, Carpenter (BIB033) 1885 Smith, Johnson, Adams (BIB047) 1985 Morrison, Oberbeck (BIB032) 1975 Blewett, Hawke, Lucey, Taylor, Jaumann, Spudis (BIB007) 1995; 100 Green (BIB013) 1971; 76 Grier, McEwen (BIB014) 2001 Stöffler, Ryder (BIB048) 2001; 96 Mackin (BIB027) 1968 Whitaker, E.A., Kuiper, G.P., Hartmann, W.K., Spradley, L.H., 1963. Rectified lunar atlas, supplement number two to the USAF lunar atlas. U.S. Air Force Aeronautical Chart and Information Center, St. Louis, MO Lucey, Blewett, Hawke (BIB024) 1998; 103 Moore, H.J., 1967. Geological map of the Seleucus quadrangle of the Moon. USGS Map I-527 Wilhelms, D.E., 1987. The Geologic History of the Moon. USGS Prof. Paper 1348 Blewett, Lucey, Hawke, Jolliff (BIB008) 1997; 102 McEwen, Gaddis, Neukum, Hoffman, Pieters, Head (BIB029) 1993; 98 Zisk, Pettengill, Catuna (BIB055) 1974; 10 Lucey, Taylor, Malaret (BIB023) 1995; 268 Lucey, Hawke, Pieters, Head, McCord (BIB022) 1986 Thompson (BIB049) 1987; 37 Tomkins (BIB050) 1908; 18 Baldwin (BIB004) 1949 Shoemaker (BIB043) 1962 Ryder, Bogard, Garrison (BIB038) 1991; 19 Shoemaker (BIB044) 1966 Campbell, Bell, Zisk, Hawke, Horton (BIB010) 1992 Blewett, Hawke (BIB006) 2001; 36 Hawke, Blewett, Lucey, Peterson, Bell, Campbell, Robinson (BIB018) 2000 Schmitt, H.H., Trask, N.J., Shoemaker, E.M., 1967. Geological map of the Copernicus quadrangle of the Moon. USGS Map I-515 Hawke, Blewett, Lucey, Peterson, Bell, Campbell, Robinson (BIB017) 1999 Shoemaker, Hackman (BIB045) 1962 Eberhardt, Geiss, Grögler, Stettler (BIB012) 1973; 8 Shoemaker, Batson, Holt, Morris, Rennilson, Whitaker (BIB046) 1969; 74 Oberbeck (BIB035) 1975; 13 Oberbeck, Hörz, Morrisson, Quaide, Gault (BIB036) 1975; 12 Schultz (BIB040) 1976 Baldwin (BIB005) 1963 Schultz (10.1016/j.icarus.2004.02.013_BIB042) 1983; 203 Baldwin (10.1016/j.icarus.2004.02.013_BIB004) 1949 Hawke (10.1016/j.icarus.2004.02.013_BIB018) 2000 Grier (10.1016/j.icarus.2004.02.013_BIB015) 2001; 106 Lucey (10.1016/j.icarus.2004.02.013_BIB025) 2000; 105 Lucey (10.1016/j.icarus.2004.02.013_BIB024) 1998; 103 Shoemaker (10.1016/j.icarus.2004.02.013_BIB043) 1962 Pieters (10.1016/j.icarus.2004.02.013_BIB037) 1985; 90 Oberbeck (10.1016/j.icarus.2004.02.013_BIB035) 1975; 13 Baldwin (10.1016/j.icarus.2004.02.013_BIB005) 1963 Zisk (10.1016/j.icarus.2004.02.013_BIB055) 1974; 10 Lucchitta (10.1016/j.icarus.2004.02.013_BIB021) 1977; 30 Nasmyth (10.1016/j.icarus.2004.02.013_BIB033) 1885 Morrison (10.1016/j.icarus.2004.02.013_BIB032) 1975 Stöffler (10.1016/j.icarus.2004.02.013_BIB048) 2001; 96 Lucey (10.1016/j.icarus.2004.02.013_BIB023) 1995; 268 Eberhardt (10.1016/j.icarus.2004.02.013_BIB012) 1973; 8 Adams (10.1016/j.icarus.2004.02.013_BIB001) 1974; 79 10.1016/j.icarus.2004.02.013_BIB039 Schultz (10.1016/j.icarus.2004.02.013_BIB041) 1985; 90 Blewett (10.1016/j.icarus.2004.02.013_BIB006) 2001; 36 Shoemaker (10.1016/j.icarus.2004.02.013_BIB044) 1966 Shoemaker (10.1016/j.icarus.2004.02.013_BIB046) 1969; 74 10.1016/j.icarus.2004.02.013_BIB031 Allen (10.1016/j.icarus.2004.02.013_BIB002) 1977; 15 Grier (10.1016/j.icarus.2004.02.013_BIB014) 2001 Tomkins (10.1016/j.icarus.2004.02.013_BIB050) 1908; 18 Thompson (10.1016/j.icarus.2004.02.013_BIB049) 1987; 37 Blewett (10.1016/j.icarus.2004.02.013_BIB008) 1997; 102 Smith (10.1016/j.icarus.2004.02.013_BIB047) 1985 Andre (10.1016/j.icarus.2004.02.013_BIB003) 1979 Green (10.1016/j.icarus.2004.02.013_BIB013) 1971; 76 McEwen (10.1016/j.icarus.2004.02.013_BIB029) 1993; 98 Mackin (10.1016/j.icarus.2004.02.013_BIB027) 1968 Hawke (10.1016/j.icarus.2004.02.013_BIB017) 1999 Lucey (10.1016/j.icarus.2004.02.013_BIB026) 2000; 105 Whitaker (10.1016/j.icarus.2004.02.013_BIB052) 1966 Johnson (10.1016/j.icarus.2004.02.013_BIB020) 1985 Trask (10.1016/j.icarus.2004.02.013_BIB051) 1967; 158 McEwen (10.1016/j.icarus.2004.02.013_BIB030) 1997; 102 Shoemaker (10.1016/j.icarus.2004.02.013_BIB045) 1962 Lucey (10.1016/j.icarus.2004.02.013_BIB022) 1986 Campbell (10.1016/j.icarus.2004.02.013_BIB010) 1992 Hiesinger (10.1016/j.icarus.2004.02.013_BIB019) 2003; 108 Ryder (10.1016/j.icarus.2004.02.013_BIB038) 1991; 19 Oberbeck (10.1016/j.icarus.2004.02.013_BIB036) 1975; 12 De Hon (10.1016/j.icarus.2004.02.013_BIB011) 1979 Bogard (10.1016/j.icarus.2004.02.013_BIB009) 1994; 58 Hawke (10.1016/j.icarus.2004.02.013_BIB016) 1996 Schultz (10.1016/j.icarus.2004.02.013_BIB040) 1976 Blewett (10.1016/j.icarus.2004.02.013_BIB007) 1995; 100 Oberbeck (10.1016/j.icarus.2004.02.013_BIB034) 1971; 2 10.1016/j.icarus.2004.02.013_BIB053 McCord (10.1016/j.icarus.2004.02.013_BIB028) 1981; 86 10.1016/j.icarus.2004.02.013_BIB054 |
References_xml | – start-page: 22 year: 1999 end-page: 23 ident: BIB017 article-title: The composition and origin of selected lunar crater rays publication-title: New Views of the Moon II: Understanding the Moon through the Integration of Diverse Datasets – reference: Whitaker, E.A., Kuiper, G.P., Hartmann, W.K., Spradley, L.H., 1963. Rectified lunar atlas, supplement number two to the USAF lunar atlas. U.S. Air Force Aeronautical Chart and Information Center, St. Louis, MO – year: 1976 ident: BIB040 article-title: Moon Morphology – volume: 15 start-page: 179 year: 1977 end-page: 188 ident: BIB002 article-title: Rayed craters on the Moon and Mercury publication-title: Phys. Earth Planet. Inter. – volume: 108 start-page: 5065 year: 2003 ident: BIB019 article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum publication-title: J. Geophys. Res. – start-page: 289 year: 1962 end-page: 300 ident: BIB045 article-title: Stratigraphic basis for a lunar time scale publication-title: The Moon—Symposium 14 of the Internation Astronomical Union – volume: 18 start-page: 126 year: 1908 ident: BIB050 article-title: Note on the bright rays on the Moon publication-title: B.A.A. – volume: 37 start-page: 59 year: 1987 end-page: 70 ident: BIB049 article-title: High-resolution lunar radar map at 70-cm wavelength publication-title: Earth Moon Planets – volume: 30 start-page: 80 year: 1977 end-page: 96 ident: BIB021 article-title: Crater cluster and light mantle at the Apollo 17 site: a result of secondary impact from Tycho publication-title: Icarus – reference: Moore, H.J., 1967. Geological map of the Seleucus quadrangle of the Moon. USGS Map I-527 – start-page: C797 year: 1985 end-page: C804 ident: BIB047 article-title: Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis – start-page: C805 year: 1985 end-page: C810 ident: BIB020 article-title: Quantitative analysis of planetary reflectance spectra with principal components analysis – volume: 105 start-page: 20377 year: 2000 end-page: 20386 ident: BIB026 article-title: Imaging of lunar surface maturity publication-title: J. Geophys. Res. – start-page: 2503 year: 1975 end-page: 2530 ident: BIB032 article-title: Geomorphology of crater and basin deposits: emplacement of the Fra Mauro formation – start-page: 403 year: 2001 end-page: 422 ident: BIB014 article-title: The lunar record of recent impact cratering publication-title: Accretion of Extraterrestrial Matter throughout Earth History – year: 1963 ident: BIB005 article-title: The Measure of the Moon – start-page: D344 year: 1986 end-page: D354 ident: BIB022 article-title: A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy – reference: Schmitt, H.H., Trask, N.J., Shoemaker, E.M., 1967. Geological map of the Copernicus quadrangle of the Moon. USGS Map I-515 – volume: 268 start-page: 1150 year: 1995 end-page: 1153 ident: BIB023 article-title: Abundance and distribution of iron on the Moon publication-title: Science – volume: 103 start-page: 3679 year: 1998 end-page: 3699 ident: BIB024 article-title: Mapping FeO and TiO publication-title: J. Geophys. Res. – volume: 96 start-page: 9 year: 2001 end-page: 54 ident: BIB048 article-title: Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System publication-title: Space Sci. Rev. – volume: 102 start-page: 16319 year: 1997 end-page: 16325 ident: BIB008 article-title: Clementine images of the sample-return stations: refinement of FeO and TiO publication-title: J. Geophys. Res. – start-page: 259 year: 1992 end-page: 274 ident: BIB010 article-title: A high-resolution and CCD imaging study of crater rays in Mare Serenitatis and Mare Nectaris – start-page: 507 year: 1996 end-page: 508 ident: BIB016 article-title: Remote sensing studies of lunar crater rays – start-page: 283 year: 1962 end-page: 359 ident: BIB043 article-title: Interpretation of lunar craters publication-title: Physics and Astronomy of the Moon – volume: 86 start-page: 10883 year: 1981 end-page: 10892 ident: BIB028 article-title: Moon: near-infrared spectral reflectance, a first good look publication-title: J. Geophys. Res. – volume: 10 start-page: 17 year: 1974 end-page: 50 ident: BIB055 article-title: High-resolution radar map of the lunar surface at 3.8-cm wavelength publication-title: Moon – volume: 12 start-page: 19 year: 1975 end-page: 54 ident: BIB036 article-title: On the origin of the lunar smooth-plains publication-title: Moon – volume: 158 start-page: 1529 year: 1967 end-page: 1535 ident: BIB051 article-title: Lunar orbiter photographs: some fundamental observations publication-title: Science – volume: 2 start-page: 263 year: 1971 end-page: 278 ident: BIB034 article-title: A mechanism for the production of lunar crater rays publication-title: Moon – volume: 74 start-page: 6081 year: 1969 end-page: 6119 ident: BIB046 article-title: Observations of the lunar regolith and the Earth from the television camera on Surveyor 7 publication-title: J. Geophys. Res. – year: 1968 ident: BIB027 article-title: Current Knowledge of the Moon and Planets – volume: 105 start-page: 20297 year: 2000 end-page: 20305 ident: BIB025 article-title: Lunar iron and titanium abundance algorithms based on final processing of Clementine UV-VIS data publication-title: J. Geophys. Res. – start-page: 79 year: 1966 end-page: 98 ident: BIB052 article-title: The surface of the Moon publication-title: The Nature of the Lunar Surface – volume: 203 start-page: 233 year: 1983 end-page: 236 ident: BIB042 article-title: The beginning and end of lunar mare volcanism publication-title: Nature – start-page: 23 year: 1966 end-page: 77 ident: BIB044 article-title: Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum publication-title: The Nature of the Lunar Surface – volume: 36 start-page: 701 year: 2001 end-page: 730 ident: BIB006 article-title: Remote sensing and geologic studies of the Hadley–Apennine region of the Moon publication-title: Meteorit. Planet. Sci. – volume: 19 start-page: 143 year: 1991 end-page: 146 ident: BIB038 article-title: Probable age of Autolycus and calibration of lunar stratigraphy publication-title: Geology – volume: 90 start-page: 3701 year: 1985 end-page: 3732 ident: BIB041 article-title: Clustered impacts: experiments and implications publication-title: J. Geophys. Res. – year: 1885 ident: BIB033 article-title: The Moon – start-page: 1739 year: 1979 end-page: 1751 ident: BIB003 article-title: Are early magnesium-rich basalts widespread on the Moon? – volume: 58 start-page: 3093 year: 1994 end-page: 3100 ident: BIB009 publication-title: Geochim. Cosmochim. Acta – volume: 106 start-page: 32847 year: 2001 end-page: 32862 ident: BIB015 article-title: Optical maturity of ejects from large rayed lunar craters publication-title: J. Geophys. Res. – volume: 98 start-page: 17207 year: 1993 end-page: 17231 ident: BIB029 article-title: Galileo observations of post-Imbrium craters during the first Earth–Moon flyby publication-title: J. Geophys. Res. – volume: 79 start-page: 4829 year: 1974 end-page: 4836 ident: BIB001 article-title: Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid bodies in the Solar System publication-title: J. Geophys. Res. – volume: 13 start-page: 337 year: 1975 end-page: 362 ident: BIB035 article-title: The role of ballistic erosion and sedimentation in lunar stratigraphy publication-title: Rev. Geophys. Space Phys. – volume: 8 start-page: 104 year: 1973 end-page: 114 ident: BIB012 article-title: How old is the crater Copernicus? publication-title: Moon – reference: Wilhelms, D.E., 1987. The Geologic History of the Moon. USGS Prof. Paper 1348 – volume: 100 start-page: 16959 year: 1995 end-page: 16977 ident: BIB007 article-title: Remote sensing and geologic studies of the Schiller–Schickard region of the Moon publication-title: J. Geophys. Res. – volume: 90 start-page: 12393 year: 1985 end-page: 12413 ident: BIB037 article-title: The nature of crater rays: the Copernicus example publication-title: J. Geophys. Res. – volume: 76 start-page: 5719 year: 1971 end-page: 5731 ident: BIB013 article-title: Copernicus as a lunar caldera publication-title: J. Geophys. Res. – year: 1949 ident: BIB004 article-title: The Face of the Moon – year: 2000 ident: BIB018 article-title: Lunar crater rays: compositions and modes of origin – start-page: 2935 year: 1979 end-page: 2955 ident: BIB011 article-title: Thickness of the western mare basalts – volume: 102 start-page: 9231 year: 1997 end-page: 9242 ident: BIB030 article-title: The Phanerozoic impact cratering rate: evidence from the farside of the Moon publication-title: J. Geophys. Res. – start-page: 289 year: 1962 ident: 10.1016/j.icarus.2004.02.013_BIB045 article-title: Stratigraphic basis for a lunar time scale – start-page: C797 year: 1985 ident: 10.1016/j.icarus.2004.02.013_BIB047 article-title: Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis – year: 1976 ident: 10.1016/j.icarus.2004.02.013_BIB040 – volume: 102 start-page: 9231 year: 1997 ident: 10.1016/j.icarus.2004.02.013_BIB030 article-title: The Phanerozoic impact cratering rate: evidence from the farside of the Moon publication-title: J. Geophys. Res. doi: 10.1029/97JE00114 – start-page: 2503 year: 1975 ident: 10.1016/j.icarus.2004.02.013_BIB032 article-title: Geomorphology of crater and basin deposits: emplacement of the Fra Mauro formation – volume: 13 start-page: 337 year: 1975 ident: 10.1016/j.icarus.2004.02.013_BIB035 article-title: The role of ballistic erosion and sedimentation in lunar stratigraphy publication-title: Rev. Geophys. Space Phys. doi: 10.1029/RG013i002p00337 – volume: 106 start-page: 32847 year: 2001 ident: 10.1016/j.icarus.2004.02.013_BIB015 article-title: Optical maturity of ejects from large rayed lunar craters publication-title: J. Geophys. Res. doi: 10.1029/1999JE001160 – volume: 90 start-page: 3701 year: 1985 ident: 10.1016/j.icarus.2004.02.013_BIB041 article-title: Clustered impacts: experiments and implications publication-title: J. Geophys. Res. doi: 10.1029/JB090iB05p03701 – start-page: 22 year: 1999 ident: 10.1016/j.icarus.2004.02.013_BIB017 article-title: The composition and origin of selected lunar crater rays – volume: 268 start-page: 1150 year: 1995 ident: 10.1016/j.icarus.2004.02.013_BIB023 article-title: Abundance and distribution of iron on the Moon publication-title: Science doi: 10.1126/science.268.5214.1150 – volume: 36 start-page: 701 year: 2001 ident: 10.1016/j.icarus.2004.02.013_BIB006 article-title: Remote sensing and geologic studies of the Hadley–Apennine region of the Moon publication-title: Meteorit. Planet. Sci. doi: 10.1111/j.1945-5100.2001.tb01909.x – volume: 158 start-page: 1529 year: 1967 ident: 10.1016/j.icarus.2004.02.013_BIB051 article-title: Lunar orbiter photographs: some fundamental observations publication-title: Science doi: 10.1126/science.158.3808.1529 – year: 1963 ident: 10.1016/j.icarus.2004.02.013_BIB005 – volume: 8 start-page: 104 year: 1973 ident: 10.1016/j.icarus.2004.02.013_BIB012 article-title: How old is the crater Copernicus? publication-title: Moon doi: 10.1007/BF00562752 – volume: 105 start-page: 20377 year: 2000 ident: 10.1016/j.icarus.2004.02.013_BIB026 article-title: Imaging of lunar surface maturity publication-title: J. Geophys. Res. doi: 10.1029/1999JE001110 – volume: 18 start-page: 126 year: 1908 ident: 10.1016/j.icarus.2004.02.013_BIB050 article-title: Note on the bright rays on the Moon publication-title: B.A.A. – volume: 74 start-page: 6081 year: 1969 ident: 10.1016/j.icarus.2004.02.013_BIB046 article-title: Observations of the lunar regolith and the Earth from the television camera on Surveyor 7 publication-title: J. Geophys. Res. doi: 10.1029/JB074i025p06081 – volume: 76 start-page: 5719 year: 1971 ident: 10.1016/j.icarus.2004.02.013_BIB013 article-title: Copernicus as a lunar caldera publication-title: J. Geophys. Res. doi: 10.1029/JB076i023p05719 – year: 1968 ident: 10.1016/j.icarus.2004.02.013_BIB027 – volume: 105 start-page: 20297 year: 2000 ident: 10.1016/j.icarus.2004.02.013_BIB025 article-title: Lunar iron and titanium abundance algorithms based on final processing of Clementine UV-VIS data publication-title: J. Geophys. Res. doi: 10.1029/1999JE001117 – volume: 10 start-page: 17 year: 1974 ident: 10.1016/j.icarus.2004.02.013_BIB055 article-title: High-resolution radar map of the lunar surface at 3.8-cm wavelength publication-title: Moon doi: 10.1007/BF00562017 – volume: 79 start-page: 4829 year: 1974 ident: 10.1016/j.icarus.2004.02.013_BIB001 article-title: Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid bodies in the Solar System publication-title: J. Geophys. Res. doi: 10.1029/JB079i032p04829 – ident: 10.1016/j.icarus.2004.02.013_BIB039 – start-page: 79 year: 1966 ident: 10.1016/j.icarus.2004.02.013_BIB052 article-title: The surface of the Moon – volume: 37 start-page: 59 year: 1987 ident: 10.1016/j.icarus.2004.02.013_BIB049 article-title: High-resolution lunar radar map at 70-cm wavelength publication-title: Earth Moon Planets doi: 10.1007/BF00054324 – volume: 12 start-page: 19 year: 1975 ident: 10.1016/j.icarus.2004.02.013_BIB036 article-title: On the origin of the lunar smooth-plains publication-title: Moon doi: 10.1007/BF02626332 – start-page: D344 year: 1986 ident: 10.1016/j.icarus.2004.02.013_BIB022 article-title: A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy – start-page: 403 year: 2001 ident: 10.1016/j.icarus.2004.02.013_BIB014 article-title: The lunar record of recent impact cratering – volume: 100 start-page: 16959 year: 1995 ident: 10.1016/j.icarus.2004.02.013_BIB007 article-title: Remote sensing and geologic studies of the Schiller–Schickard region of the Moon publication-title: J. Geophys. Res. doi: 10.1029/95JE01409 – volume: 108 start-page: 5065 issue: E7 year: 2003 ident: 10.1016/j.icarus.2004.02.013_BIB019 article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum publication-title: J. Geophys. Res. doi: 10.1029/2002JE001985 – ident: 10.1016/j.icarus.2004.02.013_BIB031 – start-page: 2935 year: 1979 ident: 10.1016/j.icarus.2004.02.013_BIB011 article-title: Thickness of the western mare basalts – start-page: 259 year: 1992 ident: 10.1016/j.icarus.2004.02.013_BIB010 article-title: A high-resolution and CCD imaging study of crater rays in Mare Serenitatis and Mare Nectaris – volume: 203 start-page: 233 year: 1983 ident: 10.1016/j.icarus.2004.02.013_BIB042 article-title: The beginning and end of lunar mare volcanism publication-title: Nature doi: 10.1038/302233a0 – start-page: C805 year: 1985 ident: 10.1016/j.icarus.2004.02.013_BIB020 article-title: Quantitative analysis of planetary reflectance spectra with principal components analysis – year: 1949 ident: 10.1016/j.icarus.2004.02.013_BIB004 – volume: 103 start-page: 3679 year: 1998 ident: 10.1016/j.icarus.2004.02.013_BIB024 article-title: Mapping FeO and TiO2 content of the lunar surface with multispectral imagery publication-title: J. Geophys. Res. doi: 10.1029/97JE03019 – year: 1885 ident: 10.1016/j.icarus.2004.02.013_BIB033 – start-page: 507 year: 1996 ident: 10.1016/j.icarus.2004.02.013_BIB016 article-title: Remote sensing studies of lunar crater rays – volume: 19 start-page: 143 year: 1991 ident: 10.1016/j.icarus.2004.02.013_BIB038 article-title: Probable age of Autolycus and calibration of lunar stratigraphy publication-title: Geology doi: 10.1130/0091-7613(1991)019<0143:PAOAAC>2.3.CO;2 – start-page: 283 year: 1962 ident: 10.1016/j.icarus.2004.02.013_BIB043 article-title: Interpretation of lunar craters – start-page: 23 year: 1966 ident: 10.1016/j.icarus.2004.02.013_BIB044 article-title: Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum – ident: 10.1016/j.icarus.2004.02.013_BIB053 – volume: 98 start-page: 17207 year: 1993 ident: 10.1016/j.icarus.2004.02.013_BIB029 article-title: Galileo observations of post-Imbrium craters during the first Earth–Moon flyby publication-title: J. Geophys. Res. doi: 10.1029/93JE01137 – volume: 30 start-page: 80 year: 1977 ident: 10.1016/j.icarus.2004.02.013_BIB021 article-title: Crater cluster and light mantle at the Apollo 17 site: a result of secondary impact from Tycho publication-title: Icarus doi: 10.1016/0019-1035(77)90123-3 – ident: 10.1016/j.icarus.2004.02.013_BIB054 doi: 10.3133/pp1348 – volume: 90 start-page: 12393 year: 1985 ident: 10.1016/j.icarus.2004.02.013_BIB037 article-title: The nature of crater rays: the Copernicus example publication-title: J. Geophys. Res. doi: 10.1029/JB090iB14p12393 – volume: 15 start-page: 179 year: 1977 ident: 10.1016/j.icarus.2004.02.013_BIB002 article-title: Rayed craters on the Moon and Mercury publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(77)90030-9 – volume: 86 start-page: 10883 year: 1981 ident: 10.1016/j.icarus.2004.02.013_BIB028 article-title: Moon: near-infrared spectral reflectance, a first good look publication-title: J. Geophys. Res. doi: 10.1029/JB086iB11p10883 – year: 2000 ident: 10.1016/j.icarus.2004.02.013_BIB018 article-title: Lunar crater rays: compositions and modes of origin – volume: 2 start-page: 263 year: 1971 ident: 10.1016/j.icarus.2004.02.013_BIB034 article-title: A mechanism for the production of lunar crater rays publication-title: Moon doi: 10.1007/BF00561880 – volume: 102 start-page: 16319 year: 1997 ident: 10.1016/j.icarus.2004.02.013_BIB008 article-title: Clementine images of the sample-return stations: refinement of FeO and TiO2 mapping techniques publication-title: J. Geophys. Res. doi: 10.1029/97JE01505 – volume: 96 start-page: 9 year: 2001 ident: 10.1016/j.icarus.2004.02.013_BIB048 article-title: Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System publication-title: Space Sci. Rev. doi: 10.1023/A:1011937020193 – volume: 58 start-page: 3093 year: 1994 ident: 10.1016/j.icarus.2004.02.013_BIB009 article-title: 40Ar–39Ar dating of two lunar granites: the age of Copernicus publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90181-3 – start-page: 1739 year: 1979 ident: 10.1016/j.icarus.2004.02.013_BIB003 article-title: Are early magnesium-rich basalts widespread on the Moon? |
SSID | ssj0005893 |
Score | 2.1599696 |
Snippet | Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cratering Impact processes Moon Radar Spectroscopy surface |
Title | The origin of lunar crater rays |
URI | https://dx.doi.org/10.1016/j.icarus.2004.02.013 https://www.proquest.com/docview/18038847 https://www.proquest.com/docview/28420990 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbqUPkn6SDSUbmr8kC15DKEhbSFTA9mMbMmQktrBSYYs_e29k-3SFkKgmzEnbE7SPaTvviPkngcCsgbJmdbCYTw1HktE5DGuIBPzlEbgN6ItpuFkxl_mwbxFRk0tDMIqa9tf2XRrres3g1qbg9VigTW-kGvgxRhHR2cZPzkXuNYfP3_APGRNvOtGDKWb8jmL8QI9lFtL2s0tc6fr73NPfwy19T7jU3JSh410WP3ZGWmZ_Jx0hms8yC4-dvSB2ufqnGJ9Qfow_bRqekWLjC63uSppirQQJS3Vbn1JZuOnt9GE1b0QWOqH4YalSaJlJiMHnBqkGIHrJ9qYUOO1JsRE2vO15CaRXhK4wijjOEpBpALOBwIcrYR_Rdp5kZsOoaGb6VRmsPkywzOIsTJfYLcixYMo1Ep3id-oIE5ronDsV7GMG0TYe1wpDntY8tjxYlBcl7DvUauKKOOAvGi0G_-a8Bhs-YGR_WYyYtgLeMGhclOAkCuR24aL_RKgD6wVdq7__fUbclyBdxCxe0vam3Jr7iAu2SQ9u_B65Gj4_DqZfgHZkuF8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhHdql9EnSVzSUbmr8kC17DKEhbdNMCWQTsiVDSmoHJxmy9Lf3zo_SFkKgmzEnbE7SPaTvviPknnsCsoaAM62FxXhsHBaJ0GFcQSbmKI3Ab0RbjP3hlL_MvFmD9OtaGIRVVra_tOmFta7edCttdpfzOdb4Qq6BF2McHR0yfh5wzxWI63v8_IHzCCrmXTtkKF7XzxUgL1BEvilYu3lB3Wm7u_zTH0tduJ_BCTmu4kbaK3_tlDRMekZavRWeZGcfW_pAi-fyoGJ1Tjow_7TsekWzhC42qcppjLwQOc3VdnVBpoOnSX_IqmYILHZ9f83iKNJBEoQWeDXIMTzbjbQxvsZ7TQiKtOPqgJsocCLPFkYZy1IKQhXwPhDhaCXcS9JMs9S0CPXtRMdBArsvMTyBICtxBbYrUtwLfa10m7i1CmRcMYVjw4qFrCFh77JUHDax5NJyJCiuTdj3qGXJlLFHXtTalb9mXIIx3zOyU0-GhM2ANxwqNRkI2QGS23CxWwL0gcXC1tW_v94hh8PJ20iOnsev1-SoRPIgfPeGNNf5xtxCkLKO7opF-AUlO-MP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+of+lunar+crater+rays&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Hawke%2C+B.Ray&rft.au=Blewett%2C+D.T.&rft.au=Lucey%2C+P.G.&rft.au=Smith%2C+G.A.&rft.date=2004-07-01&rft.issn=0019-1035&rft.volume=170&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1016%2Fj.icarus.2004.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2004_02_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon |