The origin of lunar crater rays

Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well...

Full description

Saved in:
Bibliographic Details
Published inIcarus (New York, N.Y. 1962) Vol. 170; no. 1; pp. 1 - 16
Main Authors Hawke, B.Ray, Blewett, D.T., Lucey, P.G., Smith, G.A., Bell, J.F., Campbell, B.A., Robinson, M.S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2004
Subjects
Online AccessGet full text
ISSN0019-1035
1090-2643
DOI10.1016/j.icarus.2004.02.013

Cover

Loading…
Abstract Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO 2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican–Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican–Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.
AbstractList Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO sub(2), and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature 'compositional' rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. 'Immaturity' rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third ('combination') class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican- Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.
Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO 2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican–Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican–Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.
Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature 'compositional' rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. 'Immaturity' rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third ('combination') class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican- Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.
Author Lucey, P.G.
Campbell, B.A.
Robinson, M.S.
Hawke, B.Ray
Bell, J.F.
Blewett, D.T.
Smith, G.A.
Author_xml – sequence: 1
  givenname: B.Ray
  surname: Hawke
  fullname: Hawke, B.Ray
  email: hawke@higp.hawaii.edu
  organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
– sequence: 2
  givenname: D.T.
  surname: Blewett
  fullname: Blewett, D.T.
  organization: NovaSol, 1100 Alakea Street, 23rd Floor, Honolulu, HI 96813, USA
– sequence: 3
  givenname: P.G.
  surname: Lucey
  fullname: Lucey, P.G.
  organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
– sequence: 4
  givenname: G.A.
  surname: Smith
  fullname: Smith, G.A.
  organization: Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822, USA
– sequence: 5
  givenname: J.F.
  surname: Bell
  fullname: Bell, J.F.
  organization: Department of Astronomy, Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA
– sequence: 6
  givenname: B.A.
  surname: Campbell
  fullname: Campbell, B.A.
  organization: Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA
– sequence: 7
  givenname: M.S.
  surname: Robinson
  fullname: Robinson, M.S.
  organization: Center for Planetary Sciences, Northwestern University, 1847 Sheridan Road, Evanston, IL 60208, USA
BookMark eNqFkL1OwzAYRS0EEm3hDZDIxJbw-S91GJBQxZ9UiaXMlmN_AVdpXOwEqW9PqjIx0Oku95zhTMlpFzok5IpCQYGWt-vCWxOHVDAAUQArgPITMqFQQc5KwU_JBIBWOQUuz8k0pTUASFXxCblefWIWov_wXRaarB06EzMbTY8xi2aXLshZY9qEl787I-9Pj6vFS758e35dPCxzy8uyz21dO9WoCiyimktJee0QSydKkJwJx7hTAmvFaknnaBDAGCorpoQsmTNzPiM3B-82hq8BU683PllsW9NhGJIenwyqCo4eqQKulNgb7w5HG0NKERttfW96H7o-Gt9qCnofT6_1IZ7ex9PA9BhvhMUfeBv9xsTdMez-gOGY6ttj1Ml67Cw6H9H22gX_v-AH2YqLjQ
CitedBy_id crossref_primary_10_1360_N072022_0258
crossref_primary_10_3847_PSJ_ad293d
crossref_primary_10_1016_j_icarus_2012_05_012
crossref_primary_10_3390_rs15235605
crossref_primary_10_1029_2019JE006112
crossref_primary_10_1016_j_pss_2012_03_015
crossref_primary_10_1029_2019JE005932
crossref_primary_10_1016_j_icarus_2016_01_005
crossref_primary_10_1029_2018JE005872
crossref_primary_10_1016_j_icarus_2012_01_002
crossref_primary_10_1029_2024EA003541
crossref_primary_10_1016_j_icarus_2017_05_022
crossref_primary_10_1111_j_1755_6724_2012_00611_x
crossref_primary_10_1016_j_icarus_2018_05_023
crossref_primary_10_1016_j_icarus_2019_05_029
crossref_primary_10_1002_2013JE004527
crossref_primary_10_1002_2016JE005051
crossref_primary_10_1126_sciadv_1700207
crossref_primary_10_1103_Physics_11_64
crossref_primary_10_1016_j_icarus_2014_10_052
crossref_primary_10_1016_j_icarus_2016_02_036
crossref_primary_10_1029_2021JE007039
crossref_primary_10_1002_jgre_20043
crossref_primary_10_1016_j_icarus_2006_09_026
crossref_primary_10_1002_jgre_20166
crossref_primary_10_1016_j_icarus_2024_116329
crossref_primary_10_1016_j_epsl_2009_02_021
crossref_primary_10_1016_j_icarus_2018_11_014
crossref_primary_10_1029_2007JE002904
crossref_primary_10_1029_2005JE002639
crossref_primary_10_1016_j_icarus_2016_05_010
crossref_primary_10_1029_2019JE006113
crossref_primary_10_5140_JASS_2015_32_2_161
crossref_primary_10_1029_2005JE002598
crossref_primary_10_1007_s11433_010_4174_z
crossref_primary_10_1088_1674_4527_20_1_8
crossref_primary_10_1016_j_icarus_2022_115166
crossref_primary_10_1016_j_pss_2019_104741
crossref_primary_10_1029_2020JE006634
crossref_primary_10_1016_j_pss_2017_12_002
crossref_primary_10_1016_j_pss_2010_08_020
crossref_primary_10_1029_2004JE002366
crossref_primary_10_1029_2009JE003491
crossref_primary_10_1016_j_pss_2011_04_004
crossref_primary_10_1016_j_icarus_2009_10_005
crossref_primary_10_3847_PSJ_ad320d
crossref_primary_10_1007_s11214_017_0353_9
crossref_primary_10_1029_2007EO020002
crossref_primary_10_1016_j_pss_2011_02_003
crossref_primary_10_1016_j_icarus_2020_113991
crossref_primary_10_1111_maps_12925
crossref_primary_10_1126_science_aar4058
crossref_primary_10_1016_j_lssr_2019_07_006
crossref_primary_10_1016_j_asr_2007_06_018
crossref_primary_10_1016_j_pss_2018_03_014
crossref_primary_10_1029_2018JE005552
crossref_primary_10_1029_2018JE005545
crossref_primary_10_1029_2006JE002713
crossref_primary_10_1029_2008JE003283
crossref_primary_10_1016_j_icarus_2018_04_015
crossref_primary_10_2138_rmg_2023_89_14
crossref_primary_10_1007_s11084_016_9498_x
crossref_primary_10_1007_s11038_014_9431_0
crossref_primary_10_1109_JSTARS_2015_2481407
crossref_primary_10_1007_s11430_022_1183_4
crossref_primary_10_1111_maps_13008
crossref_primary_10_1016_j_icarus_2016_02_007
crossref_primary_10_2138_rmg_2023_89_10
crossref_primary_10_1016_j_icarus_2006_08_011
crossref_primary_10_1016_j_icarus_2014_06_027
crossref_primary_10_1029_2010JE003656
crossref_primary_10_1029_2019JE006269
crossref_primary_10_1016_j_pss_2010_10_017
crossref_primary_10_1111_j_1945_5100_2011_01324_x
crossref_primary_10_1016_j_icarus_2019_113590
crossref_primary_10_1016_j_epsl_2021_116855
crossref_primary_10_1016_j_epsl_2010_03_036
crossref_primary_10_1029_2005JE002600
crossref_primary_10_11728_cjss2022_01_201014091
crossref_primary_10_1002_2016JE005254
crossref_primary_10_1111_j_1945_5100_2009_tb01211_x
crossref_primary_10_1038_s41467_023_36771_y
crossref_primary_10_1029_2004JE002380
crossref_primary_10_1103_PhysRevLett_120_264501
crossref_primary_10_1016_j_icarus_2014_01_035
crossref_primary_10_3847_PSJ_ac3a6d
crossref_primary_10_1016_j_pss_2018_02_002
crossref_primary_10_1016_j_pss_2025_106052
crossref_primary_10_3847_2041_8213_ad8f3b
crossref_primary_10_1007_s11433_014_5399_z
crossref_primary_10_1029_2018JE005729
crossref_primary_10_1029_2021JE006933
crossref_primary_10_1029_2019JE006091
crossref_primary_10_1029_2017JE005516
crossref_primary_10_1029_2004JE002295
crossref_primary_10_1029_2020JE006797
crossref_primary_10_1080_08120090500170443
crossref_primary_10_1016_j_icarus_2016_08_012
crossref_primary_10_1029_2018JE005577
crossref_primary_10_1016_j_icarus_2009_03_018
crossref_primary_10_1016_j_icarus_2020_114083
crossref_primary_10_1038_s41561_019_0323_9
crossref_primary_10_1088_0067_0049_221_1_16
crossref_primary_10_1016_j_pss_2014_04_013
crossref_primary_10_1016_j_asr_2007_05_038
crossref_primary_10_1088_1538_3873_128_964_062001
crossref_primary_10_1002_jgre_20143
crossref_primary_10_1038_s41550_024_02258_z
crossref_primary_10_1016_j_actaastro_2025_03_004
crossref_primary_10_1016_j_icarus_2022_114963
crossref_primary_10_1029_2021GL092960
crossref_primary_10_1029_2017JE005496
crossref_primary_10_1029_2018JE005741
crossref_primary_10_1016_j_icarus_2014_11_030
crossref_primary_10_1007_BF02715951
crossref_primary_10_1007_s11432_019_2768_1
crossref_primary_10_1038_s41467_020_16653_3
crossref_primary_10_1002_2014JE004639
crossref_primary_10_1038_s43247_024_01820_x
crossref_primary_10_1109_TGRS_2018_2852717
crossref_primary_10_1007_s11214_007_9234_y
crossref_primary_10_1029_2021EA001814
Cites_doi 10.1029/97JE00114
10.1029/RG013i002p00337
10.1029/1999JE001160
10.1029/JB090iB05p03701
10.1126/science.268.5214.1150
10.1111/j.1945-5100.2001.tb01909.x
10.1126/science.158.3808.1529
10.1007/BF00562752
10.1029/1999JE001110
10.1029/JB074i025p06081
10.1029/JB076i023p05719
10.1029/1999JE001117
10.1007/BF00562017
10.1029/JB079i032p04829
10.1007/BF00054324
10.1007/BF02626332
10.1029/95JE01409
10.1029/2002JE001985
10.1038/302233a0
10.1029/97JE03019
10.1130/0091-7613(1991)019<0143:PAOAAC>2.3.CO;2
10.1029/93JE01137
10.1016/0019-1035(77)90123-3
10.3133/pp1348
10.1029/JB090iB14p12393
10.1016/0031-9201(77)90030-9
10.1029/JB086iB11p10883
10.1007/BF00561880
10.1029/97JE01505
10.1023/A:1011937020193
10.1016/0016-7037(94)90181-3
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright_xml – notice: 2004 Elsevier Inc.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1016/j.icarus.2004.02.013
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1090-2643
EndPage 16
ExternalDocumentID 10_1016_j_icarus_2004_02_013
S0019103504000703
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNCT
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
HME
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG5
LY3
LZ4
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PVJ
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SEP
SES
SEW
SHN
SPC
SPCBC
SSE
SSQ
SSZ
T5K
TAE
UQL
VOH
WUQ
XJT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TG
EFKBS
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c366t-cbbd8f890cee875513bdee6d4605324d23d84eb82b517eae00aa159284562da73
IEDL.DBID .~1
ISSN 0019-1035
IngestDate Fri Sep 05 05:34:49 EDT 2025
Fri Sep 05 02:33:13 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 00:28:29 EDT 2025
Fri Feb 23 02:29:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Impact processes
Cratering
Spectroscopy
Moon
Radar
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-cbbd8f890cee875513bdee6d4605324d23d84eb82b517eae00aa159284562da73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 18038847
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_28420990
proquest_miscellaneous_18038847
crossref_citationtrail_10_1016_j_icarus_2004_02_013
crossref_primary_10_1016_j_icarus_2004_02_013
elsevier_sciencedirect_doi_10_1016_j_icarus_2004_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Icarus (New York, N.Y. 1962)
PublicationYear 2004
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Allen (BIB002) 1977; 15
McEwen, Moore, Shoemaker (BIB030) 1997; 102
Hiesinger, Head, Wolf, Jaumann, Neukum (BIB019) 2003; 108
Schultz, Spudis (BIB042) 1983; 203
Grier, McEwen, Lucey, Milazzo, Strom (BIB015) 2001; 106
Lucey, Blewett, Taylor, Hawke (BIB026) 2000; 105
Johnson, Smith, Adams (BIB020) 1985
Oberbeck (BIB034) 1971; 2
De Hon (BIB011) 1979
Trask, Rowan (BIB051) 1967; 158
Whitaker (BIB052) 1966
Andre, Wolfe, Adler (BIB003) 1979
Bogard, Garrison, Shih, Nyquist (BIB009) 1994; 58
McCord, Clark, Hawke, McFadden, Owensby, Pieters, Adams (BIB028) 1981; 86
Schultz, Gault (BIB041) 1985; 90
Hawke, Blewett, Bell, Lucey, Campbell, Robinson (BIB016) 1996
Pieters, Adams, Mouginis-Mark, Zisk, Smith, Head, McCord (BIB037) 1985; 90
Adams (BIB001) 1974; 79
Lucchitta (BIB021) 1977; 30
Lucey, Blewett, Jolliff (BIB025) 2000; 105
Nasmyth, Carpenter (BIB033) 1885
Smith, Johnson, Adams (BIB047) 1985
Morrison, Oberbeck (BIB032) 1975
Blewett, Hawke, Lucey, Taylor, Jaumann, Spudis (BIB007) 1995; 100
Green (BIB013) 1971; 76
Grier, McEwen (BIB014) 2001
Stöffler, Ryder (BIB048) 2001; 96
Mackin (BIB027) 1968
Whitaker, E.A., Kuiper, G.P., Hartmann, W.K., Spradley, L.H., 1963. Rectified lunar atlas, supplement number two to the USAF lunar atlas. U.S. Air Force Aeronautical Chart and Information Center, St. Louis, MO
Lucey, Blewett, Hawke (BIB024) 1998; 103
Moore, H.J., 1967. Geological map of the Seleucus quadrangle of the Moon. USGS Map I-527
Wilhelms, D.E., 1987. The Geologic History of the Moon. USGS Prof. Paper 1348
Blewett, Lucey, Hawke, Jolliff (BIB008) 1997; 102
McEwen, Gaddis, Neukum, Hoffman, Pieters, Head (BIB029) 1993; 98
Zisk, Pettengill, Catuna (BIB055) 1974; 10
Lucey, Taylor, Malaret (BIB023) 1995; 268
Lucey, Hawke, Pieters, Head, McCord (BIB022) 1986
Thompson (BIB049) 1987; 37
Tomkins (BIB050) 1908; 18
Baldwin (BIB004) 1949
Shoemaker (BIB043) 1962
Ryder, Bogard, Garrison (BIB038) 1991; 19
Shoemaker (BIB044) 1966
Campbell, Bell, Zisk, Hawke, Horton (BIB010) 1992
Blewett, Hawke (BIB006) 2001; 36
Hawke, Blewett, Lucey, Peterson, Bell, Campbell, Robinson (BIB018) 2000
Schmitt, H.H., Trask, N.J., Shoemaker, E.M., 1967. Geological map of the Copernicus quadrangle of the Moon. USGS Map I-515
Hawke, Blewett, Lucey, Peterson, Bell, Campbell, Robinson (BIB017) 1999
Shoemaker, Hackman (BIB045) 1962
Eberhardt, Geiss, Grögler, Stettler (BIB012) 1973; 8
Shoemaker, Batson, Holt, Morris, Rennilson, Whitaker (BIB046) 1969; 74
Oberbeck (BIB035) 1975; 13
Oberbeck, Hörz, Morrisson, Quaide, Gault (BIB036) 1975; 12
Schultz (BIB040) 1976
Baldwin (BIB005) 1963
Schultz (10.1016/j.icarus.2004.02.013_BIB042) 1983; 203
Baldwin (10.1016/j.icarus.2004.02.013_BIB004) 1949
Hawke (10.1016/j.icarus.2004.02.013_BIB018) 2000
Grier (10.1016/j.icarus.2004.02.013_BIB015) 2001; 106
Lucey (10.1016/j.icarus.2004.02.013_BIB025) 2000; 105
Lucey (10.1016/j.icarus.2004.02.013_BIB024) 1998; 103
Shoemaker (10.1016/j.icarus.2004.02.013_BIB043) 1962
Pieters (10.1016/j.icarus.2004.02.013_BIB037) 1985; 90
Oberbeck (10.1016/j.icarus.2004.02.013_BIB035) 1975; 13
Baldwin (10.1016/j.icarus.2004.02.013_BIB005) 1963
Zisk (10.1016/j.icarus.2004.02.013_BIB055) 1974; 10
Lucchitta (10.1016/j.icarus.2004.02.013_BIB021) 1977; 30
Nasmyth (10.1016/j.icarus.2004.02.013_BIB033) 1885
Morrison (10.1016/j.icarus.2004.02.013_BIB032) 1975
Stöffler (10.1016/j.icarus.2004.02.013_BIB048) 2001; 96
Lucey (10.1016/j.icarus.2004.02.013_BIB023) 1995; 268
Eberhardt (10.1016/j.icarus.2004.02.013_BIB012) 1973; 8
Adams (10.1016/j.icarus.2004.02.013_BIB001) 1974; 79
10.1016/j.icarus.2004.02.013_BIB039
Schultz (10.1016/j.icarus.2004.02.013_BIB041) 1985; 90
Blewett (10.1016/j.icarus.2004.02.013_BIB006) 2001; 36
Shoemaker (10.1016/j.icarus.2004.02.013_BIB044) 1966
Shoemaker (10.1016/j.icarus.2004.02.013_BIB046) 1969; 74
10.1016/j.icarus.2004.02.013_BIB031
Allen (10.1016/j.icarus.2004.02.013_BIB002) 1977; 15
Grier (10.1016/j.icarus.2004.02.013_BIB014) 2001
Tomkins (10.1016/j.icarus.2004.02.013_BIB050) 1908; 18
Thompson (10.1016/j.icarus.2004.02.013_BIB049) 1987; 37
Blewett (10.1016/j.icarus.2004.02.013_BIB008) 1997; 102
Smith (10.1016/j.icarus.2004.02.013_BIB047) 1985
Andre (10.1016/j.icarus.2004.02.013_BIB003) 1979
Green (10.1016/j.icarus.2004.02.013_BIB013) 1971; 76
McEwen (10.1016/j.icarus.2004.02.013_BIB029) 1993; 98
Mackin (10.1016/j.icarus.2004.02.013_BIB027) 1968
Hawke (10.1016/j.icarus.2004.02.013_BIB017) 1999
Lucey (10.1016/j.icarus.2004.02.013_BIB026) 2000; 105
Whitaker (10.1016/j.icarus.2004.02.013_BIB052) 1966
Johnson (10.1016/j.icarus.2004.02.013_BIB020) 1985
Trask (10.1016/j.icarus.2004.02.013_BIB051) 1967; 158
McEwen (10.1016/j.icarus.2004.02.013_BIB030) 1997; 102
Shoemaker (10.1016/j.icarus.2004.02.013_BIB045) 1962
Lucey (10.1016/j.icarus.2004.02.013_BIB022) 1986
Campbell (10.1016/j.icarus.2004.02.013_BIB010) 1992
Hiesinger (10.1016/j.icarus.2004.02.013_BIB019) 2003; 108
Ryder (10.1016/j.icarus.2004.02.013_BIB038) 1991; 19
Oberbeck (10.1016/j.icarus.2004.02.013_BIB036) 1975; 12
De Hon (10.1016/j.icarus.2004.02.013_BIB011) 1979
Bogard (10.1016/j.icarus.2004.02.013_BIB009) 1994; 58
Hawke (10.1016/j.icarus.2004.02.013_BIB016) 1996
Schultz (10.1016/j.icarus.2004.02.013_BIB040) 1976
Blewett (10.1016/j.icarus.2004.02.013_BIB007) 1995; 100
Oberbeck (10.1016/j.icarus.2004.02.013_BIB034) 1971; 2
10.1016/j.icarus.2004.02.013_BIB053
McCord (10.1016/j.icarus.2004.02.013_BIB028) 1981; 86
10.1016/j.icarus.2004.02.013_BIB054
References_xml – start-page: 22
  year: 1999
  end-page: 23
  ident: BIB017
  article-title: The composition and origin of selected lunar crater rays
  publication-title: New Views of the Moon II: Understanding the Moon through the Integration of Diverse Datasets
– reference: Whitaker, E.A., Kuiper, G.P., Hartmann, W.K., Spradley, L.H., 1963. Rectified lunar atlas, supplement number two to the USAF lunar atlas. U.S. Air Force Aeronautical Chart and Information Center, St. Louis, MO
– year: 1976
  ident: BIB040
  article-title: Moon Morphology
– volume: 15
  start-page: 179
  year: 1977
  end-page: 188
  ident: BIB002
  article-title: Rayed craters on the Moon and Mercury
  publication-title: Phys. Earth Planet. Inter.
– volume: 108
  start-page: 5065
  year: 2003
  ident: BIB019
  article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum
  publication-title: J. Geophys. Res.
– start-page: 289
  year: 1962
  end-page: 300
  ident: BIB045
  article-title: Stratigraphic basis for a lunar time scale
  publication-title: The Moon—Symposium 14 of the Internation Astronomical Union
– volume: 18
  start-page: 126
  year: 1908
  ident: BIB050
  article-title: Note on the bright rays on the Moon
  publication-title: B.A.A.
– volume: 37
  start-page: 59
  year: 1987
  end-page: 70
  ident: BIB049
  article-title: High-resolution lunar radar map at 70-cm wavelength
  publication-title: Earth Moon Planets
– volume: 30
  start-page: 80
  year: 1977
  end-page: 96
  ident: BIB021
  article-title: Crater cluster and light mantle at the Apollo 17 site: a result of secondary impact from Tycho
  publication-title: Icarus
– reference: Moore, H.J., 1967. Geological map of the Seleucus quadrangle of the Moon. USGS Map I-527
– start-page: C797
  year: 1985
  end-page: C804
  ident: BIB047
  article-title: Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis
– start-page: C805
  year: 1985
  end-page: C810
  ident: BIB020
  article-title: Quantitative analysis of planetary reflectance spectra with principal components analysis
– volume: 105
  start-page: 20377
  year: 2000
  end-page: 20386
  ident: BIB026
  article-title: Imaging of lunar surface maturity
  publication-title: J. Geophys. Res.
– start-page: 2503
  year: 1975
  end-page: 2530
  ident: BIB032
  article-title: Geomorphology of crater and basin deposits: emplacement of the Fra Mauro formation
– start-page: 403
  year: 2001
  end-page: 422
  ident: BIB014
  article-title: The lunar record of recent impact cratering
  publication-title: Accretion of Extraterrestrial Matter throughout Earth History
– year: 1963
  ident: BIB005
  article-title: The Measure of the Moon
– start-page: D344
  year: 1986
  end-page: D354
  ident: BIB022
  article-title: A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy
– reference: Schmitt, H.H., Trask, N.J., Shoemaker, E.M., 1967. Geological map of the Copernicus quadrangle of the Moon. USGS Map I-515
– volume: 268
  start-page: 1150
  year: 1995
  end-page: 1153
  ident: BIB023
  article-title: Abundance and distribution of iron on the Moon
  publication-title: Science
– volume: 103
  start-page: 3679
  year: 1998
  end-page: 3699
  ident: BIB024
  article-title: Mapping FeO and TiO
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 9
  year: 2001
  end-page: 54
  ident: BIB048
  article-title: Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System
  publication-title: Space Sci. Rev.
– volume: 102
  start-page: 16319
  year: 1997
  end-page: 16325
  ident: BIB008
  article-title: Clementine images of the sample-return stations: refinement of FeO and TiO
  publication-title: J. Geophys. Res.
– start-page: 259
  year: 1992
  end-page: 274
  ident: BIB010
  article-title: A high-resolution and CCD imaging study of crater rays in Mare Serenitatis and Mare Nectaris
– start-page: 507
  year: 1996
  end-page: 508
  ident: BIB016
  article-title: Remote sensing studies of lunar crater rays
– start-page: 283
  year: 1962
  end-page: 359
  ident: BIB043
  article-title: Interpretation of lunar craters
  publication-title: Physics and Astronomy of the Moon
– volume: 86
  start-page: 10883
  year: 1981
  end-page: 10892
  ident: BIB028
  article-title: Moon: near-infrared spectral reflectance, a first good look
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 17
  year: 1974
  end-page: 50
  ident: BIB055
  article-title: High-resolution radar map of the lunar surface at 3.8-cm wavelength
  publication-title: Moon
– volume: 12
  start-page: 19
  year: 1975
  end-page: 54
  ident: BIB036
  article-title: On the origin of the lunar smooth-plains
  publication-title: Moon
– volume: 158
  start-page: 1529
  year: 1967
  end-page: 1535
  ident: BIB051
  article-title: Lunar orbiter photographs: some fundamental observations
  publication-title: Science
– volume: 2
  start-page: 263
  year: 1971
  end-page: 278
  ident: BIB034
  article-title: A mechanism for the production of lunar crater rays
  publication-title: Moon
– volume: 74
  start-page: 6081
  year: 1969
  end-page: 6119
  ident: BIB046
  article-title: Observations of the lunar regolith and the Earth from the television camera on Surveyor 7
  publication-title: J. Geophys. Res.
– year: 1968
  ident: BIB027
  article-title: Current Knowledge of the Moon and Planets
– volume: 105
  start-page: 20297
  year: 2000
  end-page: 20305
  ident: BIB025
  article-title: Lunar iron and titanium abundance algorithms based on final processing of Clementine UV-VIS data
  publication-title: J. Geophys. Res.
– start-page: 79
  year: 1966
  end-page: 98
  ident: BIB052
  article-title: The surface of the Moon
  publication-title: The Nature of the Lunar Surface
– volume: 203
  start-page: 233
  year: 1983
  end-page: 236
  ident: BIB042
  article-title: The beginning and end of lunar mare volcanism
  publication-title: Nature
– start-page: 23
  year: 1966
  end-page: 77
  ident: BIB044
  article-title: Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum
  publication-title: The Nature of the Lunar Surface
– volume: 36
  start-page: 701
  year: 2001
  end-page: 730
  ident: BIB006
  article-title: Remote sensing and geologic studies of the Hadley–Apennine region of the Moon
  publication-title: Meteorit. Planet. Sci.
– volume: 19
  start-page: 143
  year: 1991
  end-page: 146
  ident: BIB038
  article-title: Probable age of Autolycus and calibration of lunar stratigraphy
  publication-title: Geology
– volume: 90
  start-page: 3701
  year: 1985
  end-page: 3732
  ident: BIB041
  article-title: Clustered impacts: experiments and implications
  publication-title: J. Geophys. Res.
– year: 1885
  ident: BIB033
  article-title: The Moon
– start-page: 1739
  year: 1979
  end-page: 1751
  ident: BIB003
  article-title: Are early magnesium-rich basalts widespread on the Moon?
– volume: 58
  start-page: 3093
  year: 1994
  end-page: 3100
  ident: BIB009
  publication-title: Geochim. Cosmochim. Acta
– volume: 106
  start-page: 32847
  year: 2001
  end-page: 32862
  ident: BIB015
  article-title: Optical maturity of ejects from large rayed lunar craters
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 17207
  year: 1993
  end-page: 17231
  ident: BIB029
  article-title: Galileo observations of post-Imbrium craters during the first Earth–Moon flyby
  publication-title: J. Geophys. Res.
– volume: 79
  start-page: 4829
  year: 1974
  end-page: 4836
  ident: BIB001
  article-title: Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid bodies in the Solar System
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 337
  year: 1975
  end-page: 362
  ident: BIB035
  article-title: The role of ballistic erosion and sedimentation in lunar stratigraphy
  publication-title: Rev. Geophys. Space Phys.
– volume: 8
  start-page: 104
  year: 1973
  end-page: 114
  ident: BIB012
  article-title: How old is the crater Copernicus?
  publication-title: Moon
– reference: Wilhelms, D.E., 1987. The Geologic History of the Moon. USGS Prof. Paper 1348
– volume: 100
  start-page: 16959
  year: 1995
  end-page: 16977
  ident: BIB007
  article-title: Remote sensing and geologic studies of the Schiller–Schickard region of the Moon
  publication-title: J. Geophys. Res.
– volume: 90
  start-page: 12393
  year: 1985
  end-page: 12413
  ident: BIB037
  article-title: The nature of crater rays: the Copernicus example
  publication-title: J. Geophys. Res.
– volume: 76
  start-page: 5719
  year: 1971
  end-page: 5731
  ident: BIB013
  article-title: Copernicus as a lunar caldera
  publication-title: J. Geophys. Res.
– year: 1949
  ident: BIB004
  article-title: The Face of the Moon
– year: 2000
  ident: BIB018
  article-title: Lunar crater rays: compositions and modes of origin
– start-page: 2935
  year: 1979
  end-page: 2955
  ident: BIB011
  article-title: Thickness of the western mare basalts
– volume: 102
  start-page: 9231
  year: 1997
  end-page: 9242
  ident: BIB030
  article-title: The Phanerozoic impact cratering rate: evidence from the farside of the Moon
  publication-title: J. Geophys. Res.
– start-page: 289
  year: 1962
  ident: 10.1016/j.icarus.2004.02.013_BIB045
  article-title: Stratigraphic basis for a lunar time scale
– start-page: C797
  year: 1985
  ident: 10.1016/j.icarus.2004.02.013_BIB047
  article-title: Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis
– year: 1976
  ident: 10.1016/j.icarus.2004.02.013_BIB040
– volume: 102
  start-page: 9231
  year: 1997
  ident: 10.1016/j.icarus.2004.02.013_BIB030
  article-title: The Phanerozoic impact cratering rate: evidence from the farside of the Moon
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JE00114
– start-page: 2503
  year: 1975
  ident: 10.1016/j.icarus.2004.02.013_BIB032
  article-title: Geomorphology of crater and basin deposits: emplacement of the Fra Mauro formation
– volume: 13
  start-page: 337
  year: 1975
  ident: 10.1016/j.icarus.2004.02.013_BIB035
  article-title: The role of ballistic erosion and sedimentation in lunar stratigraphy
  publication-title: Rev. Geophys. Space Phys.
  doi: 10.1029/RG013i002p00337
– volume: 106
  start-page: 32847
  year: 2001
  ident: 10.1016/j.icarus.2004.02.013_BIB015
  article-title: Optical maturity of ejects from large rayed lunar craters
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JE001160
– volume: 90
  start-page: 3701
  year: 1985
  ident: 10.1016/j.icarus.2004.02.013_BIB041
  article-title: Clustered impacts: experiments and implications
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB090iB05p03701
– start-page: 22
  year: 1999
  ident: 10.1016/j.icarus.2004.02.013_BIB017
  article-title: The composition and origin of selected lunar crater rays
– volume: 268
  start-page: 1150
  year: 1995
  ident: 10.1016/j.icarus.2004.02.013_BIB023
  article-title: Abundance and distribution of iron on the Moon
  publication-title: Science
  doi: 10.1126/science.268.5214.1150
– volume: 36
  start-page: 701
  year: 2001
  ident: 10.1016/j.icarus.2004.02.013_BIB006
  article-title: Remote sensing and geologic studies of the Hadley–Apennine region of the Moon
  publication-title: Meteorit. Planet. Sci.
  doi: 10.1111/j.1945-5100.2001.tb01909.x
– volume: 158
  start-page: 1529
  year: 1967
  ident: 10.1016/j.icarus.2004.02.013_BIB051
  article-title: Lunar orbiter photographs: some fundamental observations
  publication-title: Science
  doi: 10.1126/science.158.3808.1529
– year: 1963
  ident: 10.1016/j.icarus.2004.02.013_BIB005
– volume: 8
  start-page: 104
  year: 1973
  ident: 10.1016/j.icarus.2004.02.013_BIB012
  article-title: How old is the crater Copernicus?
  publication-title: Moon
  doi: 10.1007/BF00562752
– volume: 105
  start-page: 20377
  year: 2000
  ident: 10.1016/j.icarus.2004.02.013_BIB026
  article-title: Imaging of lunar surface maturity
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JE001110
– volume: 18
  start-page: 126
  year: 1908
  ident: 10.1016/j.icarus.2004.02.013_BIB050
  article-title: Note on the bright rays on the Moon
  publication-title: B.A.A.
– volume: 74
  start-page: 6081
  year: 1969
  ident: 10.1016/j.icarus.2004.02.013_BIB046
  article-title: Observations of the lunar regolith and the Earth from the television camera on Surveyor 7
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB074i025p06081
– volume: 76
  start-page: 5719
  year: 1971
  ident: 10.1016/j.icarus.2004.02.013_BIB013
  article-title: Copernicus as a lunar caldera
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB076i023p05719
– year: 1968
  ident: 10.1016/j.icarus.2004.02.013_BIB027
– volume: 105
  start-page: 20297
  year: 2000
  ident: 10.1016/j.icarus.2004.02.013_BIB025
  article-title: Lunar iron and titanium abundance algorithms based on final processing of Clementine UV-VIS data
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JE001117
– volume: 10
  start-page: 17
  year: 1974
  ident: 10.1016/j.icarus.2004.02.013_BIB055
  article-title: High-resolution radar map of the lunar surface at 3.8-cm wavelength
  publication-title: Moon
  doi: 10.1007/BF00562017
– volume: 79
  start-page: 4829
  year: 1974
  ident: 10.1016/j.icarus.2004.02.013_BIB001
  article-title: Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid bodies in the Solar System
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB079i032p04829
– ident: 10.1016/j.icarus.2004.02.013_BIB039
– start-page: 79
  year: 1966
  ident: 10.1016/j.icarus.2004.02.013_BIB052
  article-title: The surface of the Moon
– volume: 37
  start-page: 59
  year: 1987
  ident: 10.1016/j.icarus.2004.02.013_BIB049
  article-title: High-resolution lunar radar map at 70-cm wavelength
  publication-title: Earth Moon Planets
  doi: 10.1007/BF00054324
– volume: 12
  start-page: 19
  year: 1975
  ident: 10.1016/j.icarus.2004.02.013_BIB036
  article-title: On the origin of the lunar smooth-plains
  publication-title: Moon
  doi: 10.1007/BF02626332
– start-page: D344
  year: 1986
  ident: 10.1016/j.icarus.2004.02.013_BIB022
  article-title: A compositional study of the Aristarchus region of the Moon using near-infrared reflectance spectroscopy
– start-page: 403
  year: 2001
  ident: 10.1016/j.icarus.2004.02.013_BIB014
  article-title: The lunar record of recent impact cratering
– volume: 100
  start-page: 16959
  year: 1995
  ident: 10.1016/j.icarus.2004.02.013_BIB007
  article-title: Remote sensing and geologic studies of the Schiller–Schickard region of the Moon
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JE01409
– volume: 108
  start-page: 5065
  issue: E7
  year: 2003
  ident: 10.1016/j.icarus.2004.02.013_BIB019
  article-title: Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JE001985
– ident: 10.1016/j.icarus.2004.02.013_BIB031
– start-page: 2935
  year: 1979
  ident: 10.1016/j.icarus.2004.02.013_BIB011
  article-title: Thickness of the western mare basalts
– start-page: 259
  year: 1992
  ident: 10.1016/j.icarus.2004.02.013_BIB010
  article-title: A high-resolution and CCD imaging study of crater rays in Mare Serenitatis and Mare Nectaris
– volume: 203
  start-page: 233
  year: 1983
  ident: 10.1016/j.icarus.2004.02.013_BIB042
  article-title: The beginning and end of lunar mare volcanism
  publication-title: Nature
  doi: 10.1038/302233a0
– start-page: C805
  year: 1985
  ident: 10.1016/j.icarus.2004.02.013_BIB020
  article-title: Quantitative analysis of planetary reflectance spectra with principal components analysis
– year: 1949
  ident: 10.1016/j.icarus.2004.02.013_BIB004
– volume: 103
  start-page: 3679
  year: 1998
  ident: 10.1016/j.icarus.2004.02.013_BIB024
  article-title: Mapping FeO and TiO2 content of the lunar surface with multispectral imagery
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JE03019
– year: 1885
  ident: 10.1016/j.icarus.2004.02.013_BIB033
– start-page: 507
  year: 1996
  ident: 10.1016/j.icarus.2004.02.013_BIB016
  article-title: Remote sensing studies of lunar crater rays
– volume: 19
  start-page: 143
  year: 1991
  ident: 10.1016/j.icarus.2004.02.013_BIB038
  article-title: Probable age of Autolycus and calibration of lunar stratigraphy
  publication-title: Geology
  doi: 10.1130/0091-7613(1991)019<0143:PAOAAC>2.3.CO;2
– start-page: 283
  year: 1962
  ident: 10.1016/j.icarus.2004.02.013_BIB043
  article-title: Interpretation of lunar craters
– start-page: 23
  year: 1966
  ident: 10.1016/j.icarus.2004.02.013_BIB044
  article-title: Preliminary analysis of the fine structure of the lunar surface in Mare Cognitum
– ident: 10.1016/j.icarus.2004.02.013_BIB053
– volume: 98
  start-page: 17207
  year: 1993
  ident: 10.1016/j.icarus.2004.02.013_BIB029
  article-title: Galileo observations of post-Imbrium craters during the first Earth–Moon flyby
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JE01137
– volume: 30
  start-page: 80
  year: 1977
  ident: 10.1016/j.icarus.2004.02.013_BIB021
  article-title: Crater cluster and light mantle at the Apollo 17 site: a result of secondary impact from Tycho
  publication-title: Icarus
  doi: 10.1016/0019-1035(77)90123-3
– ident: 10.1016/j.icarus.2004.02.013_BIB054
  doi: 10.3133/pp1348
– volume: 90
  start-page: 12393
  year: 1985
  ident: 10.1016/j.icarus.2004.02.013_BIB037
  article-title: The nature of crater rays: the Copernicus example
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB090iB14p12393
– volume: 15
  start-page: 179
  year: 1977
  ident: 10.1016/j.icarus.2004.02.013_BIB002
  article-title: Rayed craters on the Moon and Mercury
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(77)90030-9
– volume: 86
  start-page: 10883
  year: 1981
  ident: 10.1016/j.icarus.2004.02.013_BIB028
  article-title: Moon: near-infrared spectral reflectance, a first good look
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB086iB11p10883
– year: 2000
  ident: 10.1016/j.icarus.2004.02.013_BIB018
  article-title: Lunar crater rays: compositions and modes of origin
– volume: 2
  start-page: 263
  year: 1971
  ident: 10.1016/j.icarus.2004.02.013_BIB034
  article-title: A mechanism for the production of lunar crater rays
  publication-title: Moon
  doi: 10.1007/BF00561880
– volume: 102
  start-page: 16319
  year: 1997
  ident: 10.1016/j.icarus.2004.02.013_BIB008
  article-title: Clementine images of the sample-return stations: refinement of FeO and TiO2 mapping techniques
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JE01505
– volume: 96
  start-page: 9
  year: 2001
  ident: 10.1016/j.icarus.2004.02.013_BIB048
  article-title: Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1011937020193
– volume: 58
  start-page: 3093
  year: 1994
  ident: 10.1016/j.icarus.2004.02.013_BIB009
  article-title: 40Ar–39Ar dating of two lunar granites: the age of Copernicus
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90181-3
– start-page: 1739
  year: 1979
  ident: 10.1016/j.icarus.2004.02.013_BIB003
  article-title: Are early magnesium-rich basalts widespread on the Moon?
SSID ssj0005893
Score 2.1599696
Snippet Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cratering
Impact processes
Moon
Radar
Spectroscopy
surface
Title The origin of lunar crater rays
URI https://dx.doi.org/10.1016/j.icarus.2004.02.013
https://www.proquest.com/docview/18038847
https://www.proquest.com/docview/28420990
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbqUPkn6SDSUbmr8kC15DKEhbSFTA9mMbMmQktrBSYYs_e29k-3SFkKgmzEnbE7SPaTvviPkngcCsgbJmdbCYTw1HktE5DGuIBPzlEbgN6ItpuFkxl_mwbxFRk0tDMIqa9tf2XRrres3g1qbg9VigTW-kGvgxRhHR2cZPzkXuNYfP3_APGRNvOtGDKWb8jmL8QI9lFtL2s0tc6fr73NPfwy19T7jU3JSh410WP3ZGWmZ_Jx0hms8yC4-dvSB2ufqnGJ9Qfow_bRqekWLjC63uSppirQQJS3Vbn1JZuOnt9GE1b0QWOqH4YalSaJlJiMHnBqkGIHrJ9qYUOO1JsRE2vO15CaRXhK4wijjOEpBpALOBwIcrYR_Rdp5kZsOoaGb6VRmsPkywzOIsTJfYLcixYMo1Ep3id-oIE5ronDsV7GMG0TYe1wpDntY8tjxYlBcl7DvUauKKOOAvGi0G_-a8Bhs-YGR_WYyYtgLeMGhclOAkCuR24aL_RKgD6wVdq7__fUbclyBdxCxe0vam3Jr7iAu2SQ9u_B65Gj4_DqZfgHZkuF8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhHdql9EnSVzSUbmr8kC17DKEhbdNMCWQTsiVDSmoHJxmy9Lf3zo_SFkKgmzEnbE7SPaTvviPknnsCsoaAM62FxXhsHBaJ0GFcQSbmKI3Ab0RbjP3hlL_MvFmD9OtaGIRVVra_tOmFta7edCttdpfzOdb4Qq6BF2McHR0yfh5wzxWI63v8_IHzCCrmXTtkKF7XzxUgL1BEvilYu3lB3Wm7u_zTH0tduJ_BCTmu4kbaK3_tlDRMekZavRWeZGcfW_pAi-fyoGJ1Tjow_7TsekWzhC42qcppjLwQOc3VdnVBpoOnSX_IqmYILHZ9f83iKNJBEoQWeDXIMTzbjbQxvsZ7TQiKtOPqgJsocCLPFkYZy1IKQhXwPhDhaCXcS9JMs9S0CPXtRMdBArsvMTyBICtxBbYrUtwLfa10m7i1CmRcMYVjw4qFrCFh77JUHDax5NJyJCiuTdj3qGXJlLFHXtTalb9mXIIx3zOyU0-GhM2ANxwqNRkI2QGS23CxWwL0gcXC1tW_v94hh8PJ20iOnsev1-SoRPIgfPeGNNf5xtxCkLKO7opF-AUlO-MP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+of+lunar+crater+rays&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=Hawke%2C+B.Ray&rft.au=Blewett%2C+D.T.&rft.au=Lucey%2C+P.G.&rft.au=Smith%2C+G.A.&rft.date=2004-07-01&rft.issn=0019-1035&rft.volume=170&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1016%2Fj.icarus.2004.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icarus_2004_02_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon