Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unne...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 13; p. 2071 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date. |
---|---|
AbstractList | The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date. The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m²) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R² of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m². Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date. |
Author | Lee, Hwang Wang, Jinfei Leblon, Brigitte |
Author_xml | – sequence: 1 givenname: Hwang orcidid: 0000-0002-2370-2481 surname: Lee fullname: Lee, Hwang – sequence: 2 givenname: Jinfei orcidid: 0000-0002-8404-0530 surname: Wang fullname: Wang, Jinfei – sequence: 3 givenname: Brigitte surname: Leblon fullname: Leblon, Brigitte |
BookMark | eNptUU1v1DAUjFCRKKUXfsE7ItQFfyTr5FitaFlpC6iwcIxe7Oesq6wdbK9Qfw1_FZdFgBC-PHs0M7ZnnlYnPniqquecvZKyY69j4oJLwRR_VJ2WIRa16MTJX_sn1XlKd6wsKXnH6tPq-zY5P8LGecIItzRGSskFfwG36E3Yw1UoSE4XUI7w8TDPIWb4TDqHCDeod0UI31zewdbv0XsycEnR4VQ4O6cngpvDlF2aiyIWdL3HkRLkAB8iGaczrNCH-R7euRzDSB6-kBt3GZyHVYj-WfXY4pTo_Nc8q7ZXbz6t3i4276_Xq8vNQsvlMi_0gEvLB8VxaIcWUVo9WGWVoroR1GlVt8Qs04YZ2xpDQnUNDp0ka6WpBZNn1froawLe9XN0e4z3fUDX_wRCHHuM-eFDvWJ2aLg0oqRdUy1bxRpVHqDqhpaameL14ug1x_D1UNLr9y5pmib0FA6pF13bNB3vWlWoL49UHUNKkezvqznrH0rt_5RayOwfsnYZc2mrROum_0l-ACQ8qKQ |
CitedBy_id | crossref_primary_10_3390_rs16020349 crossref_primary_10_3390_rs14010081 crossref_primary_10_1007_s11119_021_09870_3 crossref_primary_10_1002_fes3_434 crossref_primary_10_3390_rs13193976 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1016_j_jia_2023_02_022 crossref_primary_10_1016_j_envres_2023_115809 crossref_primary_10_1016_j_fcr_2022_108710 crossref_primary_10_3390_agriengineering6030185 crossref_primary_10_3390_agronomy14010001 crossref_primary_10_1016_j_agwat_2024_109059 crossref_primary_10_3390_su14159259 crossref_primary_10_1016_j_rsase_2023_101110 crossref_primary_10_1109_ACCESS_2022_3205587 crossref_primary_10_1016_j_eja_2025_127519 crossref_primary_10_1016_j_compag_2024_109529 crossref_primary_10_1080_00330124_2022_2146908 crossref_primary_10_3390_rs14215456 crossref_primary_10_1186_s13007_022_00899_7 crossref_primary_10_3390_agriengineering6040233 crossref_primary_10_1007_s41064_022_00218_8 crossref_primary_10_3390_rs15102680 crossref_primary_10_3389_fpls_2024_1302435 crossref_primary_10_1007_s12193_024_00433_0 crossref_primary_10_1016_j_foodchem_2024_138895 crossref_primary_10_1111_1752_1688_13121 crossref_primary_10_1016_j_jia_2023_02_027 crossref_primary_10_3390_rs13152918 crossref_primary_10_3390_f14112251 crossref_primary_10_1016_j_compag_2023_108374 crossref_primary_10_3390_w17030323 crossref_primary_10_3390_drones8040140 crossref_primary_10_3390_rs13214218 crossref_primary_10_1016_j_ecoinf_2023_102099 crossref_primary_10_3390_en14082332 crossref_primary_10_3390_en17194924 crossref_primary_10_3390_rs14184511 crossref_primary_10_3390_agronomy14081789 crossref_primary_10_3390_nitrogen3010001 crossref_primary_10_3390_f12121747 crossref_primary_10_1016_j_heliyon_2024_e26717 crossref_primary_10_3390_rs16030492 crossref_primary_10_3390_rs16122073 crossref_primary_10_1080_10106049_2024_2373867 crossref_primary_10_32604_cmc_2024_045101 crossref_primary_10_3934_agrfood_2023038 crossref_primary_10_1016_j_geomat_2024_100011 crossref_primary_10_3390_met15010081 crossref_primary_10_1038_s41612_024_00833_9 crossref_primary_10_1016_j_sbsr_2025_100764 crossref_primary_10_3390_agriculture15030309 crossref_primary_10_1016_j_fcr_2022_108735 crossref_primary_10_3390_rs13030340 crossref_primary_10_3390_drones8020061 crossref_primary_10_3390_plants12173105 crossref_primary_10_1007_s11119_022_09922_2 crossref_primary_10_3389_fpls_2025_1554842 crossref_primary_10_3390_agriculture13051017 crossref_primary_10_1038_s41597_024_03357_2 crossref_primary_10_3390_f14040717 crossref_primary_10_1016_j_cscee_2023_100353 crossref_primary_10_1016_j_envadv_2024_100528 crossref_primary_10_1016_j_rse_2024_114454 crossref_primary_10_1007_s40808_024_02127_8 crossref_primary_10_1016_j_compag_2024_109829 crossref_primary_10_1117_1_JRS_18_034506 crossref_primary_10_1016_j_compag_2023_107829 crossref_primary_10_1016_j_biosystemseng_2021_08_035 crossref_primary_10_3390_info14010010 crossref_primary_10_1007_s11119_024_10147_8 crossref_primary_10_3390_rs12172817 crossref_primary_10_3390_w16162224 crossref_primary_10_3390_agronomy15010241 crossref_primary_10_3390_rs16244784 crossref_primary_10_3390_rs14051140 crossref_primary_10_14358_PERS_22_00089R2 crossref_primary_10_1016_j_fcr_2023_109175 crossref_primary_10_1016_j_jia_2023_05_036 crossref_primary_10_3390_plants14060973 crossref_primary_10_3390_rs13030477 crossref_primary_10_1016_j_xplc_2022_100344 crossref_primary_10_3390_rs13163105 crossref_primary_10_3390_su14041992 |
Cites_doi | 10.3390/ijgi7050168 10.3390/s19132898 10.1016/S0273-1177(97)01133-2 10.1016/0034-4257(95)00186-7 10.3390/rs11242925 10.1007/978-1-4614-7138-7 10.3390/rs8120973 10.1016/j.rse.2003.09.004 10.3390/rs12020215 10.1016/0034-4257(88)90106-X 10.1078/0176-1617-00887 10.1016/S1672-6308(07)60027-4 10.1088/1748-9326/ab5268 10.1016/j.fcr.2010.11.002 10.3390/s19112448 10.1016/j.eja.2017.12.006 10.1093/treephys/7.1-2-3-4.33 10.3390/rs4051462 10.1080/01431160902926574 10.1016/0034-4257(94)00114-3 10.1109/JSTARS.2011.2176468 10.1109/JSTARS.2018.2813281 10.3390/rs9070708 10.1016/S0034-4257(02)00096-2 10.1016/S0034-4257(03)00131-7 10.1016/j.fcr.2017.12.004 10.1080/01431161.2019.1569793 10.3390/rs11232873 10.1016/S0034-4257(00)00197-8 10.3390/rs11192228 10.1016/S0034-4257(00)00113-9 10.1016/j.isprsjprs.2016.01.011 10.1016/j.fcr.2017.11.025 10.1080/01431161.2013.793868 10.1016/0034-4257(79)90004-X 10.1016/S0034-4257(01)00289-9 10.3390/rs4061573 10.1016/j.fcr.2007.11.001 10.3389/fpls.2017.01111 10.1109/TGRS.2013.2265295 10.5589/m02-092 10.1016/0034-4257(94)90134-1 10.1016/j.compag.2017.05.023 10.1007/s11119-012-9274-5 10.2134/jeq2002.1433 10.1016/S0176-1617(96)80285-9 10.1016/j.rse.2010.04.006 10.1080/01431160512331314029 10.1016/j.isprsjprs.2018.09.008 10.1080/07038992.2020.1788384 10.1109/IGARSS.2016.7730920 10.3390/rs10122026 10.2307/1936256 10.1016/j.fcr.2013.12.018 10.2134/agronj2005.0200 10.1590/S0100-204X2013001000011 10.1016/j.fcr.2017.05.005 10.3390/rs4061651 10.1016/j.rse.2003.12.013 10.1080/07038992.1996.10855178 10.1016/1011-1344(93)06963-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs12132071 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d 10_3390_rs12132071 |
GeographicLocations | Ontario |
GeographicLocations_xml | – name: Ontario |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-cba6f1b71ab8b8aa3fcbf7f77e452e9c748e0f0cd0df8dde2795ab93eff3d4203 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:25:04 EDT 2025 Fri Jul 11 06:27:38 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Tue Jul 01 04:15:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-cba6f1b71ab8b8aa3fcbf7f77e452e9c748e0f0cd0df8dde2795ab93eff3d4203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2370-2481 0000-0002-8404-0530 |
OpenAccessLink | https://doaj.org/article/70fb513d21214e4387057cba745e6c0d |
PQID | 2985591987 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d proquest_miscellaneous_2985591987 crossref_primary_10_3390_rs12132071 crossref_citationtrail_10_3390_rs12132071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Karimi (ref_31) 2008; 50 Gitelson (ref_61) 2013; 34 Curran (ref_76) 1990; 7 Baranoski (ref_77) 2005; 26 Huete (ref_41) 2002; 83 ref_13 ref_12 Bagheri (ref_9) 2013; 48 Gitelson (ref_42) 1996; 148 Miphokasap (ref_23) 2012; 4 Wang (ref_39) 2007; 14 Clevers (ref_17) 2013; 23 Fernandes (ref_47) 2003; 29 Haboudane (ref_49) 2004; 90 Gitelson (ref_60) 2002; 80 Rondeaux (ref_53) 1996; 55 ref_69 ref_24 ref_68 ref_67 Sripada (ref_46) 2006; 98 Jordan (ref_57) 1969; 50 ref_65 Francois (ref_1) 2004; 89 ref_64 ref_63 ref_62 Li (ref_73) 2014; 157 ref_29 ref_28 ref_26 Harwin (ref_15) 2012; 4 Deng (ref_33) 2018; 146 Chen (ref_21) 2010; 114 Yang (ref_11) 2017; 8 Rouse (ref_52) 1974; 351 Daughtry (ref_48) 2000; 74 Zhang (ref_7) 2012; 13 Broge (ref_59) 2001; 76 ref_36 Campos (ref_70) 2018; 216 ref_34 ref_32 Chen (ref_51) 1996; 22 ref_74 Wang (ref_30) 2017; 140 Turner (ref_14) 2013; 52 Gitelson (ref_40) 2003; 160 ref_38 Liaw (ref_66) 2002; 2 Clevers (ref_16) 2011; 5 ref_37 Li (ref_25) 2008; 106 Frels (ref_35) 2018; 217 Schlemmer (ref_72) 2013; 25 Huete (ref_58) 1988; 25 Qi (ref_50) 1994; 48 Roujean (ref_54) 1995; 51 Kelcey (ref_10) 2012; 4 Gitelson (ref_44) 1998; 22 Raparelli (ref_5) 2019; 40 Shahhosseini (ref_4) 2019; 14 ref_45 Tucker (ref_43) 1979; 8 Hansen (ref_18) 2003; 86 Tian (ref_22) 2011; 120 Miller (ref_75) 2002; 31 ref_3 Xie (ref_2) 2018; 11 Bendig (ref_56) 2015; 39 ref_8 Jay (ref_20) 2017; 210 Zhao (ref_71) 2018; 93 Belgiu (ref_27) 2016; 114 Botha (ref_19) 2010; 31 ref_6 Gitelson (ref_55) 1994; 22 |
References_xml | – ident: ref_65 doi: 10.3390/ijgi7050168 – ident: ref_74 – ident: ref_24 doi: 10.3390/s19132898 – volume: 22 start-page: 689 year: 1998 ident: ref_44 article-title: Remote sensing of chlorophyll concentration in higher plant leaves publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(97)01133-2 – volume: 55 start-page: 95 year: 1996 ident: ref_53 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – ident: ref_28 doi: 10.3390/rs11242925 – ident: ref_63 doi: 10.1007/978-1-4614-7138-7 – ident: ref_68 – ident: ref_12 doi: 10.3390/rs8120973 – volume: 89 start-page: 1 year: 2004 ident: ref_1 article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.09.004 – ident: ref_13 doi: 10.3390/rs12020215 – volume: 25 start-page: 295 year: 1988 ident: ref_58 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 160 start-page: 271 year: 2003 ident: ref_40 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 – volume: 351 start-page: 309 year: 1974 ident: ref_52 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 14 start-page: 195 year: 2007 ident: ref_39 article-title: New vegetation index and its application in estimating leaf area index of rice publication-title: Rice Sci. doi: 10.1016/S1672-6308(07)60027-4 – volume: 14 start-page: 124026 year: 2019 ident: ref_4 article-title: Maize yield and nitrate loss prediction with machine learning algorithms publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab5268 – volume: 120 start-page: 299 year: 2011 ident: ref_22 article-title: Assessing Newly Developed and Published Vegetation Indices for Estimating Rice Leaf Nitrogen Concentration with Ground-and Space-Based Hyperspectral Reflectance publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2010.11.002 – ident: ref_29 doi: 10.3390/s19112448 – volume: 50 start-page: 13 year: 2008 ident: ref_31 article-title: Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations publication-title: Can. Biosyst. Eng. – volume: 93 start-page: 113 year: 2018 ident: ref_71 article-title: Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.12.006 – volume: 7 start-page: 33 year: 1990 ident: ref_76 article-title: Exploring the relationship between reflectance red edge and chlorophyll content in slash pine publication-title: Tree Physiol. doi: 10.1093/treephys/7.1-2-3-4.33 – volume: 4 start-page: 1462 year: 2012 ident: ref_10 article-title: Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing publication-title: Remote Sens. doi: 10.3390/rs4051462 – volume: 25 start-page: 47 year: 2013 ident: ref_72 article-title: Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 31 start-page: 1679 year: 2010 ident: ref_19 article-title: Non-destructive estimation of wheat leaf chlorophyll content from hyperspectral measurements through analytical model inversion publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902926574 – volume: 51 start-page: 375 year: 1995 ident: ref_54 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00114-3 – volume: 5 start-page: 574 year: 2011 ident: ref_16 article-title: Using hyperspectral remote sensing data for retrieving total canopy chlorophyll and nitrogen content publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2176468 – ident: ref_62 – ident: ref_38 – ident: ref_45 – volume: 11 start-page: 1482 year: 2018 ident: ref_2 article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2813281 – ident: ref_69 doi: 10.3390/rs9070708 – volume: 83 start-page: 195 year: 2002 ident: ref_41 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 86 start-page: 542 year: 2003 ident: ref_18 article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00131-7 – volume: 217 start-page: 82 year: 2018 ident: ref_35 article-title: Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2017.12.004 – volume: 40 start-page: 9070 year: 2019 ident: ref_5 article-title: A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1569793 – ident: ref_26 doi: 10.3390/rs11232873 – ident: ref_34 – volume: 76 start-page: 156 year: 2001 ident: ref_59 article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00197-8 – ident: ref_8 doi: 10.3390/rs11192228 – volume: 74 start-page: 229 year: 2000 ident: ref_48 article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00113-9 – volume: 114 start-page: 24 year: 2016 ident: ref_27 article-title: Random Forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 216 start-page: 175 year: 2018 ident: ref_70 article-title: Remote sensing-based crop biomass with water or light-driven crop growth models in wheat commercial fields publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2017.11.025 – volume: 34 start-page: 6054 year: 2013 ident: ref_61 article-title: Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.793868 – volume: 8 start-page: 237 year: 1979 ident: ref_43 article-title: Monitoring corn and soybean crop development with hand-held radiometer spectral data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90004-X – volume: 80 start-page: 76 year: 2002 ident: ref_60 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00289-9 – volume: 4 start-page: 1573 year: 2012 ident: ref_15 article-title: Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery publication-title: Remote Sens. doi: 10.3390/rs4061573 – ident: ref_67 – volume: 106 start-page: 77 year: 2008 ident: ref_25 article-title: Estimating N status of winter wheat using a handheld spectrometer in the North China plain publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2007.11.001 – ident: ref_37 – volume: 8 start-page: 1111 year: 2017 ident: ref_11 article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping:Current status and perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01111 – volume: 52 start-page: 2738 year: 2013 ident: ref_14 article-title: Direct georeferencing of ultrahigh-resolution UAV imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2265295 – volume: 29 start-page: 241 year: 2003 ident: ref_47 article-title: Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data publication-title: Can. J. Remote Sens. doi: 10.5589/m02-092 – volume: 48 start-page: 119 year: 1994 ident: ref_50 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90134-1 – volume: 140 start-page: 327 year: 2017 ident: ref_30 article-title: Estimation of leaf nitrogen concentration in wheat using the MK-SVR algorithm and satellite remote sensing data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.05.023 – volume: 13 start-page: 693 year: 2012 ident: ref_7 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 31 start-page: 1433 year: 2002 ident: ref_75 article-title: Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1433 – volume: 39 start-page: 79 year: 2015 ident: ref_56 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 148 start-page: 501 year: 1996 ident: ref_42 article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm publication-title: J. Plant. Physiol. doi: 10.1016/S0176-1617(96)80285-9 – volume: 114 start-page: 1987 year: 2010 ident: ref_21 article-title: New Spectral Indicator Assessing the Efficiency of Crop Nitrogen Treatment in Corn and Wheat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.006 – volume: 26 start-page: 503 year: 2005 ident: ref_77 article-title: A practical approach for estimating the red edge position of plant leaf reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160512331314029 – volume: 146 start-page: 124 year: 2018 ident: ref_33 article-title: UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.008 – ident: ref_32 doi: 10.1080/07038992.2020.1788384 – volume: 23 start-page: 344 year: 2013 ident: ref_17 article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3 publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_64 – ident: ref_3 doi: 10.1109/IGARSS.2016.7730920 – ident: ref_6 doi: 10.3390/rs10122026 – volume: 50 start-page: 663 year: 1969 ident: ref_57 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – ident: ref_36 – volume: 157 start-page: 111 year: 2014 ident: ref_73 article-title: Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2013.12.018 – volume: 2 start-page: 18 year: 2002 ident: ref_66 article-title: Classification and regression by Random Forest publication-title: R News – volume: 98 start-page: 968 year: 2006 ident: ref_46 article-title: Aerial color infrared photography for determining early in-season nitrogen requirements in corn publication-title: Agron. J. doi: 10.2134/agronj2005.0200 – volume: 48 start-page: 1394 year: 2013 ident: ref_9 article-title: Multispectral Remote Sensing for Site-Specific Nitrogen Fertilizer Management publication-title: Pesquisa Agropecuária Brasileira doi: 10.1590/S0100-204X2013001000011 – volume: 210 start-page: 33 year: 2017 ident: ref_20 article-title: Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2017.05.005 – volume: 4 start-page: 1651 year: 2012 ident: ref_23 article-title: Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy publication-title: Remote Sens. doi: 10.3390/rs4061651 – volume: 90 start-page: 337 year: 2004 ident: ref_49 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 – volume: 22 start-page: 229 year: 1996 ident: ref_51 article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855178 – volume: 22 start-page: 247 year: 1994 ident: ref_55 article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/1011-1344(93)06963-4 |
SSID | ssj0000331904 |
Score | 2.562536 |
Snippet | The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2071 |
SubjectTerms | canopy canopy nitrogen weight corn crops economic impact farmers fertilizer application image analysis machine learning multispectral imagery nitrogen nitrogen fertilizers nitrogen management Ontario plant growth precision agriculture processing time Random Forests regression analysis remote sensing support vector machines Unmanned Aerial Vehicle (UAV) unmanned aerial vehicles vegetation index water supply |
Title | Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn |
URI | https://www.proquest.com/docview/2985591987 https://doaj.org/article/70fb513d21214e4387057cba745e6c0d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIrlsRoEF6RGdWInjo_bpUtB7KpaWOgtsh2bVmKdKkkP_TX8VcZOWopA4sIpij2SI8-XsWc8_oaQ165UxsnaJpIZm3Bdy0Sbsk5oqa2yWiirwgXn5ao43PAPx_nxtVJfISdsoAceJm5PUKfzlNVoYlNuOUN85cJoJXhuC0PrYH1xzbvmTEUbzBBalA98pAz9-r22C-RlGRXpbytQJOr_ww7HxWVxj9wdd4UwG77mPrlh_QNyeyxQfnLxkPyIR_uAniMiE9b225C-6ndhrXzdbCGU2Oz6bhfwFUKpTtxWw5cYkodlTJi0EGKusPFbFWwrzCL2UOYkjAnxJm68d9li6_st2pkO-gaO2nCU08Nc-ebsAlanfdsg6OBrjKnCqYd50_pHZLM4-Dw_TMbaColhRdEnOIOFS7VIlS51qRRzRjvhhLA8z6w0gpeWOmpqWrsSTWAmZK60ZNY5VvOMssdkxzfePiFAayty7NSBykZSlMq5lpkylmWCWjkhby7nuzIj8Xiof_G9Qgck6Kb6pZsJeXUlezbQbfxVaj-o7UoiUGTHBgRONQKn-hdwJuTlpdIr_KXCOYnytjnvqkyW6GeFaMzT_zHQM3InC056zPF9Tnb69ty-wJ1Mr6fkZrl4NyW3Zm-XHz_hc_9gdbSeRij_BJKV-ZU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Linear+Regression%2C+Random+Forests%2C+and+Support+Vector+Machine+with+Unmanned+Aerial+Vehicle+Multispectral+Images+to+Predict+Canopy+Nitrogen+Weight+in+Corn&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hwang+Lee&rft.au=Jinfei+Wang&rft.au=Brigitte+Leblon&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=13&rft.spage=2071&rft_id=info:doi/10.3390%2Frs12132071&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |