Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn

The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unne...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 13; p. 2071
Main Authors Lee, Hwang, Wang, Jinfei, Leblon, Brigitte
Format Journal Article
LanguageEnglish
Published MDPI AG 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.
AbstractList The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.
The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m²) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R² of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m². Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.
Author Lee, Hwang
Wang, Jinfei
Leblon, Brigitte
Author_xml – sequence: 1
  givenname: Hwang
  orcidid: 0000-0002-2370-2481
  surname: Lee
  fullname: Lee, Hwang
– sequence: 2
  givenname: Jinfei
  orcidid: 0000-0002-8404-0530
  surname: Wang
  fullname: Wang, Jinfei
– sequence: 3
  givenname: Brigitte
  surname: Leblon
  fullname: Leblon, Brigitte
BookMark eNptUU1v1DAUjFCRKKUXfsE7ItQFfyTr5FitaFlpC6iwcIxe7Oesq6wdbK9Qfw1_FZdFgBC-PHs0M7ZnnlYnPniqquecvZKyY69j4oJLwRR_VJ2WIRa16MTJX_sn1XlKd6wsKXnH6tPq-zY5P8LGecIItzRGSskFfwG36E3Yw1UoSE4XUI7w8TDPIWb4TDqHCDeod0UI31zewdbv0XsycEnR4VQ4O6cngpvDlF2aiyIWdL3HkRLkAB8iGaczrNCH-R7euRzDSB6-kBt3GZyHVYj-WfXY4pTo_Nc8q7ZXbz6t3i4276_Xq8vNQsvlMi_0gEvLB8VxaIcWUVo9WGWVoroR1GlVt8Qs04YZ2xpDQnUNDp0ka6WpBZNn1froawLe9XN0e4z3fUDX_wRCHHuM-eFDvWJ2aLg0oqRdUy1bxRpVHqDqhpaameL14ug1x_D1UNLr9y5pmib0FA6pF13bNB3vWlWoL49UHUNKkezvqznrH0rt_5RayOwfsnYZc2mrROum_0l-ACQ8qKQ
CitedBy_id crossref_primary_10_3390_rs16020349
crossref_primary_10_3390_rs14010081
crossref_primary_10_1007_s11119_021_09870_3
crossref_primary_10_1002_fes3_434
crossref_primary_10_3390_rs13193976
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1016_j_jia_2023_02_022
crossref_primary_10_1016_j_envres_2023_115809
crossref_primary_10_1016_j_fcr_2022_108710
crossref_primary_10_3390_agriengineering6030185
crossref_primary_10_3390_agronomy14010001
crossref_primary_10_1016_j_agwat_2024_109059
crossref_primary_10_3390_su14159259
crossref_primary_10_1016_j_rsase_2023_101110
crossref_primary_10_1109_ACCESS_2022_3205587
crossref_primary_10_1016_j_eja_2025_127519
crossref_primary_10_1016_j_compag_2024_109529
crossref_primary_10_1080_00330124_2022_2146908
crossref_primary_10_3390_rs14215456
crossref_primary_10_1186_s13007_022_00899_7
crossref_primary_10_3390_agriengineering6040233
crossref_primary_10_1007_s41064_022_00218_8
crossref_primary_10_3390_rs15102680
crossref_primary_10_3389_fpls_2024_1302435
crossref_primary_10_1007_s12193_024_00433_0
crossref_primary_10_1016_j_foodchem_2024_138895
crossref_primary_10_1111_1752_1688_13121
crossref_primary_10_1016_j_jia_2023_02_027
crossref_primary_10_3390_rs13152918
crossref_primary_10_3390_f14112251
crossref_primary_10_1016_j_compag_2023_108374
crossref_primary_10_3390_w17030323
crossref_primary_10_3390_drones8040140
crossref_primary_10_3390_rs13214218
crossref_primary_10_1016_j_ecoinf_2023_102099
crossref_primary_10_3390_en14082332
crossref_primary_10_3390_en17194924
crossref_primary_10_3390_rs14184511
crossref_primary_10_3390_agronomy14081789
crossref_primary_10_3390_nitrogen3010001
crossref_primary_10_3390_f12121747
crossref_primary_10_1016_j_heliyon_2024_e26717
crossref_primary_10_3390_rs16030492
crossref_primary_10_3390_rs16122073
crossref_primary_10_1080_10106049_2024_2373867
crossref_primary_10_32604_cmc_2024_045101
crossref_primary_10_3934_agrfood_2023038
crossref_primary_10_1016_j_geomat_2024_100011
crossref_primary_10_3390_met15010081
crossref_primary_10_1038_s41612_024_00833_9
crossref_primary_10_1016_j_sbsr_2025_100764
crossref_primary_10_3390_agriculture15030309
crossref_primary_10_1016_j_fcr_2022_108735
crossref_primary_10_3390_rs13030340
crossref_primary_10_3390_drones8020061
crossref_primary_10_3390_plants12173105
crossref_primary_10_1007_s11119_022_09922_2
crossref_primary_10_3389_fpls_2025_1554842
crossref_primary_10_3390_agriculture13051017
crossref_primary_10_1038_s41597_024_03357_2
crossref_primary_10_3390_f14040717
crossref_primary_10_1016_j_cscee_2023_100353
crossref_primary_10_1016_j_envadv_2024_100528
crossref_primary_10_1016_j_rse_2024_114454
crossref_primary_10_1007_s40808_024_02127_8
crossref_primary_10_1016_j_compag_2024_109829
crossref_primary_10_1117_1_JRS_18_034506
crossref_primary_10_1016_j_compag_2023_107829
crossref_primary_10_1016_j_biosystemseng_2021_08_035
crossref_primary_10_3390_info14010010
crossref_primary_10_1007_s11119_024_10147_8
crossref_primary_10_3390_rs12172817
crossref_primary_10_3390_w16162224
crossref_primary_10_3390_agronomy15010241
crossref_primary_10_3390_rs16244784
crossref_primary_10_3390_rs14051140
crossref_primary_10_14358_PERS_22_00089R2
crossref_primary_10_1016_j_fcr_2023_109175
crossref_primary_10_1016_j_jia_2023_05_036
crossref_primary_10_3390_plants14060973
crossref_primary_10_3390_rs13030477
crossref_primary_10_1016_j_xplc_2022_100344
crossref_primary_10_3390_rs13163105
crossref_primary_10_3390_su14041992
Cites_doi 10.3390/ijgi7050168
10.3390/s19132898
10.1016/S0273-1177(97)01133-2
10.1016/0034-4257(95)00186-7
10.3390/rs11242925
10.1007/978-1-4614-7138-7
10.3390/rs8120973
10.1016/j.rse.2003.09.004
10.3390/rs12020215
10.1016/0034-4257(88)90106-X
10.1078/0176-1617-00887
10.1016/S1672-6308(07)60027-4
10.1088/1748-9326/ab5268
10.1016/j.fcr.2010.11.002
10.3390/s19112448
10.1016/j.eja.2017.12.006
10.1093/treephys/7.1-2-3-4.33
10.3390/rs4051462
10.1080/01431160902926574
10.1016/0034-4257(94)00114-3
10.1109/JSTARS.2011.2176468
10.1109/JSTARS.2018.2813281
10.3390/rs9070708
10.1016/S0034-4257(02)00096-2
10.1016/S0034-4257(03)00131-7
10.1016/j.fcr.2017.12.004
10.1080/01431161.2019.1569793
10.3390/rs11232873
10.1016/S0034-4257(00)00197-8
10.3390/rs11192228
10.1016/S0034-4257(00)00113-9
10.1016/j.isprsjprs.2016.01.011
10.1016/j.fcr.2017.11.025
10.1080/01431161.2013.793868
10.1016/0034-4257(79)90004-X
10.1016/S0034-4257(01)00289-9
10.3390/rs4061573
10.1016/j.fcr.2007.11.001
10.3389/fpls.2017.01111
10.1109/TGRS.2013.2265295
10.5589/m02-092
10.1016/0034-4257(94)90134-1
10.1016/j.compag.2017.05.023
10.1007/s11119-012-9274-5
10.2134/jeq2002.1433
10.1016/S0176-1617(96)80285-9
10.1016/j.rse.2010.04.006
10.1080/01431160512331314029
10.1016/j.isprsjprs.2018.09.008
10.1080/07038992.2020.1788384
10.1109/IGARSS.2016.7730920
10.3390/rs10122026
10.2307/1936256
10.1016/j.fcr.2013.12.018
10.2134/agronj2005.0200
10.1590/S0100-204X2013001000011
10.1016/j.fcr.2017.05.005
10.3390/rs4061651
10.1016/j.rse.2003.12.013
10.1080/07038992.1996.10855178
10.1016/1011-1344(93)06963-4
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12132071
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d
10_3390_rs12132071
GeographicLocations Ontario
GeographicLocations_xml – name: Ontario
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-cba6f1b71ab8b8aa3fcbf7f77e452e9c748e0f0cd0df8dde2795ab93eff3d4203
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:25:04 EDT 2025
Fri Jul 11 06:27:38 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Tue Jul 01 04:15:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-cba6f1b71ab8b8aa3fcbf7f77e452e9c748e0f0cd0df8dde2795ab93eff3d4203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2370-2481
0000-0002-8404-0530
OpenAccessLink https://doaj.org/article/70fb513d21214e4387057cba745e6c0d
PQID 2985591987
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d
proquest_miscellaneous_2985591987
crossref_primary_10_3390_rs12132071
crossref_citationtrail_10_3390_rs12132071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Karimi (ref_31) 2008; 50
Gitelson (ref_61) 2013; 34
Curran (ref_76) 1990; 7
Baranoski (ref_77) 2005; 26
Huete (ref_41) 2002; 83
ref_13
ref_12
Bagheri (ref_9) 2013; 48
Gitelson (ref_42) 1996; 148
Miphokasap (ref_23) 2012; 4
Wang (ref_39) 2007; 14
Clevers (ref_17) 2013; 23
Fernandes (ref_47) 2003; 29
Haboudane (ref_49) 2004; 90
Gitelson (ref_60) 2002; 80
Rondeaux (ref_53) 1996; 55
ref_69
ref_24
ref_68
ref_67
Sripada (ref_46) 2006; 98
Jordan (ref_57) 1969; 50
ref_65
Francois (ref_1) 2004; 89
ref_64
ref_63
ref_62
Li (ref_73) 2014; 157
ref_29
ref_28
ref_26
Harwin (ref_15) 2012; 4
Deng (ref_33) 2018; 146
Chen (ref_21) 2010; 114
Yang (ref_11) 2017; 8
Rouse (ref_52) 1974; 351
Daughtry (ref_48) 2000; 74
Zhang (ref_7) 2012; 13
Broge (ref_59) 2001; 76
ref_36
Campos (ref_70) 2018; 216
ref_34
ref_32
Chen (ref_51) 1996; 22
ref_74
Wang (ref_30) 2017; 140
Turner (ref_14) 2013; 52
Gitelson (ref_40) 2003; 160
ref_38
Liaw (ref_66) 2002; 2
Clevers (ref_16) 2011; 5
ref_37
Li (ref_25) 2008; 106
Frels (ref_35) 2018; 217
Schlemmer (ref_72) 2013; 25
Huete (ref_58) 1988; 25
Qi (ref_50) 1994; 48
Roujean (ref_54) 1995; 51
Kelcey (ref_10) 2012; 4
Gitelson (ref_44) 1998; 22
Raparelli (ref_5) 2019; 40
Shahhosseini (ref_4) 2019; 14
ref_45
Tucker (ref_43) 1979; 8
Hansen (ref_18) 2003; 86
Tian (ref_22) 2011; 120
Miller (ref_75) 2002; 31
ref_3
Xie (ref_2) 2018; 11
Bendig (ref_56) 2015; 39
ref_8
Jay (ref_20) 2017; 210
Zhao (ref_71) 2018; 93
Belgiu (ref_27) 2016; 114
Botha (ref_19) 2010; 31
ref_6
Gitelson (ref_55) 1994; 22
References_xml – ident: ref_65
  doi: 10.3390/ijgi7050168
– ident: ref_74
– ident: ref_24
  doi: 10.3390/s19132898
– volume: 22
  start-page: 689
  year: 1998
  ident: ref_44
  article-title: Remote sensing of chlorophyll concentration in higher plant leaves
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(97)01133-2
– volume: 55
  start-page: 95
  year: 1996
  ident: ref_53
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– ident: ref_28
  doi: 10.3390/rs11242925
– ident: ref_63
  doi: 10.1007/978-1-4614-7138-7
– ident: ref_68
– ident: ref_12
  doi: 10.3390/rs8120973
– volume: 89
  start-page: 1
  year: 2004
  ident: ref_1
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.09.004
– ident: ref_13
  doi: 10.3390/rs12020215
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_58
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 160
  start-page: 271
  year: 2003
  ident: ref_40
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_52
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 14
  start-page: 195
  year: 2007
  ident: ref_39
  article-title: New vegetation index and its application in estimating leaf area index of rice
  publication-title: Rice Sci.
  doi: 10.1016/S1672-6308(07)60027-4
– volume: 14
  start-page: 124026
  year: 2019
  ident: ref_4
  article-title: Maize yield and nitrate loss prediction with machine learning algorithms
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab5268
– volume: 120
  start-page: 299
  year: 2011
  ident: ref_22
  article-title: Assessing Newly Developed and Published Vegetation Indices for Estimating Rice Leaf Nitrogen Concentration with Ground-and Space-Based Hyperspectral Reflectance
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2010.11.002
– ident: ref_29
  doi: 10.3390/s19112448
– volume: 50
  start-page: 13
  year: 2008
  ident: ref_31
  article-title: Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations
  publication-title: Can. Biosyst. Eng.
– volume: 93
  start-page: 113
  year: 2018
  ident: ref_71
  article-title: Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.12.006
– volume: 7
  start-page: 33
  year: 1990
  ident: ref_76
  article-title: Exploring the relationship between reflectance red edge and chlorophyll content in slash pine
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/7.1-2-3-4.33
– volume: 4
  start-page: 1462
  year: 2012
  ident: ref_10
  article-title: Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs4051462
– volume: 25
  start-page: 47
  year: 2013
  ident: ref_72
  article-title: Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 31
  start-page: 1679
  year: 2010
  ident: ref_19
  article-title: Non-destructive estimation of wheat leaf chlorophyll content from hyperspectral measurements through analytical model inversion
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902926574
– volume: 51
  start-page: 375
  year: 1995
  ident: ref_54
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)00114-3
– volume: 5
  start-page: 574
  year: 2011
  ident: ref_16
  article-title: Using hyperspectral remote sensing data for retrieving total canopy chlorophyll and nitrogen content
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2176468
– ident: ref_62
– ident: ref_38
– ident: ref_45
– volume: 11
  start-page: 1482
  year: 2018
  ident: ref_2
  article-title: Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2813281
– ident: ref_69
  doi: 10.3390/rs9070708
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_41
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 86
  start-page: 542
  year: 2003
  ident: ref_18
  article-title: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00131-7
– volume: 217
  start-page: 82
  year: 2018
  ident: ref_35
  article-title: Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2017.12.004
– volume: 40
  start-page: 9070
  year: 2019
  ident: ref_5
  article-title: A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1569793
– ident: ref_26
  doi: 10.3390/rs11232873
– ident: ref_34
– volume: 76
  start-page: 156
  year: 2001
  ident: ref_59
  article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00197-8
– ident: ref_8
  doi: 10.3390/rs11192228
– volume: 74
  start-page: 229
  year: 2000
  ident: ref_48
  article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00113-9
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_27
  article-title: Random Forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 216
  start-page: 175
  year: 2018
  ident: ref_70
  article-title: Remote sensing-based crop biomass with water or light-driven crop growth models in wheat commercial fields
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2017.11.025
– volume: 34
  start-page: 6054
  year: 2013
  ident: ref_61
  article-title: Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.793868
– volume: 8
  start-page: 237
  year: 1979
  ident: ref_43
  article-title: Monitoring corn and soybean crop development with hand-held radiometer spectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90004-X
– volume: 80
  start-page: 76
  year: 2002
  ident: ref_60
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
– volume: 4
  start-page: 1573
  year: 2012
  ident: ref_15
  article-title: Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs4061573
– ident: ref_67
– volume: 106
  start-page: 77
  year: 2008
  ident: ref_25
  article-title: Estimating N status of winter wheat using a handheld spectrometer in the North China plain
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2007.11.001
– ident: ref_37
– volume: 8
  start-page: 1111
  year: 2017
  ident: ref_11
  article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping:Current status and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01111
– volume: 52
  start-page: 2738
  year: 2013
  ident: ref_14
  article-title: Direct georeferencing of ultrahigh-resolution UAV imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2265295
– volume: 29
  start-page: 241
  year: 2003
  ident: ref_47
  article-title: Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m02-092
– volume: 48
  start-page: 119
  year: 1994
  ident: ref_50
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90134-1
– volume: 140
  start-page: 327
  year: 2017
  ident: ref_30
  article-title: Estimation of leaf nitrogen concentration in wheat using the MK-SVR algorithm and satellite remote sensing data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.05.023
– volume: 13
  start-page: 693
  year: 2012
  ident: ref_7
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 31
  start-page: 1433
  year: 2002
  ident: ref_75
  article-title: Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2002.1433
– volume: 39
  start-page: 79
  year: 2015
  ident: ref_56
  article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 148
  start-page: 501
  year: 1996
  ident: ref_42
  article-title: Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm
  publication-title: J. Plant. Physiol.
  doi: 10.1016/S0176-1617(96)80285-9
– volume: 114
  start-page: 1987
  year: 2010
  ident: ref_21
  article-title: New Spectral Indicator Assessing the Efficiency of Crop Nitrogen Treatment in Corn and Wheat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.006
– volume: 26
  start-page: 503
  year: 2005
  ident: ref_77
  article-title: A practical approach for estimating the red edge position of plant leaf reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160512331314029
– volume: 146
  start-page: 124
  year: 2018
  ident: ref_33
  article-title: UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.008
– ident: ref_32
  doi: 10.1080/07038992.2020.1788384
– volume: 23
  start-page: 344
  year: 2013
  ident: ref_17
  article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_64
– ident: ref_3
  doi: 10.1109/IGARSS.2016.7730920
– ident: ref_6
  doi: 10.3390/rs10122026
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_57
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– ident: ref_36
– volume: 157
  start-page: 111
  year: 2014
  ident: ref_73
  article-title: Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2013.12.018
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_66
  article-title: Classification and regression by Random Forest
  publication-title: R News
– volume: 98
  start-page: 968
  year: 2006
  ident: ref_46
  article-title: Aerial color infrared photography for determining early in-season nitrogen requirements in corn
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0200
– volume: 48
  start-page: 1394
  year: 2013
  ident: ref_9
  article-title: Multispectral Remote Sensing for Site-Specific Nitrogen Fertilizer Management
  publication-title: Pesquisa Agropecuária Brasileira
  doi: 10.1590/S0100-204X2013001000011
– volume: 210
  start-page: 33
  year: 2017
  ident: ref_20
  article-title: Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2017.05.005
– volume: 4
  start-page: 1651
  year: 2012
  ident: ref_23
  article-title: Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy
  publication-title: Remote Sens.
  doi: 10.3390/rs4061651
– volume: 90
  start-page: 337
  year: 2004
  ident: ref_49
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.013
– volume: 22
  start-page: 229
  year: 1996
  ident: ref_51
  article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10855178
– volume: 22
  start-page: 247
  year: 1994
  ident: ref_55
  article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/1011-1344(93)06963-4
SSID ssj0000331904
Score 2.562536
Snippet The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2071
SubjectTerms canopy
canopy nitrogen weight
corn
crops
economic impact
farmers
fertilizer application
image analysis
machine learning
multispectral imagery
nitrogen
nitrogen fertilizers
nitrogen management
Ontario
plant growth
precision agriculture
processing time
Random Forests
regression analysis
remote sensing
support vector machines
Unmanned Aerial Vehicle (UAV)
unmanned aerial vehicles
vegetation index
water supply
Title Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
URI https://www.proquest.com/docview/2985591987
https://doaj.org/article/70fb513d21214e4387057cba745e6c0d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIrlsRoEF6RGdWInjo_bpUtB7KpaWOgtsh2bVmKdKkkP_TX8VcZOWopA4sIpij2SI8-XsWc8_oaQ165UxsnaJpIZm3Bdy0Sbsk5oqa2yWiirwgXn5ao43PAPx_nxtVJfISdsoAceJm5PUKfzlNVoYlNuOUN85cJoJXhuC0PrYH1xzbvmTEUbzBBalA98pAz9-r22C-RlGRXpbytQJOr_ww7HxWVxj9wdd4UwG77mPrlh_QNyeyxQfnLxkPyIR_uAniMiE9b225C-6ndhrXzdbCGU2Oz6bhfwFUKpTtxWw5cYkodlTJi0EGKusPFbFWwrzCL2UOYkjAnxJm68d9li6_st2pkO-gaO2nCU08Nc-ebsAlanfdsg6OBrjKnCqYd50_pHZLM4-Dw_TMbaColhRdEnOIOFS7VIlS51qRRzRjvhhLA8z6w0gpeWOmpqWrsSTWAmZK60ZNY5VvOMssdkxzfePiFAayty7NSBykZSlMq5lpkylmWCWjkhby7nuzIj8Xiof_G9Qgck6Kb6pZsJeXUlezbQbfxVaj-o7UoiUGTHBgRONQKn-hdwJuTlpdIr_KXCOYnytjnvqkyW6GeFaMzT_zHQM3InC056zPF9Tnb69ty-wJ1Mr6fkZrl4NyW3Zm-XHz_hc_9gdbSeRij_BJKV-ZU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Linear+Regression%2C+Random+Forests%2C+and+Support+Vector+Machine+with+Unmanned+Aerial+Vehicle+Multispectral+Images+to+Predict+Canopy+Nitrogen+Weight+in+Corn&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hwang+Lee&rft.au=Jinfei+Wang&rft.au=Brigitte+Leblon&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=13&rft.spage=2071&rft_id=info:doi/10.3390%2Frs12132071&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70fb513d21214e4387057cba745e6c0d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon