Three-dimensional conductive network constructed by in-situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption
[Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap ca...
Saved in:
Published in | Journal of colloid and interface science Vol. 650; no. Pt A; pp. 710 - 718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties. |
---|---|
AbstractList | Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe₂O₄/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe₂O₄ grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe₂O₄ and EG, magnetic loss and dielectric loss of NiFe₂O₄/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe₂O₄/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe₂O₄/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties. Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches -53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches -53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties. [Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties. |
Author | Wang, Yiqun Deng, Shuanglin Jiang, Jie He, Qinchuan Wu, Dan |
Author_xml | – sequence: 1 givenname: Shuanglin surname: Deng fullname: Deng, Shuanglin organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China – sequence: 2 givenname: Jie surname: Jiang fullname: Jiang, Jie email: jiangjie13@cdut.edu.cn organization: School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China – sequence: 3 givenname: Dan surname: Wu fullname: Wu, Dan organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China – sequence: 4 givenname: Qinchuan surname: He fullname: He, Qinchuan organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China – sequence: 5 givenname: Yiqun orcidid: 0000-0001-6145-1110 surname: Wang fullname: Wang, Yiqun email: wangyiqun17@cdut.edu.cn organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China |
BookMark | eNqFkc1u1DAUhS1UJKaFF2DlJZuk13YTJxIbVFGoVNFNWVuOfc14mrGD7enPq_C0OAwrFmVl6fp85-qec0pOQgxIyHsGLQPWn-_anfG55cBFC7IFEK_IhsHYNZKBOCEbAM6aUY7yDTnNeQfAWNeNG_LrbpsQG-v3GLKPQc_UxGAPpvgHpAHLY0z36yiXVIdo6fRMfWiyLwe6JFx00qVyNDqaUdNDMtv6Pft7pN_8FfLbiyqn-LToYCv9I-ll6wtSFxNF57zxGArde5Pio64r9ZRjWlbLt-S103PGd3_fM_L96vPd5dfm5vbL9eWnm8aIvi-N0UY62_W9GwYrJzZBByNnGuWIWveT4Z0w_TgBCgnGobTgBGPWcMe6ftTijHw4-i4p_jxgLmrvs8F51gHjISs-DLIHsWb7f6kY-AXjglUpP0rrYTkndGpJfq_Ts2Kg1s7UTq2dqdVXgVS1swoN_0DGlz_5lqT9_DL68YhijerBY1J5jdag9QlNUTb6l_DfXDm4ew |
CitedBy_id | crossref_primary_10_1002_pc_28627 crossref_primary_10_1016_j_cej_2024_148930 crossref_primary_10_1016_j_matchemphys_2024_129211 crossref_primary_10_1016_j_coco_2025_102303 crossref_primary_10_1016_j_materresbull_2024_112696 crossref_primary_10_1016_j_compstruct_2025_119116 crossref_primary_10_1016_j_materresbull_2023_112653 crossref_primary_10_1016_j_carbon_2024_118835 crossref_primary_10_1016_j_ceramint_2024_08_153 crossref_primary_10_1016_j_compositesb_2024_111714 crossref_primary_10_1016_j_jallcom_2024_174808 crossref_primary_10_1007_s12613_024_2875_y crossref_primary_10_1039_D4RA01093K crossref_primary_10_1016_j_colsurfa_2025_136684 crossref_primary_10_1016_j_jallcom_2025_179667 crossref_primary_10_1016_j_addma_2024_104158 crossref_primary_10_1016_j_jallcom_2024_175371 crossref_primary_10_1016_j_jcis_2024_05_158 crossref_primary_10_1016_j_materresbull_2024_112808 crossref_primary_10_1016_j_jcis_2024_05_118 crossref_primary_10_1007_s42114_023_00792_4 crossref_primary_10_1016_j_compositesb_2024_111922 crossref_primary_10_1016_j_coco_2024_101942 crossref_primary_10_1016_j_xcrp_2024_102206 crossref_primary_10_1016_j_coco_2024_101987 crossref_primary_10_21926_rpm_2501003 crossref_primary_10_1016_j_jcis_2024_02_125 crossref_primary_10_1016_j_cej_2024_152477 crossref_primary_10_1016_j_colsurfa_2024_134234 crossref_primary_10_1016_j_ceramint_2024_07_197 crossref_primary_10_1016_j_jpowsour_2025_236689 crossref_primary_10_1016_j_ceramint_2024_04_009 crossref_primary_10_1016_j_mtcomm_2024_108100 crossref_primary_10_1016_j_colsurfa_2024_133989 crossref_primary_10_1021_acsanm_4c00055 crossref_primary_10_1016_j_nxmate_2025_100584 crossref_primary_10_1002_smll_202408570 crossref_primary_10_1002_smll_202404207 crossref_primary_10_1016_j_materresbull_2023_112630 crossref_primary_10_1016_j_coco_2024_101993 crossref_primary_10_1016_j_materresbull_2024_112911 crossref_primary_10_1039_D4TA06702A crossref_primary_10_1016_j_ijbiomac_2025_141539 crossref_primary_10_1021_acsaelm_4c00311 crossref_primary_10_1016_j_mtnano_2024_100520 crossref_primary_10_1016_j_ceramint_2024_12_160 crossref_primary_10_1002_adfm_202417972 crossref_primary_10_1080_09593330_2024_2447960 crossref_primary_10_1016_j_compositesb_2024_111344 crossref_primary_10_1016_j_cej_2025_160168 crossref_primary_10_1016_j_colsurfa_2024_135932 crossref_primary_10_1021_acsanm_4c03838 crossref_primary_10_1016_j_carbon_2024_119233 crossref_primary_10_1016_j_jallcom_2025_179884 crossref_primary_10_1016_j_diamond_2024_111324 crossref_primary_10_1016_j_jallcom_2024_177092 crossref_primary_10_1016_j_materresbull_2024_112906 crossref_primary_10_1016_j_jmst_2024_03_067 crossref_primary_10_1021_acsanm_4c00782 crossref_primary_10_1016_j_indcrop_2025_120756 crossref_primary_10_1016_j_cartre_2025_100463 crossref_primary_10_1016_j_cej_2024_151056 crossref_primary_10_1016_j_cej_2024_159004 crossref_primary_10_1021_acsanm_3c05523 crossref_primary_10_1016_j_physb_2024_416051 crossref_primary_10_1016_j_cej_2024_154556 crossref_primary_10_1016_j_coco_2024_102131 crossref_primary_10_1016_j_carbon_2025_120120 crossref_primary_10_1016_j_ceramint_2024_12_452 crossref_primary_10_1016_j_coco_2024_102099 crossref_primary_10_1016_j_diamond_2023_110688 crossref_primary_10_1016_j_surfin_2024_104160 crossref_primary_10_1016_j_ceramint_2025_03_010 crossref_primary_10_1016_j_mtcomm_2024_109377 crossref_primary_10_1016_j_cej_2023_148224 crossref_primary_10_1016_j_cej_2024_150918 crossref_primary_10_1016_j_compscitech_2024_110709 crossref_primary_10_1016_j_jallcom_2024_174461 crossref_primary_10_1007_s10934_024_01601_z crossref_primary_10_1016_j_cej_2023_148188 crossref_primary_10_1016_j_diamond_2023_110724 |
Cites_doi | 10.1016/j.compositesa.2022.106814 10.1016/j.carbon.2022.02.024 10.1016/j.cej.2022.137260 10.1016/j.carbon.2023.03.043 10.1016/j.ceramint.2020.03.143 10.1016/j.jallcom.2022.164445 10.1016/j.cej.2022.136431 10.1016/j.compositesb.2015.05.029 10.1016/j.carbon.2021.09.047 10.1016/j.jmrt.2023.02.005 10.1016/j.ceramint.2020.05.283 10.1016/j.synthmet.2023.117352 10.1016/j.compositesb.2020.108119 10.1016/j.cej.2019.05.076 10.3390/molecules25133044 10.1016/j.cej.2020.127283 10.1016/j.carbon.2022.05.061 10.1016/j.snb.2018.05.167 10.1016/j.jmst.2022.04.017 10.1016/j.carbon.2022.03.075 10.1016/j.jcis.2023.04.110 10.1021/acsanm.1c00749 10.1016/j.carbon.2022.03.017 10.1016/j.cej.2021.134226 10.1016/j.ceramint.2020.07.326 10.3847/1538-4357/ac8f90 10.1016/j.jmst.2020.12.078 10.1016/j.cej.2023.143414 10.1016/j.cej.2022.138205 10.1016/j.apsusc.2022.156228 10.1016/j.jallcom.2022.167104 10.1016/j.compositesb.2019.03.018 10.1016/j.apsusc.2021.151469 10.1007/s12274-022-5341-z 10.1016/j.ssc.2020.114056 10.1016/j.jcis.2022.07.047 10.1016/j.carbon.2023.03.054 10.1007/s11664-020-08118-6 10.1016/j.ceramint.2023.05.046 10.1016/j.jcis.2023.03.062 10.1016/j.coco.2021.101007 10.1016/j.jhazmat.2023.131345 10.1016/j.cej.2022.138742 10.1016/j.jcis.2023.03.071 10.1016/j.physe.2023.115700 10.1016/j.cej.2022.138442 10.1016/j.compscitech.2015.03.006 10.1016/j.apsusc.2020.146729 10.1016/j.matchemphys.2023.127898 10.1021/acssuschemeng.8b02089 10.1016/j.jcis.2020.08.006 10.1016/j.compositesa.2020.106141 10.1016/j.carbon.2020.09.067 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2023.07.003 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 718 |
ExternalDocumentID | 10_1016_j_jcis_2023_07_003 S0021979723012523 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-cac7fd566f88d7b1b050921ae79eaa6bc253c69b0e370cfe7d0f311dc2f1569a3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Aug 22 20:41:12 EDT 2025 Fri Jul 11 15:22:42 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Tue Jul 01 04:19:08 EDT 2025 Tue Dec 03 03:45:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | RCS simulation Expanded graphite Electromagnetic wave absorption Sea urchin-like NiFe2O4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-cac7fd566f88d7b1b050921ae79eaa6bc253c69b0e370cfe7d0f311dc2f1569a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6145-1110 |
PQID | 2838241231 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2887603202 proquest_miscellaneous_2838241231 crossref_primary_10_1016_j_jcis_2023_07_003 crossref_citationtrail_10_1016_j_jcis_2023_07_003 elsevier_sciencedirect_doi_10_1016_j_jcis_2023_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-15 |
PublicationDateYYYYMMDD | 2023-11-15 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wei, Li, Zhang, Zhou, Li, Zhang (b0130) 2023 Wu, Wang, Deng, Lan, Xiang, He (b0050) 2022; 16 Uddin, Kim, Kuila, Lee, Hui, Lee (b0145) 2015; 79 Chen, Luo, Cheng, Guo, Yang, Wang, Gong (b0220) 2021; 140 Wang, Zhao, Li, Li, Liao, Luo, Peng, He, Cheng (b0275) 2019; 167 Pratap, Soni, Siddiqui, Abbas, Katiyar, Prasad (b0260) 2020; 49 Zhu, Gao, Zhou, Zheng, Li, Man, Liu (b0060) 2023; 23 Valentini, Piana, Pionteck, Lamastra, Nanni (b0280) 2015; 114 Zhu, Lei, Liu, Wu, Song, Yang, Tan, Man, Liu (b0010) 2022; 907 Chen, Wang, Liu, Tan, Zhang, Liu, Kong (b0005) 2023; 208 Bahhar, Boutahar, Omari, Lemziouka, Hlil, Bioud (b0135) 2020; 322 Park, Lee, Chul Ro, Suh (b0215) 2022; 573 Chen, Yang, Zhao, Hu, Liu, Ma (b0035) 2022; 432 Liu, Luo, Zhao, Li, Zhang, Chen, Jiang, Deng, Cao, Chen (b0185) 2023 Saraswat, Sengwa (b0065) 2023; 150 Zhang, Liu, Zhou, Liu, Liu, Liu, Liang, Yan, Gao, Lu (b0155) 2018; 273 Chen, Lei, Huang, Wang, Zhang, Liu, Xu, Wang, Guo (b0045) 2022; 927 Xiang, Wang, Yin, He (b0175) 2023; 451 Shi, Zhao, Li, Li, Hu (b0040) 2023; 641 Chen, Mu, Liu, He, Zhang, Yang, Ouyang (b0240) 2021; 582 Liang, Wang (b0180) 2019; 373 Xu (b0020) 2023; 295 Yang, Fang, Xu, Cao, Zhang, Zhao, Huang, Wang, Lv, Che (b0105) 2022; 14 Zheng, Zeng, Qiao, Liu, Liu (b0030) 2022; 155 Zou, Ning, Lei, Zhuang, Tan, Hou, Xu, Man, Li, Li (b0285) 2022; 193 Zhang, Wang, Chen, Chen (b0205) 2021; 581 Wang, Li, Ni, Xie (b0075) 2023; 614 Sun, Zhao, Zhang, Yu, Chen, Wang, Liu (b0255) 2023 Liu, Chen, Que, Zheng, Yang, Yuan, Ma, Li, Yang (b0250) 2022; 450 Li, Xu, Zhou, Pang, Du, Darwish, Zhou, Sun (b0230) 2023; 208 Wang, Zhao, Cheng, Liu, Fu, Wang (b0100) 2022; 14 Zhao, Jin, Yang, Lu, Cheng (b0025) 2023; 645 Qiao, Zhang, Liu, Zeng, Yang, Wu, Wang, Wang, Liu, Liu (b0015) 2022; 191 He, Wang, Ren, He, Wu, Deng, Wu (b0195) 2022; 627 Zhao, Zuo, Guo, Huang, Zhang, Wang, Wen, Chen, Cong, Muhammad, Yang, Wang, Fan, Pan (b0245) 2021; 13 Han, Zhang, Cao, Cao (b0150) 2021; 171 Sun, Li, Yu, Ma, Jin, Chen, Chen, Lv, Shu (b0270) 2020; 25 Meng, He, Liu, Yu, Yang (b0210) 2022; 194 Wang, Meng, Li, Li, Chen, Luo, Zhou (b0170) 2018; 6 Hu, Wang, Zhang, Huang, Qiu, Wang, Zhang, Pan, Yang (b0225) 2021; 408 Tang, Yin, Zhang, Wang, Feng, Wang, Dai (b0265) 2020; 46 Niu, Tu, Zhang, Li, Wang, Shao, Zhang, Li, Zhao, Fan (b0110) 2022; 446 Zhang, Jia, Zhou, Liu, Wu, Yin (b0200) 2022; 450 Wang, Lu, Zhang, Zhu (b0235) 2023; 641 Ikram, Jacob, Mahmood, Mehboob, Maheen, Ali, Amin, Hussain, Ashraf, Ilyas (b0160) 2020; 46 Wang, You, Wen, Wang, Tong, Wu (b0090) 2022; 445 Sakamoto, Hayashi, Sato, Hirano, Ohtsu (b0165) 2020; 526 Zhou, Tao, Yao, Xu, Li, Chen (b0140) 2021; 4 Zhao, Cheng, Zhang, Yu, Zheng, Zhou, Zhou, Zhang, Ji (b0125) 2020; 196 Bi, Ma, Jiao, Ma, Hou, Geng, Feng, Ma, Qiao, Liu (b0080) 2022; 197 Zhang, Zhu, Dong, Xiang, Cai, Pan, Lu (b0055) 2022; 29 Zhang, Qi, Gong, Peng, Chen, Xie, Zhong (b0085) 2022; 128 Wang, Wu, Fu, Liu (b0115) 2021; 86 Li, Zhuang, Zhan, Zhou, Sui, Zhou, Bai, Xiao, Yang (b0120) 2020; 46 Wang, Kan, Yu, Fan, Fan, Jiang, Qin, Shi (b0070) 2023; 452 Xiang, Zhang, Shi, Cai, Cheng, Jiang, Zhu, Dong, Lu (b0095) 2021; 185 Zhang, Zhao, Zuo, Huang, Sun, Fan, Pan (b0190) 2023; 467 Xiang (10.1016/j.jcis.2023.07.003_b0095) 2021; 185 Valentini (10.1016/j.jcis.2023.07.003_b0280) 2015; 114 Wang (10.1016/j.jcis.2023.07.003_b0115) 2021; 86 Zhang (10.1016/j.jcis.2023.07.003_b0205) 2021; 581 Xiang (10.1016/j.jcis.2023.07.003_b0175) 2023; 451 Hu (10.1016/j.jcis.2023.07.003_b0225) 2021; 408 Yang (10.1016/j.jcis.2023.07.003_b0105) 2022; 14 Han (10.1016/j.jcis.2023.07.003_b0150) 2021; 171 Zhang (10.1016/j.jcis.2023.07.003_b0200) 2022; 450 Sun (10.1016/j.jcis.2023.07.003_b0255) 2023 Shi (10.1016/j.jcis.2023.07.003_b0040) 2023; 641 Zheng (10.1016/j.jcis.2023.07.003_b0030) 2022; 155 Wang (10.1016/j.jcis.2023.07.003_b0070) 2023; 452 Zhang (10.1016/j.jcis.2023.07.003_b0155) 2018; 273 Wang (10.1016/j.jcis.2023.07.003_b0275) 2019; 167 Wang (10.1016/j.jcis.2023.07.003_b0100) 2022; 14 Meng (10.1016/j.jcis.2023.07.003_b0210) 2022; 194 Xu (10.1016/j.jcis.2023.07.003_b0020) 2023; 295 Zhang (10.1016/j.jcis.2023.07.003_b0085) 2022; 128 Zhou (10.1016/j.jcis.2023.07.003_b0140) 2021; 4 Tang (10.1016/j.jcis.2023.07.003_b0265) 2020; 46 Wang (10.1016/j.jcis.2023.07.003_b0090) 2022; 445 Uddin (10.1016/j.jcis.2023.07.003_b0145) 2015; 79 Liang (10.1016/j.jcis.2023.07.003_b0180) 2019; 373 Wang (10.1016/j.jcis.2023.07.003_b0235) 2023; 641 Zhao (10.1016/j.jcis.2023.07.003_b0025) 2023; 645 Bahhar (10.1016/j.jcis.2023.07.003_b0135) 2020; 322 Chen (10.1016/j.jcis.2023.07.003_b0220) 2021; 140 Liu (10.1016/j.jcis.2023.07.003_b0185) 2023 Bi (10.1016/j.jcis.2023.07.003_b0080) 2022; 197 Liu (10.1016/j.jcis.2023.07.003_b0250) 2022; 450 Zhang (10.1016/j.jcis.2023.07.003_b0055) 2022; 29 Chen (10.1016/j.jcis.2023.07.003_b0035) 2022; 432 Zhao (10.1016/j.jcis.2023.07.003_b0245) 2021; 13 Li (10.1016/j.jcis.2023.07.003_b0230) 2023; 208 Chen (10.1016/j.jcis.2023.07.003_b0045) 2022; 927 Chen (10.1016/j.jcis.2023.07.003_b0005) 2023; 208 Wang (10.1016/j.jcis.2023.07.003_b0170) 2018; 6 Ikram (10.1016/j.jcis.2023.07.003_b0160) 2020; 46 Chen (10.1016/j.jcis.2023.07.003_b0240) 2021; 582 Saraswat (10.1016/j.jcis.2023.07.003_b0065) 2023; 150 Zhao (10.1016/j.jcis.2023.07.003_b0125) 2020; 196 Sakamoto (10.1016/j.jcis.2023.07.003_b0165) 2020; 526 Zhang (10.1016/j.jcis.2023.07.003_b0190) 2023; 467 Zou (10.1016/j.jcis.2023.07.003_b0285) 2022; 193 Niu (10.1016/j.jcis.2023.07.003_b0110) 2022; 446 Qiao (10.1016/j.jcis.2023.07.003_b0015) 2022; 191 Wu (10.1016/j.jcis.2023.07.003_b0050) 2022; 16 Wei (10.1016/j.jcis.2023.07.003_b0130) 2023 Pratap (10.1016/j.jcis.2023.07.003_b0260) 2020; 49 Li (10.1016/j.jcis.2023.07.003_b0120) 2020; 46 Sun (10.1016/j.jcis.2023.07.003_b0270) 2020; 25 Zhu (10.1016/j.jcis.2023.07.003_b0010) 2022; 907 Park (10.1016/j.jcis.2023.07.003_b0215) 2022; 573 Zhu (10.1016/j.jcis.2023.07.003_b0060) 2023; 23 He (10.1016/j.jcis.2023.07.003_b0195) 2022; 627 Wang (10.1016/j.jcis.2023.07.003_b0075) 2023; 614 |
References_xml | – volume: 29 year: 2022 ident: b0055 article-title: Dielectric regulation of ultralight EG/bimetallic sulfide hybrids with boosted electromagnetic wave absorption properties publication-title: Compos. Commun. – volume: 13 start-page: 144 year: 2021 ident: b0245 article-title: Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption publication-title: Nanomicro Lett. – volume: 408 year: 2021 ident: b0225 article-title: Ultralight Ti publication-title: Chem. Eng. J. – volume: 167 start-page: 477 year: 2019 end-page: 486 ident: b0275 article-title: Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation publication-title: Compos. B Eng. – volume: 46 start-page: 28250 year: 2020 end-page: 28261 ident: b0265 article-title: Novel carbon encapsulated zinc ferrite/MWCNTs composite: preparation and low-frequency microwave absorption investigation publication-title: Ceram. Int. – volume: 208 start-page: 82 year: 2023 end-page: 91 ident: b0005 article-title: Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption publication-title: Carbon – volume: 46 start-page: 15943 year: 2020 end-page: 15948 ident: b0160 article-title: A Kinetic study of Tb publication-title: Ceram. Int. – volume: 150 year: 2023 ident: b0065 article-title: Investigation on ethylene glycol and glycerol mixture concentration dependent optical, dielectric, electrical, rheological, and thermophysical properties of EG+Gly/ZnO semiconductor nanofluids publication-title: Physica E – volume: 322 year: 2020 ident: b0135 article-title: Structural, magnetic, magnetocaloric effect and critical behaviour study of NiCeFeO publication-title: Solid State Commun. – volume: 194 start-page: 207 year: 2022 end-page: 219 ident: b0210 article-title: Carbon-coated defect-rich MnFe publication-title: Carbon – volume: 79 start-page: 649 year: 2015 end-page: 659 ident: b0145 article-title: Preparation of reduced graphene oxide-NiFe publication-title: Compos. B Eng. – volume: 14 start-page: 170 year: 2022 ident: b0105 article-title: One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption publication-title: Nanomicro Lett. – volume: 6 start-page: 11801 year: 2018 end-page: 11810 ident: b0170 article-title: Carbonized Design of Hierarchical Porous Carbon/Fe publication-title: ACS Sustain. Chem. Eng. – volume: 185 start-page: 477 year: 2021 end-page: 490 ident: b0095 article-title: Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility publication-title: Carbon – volume: 451 year: 2023 ident: b0175 article-title: Microwave absorption performance of porous heterogeneous SiC/SiO publication-title: Chem. Eng. J. – year: 2023 ident: b0185 article-title: Effects of Gd doping on microwave absorption properties and mechanism for CaMnO3 perovskites publication-title: Ceram. Int. – volume: 86 start-page: 91 year: 2021 end-page: 109 ident: b0115 article-title: A review on carbon/magnetic metal composites for microwave absorption publication-title: J. Mater. Sci. Technol. – volume: 191 start-page: 525 year: 2022 end-page: 534 ident: b0015 article-title: Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption publication-title: Carbon – volume: 193 start-page: 182 year: 2022 end-page: 194 ident: b0285 article-title: 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz publication-title: Carbon – volume: 114 start-page: 26 year: 2015 end-page: 33 ident: b0280 article-title: Electromagnetic properties and performance of exfoliated graphite (EG) – Thermoplastic polyurethane (TPU) nanocomposites at microwaves publication-title: Compos. Sci. Technol. – volume: 645 start-page: 22 year: 2023 end-page: 32 ident: b0025 article-title: Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co(7)Fe(3)/Co(5.47)N nanoparticles for high-performance microwave absorption publication-title: J. Colloid Interface Sci. – volume: 573 year: 2022 ident: b0215 article-title: Yolk–shell Fe–Fe publication-title: Appl. Surf. Sci. – volume: 445 year: 2022 ident: b0090 article-title: Doping Ce(OH)CO publication-title: Chem. Eng. J. – volume: 452 year: 2023 ident: b0070 article-title: Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal publication-title: J. Hazard. Mater. – volume: 641 start-page: 449 year: 2023 end-page: 458 ident: b0040 article-title: 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties publication-title: J. Colloid Interface Sci. – volume: 432 year: 2022 ident: b0035 article-title: Tailoring superhydrophobic PDMS/CeFe publication-title: Chem. Eng. J. – volume: 907 year: 2022 ident: b0010 article-title: Synthesis and microwave absorption properties of sandwich microstructure Ce publication-title: J. Alloy. Compd. – volume: 295 year: 2023 ident: b0020 article-title: Three dimensional carbon aerogel for microwave absorption from chitosan publication-title: Synth. Met. – volume: 208 start-page: 374 year: 2023 end-page: 383 ident: b0230 article-title: Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption publication-title: Carbon – year: 2023 ident: b0130 article-title: Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption publication-title: Ceram. Int. – volume: 171 start-page: 953 year: 2021 end-page: 962 ident: b0150 article-title: Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo publication-title: Carbon – volume: 16 start-page: 1859 year: 2022 end-page: 1868 ident: b0050 article-title: Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption publication-title: Nano Res. – volume: 155 year: 2022 ident: b0030 article-title: Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption publication-title: Compos. A Appl. Sci. Manuf. – volume: 614 year: 2023 ident: b0075 article-title: Facile synthesis of heterogeneous Co/MnO@C nanocapsules with dual-cores: Achieving strong and broadband microwave absorption by magnetic-dielectric synergy publication-title: Appl. Surf. Sci. – volume: 128 start-page: 59 year: 2022 end-page: 70 ident: b0085 article-title: Microstructure optimization of core@shell structured MSe publication-title: J. Mater. Sci. Technol. – volume: 641 start-page: 729 year: 2023 end-page: 736 ident: b0235 article-title: Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo(2)C publication-title: J. Colloid Interface Sci. – volume: 526 year: 2020 ident: b0165 article-title: XPS spectral analysis for a multiple oxide comprising NiO, TiO publication-title: Appl. Surf. Sci. – volume: 25 year: 2020 ident: b0270 article-title: Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe publication-title: Molecules – volume: 23 start-page: 3557 year: 2023 end-page: 3569 ident: b0060 article-title: Expanded graphite/Co@C composites with dual functions of corrosion resistance and microwave absorption publication-title: J. Mater. Res. Technol. – year: 2023 ident: b0255 article-title: Expanded graphite and thermally reduced graphene oxide filled with NiCo publication-title: Mater. Chem. Phys. – volume: 927 year: 2022 ident: b0045 article-title: Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption publication-title: J. Alloy. Compd. – volume: 196 year: 2020 ident: b0125 article-title: Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption publication-title: Compos. B Eng. – volume: 49 start-page: 3972 year: 2020 end-page: 3981 ident: b0260 article-title: Dielectric and Radar-Absorbing Properties of Exfoliated Graphite Dispersed Epoxy Composites publication-title: J. Electron. Mater. – volume: 273 start-page: 991 year: 2018 end-page: 998 ident: b0155 article-title: The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species publication-title: Sens. Actuat. B – volume: 467 year: 2023 ident: b0190 article-title: Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness publication-title: Chem. Eng. J. – volume: 582 start-page: 137 year: 2021 end-page: 148 ident: b0240 article-title: PANI/BaFe publication-title: J. Colloid Interface Sci. – volume: 446 year: 2022 ident: b0110 article-title: Engineered core-shell SiO publication-title: Chem. Eng. J. – volume: 14 start-page: 76 year: 2022 ident: b0100 article-title: Hierarchical Ti publication-title: Nanomicro Lett. – volume: 627 start-page: 102 year: 2022 end-page: 112 ident: b0195 article-title: Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption publication-title: J. Colloid Interface Sci. – volume: 197 start-page: 152 year: 2022 end-page: 162 ident: b0080 article-title: Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers publication-title: Carbon – volume: 450 year: 2022 ident: b0250 article-title: 2D Ti publication-title: Chem. Eng. J. – volume: 373 start-page: 598 year: 2019 end-page: 605 ident: b0180 article-title: Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties publication-title: Chem. Eng. J. – volume: 46 start-page: 21744 year: 2020 end-page: 21751 ident: b0120 article-title: Desirable microwave absorption performance of ZnFe publication-title: Ceram. Int. – volume: 450 year: 2022 ident: b0200 article-title: Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption publication-title: Chem. Eng. J. – volume: 4 start-page: 5425 year: 2021 end-page: 5436 ident: b0140 article-title: Ag Nanoparticles Embedded in Multishell Carbon Nanoparticles for Microwave Absorption publication-title: ACS Appl. Nano Mater. – volume: 581 start-page: 84 year: 2021 end-page: 95 ident: b0205 article-title: A rational route towards dual wave-transparent type of carbonyl iron@SiO publication-title: J. Colloid Interface Sci. – volume: 140 year: 2021 ident: b0220 article-title: Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption publication-title: Compos. A Appl. Sci. Manuf. – volume: 155 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0030 article-title: Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2022.106814 – volume: 191 start-page: 525 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0015 article-title: Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption publication-title: Carbon doi: 10.1016/j.carbon.2022.02.024 – volume: 446 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0110 article-title: Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137260 – volume: 581 start-page: 84 issue: Pt A year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0205 article-title: A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application publication-title: J. Colloid Interface Sci. – volume: 208 start-page: 82 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0005 article-title: Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2023.03.043 – volume: 46 start-page: 15943 issue: 10 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0160 article-title: A Kinetic study of Tb3+ and Dy3+ co-substituted CoFe2O4 spinel ferrites using temperature dependent XRD, XPS and SQUID measurements publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.143 – volume: 907 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0010 article-title: Synthesis and microwave absorption properties of sandwich microstructure Ce2Fe17N3-δ/expanded graphite composites publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.164445 – volume: 445 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0090 article-title: Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136431 – volume: 79 start-page: 649 year: 2015 ident: 10.1016/j.jcis.2023.07.003_b0145 article-title: Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.05.029 – volume: 185 start-page: 477 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0095 article-title: Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility publication-title: Carbon doi: 10.1016/j.carbon.2021.09.047 – volume: 23 start-page: 3557 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0060 article-title: Expanded graphite/Co@C composites with dual functions of corrosion resistance and microwave absorption publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.02.005 – volume: 46 start-page: 21744 issue: 13 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0120 article-title: Desirable microwave absorption performance of ZnFe2O4@ZnO@rGO nanocomposites based on controllable permittivity and permeability publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.283 – volume: 295 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0020 article-title: Three dimensional carbon aerogel for microwave absorption from chitosan publication-title: Synth. Met. doi: 10.1016/j.synthmet.2023.117352 – volume: 196 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0125 article-title: Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108119 – volume: 373 start-page: 598 year: 2019 ident: 10.1016/j.jcis.2023.07.003_b0180 article-title: Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.076 – volume: 25 issue: 13 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0270 article-title: Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe3O4 Composites publication-title: Molecules doi: 10.3390/molecules25133044 – volume: 408 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0225 article-title: Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127283 – volume: 197 start-page: 152 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0080 article-title: Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers publication-title: Carbon doi: 10.1016/j.carbon.2022.05.061 – volume: 273 start-page: 991 year: 2018 ident: 10.1016/j.jcis.2023.07.003_b0155 article-title: The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2018.05.167 – volume: 128 start-page: 59 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0085 article-title: Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.04.017 – year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0185 article-title: Effects of Gd doping on microwave absorption properties and mechanism for CaMnO3 perovskites publication-title: Ceram. Int. – volume: 194 start-page: 207 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0210 article-title: Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2022.03.075 – volume: 645 start-page: 22 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0025 article-title: Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co(7)Fe(3)/Co(5.47)N nanoparticles for high-performance microwave absorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.04.110 – volume: 4 start-page: 5425 issue: 5 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0140 article-title: Ag Nanoparticles Embedded in Multishell Carbon Nanoparticles for Microwave Absorption publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00749 – volume: 193 start-page: 182 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0285 article-title: 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz publication-title: Carbon doi: 10.1016/j.carbon.2022.03.017 – volume: 432 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0035 article-title: Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134226 – volume: 46 start-page: 28250 issue: 18 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0265 article-title: Novel carbon encapsulated zinc ferrite/MWCNTs composite: preparation and low-frequency microwave absorption investigation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.326 – volume: 14 start-page: 76 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0100 article-title: Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins publication-title: Nanomicro Lett. doi: 10.3847/1538-4357/ac8f90 – volume: 86 start-page: 91 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0115 article-title: A review on carbon/magnetic metal composites for microwave absorption publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.12.078 – volume: 467 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0190 article-title: Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143414 – volume: 450 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0200 article-title: Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138205 – volume: 614 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0075 article-title: Facile synthesis of heterogeneous Co/MnO@C nanocapsules with dual-cores: Achieving strong and broadband microwave absorption by magnetic-dielectric synergy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.156228 – volume: 927 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0045 article-title: Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.167104 – volume: 167 start-page: 477 year: 2019 ident: 10.1016/j.jcis.2023.07.003_b0275 article-title: Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.03.018 – volume: 573 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0215 article-title: Yolk–shell Fe–Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151469 – volume: 16 start-page: 1859 issue: 2 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0050 article-title: Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption publication-title: Nano Res. doi: 10.1007/s12274-022-5341-z – volume: 322 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0135 article-title: Structural, magnetic, magnetocaloric effect and critical behaviour study of NiCeFeO4 spinel ferrite publication-title: Solid State Commun. doi: 10.1016/j.ssc.2020.114056 – volume: 627 start-page: 102 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0195 article-title: Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.047 – volume: 208 start-page: 374 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0230 article-title: Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2023.03.054 – volume: 49 start-page: 3972 issue: 6 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0260 article-title: Dielectric and Radar-Absorbing Properties of Exfoliated Graphite Dispersed Epoxy Composites publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08118-6 – volume: 14 start-page: 170 issue: 1 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0105 article-title: One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption publication-title: Nanomicro Lett. – year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0130 article-title: Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.05.046 – volume: 13 start-page: 144 issue: 1 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0245 article-title: Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption publication-title: Nanomicro Lett. – volume: 641 start-page: 449 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0040 article-title: 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.03.062 – volume: 29 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0055 article-title: Dielectric regulation of ultralight EG/bimetallic sulfide hybrids with boosted electromagnetic wave absorption properties publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.101007 – volume: 452 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0070 article-title: Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131345 – volume: 451 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0175 article-title: Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138742 – volume: 641 start-page: 729 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0235 article-title: Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo(2)C publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.03.071 – volume: 150 year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0065 article-title: Investigation on ethylene glycol and glycerol mixture concentration dependent optical, dielectric, electrical, rheological, and thermophysical properties of EG+Gly/ZnO semiconductor nanofluids publication-title: Physica E doi: 10.1016/j.physe.2023.115700 – volume: 450 year: 2022 ident: 10.1016/j.jcis.2023.07.003_b0250 article-title: 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138442 – volume: 114 start-page: 26 year: 2015 ident: 10.1016/j.jcis.2023.07.003_b0280 article-title: Electromagnetic properties and performance of exfoliated graphite (EG) – Thermoplastic polyurethane (TPU) nanocomposites at microwaves publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2015.03.006 – volume: 526 year: 2020 ident: 10.1016/j.jcis.2023.07.003_b0165 article-title: XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146729 – year: 2023 ident: 10.1016/j.jcis.2023.07.003_b0255 article-title: Expanded graphite and thermally reduced graphene oxide filled with NiCo2O4 for improve microwave absorption publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2023.127898 – volume: 6 start-page: 11801 issue: 9 year: 2018 ident: 10.1016/j.jcis.2023.07.003_b0170 article-title: Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02089 – volume: 582 start-page: 137 issue: Pt A year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0240 article-title: PANI/BaFe12O19@Halloysite ternary composites as novel microwave absorbent publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.006 – volume: 140 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0220 article-title: Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2020.106141 – volume: 171 start-page: 953 year: 2021 ident: 10.1016/j.jcis.2023.07.003_b0150 article-title: Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2020.09.067 |
SSID | ssj0011559 |
Score | 2.664825 |
Snippet | [Display omitted]
Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption... Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 710 |
SubjectTerms | absorption computer simulation electrical conductivity electromagnetic radiation Electromagnetic wave absorption energy Expanded graphite graphene magnetism microwave treatment RCS simulation Sea urchin-like NiFe2O4 surface area synergism wavelengths |
Title | Three-dimensional conductive network constructed by in-situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption |
URI | https://dx.doi.org/10.1016/j.jcis.2023.07.003 https://www.proquest.com/docview/2838241231 https://www.proquest.com/docview/2887603202 |
Volume | 650 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCFoqyqMyErcq7NpO4uS4WrFaQCyXXam3yI-xlG1JVu1WtBd-CL-WmThZ8ZD2wDHOWIk843nYM98w9k6CLzVgWBIKhQFKJn1idZCJLYtgHNlMT-cdXxb5fJV-usguDth0qIWhtMpe90ed3mnrfmTUr-ZoU9dU44u7TVPXLFSyGE9RBXuqScrf_9ileQi6dotpHiIh6r5wJuZ4rV1NkN1SdQCeQ-Osf43TX2q6sz2zp-xJ7zTySfyvZ-wAmiP2cDr0ajtij3-DFTxmP5fIIEg8AfdH0A2OUS8Bu6Jq401M_KahCB4Lntt7XjfJTb295ZtriHDgbcPbwHEncOoXha-v6kvgi3oG8muK5BzuNnQC7XkHeo2uK0cHmEOHSYGmjH-jXL_vBj9p7E173emm52w1-7CczpO-B0PiVJ5vE2ecDh59vlAUXlthCS9GCgO6BGNy62SmXF7aMSg9dgG0HwclhHcyYGRYGnXCDpu2gReMBwVlmpZoHLxNswAFwdG5MuQyNQKy7JSJYfEr1wOUU5-Mq2rIRFtXxLCKGFaN6d5cnbLz3ZxNhOfYS50NPK3-ELIK7cfeeW8HAaiQsXSlYhpob5GoUAX6QOgk76NBi9P1qX_5n99_xR7RE5VAiuw1O0ThgDfoC23tWSfsZ-zB5OPn-eIXAnUMsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHtCDUdSAD2wTPZmR6e55HjgQcLMIrJcl4Tb2ozoZxJkNuwS5-EP8G_5Bq6ZniI9kDyZcp1-Tqup6dFd_xdgbCa7MAcMSXygMUFLpIpN7GZmy8NqSzXR03nE8ycYnycfT9HSF_RzewlBaZa_7g07vtHX_Zbun5vasrumNL-62nKpmoZLFeKrPrDyE6yuM2-Y7B_vI5LdSjj5M98ZRX1ogsirLFpHVNvcOXRlfFC43whAMihQa8hK0zoyVqbJZaWJQeWw95C72SghnpceAp9QK573D7iaoLqhswvvvN3klgu75Ql6JiOj3-pc6IanszNaEES5Vhxg6VOr61xr-ZRc6Yzd6yB70XirfDYR4xFagWWdre0NxuHV2_zccw8fsxxQlAiJHlQICygfHMJuQZFGX8iZkmtOngFYLjptrXjfRvF5c8tkFBPzxtuGt50heTgWqsPm8_gJ8Uo9AfkqwO4dvMzrydrxD2UZfmaPHzaEDwUDbyb9ScuGVxiW1mbcXnTJ8wk5uhTNP2WrTNrDBuFdQJkmJ1siZJPVQEP6dLX0mEy0gTTeZGIhf2R4RnQpznFdD6ttZRQyriGFVTBf1apO9uxkzC3ggS3unA0-rP6S6QoO1dNzrQQAqZCzd4egG2kvsVKDEJehuiGV90MTFCud79p_rv2Jr4-nxUXV0MDl8zu5RC72_FOkLtoqCAi_REVuYrU7wOft82zvtF7CrSY8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+conductive+network+constructed+by+in-situ+preparation+of+sea+urchin-like+NiFe2O4+in+expanded+graphite+for+efficient+microwave+absorption&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Deng%2C+Shuanglin&rft.au=Jiang%2C+Jie&rft.au=Wu%2C+Dan&rft.au=He%2C+Qinchuan&rft.date=2023-11-15&rft.issn=0021-9797&rft.volume=650+p.710-718&rft.spage=710&rft.epage=718&rft_id=info:doi/10.1016%2Fj.jcis.2023.07.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |