Three-dimensional conductive network constructed by in-situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption

[Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap ca...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 650; no. Pt A; pp. 710 - 718
Main Authors Deng, Shuanglin, Jiang, Jie, Wu, Dan, He, Qinchuan, Wang, Yiqun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.
AbstractList Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe₂O₄/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe₂O₄ grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe₂O₄ and EG, magnetic loss and dielectric loss of NiFe₂O₄/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe₂O₄/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe₂O₄/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.
Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches -53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches -53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.
[Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low density, good electrical conductivity, and unique structure. However, its application is limited because the interlayer gap cannot match microwave wavelength, and its single composition has less microwave loss. In this study, sea urchin-like NiFe2O4/EG composites are prepared in situ between expanded graphite layers by microwave treatment. The sea urchin-like NiFe2O4 grows between the expanded graphite to form a three-dimensional conductive network structure, which enhances conductive loss of composites and further increases the interlayer distance of EG. The extended interlayer distance promotes multiple reflections and scattering of electromagnetic waves in composites and improves dielectric properties. In addition, EG with a large specific surface area provides many active sites, further promoting interface and dipole polarization. Benefiting from synergistic effect of NiFe2O4 and EG, magnetic loss and dielectric loss of NiFe2O4/EG composites have been improved and impedance matching is further enhanced. The results indicate that the minimal reflection loss of NiFe2O4/EG-4 reaches −53.47 dB at 2.69 mm, and the effective absorption bandwidth reaches 2.97 GHz. In addition, based on the computer simulation technology results, NiFe2O4/EG can attenuate microwave energy under experimental conditions. This work provides a strategy for synthesizing carbon matrix composites with adjustable dielectric parameters and electromagnetic wave properties.
Author Wang, Yiqun
Deng, Shuanglin
Jiang, Jie
He, Qinchuan
Wu, Dan
Author_xml – sequence: 1
  givenname: Shuanglin
  surname: Deng
  fullname: Deng, Shuanglin
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
– sequence: 2
  givenname: Jie
  surname: Jiang
  fullname: Jiang, Jie
  email: jiangjie13@cdut.edu.cn
  organization: School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
– sequence: 3
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
– sequence: 4
  givenname: Qinchuan
  surname: He
  fullname: He, Qinchuan
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
– sequence: 5
  givenname: Yiqun
  orcidid: 0000-0001-6145-1110
  surname: Wang
  fullname: Wang, Yiqun
  email: wangyiqun17@cdut.edu.cn
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
BookMark eNqFkc1u1DAUhS1UJKaFF2DlJZuk13YTJxIbVFGoVNFNWVuOfc14mrGD7enPq_C0OAwrFmVl6fp85-qec0pOQgxIyHsGLQPWn-_anfG55cBFC7IFEK_IhsHYNZKBOCEbAM6aUY7yDTnNeQfAWNeNG_LrbpsQG-v3GLKPQc_UxGAPpvgHpAHLY0z36yiXVIdo6fRMfWiyLwe6JFx00qVyNDqaUdNDMtv6Pft7pN_8FfLbiyqn-LToYCv9I-ll6wtSFxNF57zxGArde5Pio64r9ZRjWlbLt-S103PGd3_fM_L96vPd5dfm5vbL9eWnm8aIvi-N0UY62_W9GwYrJzZBByNnGuWIWveT4Z0w_TgBCgnGobTgBGPWcMe6ftTijHw4-i4p_jxgLmrvs8F51gHjISs-DLIHsWb7f6kY-AXjglUpP0rrYTkndGpJfq_Ts2Kg1s7UTq2dqdVXgVS1swoN_0DGlz_5lqT9_DL68YhijerBY1J5jdag9QlNUTb6l_DfXDm4ew
CitedBy_id crossref_primary_10_1002_pc_28627
crossref_primary_10_1016_j_cej_2024_148930
crossref_primary_10_1016_j_matchemphys_2024_129211
crossref_primary_10_1016_j_coco_2025_102303
crossref_primary_10_1016_j_materresbull_2024_112696
crossref_primary_10_1016_j_compstruct_2025_119116
crossref_primary_10_1016_j_materresbull_2023_112653
crossref_primary_10_1016_j_carbon_2024_118835
crossref_primary_10_1016_j_ceramint_2024_08_153
crossref_primary_10_1016_j_compositesb_2024_111714
crossref_primary_10_1016_j_jallcom_2024_174808
crossref_primary_10_1007_s12613_024_2875_y
crossref_primary_10_1039_D4RA01093K
crossref_primary_10_1016_j_colsurfa_2025_136684
crossref_primary_10_1016_j_jallcom_2025_179667
crossref_primary_10_1016_j_addma_2024_104158
crossref_primary_10_1016_j_jallcom_2024_175371
crossref_primary_10_1016_j_jcis_2024_05_158
crossref_primary_10_1016_j_materresbull_2024_112808
crossref_primary_10_1016_j_jcis_2024_05_118
crossref_primary_10_1007_s42114_023_00792_4
crossref_primary_10_1016_j_compositesb_2024_111922
crossref_primary_10_1016_j_coco_2024_101942
crossref_primary_10_1016_j_xcrp_2024_102206
crossref_primary_10_1016_j_coco_2024_101987
crossref_primary_10_21926_rpm_2501003
crossref_primary_10_1016_j_jcis_2024_02_125
crossref_primary_10_1016_j_cej_2024_152477
crossref_primary_10_1016_j_colsurfa_2024_134234
crossref_primary_10_1016_j_ceramint_2024_07_197
crossref_primary_10_1016_j_jpowsour_2025_236689
crossref_primary_10_1016_j_ceramint_2024_04_009
crossref_primary_10_1016_j_mtcomm_2024_108100
crossref_primary_10_1016_j_colsurfa_2024_133989
crossref_primary_10_1021_acsanm_4c00055
crossref_primary_10_1016_j_nxmate_2025_100584
crossref_primary_10_1002_smll_202408570
crossref_primary_10_1002_smll_202404207
crossref_primary_10_1016_j_materresbull_2023_112630
crossref_primary_10_1016_j_coco_2024_101993
crossref_primary_10_1016_j_materresbull_2024_112911
crossref_primary_10_1039_D4TA06702A
crossref_primary_10_1016_j_ijbiomac_2025_141539
crossref_primary_10_1021_acsaelm_4c00311
crossref_primary_10_1016_j_mtnano_2024_100520
crossref_primary_10_1016_j_ceramint_2024_12_160
crossref_primary_10_1002_adfm_202417972
crossref_primary_10_1080_09593330_2024_2447960
crossref_primary_10_1016_j_compositesb_2024_111344
crossref_primary_10_1016_j_cej_2025_160168
crossref_primary_10_1016_j_colsurfa_2024_135932
crossref_primary_10_1021_acsanm_4c03838
crossref_primary_10_1016_j_carbon_2024_119233
crossref_primary_10_1016_j_jallcom_2025_179884
crossref_primary_10_1016_j_diamond_2024_111324
crossref_primary_10_1016_j_jallcom_2024_177092
crossref_primary_10_1016_j_materresbull_2024_112906
crossref_primary_10_1016_j_jmst_2024_03_067
crossref_primary_10_1021_acsanm_4c00782
crossref_primary_10_1016_j_indcrop_2025_120756
crossref_primary_10_1016_j_cartre_2025_100463
crossref_primary_10_1016_j_cej_2024_151056
crossref_primary_10_1016_j_cej_2024_159004
crossref_primary_10_1021_acsanm_3c05523
crossref_primary_10_1016_j_physb_2024_416051
crossref_primary_10_1016_j_cej_2024_154556
crossref_primary_10_1016_j_coco_2024_102131
crossref_primary_10_1016_j_carbon_2025_120120
crossref_primary_10_1016_j_ceramint_2024_12_452
crossref_primary_10_1016_j_coco_2024_102099
crossref_primary_10_1016_j_diamond_2023_110688
crossref_primary_10_1016_j_surfin_2024_104160
crossref_primary_10_1016_j_ceramint_2025_03_010
crossref_primary_10_1016_j_mtcomm_2024_109377
crossref_primary_10_1016_j_cej_2023_148224
crossref_primary_10_1016_j_cej_2024_150918
crossref_primary_10_1016_j_compscitech_2024_110709
crossref_primary_10_1016_j_jallcom_2024_174461
crossref_primary_10_1007_s10934_024_01601_z
crossref_primary_10_1016_j_cej_2023_148188
crossref_primary_10_1016_j_diamond_2023_110724
Cites_doi 10.1016/j.compositesa.2022.106814
10.1016/j.carbon.2022.02.024
10.1016/j.cej.2022.137260
10.1016/j.carbon.2023.03.043
10.1016/j.ceramint.2020.03.143
10.1016/j.jallcom.2022.164445
10.1016/j.cej.2022.136431
10.1016/j.compositesb.2015.05.029
10.1016/j.carbon.2021.09.047
10.1016/j.jmrt.2023.02.005
10.1016/j.ceramint.2020.05.283
10.1016/j.synthmet.2023.117352
10.1016/j.compositesb.2020.108119
10.1016/j.cej.2019.05.076
10.3390/molecules25133044
10.1016/j.cej.2020.127283
10.1016/j.carbon.2022.05.061
10.1016/j.snb.2018.05.167
10.1016/j.jmst.2022.04.017
10.1016/j.carbon.2022.03.075
10.1016/j.jcis.2023.04.110
10.1021/acsanm.1c00749
10.1016/j.carbon.2022.03.017
10.1016/j.cej.2021.134226
10.1016/j.ceramint.2020.07.326
10.3847/1538-4357/ac8f90
10.1016/j.jmst.2020.12.078
10.1016/j.cej.2023.143414
10.1016/j.cej.2022.138205
10.1016/j.apsusc.2022.156228
10.1016/j.jallcom.2022.167104
10.1016/j.compositesb.2019.03.018
10.1016/j.apsusc.2021.151469
10.1007/s12274-022-5341-z
10.1016/j.ssc.2020.114056
10.1016/j.jcis.2022.07.047
10.1016/j.carbon.2023.03.054
10.1007/s11664-020-08118-6
10.1016/j.ceramint.2023.05.046
10.1016/j.jcis.2023.03.062
10.1016/j.coco.2021.101007
10.1016/j.jhazmat.2023.131345
10.1016/j.cej.2022.138742
10.1016/j.jcis.2023.03.071
10.1016/j.physe.2023.115700
10.1016/j.cej.2022.138442
10.1016/j.compscitech.2015.03.006
10.1016/j.apsusc.2020.146729
10.1016/j.matchemphys.2023.127898
10.1021/acssuschemeng.8b02089
10.1016/j.jcis.2020.08.006
10.1016/j.compositesa.2020.106141
10.1016/j.carbon.2020.09.067
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2023.07.003
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 718
ExternalDocumentID 10_1016_j_jcis_2023_07_003
S0021979723012523
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-cac7fd566f88d7b1b050921ae79eaa6bc253c69b0e370cfe7d0f311dc2f1569a3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Aug 22 20:41:12 EDT 2025
Fri Jul 11 15:22:42 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Tue Jul 01 04:19:08 EDT 2025
Tue Dec 03 03:45:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords RCS simulation
Expanded graphite
Electromagnetic wave absorption
Sea urchin-like NiFe2O4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-cac7fd566f88d7b1b050921ae79eaa6bc253c69b0e370cfe7d0f311dc2f1569a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6145-1110
PQID 2838241231
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2887603202
proquest_miscellaneous_2838241231
crossref_primary_10_1016_j_jcis_2023_07_003
crossref_citationtrail_10_1016_j_jcis_2023_07_003
elsevier_sciencedirect_doi_10_1016_j_jcis_2023_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wei, Li, Zhang, Zhou, Li, Zhang (b0130) 2023
Wu, Wang, Deng, Lan, Xiang, He (b0050) 2022; 16
Uddin, Kim, Kuila, Lee, Hui, Lee (b0145) 2015; 79
Chen, Luo, Cheng, Guo, Yang, Wang, Gong (b0220) 2021; 140
Wang, Zhao, Li, Li, Liao, Luo, Peng, He, Cheng (b0275) 2019; 167
Pratap, Soni, Siddiqui, Abbas, Katiyar, Prasad (b0260) 2020; 49
Zhu, Gao, Zhou, Zheng, Li, Man, Liu (b0060) 2023; 23
Valentini, Piana, Pionteck, Lamastra, Nanni (b0280) 2015; 114
Zhu, Lei, Liu, Wu, Song, Yang, Tan, Man, Liu (b0010) 2022; 907
Chen, Wang, Liu, Tan, Zhang, Liu, Kong (b0005) 2023; 208
Bahhar, Boutahar, Omari, Lemziouka, Hlil, Bioud (b0135) 2020; 322
Park, Lee, Chul Ro, Suh (b0215) 2022; 573
Chen, Yang, Zhao, Hu, Liu, Ma (b0035) 2022; 432
Liu, Luo, Zhao, Li, Zhang, Chen, Jiang, Deng, Cao, Chen (b0185) 2023
Saraswat, Sengwa (b0065) 2023; 150
Zhang, Liu, Zhou, Liu, Liu, Liu, Liang, Yan, Gao, Lu (b0155) 2018; 273
Chen, Lei, Huang, Wang, Zhang, Liu, Xu, Wang, Guo (b0045) 2022; 927
Xiang, Wang, Yin, He (b0175) 2023; 451
Shi, Zhao, Li, Li, Hu (b0040) 2023; 641
Chen, Mu, Liu, He, Zhang, Yang, Ouyang (b0240) 2021; 582
Liang, Wang (b0180) 2019; 373
Xu (b0020) 2023; 295
Yang, Fang, Xu, Cao, Zhang, Zhao, Huang, Wang, Lv, Che (b0105) 2022; 14
Zheng, Zeng, Qiao, Liu, Liu (b0030) 2022; 155
Zou, Ning, Lei, Zhuang, Tan, Hou, Xu, Man, Li, Li (b0285) 2022; 193
Zhang, Wang, Chen, Chen (b0205) 2021; 581
Wang, Li, Ni, Xie (b0075) 2023; 614
Sun, Zhao, Zhang, Yu, Chen, Wang, Liu (b0255) 2023
Liu, Chen, Que, Zheng, Yang, Yuan, Ma, Li, Yang (b0250) 2022; 450
Li, Xu, Zhou, Pang, Du, Darwish, Zhou, Sun (b0230) 2023; 208
Wang, Zhao, Cheng, Liu, Fu, Wang (b0100) 2022; 14
Zhao, Jin, Yang, Lu, Cheng (b0025) 2023; 645
Qiao, Zhang, Liu, Zeng, Yang, Wu, Wang, Wang, Liu, Liu (b0015) 2022; 191
He, Wang, Ren, He, Wu, Deng, Wu (b0195) 2022; 627
Zhao, Zuo, Guo, Huang, Zhang, Wang, Wen, Chen, Cong, Muhammad, Yang, Wang, Fan, Pan (b0245) 2021; 13
Han, Zhang, Cao, Cao (b0150) 2021; 171
Sun, Li, Yu, Ma, Jin, Chen, Chen, Lv, Shu (b0270) 2020; 25
Meng, He, Liu, Yu, Yang (b0210) 2022; 194
Wang, Meng, Li, Li, Chen, Luo, Zhou (b0170) 2018; 6
Hu, Wang, Zhang, Huang, Qiu, Wang, Zhang, Pan, Yang (b0225) 2021; 408
Tang, Yin, Zhang, Wang, Feng, Wang, Dai (b0265) 2020; 46
Niu, Tu, Zhang, Li, Wang, Shao, Zhang, Li, Zhao, Fan (b0110) 2022; 446
Zhang, Jia, Zhou, Liu, Wu, Yin (b0200) 2022; 450
Wang, Lu, Zhang, Zhu (b0235) 2023; 641
Ikram, Jacob, Mahmood, Mehboob, Maheen, Ali, Amin, Hussain, Ashraf, Ilyas (b0160) 2020; 46
Wang, You, Wen, Wang, Tong, Wu (b0090) 2022; 445
Sakamoto, Hayashi, Sato, Hirano, Ohtsu (b0165) 2020; 526
Zhou, Tao, Yao, Xu, Li, Chen (b0140) 2021; 4
Zhao, Cheng, Zhang, Yu, Zheng, Zhou, Zhou, Zhang, Ji (b0125) 2020; 196
Bi, Ma, Jiao, Ma, Hou, Geng, Feng, Ma, Qiao, Liu (b0080) 2022; 197
Zhang, Zhu, Dong, Xiang, Cai, Pan, Lu (b0055) 2022; 29
Zhang, Qi, Gong, Peng, Chen, Xie, Zhong (b0085) 2022; 128
Wang, Wu, Fu, Liu (b0115) 2021; 86
Li, Zhuang, Zhan, Zhou, Sui, Zhou, Bai, Xiao, Yang (b0120) 2020; 46
Wang, Kan, Yu, Fan, Fan, Jiang, Qin, Shi (b0070) 2023; 452
Xiang, Zhang, Shi, Cai, Cheng, Jiang, Zhu, Dong, Lu (b0095) 2021; 185
Zhang, Zhao, Zuo, Huang, Sun, Fan, Pan (b0190) 2023; 467
Xiang (10.1016/j.jcis.2023.07.003_b0095) 2021; 185
Valentini (10.1016/j.jcis.2023.07.003_b0280) 2015; 114
Wang (10.1016/j.jcis.2023.07.003_b0115) 2021; 86
Zhang (10.1016/j.jcis.2023.07.003_b0205) 2021; 581
Xiang (10.1016/j.jcis.2023.07.003_b0175) 2023; 451
Hu (10.1016/j.jcis.2023.07.003_b0225) 2021; 408
Yang (10.1016/j.jcis.2023.07.003_b0105) 2022; 14
Han (10.1016/j.jcis.2023.07.003_b0150) 2021; 171
Zhang (10.1016/j.jcis.2023.07.003_b0200) 2022; 450
Sun (10.1016/j.jcis.2023.07.003_b0255) 2023
Shi (10.1016/j.jcis.2023.07.003_b0040) 2023; 641
Zheng (10.1016/j.jcis.2023.07.003_b0030) 2022; 155
Wang (10.1016/j.jcis.2023.07.003_b0070) 2023; 452
Zhang (10.1016/j.jcis.2023.07.003_b0155) 2018; 273
Wang (10.1016/j.jcis.2023.07.003_b0275) 2019; 167
Wang (10.1016/j.jcis.2023.07.003_b0100) 2022; 14
Meng (10.1016/j.jcis.2023.07.003_b0210) 2022; 194
Xu (10.1016/j.jcis.2023.07.003_b0020) 2023; 295
Zhang (10.1016/j.jcis.2023.07.003_b0085) 2022; 128
Zhou (10.1016/j.jcis.2023.07.003_b0140) 2021; 4
Tang (10.1016/j.jcis.2023.07.003_b0265) 2020; 46
Wang (10.1016/j.jcis.2023.07.003_b0090) 2022; 445
Uddin (10.1016/j.jcis.2023.07.003_b0145) 2015; 79
Liang (10.1016/j.jcis.2023.07.003_b0180) 2019; 373
Wang (10.1016/j.jcis.2023.07.003_b0235) 2023; 641
Zhao (10.1016/j.jcis.2023.07.003_b0025) 2023; 645
Bahhar (10.1016/j.jcis.2023.07.003_b0135) 2020; 322
Chen (10.1016/j.jcis.2023.07.003_b0220) 2021; 140
Liu (10.1016/j.jcis.2023.07.003_b0185) 2023
Bi (10.1016/j.jcis.2023.07.003_b0080) 2022; 197
Liu (10.1016/j.jcis.2023.07.003_b0250) 2022; 450
Zhang (10.1016/j.jcis.2023.07.003_b0055) 2022; 29
Chen (10.1016/j.jcis.2023.07.003_b0035) 2022; 432
Zhao (10.1016/j.jcis.2023.07.003_b0245) 2021; 13
Li (10.1016/j.jcis.2023.07.003_b0230) 2023; 208
Chen (10.1016/j.jcis.2023.07.003_b0045) 2022; 927
Chen (10.1016/j.jcis.2023.07.003_b0005) 2023; 208
Wang (10.1016/j.jcis.2023.07.003_b0170) 2018; 6
Ikram (10.1016/j.jcis.2023.07.003_b0160) 2020; 46
Chen (10.1016/j.jcis.2023.07.003_b0240) 2021; 582
Saraswat (10.1016/j.jcis.2023.07.003_b0065) 2023; 150
Zhao (10.1016/j.jcis.2023.07.003_b0125) 2020; 196
Sakamoto (10.1016/j.jcis.2023.07.003_b0165) 2020; 526
Zhang (10.1016/j.jcis.2023.07.003_b0190) 2023; 467
Zou (10.1016/j.jcis.2023.07.003_b0285) 2022; 193
Niu (10.1016/j.jcis.2023.07.003_b0110) 2022; 446
Qiao (10.1016/j.jcis.2023.07.003_b0015) 2022; 191
Wu (10.1016/j.jcis.2023.07.003_b0050) 2022; 16
Wei (10.1016/j.jcis.2023.07.003_b0130) 2023
Pratap (10.1016/j.jcis.2023.07.003_b0260) 2020; 49
Li (10.1016/j.jcis.2023.07.003_b0120) 2020; 46
Sun (10.1016/j.jcis.2023.07.003_b0270) 2020; 25
Zhu (10.1016/j.jcis.2023.07.003_b0010) 2022; 907
Park (10.1016/j.jcis.2023.07.003_b0215) 2022; 573
Zhu (10.1016/j.jcis.2023.07.003_b0060) 2023; 23
He (10.1016/j.jcis.2023.07.003_b0195) 2022; 627
Wang (10.1016/j.jcis.2023.07.003_b0075) 2023; 614
References_xml – volume: 29
  year: 2022
  ident: b0055
  article-title: Dielectric regulation of ultralight EG/bimetallic sulfide hybrids with boosted electromagnetic wave absorption properties
  publication-title: Compos. Commun.
– volume: 13
  start-page: 144
  year: 2021
  ident: b0245
  article-title: Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption
  publication-title: Nanomicro Lett.
– volume: 408
  year: 2021
  ident: b0225
  article-title: Ultralight Ti
  publication-title: Chem. Eng. J.
– volume: 167
  start-page: 477
  year: 2019
  end-page: 486
  ident: b0275
  article-title: Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation
  publication-title: Compos. B Eng.
– volume: 46
  start-page: 28250
  year: 2020
  end-page: 28261
  ident: b0265
  article-title: Novel carbon encapsulated zinc ferrite/MWCNTs composite: preparation and low-frequency microwave absorption investigation
  publication-title: Ceram. Int.
– volume: 208
  start-page: 82
  year: 2023
  end-page: 91
  ident: b0005
  article-title: Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption
  publication-title: Carbon
– volume: 46
  start-page: 15943
  year: 2020
  end-page: 15948
  ident: b0160
  article-title: A Kinetic study of Tb
  publication-title: Ceram. Int.
– volume: 150
  year: 2023
  ident: b0065
  article-title: Investigation on ethylene glycol and glycerol mixture concentration dependent optical, dielectric, electrical, rheological, and thermophysical properties of EG+Gly/ZnO semiconductor nanofluids
  publication-title: Physica E
– volume: 322
  year: 2020
  ident: b0135
  article-title: Structural, magnetic, magnetocaloric effect and critical behaviour study of NiCeFeO
  publication-title: Solid State Commun.
– volume: 194
  start-page: 207
  year: 2022
  end-page: 219
  ident: b0210
  article-title: Carbon-coated defect-rich MnFe
  publication-title: Carbon
– volume: 79
  start-page: 649
  year: 2015
  end-page: 659
  ident: b0145
  article-title: Preparation of reduced graphene oxide-NiFe
  publication-title: Compos. B Eng.
– volume: 14
  start-page: 170
  year: 2022
  ident: b0105
  article-title: One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption
  publication-title: Nanomicro Lett.
– volume: 6
  start-page: 11801
  year: 2018
  end-page: 11810
  ident: b0170
  article-title: Carbonized Design of Hierarchical Porous Carbon/Fe
  publication-title: ACS Sustain. Chem. Eng.
– volume: 185
  start-page: 477
  year: 2021
  end-page: 490
  ident: b0095
  article-title: Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility
  publication-title: Carbon
– volume: 451
  year: 2023
  ident: b0175
  article-title: Microwave absorption performance of porous heterogeneous SiC/SiO
  publication-title: Chem. Eng. J.
– year: 2023
  ident: b0185
  article-title: Effects of Gd doping on microwave absorption properties and mechanism for CaMnO3 perovskites
  publication-title: Ceram. Int.
– volume: 86
  start-page: 91
  year: 2021
  end-page: 109
  ident: b0115
  article-title: A review on carbon/magnetic metal composites for microwave absorption
  publication-title: J. Mater. Sci. Technol.
– volume: 191
  start-page: 525
  year: 2022
  end-page: 534
  ident: b0015
  article-title: Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption
  publication-title: Carbon
– volume: 193
  start-page: 182
  year: 2022
  end-page: 194
  ident: b0285
  article-title: 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz
  publication-title: Carbon
– volume: 114
  start-page: 26
  year: 2015
  end-page: 33
  ident: b0280
  article-title: Electromagnetic properties and performance of exfoliated graphite (EG) – Thermoplastic polyurethane (TPU) nanocomposites at microwaves
  publication-title: Compos. Sci. Technol.
– volume: 645
  start-page: 22
  year: 2023
  end-page: 32
  ident: b0025
  article-title: Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co(7)Fe(3)/Co(5.47)N nanoparticles for high-performance microwave absorption
  publication-title: J. Colloid Interface Sci.
– volume: 573
  year: 2022
  ident: b0215
  article-title: Yolk–shell Fe–Fe
  publication-title: Appl. Surf. Sci.
– volume: 445
  year: 2022
  ident: b0090
  article-title: Doping Ce(OH)CO
  publication-title: Chem. Eng. J.
– volume: 452
  year: 2023
  ident: b0070
  article-title: Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal
  publication-title: J. Hazard. Mater.
– volume: 641
  start-page: 449
  year: 2023
  end-page: 458
  ident: b0040
  article-title: 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties
  publication-title: J. Colloid Interface Sci.
– volume: 432
  year: 2022
  ident: b0035
  article-title: Tailoring superhydrophobic PDMS/CeFe
  publication-title: Chem. Eng. J.
– volume: 907
  year: 2022
  ident: b0010
  article-title: Synthesis and microwave absorption properties of sandwich microstructure Ce
  publication-title: J. Alloy. Compd.
– volume: 295
  year: 2023
  ident: b0020
  article-title: Three dimensional carbon aerogel for microwave absorption from chitosan
  publication-title: Synth. Met.
– volume: 208
  start-page: 374
  year: 2023
  end-page: 383
  ident: b0230
  article-title: Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption
  publication-title: Carbon
– year: 2023
  ident: b0130
  article-title: Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption
  publication-title: Ceram. Int.
– volume: 171
  start-page: 953
  year: 2021
  end-page: 962
  ident: b0150
  article-title: Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo
  publication-title: Carbon
– volume: 16
  start-page: 1859
  year: 2022
  end-page: 1868
  ident: b0050
  article-title: Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption
  publication-title: Nano Res.
– volume: 155
  year: 2022
  ident: b0030
  article-title: Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 614
  year: 2023
  ident: b0075
  article-title: Facile synthesis of heterogeneous Co/MnO@C nanocapsules with dual-cores: Achieving strong and broadband microwave absorption by magnetic-dielectric synergy
  publication-title: Appl. Surf. Sci.
– volume: 128
  start-page: 59
  year: 2022
  end-page: 70
  ident: b0085
  article-title: Microstructure optimization of core@shell structured MSe
  publication-title: J. Mater. Sci. Technol.
– volume: 641
  start-page: 729
  year: 2023
  end-page: 736
  ident: b0235
  article-title: Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo(2)C
  publication-title: J. Colloid Interface Sci.
– volume: 526
  year: 2020
  ident: b0165
  article-title: XPS spectral analysis for a multiple oxide comprising NiO, TiO
  publication-title: Appl. Surf. Sci.
– volume: 25
  year: 2020
  ident: b0270
  article-title: Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe
  publication-title: Molecules
– volume: 23
  start-page: 3557
  year: 2023
  end-page: 3569
  ident: b0060
  article-title: Expanded graphite/Co@C composites with dual functions of corrosion resistance and microwave absorption
  publication-title: J. Mater. Res. Technol.
– year: 2023
  ident: b0255
  article-title: Expanded graphite and thermally reduced graphene oxide filled with NiCo
  publication-title: Mater. Chem. Phys.
– volume: 927
  year: 2022
  ident: b0045
  article-title: Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption
  publication-title: J. Alloy. Compd.
– volume: 196
  year: 2020
  ident: b0125
  article-title: Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption
  publication-title: Compos. B Eng.
– volume: 49
  start-page: 3972
  year: 2020
  end-page: 3981
  ident: b0260
  article-title: Dielectric and Radar-Absorbing Properties of Exfoliated Graphite Dispersed Epoxy Composites
  publication-title: J. Electron. Mater.
– volume: 273
  start-page: 991
  year: 2018
  end-page: 998
  ident: b0155
  article-title: The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species
  publication-title: Sens. Actuat. B
– volume: 467
  year: 2023
  ident: b0190
  article-title: Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness
  publication-title: Chem. Eng. J.
– volume: 582
  start-page: 137
  year: 2021
  end-page: 148
  ident: b0240
  article-title: PANI/BaFe
  publication-title: J. Colloid Interface Sci.
– volume: 446
  year: 2022
  ident: b0110
  article-title: Engineered core-shell SiO
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 76
  year: 2022
  ident: b0100
  article-title: Hierarchical Ti
  publication-title: Nanomicro Lett.
– volume: 627
  start-page: 102
  year: 2022
  end-page: 112
  ident: b0195
  article-title: Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption
  publication-title: J. Colloid Interface Sci.
– volume: 197
  start-page: 152
  year: 2022
  end-page: 162
  ident: b0080
  article-title: Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers
  publication-title: Carbon
– volume: 450
  year: 2022
  ident: b0250
  article-title: 2D Ti
  publication-title: Chem. Eng. J.
– volume: 373
  start-page: 598
  year: 2019
  end-page: 605
  ident: b0180
  article-title: Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 21744
  year: 2020
  end-page: 21751
  ident: b0120
  article-title: Desirable microwave absorption performance of ZnFe
  publication-title: Ceram. Int.
– volume: 450
  year: 2022
  ident: b0200
  article-title: Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 5425
  year: 2021
  end-page: 5436
  ident: b0140
  article-title: Ag Nanoparticles Embedded in Multishell Carbon Nanoparticles for Microwave Absorption
  publication-title: ACS Appl. Nano Mater.
– volume: 581
  start-page: 84
  year: 2021
  end-page: 95
  ident: b0205
  article-title: A rational route towards dual wave-transparent type of carbonyl iron@SiO
  publication-title: J. Colloid Interface Sci.
– volume: 140
  year: 2021
  ident: b0220
  article-title: Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 155
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0030
  article-title: Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2022.106814
– volume: 191
  start-page: 525
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0015
  article-title: Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.02.024
– volume: 446
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0110
  article-title: Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137260
– volume: 581
  start-page: 84
  issue: Pt A
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0205
  article-title: A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application
  publication-title: J. Colloid Interface Sci.
– volume: 208
  start-page: 82
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0005
  article-title: Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.03.043
– volume: 46
  start-page: 15943
  issue: 10
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0160
  article-title: A Kinetic study of Tb3+ and Dy3+ co-substituted CoFe2O4 spinel ferrites using temperature dependent XRD, XPS and SQUID measurements
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.143
– volume: 907
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0010
  article-title: Synthesis and microwave absorption properties of sandwich microstructure Ce2Fe17N3-δ/expanded graphite composites
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.164445
– volume: 445
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0090
  article-title: Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136431
– volume: 79
  start-page: 649
  year: 2015
  ident: 10.1016/j.jcis.2023.07.003_b0145
  article-title: Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.05.029
– volume: 185
  start-page: 477
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0095
  article-title: Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.09.047
– volume: 23
  start-page: 3557
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0060
  article-title: Expanded graphite/Co@C composites with dual functions of corrosion resistance and microwave absorption
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.02.005
– volume: 46
  start-page: 21744
  issue: 13
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0120
  article-title: Desirable microwave absorption performance of ZnFe2O4@ZnO@rGO nanocomposites based on controllable permittivity and permeability
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.283
– volume: 295
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0020
  article-title: Three dimensional carbon aerogel for microwave absorption from chitosan
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2023.117352
– volume: 196
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0125
  article-title: Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.108119
– volume: 373
  start-page: 598
  year: 2019
  ident: 10.1016/j.jcis.2023.07.003_b0180
  article-title: Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.076
– volume: 25
  issue: 13
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0270
  article-title: Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe3O4 Composites
  publication-title: Molecules
  doi: 10.3390/molecules25133044
– volume: 408
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0225
  article-title: Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127283
– volume: 197
  start-page: 152
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0080
  article-title: Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.05.061
– volume: 273
  start-page: 991
  year: 2018
  ident: 10.1016/j.jcis.2023.07.003_b0155
  article-title: The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2018.05.167
– volume: 128
  start-page: 59
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0085
  article-title: Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.04.017
– year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0185
  article-title: Effects of Gd doping on microwave absorption properties and mechanism for CaMnO3 perovskites
  publication-title: Ceram. Int.
– volume: 194
  start-page: 207
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0210
  article-title: Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.075
– volume: 645
  start-page: 22
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0025
  article-title: Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co(7)Fe(3)/Co(5.47)N nanoparticles for high-performance microwave absorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.04.110
– volume: 4
  start-page: 5425
  issue: 5
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0140
  article-title: Ag Nanoparticles Embedded in Multishell Carbon Nanoparticles for Microwave Absorption
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00749
– volume: 193
  start-page: 182
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0285
  article-title: 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.017
– volume: 432
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0035
  article-title: Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134226
– volume: 46
  start-page: 28250
  issue: 18
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0265
  article-title: Novel carbon encapsulated zinc ferrite/MWCNTs composite: preparation and low-frequency microwave absorption investigation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.07.326
– volume: 14
  start-page: 76
  issue: 1
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0100
  article-title: Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins
  publication-title: Nanomicro Lett.
  doi: 10.3847/1538-4357/ac8f90
– volume: 86
  start-page: 91
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0115
  article-title: A review on carbon/magnetic metal composites for microwave absorption
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.12.078
– volume: 467
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0190
  article-title: Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143414
– volume: 450
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0200
  article-title: Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138205
– volume: 614
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0075
  article-title: Facile synthesis of heterogeneous Co/MnO@C nanocapsules with dual-cores: Achieving strong and broadband microwave absorption by magnetic-dielectric synergy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.156228
– volume: 927
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0045
  article-title: Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.167104
– volume: 167
  start-page: 477
  year: 2019
  ident: 10.1016/j.jcis.2023.07.003_b0275
  article-title: Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.03.018
– volume: 573
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0215
  article-title: Yolk–shell Fe–Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151469
– volume: 16
  start-page: 1859
  issue: 2
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0050
  article-title: Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5341-z
– volume: 322
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0135
  article-title: Structural, magnetic, magnetocaloric effect and critical behaviour study of NiCeFeO4 spinel ferrite
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2020.114056
– volume: 627
  start-page: 102
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0195
  article-title: Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.07.047
– volume: 208
  start-page: 374
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0230
  article-title: Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.03.054
– volume: 49
  start-page: 3972
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0260
  article-title: Dielectric and Radar-Absorbing Properties of Exfoliated Graphite Dispersed Epoxy Composites
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08118-6
– volume: 14
  start-page: 170
  issue: 1
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0105
  article-title: One-Dimensional Magnetic FeCoNi Alloy Toward Low-Frequency Electromagnetic Wave Absorption
  publication-title: Nanomicro Lett.
– year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0130
  article-title: Construction of EG/SiOC@C porous structure by direct ink writing and in-situ vapor self - Deposition to enhance microwave absorption
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.05.046
– volume: 13
  start-page: 144
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0245
  article-title: Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption
  publication-title: Nanomicro Lett.
– volume: 641
  start-page: 449
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0040
  article-title: 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.03.062
– volume: 29
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0055
  article-title: Dielectric regulation of ultralight EG/bimetallic sulfide hybrids with boosted electromagnetic wave absorption properties
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.101007
– volume: 452
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0070
  article-title: Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.131345
– volume: 451
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0175
  article-title: Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138742
– volume: 641
  start-page: 729
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0235
  article-title: Facile preparation and high microwave absorption of flower-like carbon nanosheet aggregations embedded with ultrafine Mo(2)C
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.03.071
– volume: 150
  year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0065
  article-title: Investigation on ethylene glycol and glycerol mixture concentration dependent optical, dielectric, electrical, rheological, and thermophysical properties of EG+Gly/ZnO semiconductor nanofluids
  publication-title: Physica E
  doi: 10.1016/j.physe.2023.115700
– volume: 450
  year: 2022
  ident: 10.1016/j.jcis.2023.07.003_b0250
  article-title: 2D Ti3C2T MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138442
– volume: 114
  start-page: 26
  year: 2015
  ident: 10.1016/j.jcis.2023.07.003_b0280
  article-title: Electromagnetic properties and performance of exfoliated graphite (EG) – Thermoplastic polyurethane (TPU) nanocomposites at microwaves
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2015.03.006
– volume: 526
  year: 2020
  ident: 10.1016/j.jcis.2023.07.003_b0165
  article-title: XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146729
– year: 2023
  ident: 10.1016/j.jcis.2023.07.003_b0255
  article-title: Expanded graphite and thermally reduced graphene oxide filled with NiCo2O4 for improve microwave absorption
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2023.127898
– volume: 6
  start-page: 11801
  issue: 9
  year: 2018
  ident: 10.1016/j.jcis.2023.07.003_b0170
  article-title: Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02089
– volume: 582
  start-page: 137
  issue: Pt A
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0240
  article-title: PANI/BaFe12O19@Halloysite ternary composites as novel microwave absorbent
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.006
– volume: 140
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0220
  article-title: Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2020.106141
– volume: 171
  start-page: 953
  year: 2021
  ident: 10.1016/j.jcis.2023.07.003_b0150
  article-title: Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.09.067
SSID ssj0011559
Score 2.664825
Snippet [Display omitted] Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption...
Expanded graphite (EG) is a modified conductive lamellar carbon that has been widely studied in the field of electromagnetic wave absorption due to its low...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 710
SubjectTerms absorption
computer simulation
electrical conductivity
electromagnetic radiation
Electromagnetic wave absorption
energy
Expanded graphite
graphene
magnetism
microwave treatment
RCS simulation
Sea urchin-like NiFe2O4
surface area
synergism
wavelengths
Title Three-dimensional conductive network constructed by in-situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption
URI https://dx.doi.org/10.1016/j.jcis.2023.07.003
https://www.proquest.com/docview/2838241231
https://www.proquest.com/docview/2887603202
Volume 650
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCFoqyqMyErcq7NpO4uS4WrFaQCyXXam3yI-xlG1JVu1WtBd-CL-WmThZ8ZD2wDHOWIk843nYM98w9k6CLzVgWBIKhQFKJn1idZCJLYtgHNlMT-cdXxb5fJV-usguDth0qIWhtMpe90ed3mnrfmTUr-ZoU9dU44u7TVPXLFSyGE9RBXuqScrf_9ileQi6dotpHiIh6r5wJuZ4rV1NkN1SdQCeQ-Osf43TX2q6sz2zp-xJ7zTySfyvZ-wAmiP2cDr0ajtij3-DFTxmP5fIIEg8AfdH0A2OUS8Bu6Jq401M_KahCB4Lntt7XjfJTb295ZtriHDgbcPbwHEncOoXha-v6kvgi3oG8muK5BzuNnQC7XkHeo2uK0cHmEOHSYGmjH-jXL_vBj9p7E173emm52w1-7CczpO-B0PiVJ5vE2ecDh59vlAUXlthCS9GCgO6BGNy62SmXF7aMSg9dgG0HwclhHcyYGRYGnXCDpu2gReMBwVlmpZoHLxNswAFwdG5MuQyNQKy7JSJYfEr1wOUU5-Mq2rIRFtXxLCKGFaN6d5cnbLz3ZxNhOfYS50NPK3-ELIK7cfeeW8HAaiQsXSlYhpob5GoUAX6QOgk76NBi9P1qX_5n99_xR7RE5VAiuw1O0ThgDfoC23tWSfsZ-zB5OPn-eIXAnUMsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHtCDUdSAD2wTPZmR6e55HjgQcLMIrJcl4Tb2ozoZxJkNuwS5-EP8G_5Bq6ZniI9kDyZcp1-Tqup6dFd_xdgbCa7MAcMSXygMUFLpIpN7GZmy8NqSzXR03nE8ycYnycfT9HSF_RzewlBaZa_7g07vtHX_Zbun5vasrumNL-62nKpmoZLFeKrPrDyE6yuM2-Y7B_vI5LdSjj5M98ZRX1ogsirLFpHVNvcOXRlfFC43whAMihQa8hK0zoyVqbJZaWJQeWw95C72SghnpceAp9QK573D7iaoLqhswvvvN3klgu75Ql6JiOj3-pc6IanszNaEES5Vhxg6VOr61xr-ZRc6Yzd6yB70XirfDYR4xFagWWdre0NxuHV2_zccw8fsxxQlAiJHlQICygfHMJuQZFGX8iZkmtOngFYLjptrXjfRvF5c8tkFBPzxtuGt50heTgWqsPm8_gJ8Uo9AfkqwO4dvMzrydrxD2UZfmaPHzaEDwUDbyb9ScuGVxiW1mbcXnTJ8wk5uhTNP2WrTNrDBuFdQJkmJ1siZJPVQEP6dLX0mEy0gTTeZGIhf2R4RnQpznFdD6ttZRQyriGFVTBf1apO9uxkzC3ggS3unA0-rP6S6QoO1dNzrQQAqZCzd4egG2kvsVKDEJehuiGV90MTFCud79p_rv2Jr4-nxUXV0MDl8zu5RC72_FOkLtoqCAi_REVuYrU7wOft82zvtF7CrSY8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+conductive+network+constructed+by+in-situ+preparation+of+sea+urchin-like+NiFe2O4+in+expanded+graphite+for+efficient+microwave+absorption&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Deng%2C+Shuanglin&rft.au=Jiang%2C+Jie&rft.au=Wu%2C+Dan&rft.au=He%2C+Qinchuan&rft.date=2023-11-15&rft.issn=0021-9797&rft.volume=650+p.710-718&rft.spage=710&rft.epage=718&rft_id=info:doi/10.1016%2Fj.jcis.2023.07.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon