Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets

•The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 63; p. 102194
Main Authors Petmezas, Georgios, Haris, Kostas, Stefanopoulos, Leandros, Kilintzis, Vassilis, Tzavelis, Andreas, Rogers, John A, Katsaggelos, Aggelos K, Maglaveras, Nicos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function for ECG classification.•The proposed methodology could be used for real-time arrhythmia detection as the prediction phase lasts only a few seconds. Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The proposed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG.
AbstractList •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function for ECG classification.•The proposed methodology could be used for real-time arrhythmia detection as the prediction phase lasts only a few seconds. Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The proposed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG.
ArticleNumber 102194
Author Maglaveras, Nicos
Rogers, John A
Petmezas, Georgios
Stefanopoulos, Leandros
Haris, Kostas
Tzavelis, Andreas
Katsaggelos, Aggelos K
Kilintzis, Vassilis
Author_xml – sequence: 1
  givenname: Georgios
  orcidid: 0000-0002-3371-569X
  surname: Petmezas
  fullname: Petmezas, Georgios
  organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 2
  givenname: Kostas
  surname: Haris
  fullname: Haris, Kostas
  organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 3
  givenname: Leandros
  surname: Stefanopoulos
  fullname: Stefanopoulos, Leandros
  organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 4
  givenname: Vassilis
  surname: Kilintzis
  fullname: Kilintzis, Vassilis
  organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 5
  givenname: Andreas
  surname: Tzavelis
  fullname: Tzavelis, Andreas
  organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
– sequence: 6
  givenname: John A
  surname: Rogers
  fullname: Rogers, John A
  organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
– sequence: 7
  givenname: Aggelos K
  surname: Katsaggelos
  fullname: Katsaggelos, Aggelos K
  organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
– sequence: 8
  givenname: Nicos
  orcidid: 0000-0002-4919-0664
  surname: Maglaveras
  fullname: Maglaveras, Nicos
  email: nicmag@med.auth.gr
  organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD6TYifOS2FTpUyphQVlbfiKXNKlsF9S_x2lhw6KrGc3MGemeERi0XasAeMRoghHOnnYT7g5iEqO4H8S4JDdgiHOSRQVGxeCvRyW5AyPndgiRIsdkCPj06Ls980rCqbeGNXBhuDVNw7zpWjhTXolzd3Sm_YAMrk5hLWFV19HmbfsCa-W_O_sJw8l6z1nDWhF-zaslnDHPnPLuHtxq1jj18FvH4H0x31araPO6XFfTTSSSLPORYCVXMuW6SJIyJZzjWCaaIJTruBCIxxqpnAkh05SorGDhVCCSaawl0SKXyRjEl7_Cds5ZpenBmj2zJ4oR7S3RHe0t0d4SvVgKUPEPEsafs3vLTHMdfb6gKoT6MspSJ4zq4xsbpFHZmWv4D6V9hdU
CitedBy_id crossref_primary_10_1007_s11227_021_03838_w
crossref_primary_10_3390_bios14040201
crossref_primary_10_1016_j_trc_2021_103414
crossref_primary_10_1016_j_autcon_2022_104293
crossref_primary_10_1007_s41870_023_01241_7
crossref_primary_10_1007_s00500_023_08579_x
crossref_primary_10_3390_math12172693
crossref_primary_10_1038_s41598_025_87115_3
crossref_primary_10_3390_s22166071
crossref_primary_10_3390_ijms23084216
crossref_primary_10_1016_j_eswa_2022_118540
crossref_primary_10_21595_mme_2021_22138
crossref_primary_10_1007_s13246_021_01005_2
crossref_primary_10_1016_j_bspc_2022_104424
crossref_primary_10_3390_s22031232
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_1109_TIM_2022_3232646
crossref_primary_10_1109_TIM_2025_3546413
crossref_primary_10_1109_TAI_2022_3184656
crossref_primary_10_3390_app14198945
crossref_primary_10_1016_j_engappai_2024_109480
crossref_primary_10_1016_j_cie_2023_109556
crossref_primary_10_1016_j_jisa_2024_103871
crossref_primary_10_1016_j_ins_2023_03_099
crossref_primary_10_1016_j_jbi_2025_104800
crossref_primary_10_1007_s13239_024_00716_3
crossref_primary_10_3390_app13084964
crossref_primary_10_1016_j_bspc_2024_106107
crossref_primary_10_1016_j_compbiomed_2024_108557
crossref_primary_10_1109_ACCESS_2021_3079370
crossref_primary_10_1109_ACCESS_2023_3277620
crossref_primary_10_1007_s11831_023_09935_8
crossref_primary_10_3390_electronics11213427
crossref_primary_10_1007_s44196_023_00339_x
crossref_primary_10_4018_IJeC_315791
crossref_primary_10_1016_j_bspc_2022_103625
crossref_primary_10_1016_j_bspc_2023_105747
crossref_primary_10_1515_bmt_2021_0146
crossref_primary_10_1016_j_knosys_2021_107941
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_1016_j_bea_2023_100089
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_1016_j_heliyon_2024_e41195
crossref_primary_10_1016_j_engappai_2024_108325
crossref_primary_10_1080_03772063_2024_2376125
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_3390_a14060180
crossref_primary_10_1016_j_dsp_2025_105159
crossref_primary_10_1016_j_bspc_2022_104299
crossref_primary_10_1016_j_compbiomed_2023_107903
crossref_primary_10_1016_j_bspc_2024_105982
crossref_primary_10_1111_exsy_13277
crossref_primary_10_1038_s41598_025_94681_z
crossref_primary_10_1155_2023_1900447
crossref_primary_10_1016_j_eclinm_2023_102141
crossref_primary_10_3934_mbe_2024259
crossref_primary_10_1007_s00034_024_02986_7
crossref_primary_10_1049_cit2_12293
crossref_primary_10_1109_ACCESS_2023_3282315
crossref_primary_10_1007_s12265_024_10504_y
crossref_primary_10_2478_jaiscr_2024_0004
crossref_primary_10_1109_ACCESS_2024_3402359
crossref_primary_10_1016_j_bspc_2024_106703
crossref_primary_10_3390_diagnostics13020260
crossref_primary_10_3390_s21165302
crossref_primary_10_1016_j_iot_2024_101405
crossref_primary_10_1038_s41526_024_00409_0
crossref_primary_10_29132_ijpas_1398148
crossref_primary_10_1016_j_knosys_2024_111696
crossref_primary_10_1109_ACCESS_2021_3076281
crossref_primary_10_1016_j_mlwa_2023_100472
crossref_primary_10_1155_2022_4610747
crossref_primary_10_3390_s22155606
crossref_primary_10_1016_j_eswa_2022_119162
crossref_primary_10_1109_TIM_2022_3197757
crossref_primary_10_1155_2022_2557865
crossref_primary_10_1016_j_bspc_2024_106040
crossref_primary_10_3390_s23146324
crossref_primary_10_1016_j_bbe_2022_02_006
crossref_primary_10_1016_j_bspc_2021_103470
crossref_primary_10_1016_j_bspc_2024_105997
crossref_primary_10_1002_adsr_202300118
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1016_j_ress_2024_109938
crossref_primary_10_3390_jpm13050820
crossref_primary_10_3390_app12031307
crossref_primary_10_3390_ijerph182111302
crossref_primary_10_3390_bioengineering9090480
crossref_primary_10_1016_j_eswa_2023_120975
crossref_primary_10_1016_j_bspc_2021_102778
crossref_primary_10_3390_ma15030724
crossref_primary_10_1007_s41870_024_01999_4
crossref_primary_10_3390_s24154978
crossref_primary_10_1016_j_knosys_2024_112553
crossref_primary_10_1145_3554737
crossref_primary_10_3390_s22093439
crossref_primary_10_1007_s11517_023_02839_6
crossref_primary_10_3390_s24165087
crossref_primary_10_37391_ijeer_120423
crossref_primary_10_1097_WNP_0000000000001038
crossref_primary_10_1007_s11042_023_15717_y
crossref_primary_10_1016_j_cmpb_2022_106899
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1016_j_cmpb_2021_106533
crossref_primary_10_1177_01423312241252459
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_1016_j_bspc_2023_105683
crossref_primary_10_1016_j_bspc_2025_107621
crossref_primary_10_1007_s00521_024_09486_4
crossref_primary_10_1109_ACCESS_2021_3097177
crossref_primary_10_3390_s24082655
crossref_primary_10_1016_j_sbsr_2022_100502
crossref_primary_10_1109_JBHI_2022_3221464
crossref_primary_10_1016_j_bios_2025_117262
crossref_primary_10_1016_j_cej_2022_140690
crossref_primary_10_1038_s41598_023_40343_x
crossref_primary_10_1088_1361_6579_acfa61
crossref_primary_10_3390_s24134171
crossref_primary_10_1007_s40846_025_00928_5
crossref_primary_10_1016_j_heliyon_2023_e23597
crossref_primary_10_1109_ACCESS_2023_3344452
crossref_primary_10_1016_j_bspc_2023_105797
crossref_primary_10_1111_nyas_15288
crossref_primary_10_1007_s00500_022_07499_6
crossref_primary_10_1063_5_0191571
crossref_primary_10_1063_5_0217416
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1080_15325008_2023_2220333
crossref_primary_10_1016_j_bspc_2023_104615
crossref_primary_10_1007_s11042_022_14227_7
crossref_primary_10_1016_j_compbiomed_2021_104262
crossref_primary_10_3390_info14070376
crossref_primary_10_1002_cta_4289
crossref_primary_10_1016_j_compbiomed_2022_106142
crossref_primary_10_1109_TCBB_2022_3198998
crossref_primary_10_3390_app14219936
crossref_primary_10_1007_s10489_023_04889_7
crossref_primary_10_3390_s24123789
crossref_primary_10_26599_IJCS_2023_9100026
crossref_primary_10_1140_epjb_s10051_024_00752_x
crossref_primary_10_1038_s41598_024_60500_0
crossref_primary_10_1016_j_bspc_2023_105940
crossref_primary_10_1016_j_measurement_2023_113239
crossref_primary_10_1021_acssensors_4c02395
crossref_primary_10_3389_fphys_2021_699291
crossref_primary_10_3390_app132212187
crossref_primary_10_1002_mp_16534
crossref_primary_10_3389_fphys_2023_1247587
crossref_primary_10_1016_j_bspc_2022_104531
crossref_primary_10_1109_ACCESS_2024_3420103
crossref_primary_10_1016_j_bspc_2021_102628
crossref_primary_10_1007_s00034_024_02662_w
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_dcan_2024_11_003
crossref_primary_10_1038_s41598_024_63656_x
crossref_primary_10_2139_ssrn_4017037
crossref_primary_10_54287_gujsa_1128006
crossref_primary_10_1016_j_bspc_2024_107295
crossref_primary_10_1186_s13040_022_00288_9
crossref_primary_10_2196_38454
crossref_primary_10_1016_j_bspc_2021_103270
crossref_primary_10_1016_j_cmpb_2022_106901
crossref_primary_10_1016_j_bspc_2023_105499
crossref_primary_10_1016_j_bspc_2023_105774
crossref_primary_10_1109_TIM_2022_3181276
crossref_primary_10_3390_s23177521
crossref_primary_10_1038_s41598_022_18293_7
crossref_primary_10_1016_j_asoc_2024_112225
crossref_primary_10_1016_j_petrol_2022_110844
crossref_primary_10_3390_photonics10020177
crossref_primary_10_1016_j_bea_2022_100048
crossref_primary_10_1007_s13755_022_00192_w
crossref_primary_10_1109_JBHI_2022_3171918
crossref_primary_10_1007_s13246_024_01391_3
crossref_primary_10_1063_5_0212068
crossref_primary_10_1109_TNSE_2022_3184523
crossref_primary_10_1016_j_ins_2021_06_022
crossref_primary_10_1109_JBHI_2022_3173655
crossref_primary_10_3389_fphys_2024_1362185
crossref_primary_10_1109_TBCAS_2023_3299084
crossref_primary_10_3390_bioengineering12010044
crossref_primary_10_1186_s12911_024_02695_w
Cites_doi 10.1016/j.amepre.2005.07.021
10.3346/jkms.2019.34.e64
10.1109/18.382009
10.1161/CIRCULATIONAHA.105.595140
10.1109/EMBC.2017.8037253
10.1016/j.bspc.2017.12.004
10.1080/10798587.2013.771456
10.1109/10.846677
10.1093/eurheartj/eht280
10.1109/TPAMI.2018.2858826
10.3844/ajassp.2008.276.281
10.1016/j.compbiomed.2016.03.015
10.1109/TASLP.2015.2400218
10.1162/neco.1997.9.8.1735
10.1109/10.740882
10.3390/s20030765
10.2459/JCM.0000000000000239
10.1016/j.jacc.2020.02.025
10.1109/TBME.2004.824138
10.1142/S0218488598000094
10.2174/1573403X15666181205110624
10.1109/ICACSIS.2016.7872805
10.1016/j.compbiomed.2017.08.022
10.1109/51.932724
10.1038/nature14539
10.1016/j.bbe.2018.04.004
10.1145/3340074.3340088
10.1109/10.686788
10.1097/WCO.0000000000000410
10.3390/e19120677
10.1161/CIRCULATIONAHA.113.005119
10.1109/HealthCom.2017.8210784
10.1155/2015/587361
10.1088/1361-6579/aae304
10.1109/BIBM.2013.6732594
10.1109/TSMC.2017.2705582
10.1109/JBHI.2014.2361659
10.1016/S1386-5056(98)00138-5
10.1093/biomet/81.3.425
10.1016/j.procs.2012.09.053
10.1016/j.compbiomed.2018.06.002
10.3390/biom8030066
10.2147/CLEP.S47385
10.1186/s12911-019-0946-1
10.1093/europace/euq350
10.1111/anae.14118
10.3390/s20113069
10.23884/ejt.2017.7.2.11
10.1109/DSAA.2015.7344872
10.1109/EMBC.2019.8857737
10.1613/jair.953
10.1016/j.jelectrocard.2016.07.033
10.1109/TASLP.2017.2758999
10.1016/j.compbiomed.2018.07.001
10.1016/j.eswa.2018.08.011
10.1016/j.amjcard.2009.07.022
10.1016/j.compbiomed.2018.03.016
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2020.102194
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2020_102194
S1746809420303323
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-ca9bed5bf833954bb12d3f4007f28c0b2f0e7accd554e68ad5bc046f1fd4fc7d3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 01:34:08 EDT 2025
Fri Feb 23 02:45:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords atrial fibrillation
arrhythmia detection
CNN
LSTM
focal loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-ca9bed5bf833954bb12d3f4007f28c0b2f0e7accd554e68ad5bc046f1fd4fc7d3
ORCID 0000-0002-4919-0664
0000-0002-3371-569X
ParticipantIDs crossref_primary_10_1016_j_bspc_2020_102194
crossref_citationtrail_10_1016_j_bspc_2020_102194
elsevier_sciencedirect_doi_10_1016_j_bspc_2020_102194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Islam, Ammour, Alajlan, Aboalsamh (bib0325) 2016; 72
Erdenebayar, Kim, Park, Kang, Lee (bib0075) 2019; 34
Mrazova, Kukacka (bib0195) 2012; 12
Lee, Jung, Gil, Son (bib0080) 2019; 19
Chawla, Bowyer, Hall, Kegelmeyer (bib0270) 2002; 16
Weil, Ozcan (bib0015) 2015
Miyasaka, Barnes, Gersh, Cha, Bailey, Abhayaratna (bib0130) 2006; 114
Coskun, Yildirim, Ucar, Demir (bib0070) 2017; 7
Moody, Goldberger, McClennen, Swiryn (bib0235) 2001; 28
Naccarelli, Varker, Lin, Schulman (bib0030) 2009; 104
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley, PhysioBank, PhysioToolkit, PhysioNet (bib0210) 2003; 101
Vaseghi (bib0295) 2009
Osowski, Hoai, Markiewicz (bib0175) 2004; 51
Khazaee, Ebrahimzadeh (bib0050) 2013; 19
Xu, Wei, Ma, Luo, Zhang, Liu (bib0245) 2018
Carbonell, Michalski, Mitchell (bib0190) 1983
Lin, Goyal, Girshick, He, Dollar (bib0320) 2020; 42
Kim, Pyun (bib0265) 2020; 20
Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries (bib0005) 2010; Vol. 2
Cerasuolo, Cipriano, Sposato (bib0150) 2017; 30
Hochreiter (bib0250) 1998; 06
Afonso, Tompkins, Nguyen, Luo (bib0170) 1999; 46
Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (bib0180) 2000; 47
Zoni-Berisso, Lercari, Carazza, Domenicucci (bib0125) 2014; 6
Chauhan, Vig (bib0105) 2015
Sanabila, Kusuma, Jatmiko (bib0275) 2016
Oh, Ng, Tan, Acharya (bib0090) 2018; 102
European Heart Rhythm A, European Association for Cardio‐Thoracic S, Camm, Kirchhof, Lip, Schotten, Savelieva, Ernst, van Gelder, Al-Attar, Hindricks, Prendergast, Heidbuchel, Alfieri, Angelini, Atar, Colonna, De Caterina, De Sutter, Goette (bib0160) 2010; 12
Yildirim (bib0260) 2018; 96
Rajesh, Dhuli (bib0280) 2018; 41
Butterworth (bib0300) 1930; 7
Li, Zhang, Zhang, Wei (bib0205) 2017
Faust, Shenfield, Kareem, San, Fujita, Acharya (bib0350) 2018; 102
Maglaveras, Stamkopoulos, Pappas, Strintzis (bib0065) 1998; 45
Czabanski, Horoba, Wrobel, Matonia, Martinek, Kupka (bib0360) 2020; 20
Srivastava, Prasad (bib0165) 2013; 2
Sundermeyer, Ney, Schluter (bib0100) 2015; 23
Krijthe, Kunst, Benjamin, Lip, Franco, Hofman (bib0135) 2013; 34
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0225) 2017; 89
Saxena, Sharma, Srivastav, Gupta (bib0290) 2018; 2
Chung, Refaat, Shen, Kutyifa, Cha, Di Biase (bib0155) 2020; 75
Park, Lee, Kang (bib0055) 2013
LeCun, Bengio, Hinton (bib0200) 2015; 521
Donoho (bib0310) 1995; 41
Pourbabaee, Roshtkhari, Khorasani (bib0230) 2018; 48
Betancourt, Flores-Calero, Almeida (bib0285) 2019
Tadesse, Zhu, Liu, Zhou, Chen, Tian, Clifton (bib0045) 2019
Castro, Felix, Presedo (bib0185) 2015; 19
Sodmann, Vollmer, Nath, Kaderali (bib0035) 2018; 39
Kumar, Pachori, Rajendra Acharya (bib0345) 2018; 38
Donoho, Johnstone (bib0305) 1994; 81
Hochreiter, Schmidhuber (bib0085) 1997; 9
Andersen, Poulsen, Puthusserypady (bib0335) 2017
Kim, Cao, Mau, Wang (bib0095) 2017; 25
Ochiai, Takahashi, Fukazawa (bib0220) 2018
Chebbout, Heywood, Drake, Wild, Lee, Wilson, Lee (bib0020) 2017; 73
Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin (bib0140) 2014; 129
Andersen, Peimankar, Puthusserypady (bib0355) 2019; 115
Jun, Nguyen, Kang, Kim, Kim, Kim (bib0240) 2018
Aarabi, Schnabel, Heydecke, Seedorf (bib0010) 2018; 8
Anselmino, Battaglia, Gallo, Gili, Matta, Castagno (bib0025) 2015; 16
Gao, Zhang, Lu, Wang (bib0255) 2019
Maglaveras, Stamkopoulos, Diamantaras, Pappas, Strintzis (bib0060) 1998; 52
Hao, Gao, Li, Zhang, Wu, Bai (bib0040) 2019
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bib0115) 2000; 101
Cui, Chang, Yang, Jiang, Yang, Peng (bib0340) 2017; 19
Westerman, Wenger (bib0145) 2019; 15
Alfaouri, Daqrouq (bib0315) 2008; 5
Moody, Mark (bib0215) 2001; 20
Moody, Mark (bib0110) 1983; 10
Valderrama, Dunbar, Mensah (bib0120) 2005; 29
Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (bib0330) 2016; 49
Park (10.1016/j.bspc.2020.102194_bib0055) 2013
Lee (10.1016/j.bspc.2020.102194_bib0080) 2019; 19
Moody (10.1016/j.bspc.2020.102194_bib0215) 2001; 20
Maglaveras (10.1016/j.bspc.2020.102194_bib0060) 1998; 52
Moody (10.1016/j.bspc.2020.102194_bib0110) 1983; 10
Srivastava (10.1016/j.bspc.2020.102194_bib0165) 2013; 2
Vaseghi (10.1016/j.bspc.2020.102194_bib0295) 2009
Chung (10.1016/j.bspc.2020.102194_bib0155) 2020; 75
Miyasaka (10.1016/j.bspc.2020.102194_bib0130) 2006; 114
Ochiai (10.1016/j.bspc.2020.102194_bib0220) 2018
Rajesh (10.1016/j.bspc.2020.102194_bib0280) 2018; 41
Islam (10.1016/j.bspc.2020.102194_bib0325) 2016; 72
Chebbout (10.1016/j.bspc.2020.102194_bib0020) 2017; 73
Tadesse (10.1016/j.bspc.2020.102194_bib0045) 2019
Westerman (10.1016/j.bspc.2020.102194_bib0145) 2019; 15
Lin (10.1016/j.bspc.2020.102194_bib0320) 2020; 42
Kumar (10.1016/j.bspc.2020.102194_bib0345) 2018; 38
Kennedy (10.1016/j.bspc.2020.102194_bib0330) 2016; 49
LeCun (10.1016/j.bspc.2020.102194_bib0200) 2015; 521
Afonso (10.1016/j.bspc.2020.102194_bib0170) 1999; 46
Czabanski (10.1016/j.bspc.2020.102194_bib0360) 2020; 20
Krijthe (10.1016/j.bspc.2020.102194_bib0135) 2013; 34
Andersen (10.1016/j.bspc.2020.102194_bib0355) 2019; 115
Kim (10.1016/j.bspc.2020.102194_bib0265) 2020; 20
Faust (10.1016/j.bspc.2020.102194_bib0350) 2018; 102
Hochreiter (10.1016/j.bspc.2020.102194_bib0250) 1998; 06
Anselmino (10.1016/j.bspc.2020.102194_bib0025) 2015; 16
Aarabi (10.1016/j.bspc.2020.102194_bib0010) 2018; 8
European Heart Rhythm A (10.1016/j.bspc.2020.102194_bib0160) 2010; 12
Lagerholm (10.1016/j.bspc.2020.102194_bib0180) 2000; 47
Maglaveras (10.1016/j.bspc.2020.102194_bib0065) 1998; 45
Cui (10.1016/j.bspc.2020.102194_bib0340) 2017; 19
Valderrama (10.1016/j.bspc.2020.102194_bib0120) 2005; 29
Sanabila (10.1016/j.bspc.2020.102194_bib0275) 2016
Khazaee (10.1016/j.bspc.2020.102194_bib0050) 2013; 19
Hao (10.1016/j.bspc.2020.102194_bib0040) 2019
Chugh (10.1016/j.bspc.2020.102194_bib0140) 2014; 129
Mrazova (10.1016/j.bspc.2020.102194_bib0195) 2012; 12
Zoni-Berisso (10.1016/j.bspc.2020.102194_bib0125) 2014; 6
Hochreiter (10.1016/j.bspc.2020.102194_bib0085) 1997; 9
Naccarelli (10.1016/j.bspc.2020.102194_bib0030) 2009; 104
Kim (10.1016/j.bspc.2020.102194_bib0095) 2017; 25
Castro (10.1016/j.bspc.2020.102194_bib0185) 2015; 19
Erdenebayar (10.1016/j.bspc.2020.102194_bib0075) 2019; 34
Sundermeyer (10.1016/j.bspc.2020.102194_bib0100) 2015; 23
Gao (10.1016/j.bspc.2020.102194_bib0255) 2019
Oh (10.1016/j.bspc.2020.102194_bib0090) 2018; 102
Donoho (10.1016/j.bspc.2020.102194_bib0305) 1994; 81
Li (10.1016/j.bspc.2020.102194_bib0205) 2017
Butterworth (10.1016/j.bspc.2020.102194_bib0300) 1930; 7
Cerasuolo (10.1016/j.bspc.2020.102194_bib0150) 2017; 30
Goldberger (10.1016/j.bspc.2020.102194_bib0210) 2003; 101
Yildirim (10.1016/j.bspc.2020.102194_bib0260) 2018; 96
Coskun (10.1016/j.bspc.2020.102194_bib0070) 2017; 7
Chawla (10.1016/j.bspc.2020.102194_bib0270) 2002; 16
Betancourt (10.1016/j.bspc.2020.102194_bib0285) 2019
Osowski (10.1016/j.bspc.2020.102194_bib0175) 2004; 51
Chauhan (10.1016/j.bspc.2020.102194_bib0105) 2015
Carbonell (10.1016/j.bspc.2020.102194_bib0190) 1983
Moody (10.1016/j.bspc.2020.102194_bib0235) 2001; 28
Weil (10.1016/j.bspc.2020.102194_bib0015) 2015
Jun (10.1016/j.bspc.2020.102194_bib0240) 2018
Saxena (10.1016/j.bspc.2020.102194_bib0290) 2018; 2
Donoho (10.1016/j.bspc.2020.102194_bib0310) 1995; 41
Pourbabaee (10.1016/j.bspc.2020.102194_bib0230) 2018; 48
Alfaouri (10.1016/j.bspc.2020.102194_bib0315) 2008; 5
Acharya (10.1016/j.bspc.2020.102194_bib0225) 2017; 89
Xu (10.1016/j.bspc.2020.102194_bib0245) 2018
Andersen (10.1016/j.bspc.2020.102194_bib0335) 2017
Sodmann (10.1016/j.bspc.2020.102194_bib0035) 2018; 39
Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries (10.1016/j.bspc.2020.102194_bib0005) 2010; Vol. 2
Goldberger (10.1016/j.bspc.2020.102194_bib0115) 2000; 101
References_xml – volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0085
  article-title: Long Short-Term Memory
  publication-title: Neural Computation
– volume: 30
  start-page: 28
  year: 2017
  end-page: 37
  ident: bib0150
  article-title: The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack
  publication-title: Current Opinion in Neurology
– year: 2018
  ident: bib0240
  article-title: ECG arrhythmia classification using a 2-D convolutional neural network
  publication-title: ArXiv
– volume: 72
  start-page: 160
  year: 2016
  end-page: 169
  ident: bib0325
  article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection
  publication-title: Computers in Biology and Medicine
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: bib0350
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Computers in Biology and Medicine
– volume: 29
  start-page: 75
  year: 2005
  end-page: 80
  ident: bib0120
  article-title: Atrial Fibrillation
  publication-title: American Journal of Preventive Medicine
– volume: 52
  start-page: 191
  year: 1998
  end-page: 208
  ident: bib0060
  article-title: ECG pattern recognition and classification using non-linear transformations and neural networks: A review
  publication-title: International Journal of Medical Informatics
– volume: 7
  start-page: 536
  year: 1930
  end-page: 541
  ident: bib0300
  article-title: On the Theory of Filter Amplifiers
  publication-title: Experimental Wireless and the Wireless Engineer
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0200
  article-title: Deep learning
  publication-title: Nature
– volume: 47
  start-page: 838
  year: 2000
  end-page: 848
  ident: bib0180
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: bib0305
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 34
  start-page: 2746
  year: 2013
  end-page: 2751
  ident: bib0135
  article-title: Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060
  publication-title: European Heart Journal
– volume: 101
  start-page: 215
  year: 2003
  end-page: 220
  ident: bib0210
  article-title: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0245
  article-title: Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks
  publication-title: Journal of Healthcare Engineering
– volume: 20
  start-page: 3069
  year: 2020
  ident: bib0265
  article-title: ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks
  publication-title: Sensors
– volume: 28
  start-page: 113
  year: 2001
  end-page: 116
  ident: bib0235
  article-title: Predicting the Onset of Paroxysmal Atrial Fibrillation: The Computers in Cardiology Challenge 2001
  publication-title: Computers in Cardiology
– volume: 6
  start-page: 213
  year: 2014
  end-page: 220
  ident: bib0125
  article-title: Epidemiology of atrial fibrillation: European perspective
  publication-title: Clinical Epidemiology
– volume: 75
  start-page: 1689
  year: 2020
  end-page: 1713
  ident: bib0155
  article-title: Atrial Fibrillation
  publication-title: Journal of the American College of Cardiology
– volume: 2
  start-page: 44
  year: 2013
  end-page: 50
  ident: bib0165
  article-title: DWT-Based Feature Extraction from ecg Signal
  publication-title: American J. of Eng. Research (AJER)
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: bib0090
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
– volume: 104
  start-page: 1534
  year: 2009
  end-page: 1539
  ident: bib0030
  article-title: Increasing Prevalence of Atrial Fibrillation and Flutter in the United States
  publication-title: The American Journal of Cardiology
– volume: 49
  start-page: 871
  year: 2016
  end-page: 876
  ident: bib0330
  article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
  publication-title: Journal of Electrocardiology
– volume: 16
  start-page: 795
  year: 2015
  end-page: 801
  ident: bib0025
  article-title: Atrial fibrillation and female sex
  publication-title: Journal of Cardiovascular Medicine
– volume: 39
  start-page: 104005
  year: 2018
  ident: bib0035
  article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
  publication-title: Physiological Measurement
– volume: Vol. 2
  year: 2010
  ident: bib0005
  article-title: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health
  publication-title: Epidemiology of Cardiovascular Disease
– volume: 5
  start-page: 276
  year: 2008
  end-page: 281
  ident: bib0315
  article-title: ECG Signal Denoising By Wavelet Transform Thresholding
  publication-title: American Journal of Applied Sciences
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0115
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation [Online].
– start-page: 111
  year: 2019
  end-page: 117
  ident: bib0285
  article-title: ECG Denoising by using FIR and IIR Filtering Techniques
  publication-title: Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology
– volume: 19
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0050
  article-title: Heart Arrhythmia Detection using support vector machines
  publication-title: Intelligent Automation & Soft Computing
– volume: 46
  start-page: 192
  year: 1999
  end-page: 202
  ident: bib0170
  article-title: ECG beat detection using filter banks
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 25
  start-page: 2323
  year: 2017
  end-page: 2336
  ident: bib0095
  article-title: Speaker-Independent Silent Speech Recognition From Flesh-Point Articulatory Movements Using an LSTM Neural Network
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 51
  start-page: 582
  year: 2004
  end-page: 589
  ident: bib0175
  article-title: Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 12
  start-page: 1360
  year: 2010
  end-page: 1420
  ident: bib0160
  article-title: Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC)
  publication-title: EP Europace
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: bib0225
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Computers in Biology and Medicine
– volume: 20
  start-page: 765
  year: 2020
  ident: bib0360
  article-title: Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine
  publication-title: Sensors
– volume: 06
  start-page: 107
  year: 1998
  end-page: 116
  ident: bib0250
  article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
  publication-title: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: bib0355
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Systems with Applications
– year: 2009
  ident: bib0295
  article-title: Advanced Digital Signal Processing and Noise Reduction
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: bib0320
  article-title: Focal Loss for Dense Object Detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2019
  ident: bib0045
  article-title: Cardiovascular disease diagnosis using cross-domain transfer learning
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 34
  year: 2019
  ident: bib0075
  article-title: Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal
  publication-title: Journal of Korean Medical Science
– volume: 10
  start-page: 227
  year: 1983
  end-page: 230
  ident: bib0110
  article-title: A new method for detecting atrial fibrillation using R-R intervals
  publication-title: Computers in Cardiology
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: bib0310
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Transactions on Information Theory
– start-page: 2039
  year: 2017
  end-page: 2042
  ident: bib0335
  article-title: A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 15
  year: 2013
  end-page: 22
  ident: bib0055
  article-title: Arrhythmia detection from heartbeat using k-nearest neighbor classifier
  publication-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 114
  start-page: 119
  year: 2006
  end-page: 125
  ident: bib0130
  article-title: Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence
  publication-title: Circulation
– volume: 12
  start-page: 194
  year: 2012
  end-page: 199
  ident: bib0195
  article-title: Can Deep Neural Networks Discover Meaningful Pattern Features?
  publication-title: Procedia Computer Science
– volume: 129
  start-page: 837
  year: 2014
  end-page: 847
  ident: bib0140
  article-title: Worldwide Epidemiology of Atrial Fibrillation
  publication-title: Circulation
– volume: 19
  start-page: 677
  year: 2017
  ident: bib0340
  article-title: Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach
  publication-title: Entropy
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0270
  article-title: SMOTE: Synthetic Minority Over-sampling Technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 2
  start-page: 51
  year: 2018
  end-page: 58
  ident: bib0290
  article-title: Denoising of ECG Signals Using FIR & IIR Filter: A Performance Analysis
  publication-title: International Journal of Engineering & Technology
– start-page: 105286
  year: 2019
  ident: bib0040
  article-title: Multi-branch Fusion Network for Myocardial Infarction Screening from 12-lead ECG Images
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 8
  start-page: 66
  year: 2018
  ident: bib0010
  article-title: Potential Impact of Oral Inflammations on Cardiac Functions and Atrial Fibrillation
  publication-title: Biomolecules
– volume: 19
  start-page: 1660
  year: 2015
  end-page: 1671
  ident: bib0185
  article-title: A Method for Context-Based Adaptive QRS Clustering in Real Time
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2017
  ident: bib0205
  article-title: Classification of ECG signals based on 1D convolution neural network
  publication-title: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom)
– year: 2015
  ident: bib0105
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
  publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 15
  start-page: 136
  year: 2019
  end-page: 144
  ident: bib0145
  article-title: Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes
  publication-title: Current Cardiology Reviews
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: bib0215
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– year: 1983
  ident: bib0190
  article-title: An Overview of Machine Learning
  publication-title: Machine Learning. Symbolic Computation
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0015
  article-title: Cardiomyocyte Remodeling in Atrial Fibrillation and Hibernating Myocardium: Shared Pathophysiologic Traits Identify Novel Treatment Strategies?
  publication-title: BioMed Research International
– year: 2018
  ident: bib0220
  article-title: Arrhythmia Detection from 2-lead ECG using Convolutional Denoising Autoencoders
– volume: 48
  start-page: 2095
  year: 2018
  end-page: 2104
  ident: bib0230
  article-title: Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 45
  start-page: 805
  year: 1998
  end-page: 813
  ident: bib0065
  article-title: An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 19
  year: 2019
  ident: bib0080
  article-title: Atrial fibrillation classification based on convolutional neural networks
  publication-title: BMC Medical Informatics and Decision Making
– volume: 41
  start-page: 242
  year: 2018
  end-page: 254
  ident: bib0280
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
  publication-title: Biomedical Signal Processing and Control
– volume: 73
  start-page: 490
  year: 2017
  end-page: 498
  ident: bib0020
  article-title: A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery
  publication-title: Anaesthesia
– volume: 23
  start-page: 517
  year: 2015
  end-page: 529
  ident: bib0100
  article-title: From Feedforward to Recurrent LSTM Neural Networks for Language Modeling
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 38
  start-page: 564
  year: 2018
  end-page: 573
  ident: bib0345
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybernetics and Biomedical Engineering
– start-page: 572
  year: 2016
  end-page: 577
  ident: bib0275
  article-title: Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data
  publication-title: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: bib0260
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Computers in Biology and Medicine
– volume: 7
  start-page: 165
  year: 2017
  end-page: 176
  ident: bib0070
  article-title: An overview of popular deep learning methods
  publication-title: European Journal of Technic
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib0255
  article-title: An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
  publication-title: Journal of Healthcare Engineering
– volume: Vol. 2
  year: 2010
  ident: 10.1016/j.bspc.2020.102194_bib0005
  article-title: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health
– volume: 29
  start-page: 75
  issue: 5
  year: 2005
  ident: 10.1016/j.bspc.2020.102194_bib0120
  article-title: Atrial Fibrillation
  publication-title: American Journal of Preventive Medicine
  doi: 10.1016/j.amepre.2005.07.021
– volume: 34
  issue: 7
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0075
  article-title: Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal
  publication-title: Journal of Korean Medical Science
  doi: 10.3346/jkms.2019.34.e64
– volume: 7
  start-page: 536
  year: 1930
  ident: 10.1016/j.bspc.2020.102194_bib0300
  article-title: On the Theory of Filter Amplifiers
  publication-title: Experimental Wireless and the Wireless Engineer
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10.1016/j.bspc.2020.102194_bib0310
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.382009
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0245
  article-title: Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks
  publication-title: Journal of Healthcare Engineering
– volume: 114
  start-page: 119
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2020.102194_bib0130
  article-title: Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.595140
– start-page: 2039
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0335
  article-title: A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  doi: 10.1109/EMBC.2017.8037253
– volume: 41
  start-page: 242
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0280
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.12.004
– volume: 19
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.bspc.2020.102194_bib0050
  article-title: Heart Arrhythmia Detection using support vector machines
  publication-title: Intelligent Automation & Soft Computing
  doi: 10.1080/10798587.2013.771456
– volume: 47
  start-page: 838
  issue: 7
  year: 2000
  ident: 10.1016/j.bspc.2020.102194_bib0180
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.846677
– volume: 34
  start-page: 2746
  issue: 35
  year: 2013
  ident: 10.1016/j.bspc.2020.102194_bib0135
  article-title: Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/eht280
– year: 2009
  ident: 10.1016/j.bspc.2020.102194_bib0295
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2020.102194_bib0320
  article-title: Focal Loss for Dense Object Detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2858826
– volume: 10
  start-page: 227
  year: 1983
  ident: 10.1016/j.bspc.2020.102194_bib0110
  article-title: A new method for detecting atrial fibrillation using R-R intervals
  publication-title: Computers in Cardiology
– volume: 5
  start-page: 276
  issue: 3
  year: 2008
  ident: 10.1016/j.bspc.2020.102194_bib0315
  article-title: ECG Signal Denoising By Wavelet Transform Thresholding
  publication-title: American Journal of Applied Sciences
  doi: 10.3844/ajassp.2008.276.281
– volume: 72
  start-page: 160
  year: 2016
  ident: 10.1016/j.bspc.2020.102194_bib0325
  article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2016.03.015
– volume: 23
  start-page: 517
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0100
  article-title: From Feedforward to Recurrent LSTM Neural Networks for Language Modeling
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2015.2400218
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.bspc.2020.102194_bib0085
  article-title: Long Short-Term Memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 46
  start-page: 192
  issue: 2
  year: 1999
  ident: 10.1016/j.bspc.2020.102194_bib0170
  article-title: ECG beat detection using filter banks
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.740882
– volume: 20
  start-page: 765
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2020.102194_bib0360
  article-title: Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine
  publication-title: Sensors
  doi: 10.3390/s20030765
– volume: 16
  start-page: 795
  issue: 12
  year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0025
  article-title: Atrial fibrillation and female sex
  publication-title: Journal of Cardiovascular Medicine
  doi: 10.2459/JCM.0000000000000239
– volume: 101
  start-page: 215
  issue: 23
  year: 2003
  ident: 10.1016/j.bspc.2020.102194_bib0210
  article-title: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
– volume: 2
  start-page: 44
  issue: 3
  year: 2013
  ident: 10.1016/j.bspc.2020.102194_bib0165
  article-title: DWT-Based Feature Extraction from ecg Signal
  publication-title: American J. of Eng. Research (AJER)
– volume: 75
  start-page: 1689
  issue: 14
  year: 2020
  ident: 10.1016/j.bspc.2020.102194_bib0155
  article-title: Atrial Fibrillation
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2020.02.025
– volume: 51
  start-page: 582
  issue: 4
  year: 2004
  ident: 10.1016/j.bspc.2020.102194_bib0175
  article-title: Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.824138
– volume: 06
  start-page: 107
  issue: 02
  year: 1998
  ident: 10.1016/j.bspc.2020.102194_bib0250
  article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
  publication-title: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
  doi: 10.1142/S0218488598000094
– volume: 15
  start-page: 136
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0145
  article-title: Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes
  publication-title: Current Cardiology Reviews
  doi: 10.2174/1573403X15666181205110624
– start-page: 572
  year: 2016
  ident: 10.1016/j.bspc.2020.102194_bib0275
  article-title: Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data
  publication-title: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)
  doi: 10.1109/ICACSIS.2016.7872805
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0225
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.bspc.2020.102194_bib0215
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.932724
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0200
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 38
  start-page: 564
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0345
  article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2018.04.004
– start-page: 111
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0285
  article-title: ECG Denoising by using FIR and IIR Filtering Techniques
  publication-title: Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology
  doi: 10.1145/3340074.3340088
– volume: 2
  start-page: 51
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0290
  article-title: Denoising of ECG Signals Using FIR & IIR Filter: A Performance Analysis
  publication-title: International Journal of Engineering & Technology
– volume: 45
  start-page: 805
  issue: 7
  year: 1998
  ident: 10.1016/j.bspc.2020.102194_bib0065
  article-title: An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.686788
– volume: 30
  start-page: 28
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0150
  article-title: The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0000000000000410
– volume: 19
  start-page: 677
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0340
  article-title: Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach
  publication-title: Entropy
  doi: 10.3390/e19120677
– volume: 129
  start-page: 837
  issue: 8
  year: 2014
  ident: 10.1016/j.bspc.2020.102194_bib0140
  article-title: Worldwide Epidemiology of Atrial Fibrillation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0255
  article-title: An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
  publication-title: Journal of Healthcare Engineering
– year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0205
  article-title: Classification of ECG signals based on 1D convolution neural network
  publication-title: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom)
  doi: 10.1109/HealthCom.2017.8210784
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0015
  article-title: Cardiomyocyte Remodeling in Atrial Fibrillation and Hibernating Myocardium: Shared Pathophysiologic Traits Identify Novel Treatment Strategies?
  publication-title: BioMed Research International
  doi: 10.1155/2015/587361
– volume: 39
  start-page: 104005
  issue: 10
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0035
  article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
  publication-title: Physiological Measurement
  doi: 10.1088/1361-6579/aae304
– start-page: 15
  year: 2013
  ident: 10.1016/j.bspc.2020.102194_bib0055
  article-title: Arrhythmia detection from heartbeat using k-nearest neighbor classifier
  publication-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine
  doi: 10.1109/BIBM.2013.6732594
– volume: 48
  start-page: 2095
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0230
  article-title: Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2705582
– year: 1983
  ident: 10.1016/j.bspc.2020.102194_bib0190
  article-title: An Overview of Machine Learning
– volume: 19
  start-page: 1660
  issue: 5
  year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0185
  article-title: A Method for Context-Based Adaptive QRS Clustering in Real Time
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2014.2361659
– volume: 52
  start-page: 191
  issue: 1–3
  year: 1998
  ident: 10.1016/j.bspc.2020.102194_bib0060
  article-title: ECG pattern recognition and classification using non-linear transformations and neural networks: A review
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/S1386-5056(98)00138-5
– volume: 81
  start-page: 425
  issue: 3
  year: 1994
  ident: 10.1016/j.bspc.2020.102194_bib0305
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 12
  start-page: 194
  year: 2012
  ident: 10.1016/j.bspc.2020.102194_bib0195
  article-title: Can Deep Neural Networks Discover Meaningful Pattern Features?
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2012.09.053
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0090
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 8
  start-page: 66
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0010
  article-title: Potential Impact of Oral Inflammations on Cardiac Functions and Atrial Fibrillation
  publication-title: Biomolecules
  doi: 10.3390/biom8030066
– volume: 6
  start-page: 213
  year: 2014
  ident: 10.1016/j.bspc.2020.102194_bib0125
  article-title: Epidemiology of atrial fibrillation: European perspective
  publication-title: Clinical Epidemiology
  doi: 10.2147/CLEP.S47385
– volume: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0080
  article-title: Atrial fibrillation classification based on convolutional neural networks
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-019-0946-1
– start-page: 105286
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0040
  article-title: Multi-branch Fusion Network for Myocardial Infarction Screening from 12-lead ECG Images
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 12
  start-page: 1360
  issue: 10
  year: 2010
  ident: 10.1016/j.bspc.2020.102194_bib0160
  article-title: Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC)
  publication-title: EP Europace
  doi: 10.1093/europace/euq350
– year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0220
– volume: 73
  start-page: 490
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0020
  article-title: A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery
  publication-title: Anaesthesia
  doi: 10.1111/anae.14118
– volume: 28
  start-page: 113
  year: 2001
  ident: 10.1016/j.bspc.2020.102194_bib0235
  article-title: Predicting the Onset of Paroxysmal Atrial Fibrillation: The Computers in Cardiology Challenge 2001
  publication-title: Computers in Cardiology
– volume: 20
  start-page: 3069
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2020.102194_bib0265
  article-title: ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks
  publication-title: Sensors
  doi: 10.3390/s20113069
– volume: 7
  start-page: 165
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0070
  article-title: An overview of popular deep learning methods
  publication-title: European Journal of Technic
  doi: 10.23884/ejt.2017.7.2.11
– year: 2015
  ident: 10.1016/j.bspc.2020.102194_bib0105
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
  publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
  doi: 10.1109/DSAA.2015.7344872
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.bspc.2020.102194_bib0115
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation [Online].
– year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0045
  article-title: Cardiovascular disease diagnosis using cross-domain transfer learning
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  doi: 10.1109/EMBC.2019.8857737
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.bspc.2020.102194_bib0270
  article-title: SMOTE: Synthetic Minority Over-sampling Technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 49
  start-page: 871
  issue: 6
  year: 2016
  ident: 10.1016/j.bspc.2020.102194_bib0330
  article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
  publication-title: Journal of Electrocardiology
  doi: 10.1016/j.jelectrocard.2016.07.033
– volume: 25
  start-page: 2323
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2020.102194_bib0095
  article-title: Speaker-Independent Silent Speech Recognition From Flesh-Point Articulatory Movements Using an LSTM Neural Network
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2017.2758999
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0350
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.bspc.2020.102194_bib0355
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.011
– volume: 104
  start-page: 1534
  issue: 11
  year: 2009
  ident: 10.1016/j.bspc.2020.102194_bib0030
  article-title: Increasing Prevalence of Atrial Fibrillation and Flutter in the United States
  publication-title: The American Journal of Cardiology
  doi: 10.1016/j.amjcard.2009.07.022
– year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0240
  article-title: ECG arrhythmia classification using a 2-D convolutional neural network
  publication-title: ArXiv
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.bspc.2020.102194_bib0260
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
SSID ssj0048714
Score 2.6223524
Snippet •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102194
SubjectTerms arrhythmia detection
atrial fibrillation
CNN
focal loss
LSTM
Title Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets
URI https://dx.doi.org/10.1016/j.bspc.2020.102194
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZM-ZQ-9la1JdrMmR_FR7SMXFbyFfRaLVanx0Et_e3eSKBaKh17DDIQvw8y34dtvELqzkWctZ4oYQT3ChNBEWMqI5DziDREC6QC1RcJ7I_Y0DscV1FrfhQFZZdn7i56ed-vySb1Es76YTOoDx6V55E4ngatTSgNw_GSsAVX-8L2ReTg-nvt7QzCB6PLiTKHxkssF2BgGuYOBH7O_h9PWwOkeocOSKeJm8TLHqGJmJ-hgyz_wFMnmKps7ymk0bubrN3AXFPzTQt-G2ybLhVYzDOr2Nyxw7wsuaOFWkpCXwfAVJ4UIHLuQ_ocElaMDBHdaj7gtMjffsuUZGnU7w1aPlEsTiKKcZ0SJWBodShtRGodMSj_Q1ML2cxtEypOB9UxDKKUdjzA8Ei5UuTOy9a1mVjU0PUfV2XxmLhDWrgNFnoh9l8Bij8ZSxtq6-S4ZE4bRS-Sv0UpV6SgOiy2m6Vo69p4CwikgnBYIX6L7Tc6i8NPYGR2uP0L6qypS1_B35F39M-8a7QegWcl_sdygava5MreOdGSylldVDe01-8-95AeUXdXZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqAcEC2tSnntoT1V29i764194BAlhKQEXwgSN3efFQhCRIwqLv1T_YPM-oGohDggcbV2rPXMaOYb65sZgK8-jbyXwlCneESFUpYqzwXVUqayq5IAOgLbIpejU_HzLDlbgn9tL0ygVTaxv47pVbRunnQabXbm5-edE8TSMsXqhKGfcs7aDdZH7u4P1m2L_fEAjfyNseHBtD-izWoBariUJTUq084m2qecZ4nQOmaW-7Aj3LPURJr5yHWVMRazrZOpwqMGK0kfeyu86VqO730DbwWGi7A24cffB14JFgDVQPFwOxqu13Tq1KQyvZiHuYmsGpkQZ-LpbPgoww3XYa2BpqRXf_17WHKzD7D6aGDhBujebXmNGNdZ0qv2fZBhaBm4rAl1ZODKitk1I4FO_5soMroLHWGkn-d0cjI9JnnNOid4ZHylA60SLUAO-odkoEpMqOXiI5y-iio_wfLseuY-A7EY8tJIZTEKiCzimdaZ9QgotBDKCb4JcautwjQjzMMmjcui5apdFEHDRdBwUWt4E74_yMzrAR7Pnk5aIxT_uWGBGeYZuS8vlNuDldH0eFJMxvnRFrxjgTBT_d_ZhuXy5tbtIOIp9W7lYQR-vbZL3wNzihPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Atrial+Fibrillation+Detection+using+a+Hybrid+CNN-LSTM+Network+on+Imbalanced+ECG+Datasets&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Petmezas%2C+Georgios&rft.au=Haris%2C+Kostas&rft.au=Stefanopoulos%2C+Leandros&rft.au=Kilintzis%2C+Vassilis&rft.date=2021-01-01&rft.issn=1746-8094&rft.volume=63&rft.spage=102194&rft_id=info:doi/10.1016%2Fj.bspc.2020.102194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2020_102194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon