Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets
•The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function...
Saved in:
Published in | Biomedical signal processing and control Vol. 63; p. 102194 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function for ECG classification.•The proposed methodology could be used for real-time arrhythmia detection as the prediction phase lasts only a few seconds.
Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The proposed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG. |
---|---|
AbstractList | •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The proposed model performs well for highly imbalanced datasets.•Focal loss function delivers better results than the classic cross-entropy function for ECG classification.•The proposed methodology could be used for real-time arrhythmia detection as the prediction phase lasts only a few seconds.
Atrial fibrillation is a heart arrhythmia strongly associated with other heart-related complications that can increase the risk of strokes and heart failure. Manual electrocardiogram (ECG) interpretation for its diagnosis is tedious, time-consuming, requires high expertise, and suffers from inter- and intra-observer variability. Deep learning techniques could be exploited in order for robust arrhythmia detection models to be designed. In this paper, we propose a novel hybrid neural model utilizing focal loss, an improved version of cross-entropy loss, to deal with training data imbalance. ECG features initially extracted via a Convolutional Neural Network (CNN) are input to a Long Short-Term Memory (LSTM) model for temporal dynamics memorization and thus, more accurate classification into the four ECG rhythm types, namely normal (N), atrial fibrillation (AFIB), atrial flutter (AFL) and AV junctional rhythm (J). The model was trained on the MIT-BIH Atrial Fibrillation Database and achieved a sensitivity of 97.87%, and specificity of 99.29% using a ten-fold cross-validation strategy. The proposed model can aid clinicians to detect common atrial fibrillation in real-time on routine screening ECG. |
ArticleNumber | 102194 |
Author | Maglaveras, Nicos Rogers, John A Petmezas, Georgios Stefanopoulos, Leandros Haris, Kostas Tzavelis, Andreas Katsaggelos, Aggelos K Kilintzis, Vassilis |
Author_xml | – sequence: 1 givenname: Georgios orcidid: 0000-0002-3371-569X surname: Petmezas fullname: Petmezas, Georgios organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 2 givenname: Kostas surname: Haris fullname: Haris, Kostas organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 3 givenname: Leandros surname: Stefanopoulos fullname: Stefanopoulos, Leandros organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 4 givenname: Vassilis surname: Kilintzis fullname: Kilintzis, Vassilis organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 5 givenname: Andreas surname: Tzavelis fullname: Tzavelis, Andreas organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA – sequence: 6 givenname: John A surname: Rogers fullname: Rogers, John A organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA – sequence: 7 givenname: Aggelos K surname: Katsaggelos fullname: Katsaggelos, Aggelos K organization: Dept of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA – sequence: 8 givenname: Nicos orcidid: 0000-0002-4919-0664 surname: Maglaveras fullname: Maglaveras, Nicos email: nicmag@med.auth.gr organization: Lab of Computing, Medical Informatics and Biomedical Imaging TechnologiesAristotle University of Thessaloniki, Thessaloniki, Greece |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6TYifOS2FTpUyphQVlbfiKXNKlsF9S_x2lhw6KrGc3MGemeERi0XasAeMRoghHOnnYT7g5iEqO4H8S4JDdgiHOSRQVGxeCvRyW5AyPndgiRIsdkCPj06Ls980rCqbeGNXBhuDVNw7zpWjhTXolzd3Sm_YAMrk5hLWFV19HmbfsCa-W_O_sJw8l6z1nDWhF-zaslnDHPnPLuHtxq1jj18FvH4H0x31araPO6XFfTTSSSLPORYCVXMuW6SJIyJZzjWCaaIJTruBCIxxqpnAkh05SorGDhVCCSaawl0SKXyRjEl7_Cds5ZpenBmj2zJ4oR7S3RHe0t0d4SvVgKUPEPEsafs3vLTHMdfb6gKoT6MspSJ4zq4xsbpFHZmWv4D6V9hdU |
CitedBy_id | crossref_primary_10_1007_s11227_021_03838_w crossref_primary_10_3390_bios14040201 crossref_primary_10_1016_j_trc_2021_103414 crossref_primary_10_1016_j_autcon_2022_104293 crossref_primary_10_1007_s41870_023_01241_7 crossref_primary_10_1007_s00500_023_08579_x crossref_primary_10_3390_math12172693 crossref_primary_10_1038_s41598_025_87115_3 crossref_primary_10_3390_s22166071 crossref_primary_10_3390_ijms23084216 crossref_primary_10_1016_j_eswa_2022_118540 crossref_primary_10_21595_mme_2021_22138 crossref_primary_10_1007_s13246_021_01005_2 crossref_primary_10_1016_j_bspc_2022_104424 crossref_primary_10_3390_s22031232 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_1109_TIM_2022_3232646 crossref_primary_10_1109_TIM_2025_3546413 crossref_primary_10_1109_TAI_2022_3184656 crossref_primary_10_3390_app14198945 crossref_primary_10_1016_j_engappai_2024_109480 crossref_primary_10_1016_j_cie_2023_109556 crossref_primary_10_1016_j_jisa_2024_103871 crossref_primary_10_1016_j_ins_2023_03_099 crossref_primary_10_1016_j_jbi_2025_104800 crossref_primary_10_1007_s13239_024_00716_3 crossref_primary_10_3390_app13084964 crossref_primary_10_1016_j_bspc_2024_106107 crossref_primary_10_1016_j_compbiomed_2024_108557 crossref_primary_10_1109_ACCESS_2021_3079370 crossref_primary_10_1109_ACCESS_2023_3277620 crossref_primary_10_1007_s11831_023_09935_8 crossref_primary_10_3390_electronics11213427 crossref_primary_10_1007_s44196_023_00339_x crossref_primary_10_4018_IJeC_315791 crossref_primary_10_1016_j_bspc_2022_103625 crossref_primary_10_1016_j_bspc_2023_105747 crossref_primary_10_1515_bmt_2021_0146 crossref_primary_10_1016_j_knosys_2021_107941 crossref_primary_10_1080_10255842_2024_2332942 crossref_primary_10_1016_j_bea_2023_100089 crossref_primary_10_1016_j_bspc_2024_107480 crossref_primary_10_1016_j_heliyon_2024_e41195 crossref_primary_10_1016_j_engappai_2024_108325 crossref_primary_10_1080_03772063_2024_2376125 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_3390_a14060180 crossref_primary_10_1016_j_dsp_2025_105159 crossref_primary_10_1016_j_bspc_2022_104299 crossref_primary_10_1016_j_compbiomed_2023_107903 crossref_primary_10_1016_j_bspc_2024_105982 crossref_primary_10_1111_exsy_13277 crossref_primary_10_1038_s41598_025_94681_z crossref_primary_10_1155_2023_1900447 crossref_primary_10_1016_j_eclinm_2023_102141 crossref_primary_10_3934_mbe_2024259 crossref_primary_10_1007_s00034_024_02986_7 crossref_primary_10_1049_cit2_12293 crossref_primary_10_1109_ACCESS_2023_3282315 crossref_primary_10_1007_s12265_024_10504_y crossref_primary_10_2478_jaiscr_2024_0004 crossref_primary_10_1109_ACCESS_2024_3402359 crossref_primary_10_1016_j_bspc_2024_106703 crossref_primary_10_3390_diagnostics13020260 crossref_primary_10_3390_s21165302 crossref_primary_10_1016_j_iot_2024_101405 crossref_primary_10_1038_s41526_024_00409_0 crossref_primary_10_29132_ijpas_1398148 crossref_primary_10_1016_j_knosys_2024_111696 crossref_primary_10_1109_ACCESS_2021_3076281 crossref_primary_10_1016_j_mlwa_2023_100472 crossref_primary_10_1155_2022_4610747 crossref_primary_10_3390_s22155606 crossref_primary_10_1016_j_eswa_2022_119162 crossref_primary_10_1109_TIM_2022_3197757 crossref_primary_10_1155_2022_2557865 crossref_primary_10_1016_j_bspc_2024_106040 crossref_primary_10_3390_s23146324 crossref_primary_10_1016_j_bbe_2022_02_006 crossref_primary_10_1016_j_bspc_2021_103470 crossref_primary_10_1016_j_bspc_2024_105997 crossref_primary_10_1002_adsr_202300118 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1016_j_ress_2024_109938 crossref_primary_10_3390_jpm13050820 crossref_primary_10_3390_app12031307 crossref_primary_10_3390_ijerph182111302 crossref_primary_10_3390_bioengineering9090480 crossref_primary_10_1016_j_eswa_2023_120975 crossref_primary_10_1016_j_bspc_2021_102778 crossref_primary_10_3390_ma15030724 crossref_primary_10_1007_s41870_024_01999_4 crossref_primary_10_3390_s24154978 crossref_primary_10_1016_j_knosys_2024_112553 crossref_primary_10_1145_3554737 crossref_primary_10_3390_s22093439 crossref_primary_10_1007_s11517_023_02839_6 crossref_primary_10_3390_s24165087 crossref_primary_10_37391_ijeer_120423 crossref_primary_10_1097_WNP_0000000000001038 crossref_primary_10_1007_s11042_023_15717_y crossref_primary_10_1016_j_cmpb_2022_106899 crossref_primary_10_1016_j_bspc_2021_103260 crossref_primary_10_1016_j_cmpb_2021_106533 crossref_primary_10_1177_01423312241252459 crossref_primary_10_1016_j_bspc_2022_103663 crossref_primary_10_1016_j_bspc_2023_105683 crossref_primary_10_1016_j_bspc_2025_107621 crossref_primary_10_1007_s00521_024_09486_4 crossref_primary_10_1109_ACCESS_2021_3097177 crossref_primary_10_3390_s24082655 crossref_primary_10_1016_j_sbsr_2022_100502 crossref_primary_10_1109_JBHI_2022_3221464 crossref_primary_10_1016_j_bios_2025_117262 crossref_primary_10_1016_j_cej_2022_140690 crossref_primary_10_1038_s41598_023_40343_x crossref_primary_10_1088_1361_6579_acfa61 crossref_primary_10_3390_s24134171 crossref_primary_10_1007_s40846_025_00928_5 crossref_primary_10_1016_j_heliyon_2023_e23597 crossref_primary_10_1109_ACCESS_2023_3344452 crossref_primary_10_1016_j_bspc_2023_105797 crossref_primary_10_1111_nyas_15288 crossref_primary_10_1007_s00500_022_07499_6 crossref_primary_10_1063_5_0191571 crossref_primary_10_1063_5_0217416 crossref_primary_10_1016_j_ins_2021_06_009 crossref_primary_10_1080_15325008_2023_2220333 crossref_primary_10_1016_j_bspc_2023_104615 crossref_primary_10_1007_s11042_022_14227_7 crossref_primary_10_1016_j_compbiomed_2021_104262 crossref_primary_10_3390_info14070376 crossref_primary_10_1002_cta_4289 crossref_primary_10_1016_j_compbiomed_2022_106142 crossref_primary_10_1109_TCBB_2022_3198998 crossref_primary_10_3390_app14219936 crossref_primary_10_1007_s10489_023_04889_7 crossref_primary_10_3390_s24123789 crossref_primary_10_26599_IJCS_2023_9100026 crossref_primary_10_1140_epjb_s10051_024_00752_x crossref_primary_10_1038_s41598_024_60500_0 crossref_primary_10_1016_j_bspc_2023_105940 crossref_primary_10_1016_j_measurement_2023_113239 crossref_primary_10_1021_acssensors_4c02395 crossref_primary_10_3389_fphys_2021_699291 crossref_primary_10_3390_app132212187 crossref_primary_10_1002_mp_16534 crossref_primary_10_3389_fphys_2023_1247587 crossref_primary_10_1016_j_bspc_2022_104531 crossref_primary_10_1109_ACCESS_2024_3420103 crossref_primary_10_1016_j_bspc_2021_102628 crossref_primary_10_1007_s00034_024_02662_w crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_dcan_2024_11_003 crossref_primary_10_1038_s41598_024_63656_x crossref_primary_10_2139_ssrn_4017037 crossref_primary_10_54287_gujsa_1128006 crossref_primary_10_1016_j_bspc_2024_107295 crossref_primary_10_1186_s13040_022_00288_9 crossref_primary_10_2196_38454 crossref_primary_10_1016_j_bspc_2021_103270 crossref_primary_10_1016_j_cmpb_2022_106901 crossref_primary_10_1016_j_bspc_2023_105499 crossref_primary_10_1016_j_bspc_2023_105774 crossref_primary_10_1109_TIM_2022_3181276 crossref_primary_10_3390_s23177521 crossref_primary_10_1038_s41598_022_18293_7 crossref_primary_10_1016_j_asoc_2024_112225 crossref_primary_10_1016_j_petrol_2022_110844 crossref_primary_10_3390_photonics10020177 crossref_primary_10_1016_j_bea_2022_100048 crossref_primary_10_1007_s13755_022_00192_w crossref_primary_10_1109_JBHI_2022_3171918 crossref_primary_10_1007_s13246_024_01391_3 crossref_primary_10_1063_5_0212068 crossref_primary_10_1109_TNSE_2022_3184523 crossref_primary_10_1016_j_ins_2021_06_022 crossref_primary_10_1109_JBHI_2022_3173655 crossref_primary_10_3389_fphys_2024_1362185 crossref_primary_10_1109_TBCAS_2023_3299084 crossref_primary_10_3390_bioengineering12010044 crossref_primary_10_1186_s12911_024_02695_w |
Cites_doi | 10.1016/j.amepre.2005.07.021 10.3346/jkms.2019.34.e64 10.1109/18.382009 10.1161/CIRCULATIONAHA.105.595140 10.1109/EMBC.2017.8037253 10.1016/j.bspc.2017.12.004 10.1080/10798587.2013.771456 10.1109/10.846677 10.1093/eurheartj/eht280 10.1109/TPAMI.2018.2858826 10.3844/ajassp.2008.276.281 10.1016/j.compbiomed.2016.03.015 10.1109/TASLP.2015.2400218 10.1162/neco.1997.9.8.1735 10.1109/10.740882 10.3390/s20030765 10.2459/JCM.0000000000000239 10.1016/j.jacc.2020.02.025 10.1109/TBME.2004.824138 10.1142/S0218488598000094 10.2174/1573403X15666181205110624 10.1109/ICACSIS.2016.7872805 10.1016/j.compbiomed.2017.08.022 10.1109/51.932724 10.1038/nature14539 10.1016/j.bbe.2018.04.004 10.1145/3340074.3340088 10.1109/10.686788 10.1097/WCO.0000000000000410 10.3390/e19120677 10.1161/CIRCULATIONAHA.113.005119 10.1109/HealthCom.2017.8210784 10.1155/2015/587361 10.1088/1361-6579/aae304 10.1109/BIBM.2013.6732594 10.1109/TSMC.2017.2705582 10.1109/JBHI.2014.2361659 10.1016/S1386-5056(98)00138-5 10.1093/biomet/81.3.425 10.1016/j.procs.2012.09.053 10.1016/j.compbiomed.2018.06.002 10.3390/biom8030066 10.2147/CLEP.S47385 10.1186/s12911-019-0946-1 10.1093/europace/euq350 10.1111/anae.14118 10.3390/s20113069 10.23884/ejt.2017.7.2.11 10.1109/DSAA.2015.7344872 10.1109/EMBC.2019.8857737 10.1613/jair.953 10.1016/j.jelectrocard.2016.07.033 10.1109/TASLP.2017.2758999 10.1016/j.compbiomed.2018.07.001 10.1016/j.eswa.2018.08.011 10.1016/j.amjcard.2009.07.022 10.1016/j.compbiomed.2018.03.016 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2020.102194 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2020_102194 S1746809420303323 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-ca9bed5bf833954bb12d3f4007f28c0b2f0e7accd554e68ad5bc046f1fd4fc7d3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 01:34:08 EDT 2025 Fri Feb 23 02:45:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | atrial fibrillation arrhythmia detection CNN LSTM focal loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-ca9bed5bf833954bb12d3f4007f28c0b2f0e7accd554e68ad5bc046f1fd4fc7d3 |
ORCID | 0000-0002-4919-0664 0000-0002-3371-569X |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2020_102194 crossref_citationtrail_10_1016_j_bspc_2020_102194 elsevier_sciencedirect_doi_10_1016_j_bspc_2020_102194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Islam, Ammour, Alajlan, Aboalsamh (bib0325) 2016; 72 Erdenebayar, Kim, Park, Kang, Lee (bib0075) 2019; 34 Mrazova, Kukacka (bib0195) 2012; 12 Lee, Jung, Gil, Son (bib0080) 2019; 19 Chawla, Bowyer, Hall, Kegelmeyer (bib0270) 2002; 16 Weil, Ozcan (bib0015) 2015 Miyasaka, Barnes, Gersh, Cha, Bailey, Abhayaratna (bib0130) 2006; 114 Coskun, Yildirim, Ucar, Demir (bib0070) 2017; 7 Moody, Goldberger, McClennen, Swiryn (bib0235) 2001; 28 Naccarelli, Varker, Lin, Schulman (bib0030) 2009; 104 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley, PhysioBank, PhysioToolkit, PhysioNet (bib0210) 2003; 101 Vaseghi (bib0295) 2009 Osowski, Hoai, Markiewicz (bib0175) 2004; 51 Khazaee, Ebrahimzadeh (bib0050) 2013; 19 Xu, Wei, Ma, Luo, Zhang, Liu (bib0245) 2018 Carbonell, Michalski, Mitchell (bib0190) 1983 Lin, Goyal, Girshick, He, Dollar (bib0320) 2020; 42 Kim, Pyun (bib0265) 2020; 20 Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries (bib0005) 2010; Vol. 2 Cerasuolo, Cipriano, Sposato (bib0150) 2017; 30 Hochreiter (bib0250) 1998; 06 Afonso, Tompkins, Nguyen, Luo (bib0170) 1999; 46 Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (bib0180) 2000; 47 Zoni-Berisso, Lercari, Carazza, Domenicucci (bib0125) 2014; 6 Chauhan, Vig (bib0105) 2015 Sanabila, Kusuma, Jatmiko (bib0275) 2016 Oh, Ng, Tan, Acharya (bib0090) 2018; 102 European Heart Rhythm A, European Association for Cardio‐Thoracic S, Camm, Kirchhof, Lip, Schotten, Savelieva, Ernst, van Gelder, Al-Attar, Hindricks, Prendergast, Heidbuchel, Alfieri, Angelini, Atar, Colonna, De Caterina, De Sutter, Goette (bib0160) 2010; 12 Yildirim (bib0260) 2018; 96 Rajesh, Dhuli (bib0280) 2018; 41 Butterworth (bib0300) 1930; 7 Li, Zhang, Zhang, Wei (bib0205) 2017 Faust, Shenfield, Kareem, San, Fujita, Acharya (bib0350) 2018; 102 Maglaveras, Stamkopoulos, Pappas, Strintzis (bib0065) 1998; 45 Czabanski, Horoba, Wrobel, Matonia, Martinek, Kupka (bib0360) 2020; 20 Srivastava, Prasad (bib0165) 2013; 2 Sundermeyer, Ney, Schluter (bib0100) 2015; 23 Krijthe, Kunst, Benjamin, Lip, Franco, Hofman (bib0135) 2013; 34 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0225) 2017; 89 Saxena, Sharma, Srivastav, Gupta (bib0290) 2018; 2 Chung, Refaat, Shen, Kutyifa, Cha, Di Biase (bib0155) 2020; 75 Park, Lee, Kang (bib0055) 2013 LeCun, Bengio, Hinton (bib0200) 2015; 521 Donoho (bib0310) 1995; 41 Pourbabaee, Roshtkhari, Khorasani (bib0230) 2018; 48 Betancourt, Flores-Calero, Almeida (bib0285) 2019 Tadesse, Zhu, Liu, Zhou, Chen, Tian, Clifton (bib0045) 2019 Castro, Felix, Presedo (bib0185) 2015; 19 Sodmann, Vollmer, Nath, Kaderali (bib0035) 2018; 39 Kumar, Pachori, Rajendra Acharya (bib0345) 2018; 38 Donoho, Johnstone (bib0305) 1994; 81 Hochreiter, Schmidhuber (bib0085) 1997; 9 Andersen, Poulsen, Puthusserypady (bib0335) 2017 Kim, Cao, Mau, Wang (bib0095) 2017; 25 Ochiai, Takahashi, Fukazawa (bib0220) 2018 Chebbout, Heywood, Drake, Wild, Lee, Wilson, Lee (bib0020) 2017; 73 Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin (bib0140) 2014; 129 Andersen, Peimankar, Puthusserypady (bib0355) 2019; 115 Jun, Nguyen, Kang, Kim, Kim, Kim (bib0240) 2018 Aarabi, Schnabel, Heydecke, Seedorf (bib0010) 2018; 8 Anselmino, Battaglia, Gallo, Gili, Matta, Castagno (bib0025) 2015; 16 Gao, Zhang, Lu, Wang (bib0255) 2019 Maglaveras, Stamkopoulos, Diamantaras, Pappas, Strintzis (bib0060) 1998; 52 Hao, Gao, Li, Zhang, Wu, Bai (bib0040) 2019 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (bib0115) 2000; 101 Cui, Chang, Yang, Jiang, Yang, Peng (bib0340) 2017; 19 Westerman, Wenger (bib0145) 2019; 15 Alfaouri, Daqrouq (bib0315) 2008; 5 Moody, Mark (bib0215) 2001; 20 Moody, Mark (bib0110) 1983; 10 Valderrama, Dunbar, Mensah (bib0120) 2005; 29 Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (bib0330) 2016; 49 Park (10.1016/j.bspc.2020.102194_bib0055) 2013 Lee (10.1016/j.bspc.2020.102194_bib0080) 2019; 19 Moody (10.1016/j.bspc.2020.102194_bib0215) 2001; 20 Maglaveras (10.1016/j.bspc.2020.102194_bib0060) 1998; 52 Moody (10.1016/j.bspc.2020.102194_bib0110) 1983; 10 Srivastava (10.1016/j.bspc.2020.102194_bib0165) 2013; 2 Vaseghi (10.1016/j.bspc.2020.102194_bib0295) 2009 Chung (10.1016/j.bspc.2020.102194_bib0155) 2020; 75 Miyasaka (10.1016/j.bspc.2020.102194_bib0130) 2006; 114 Ochiai (10.1016/j.bspc.2020.102194_bib0220) 2018 Rajesh (10.1016/j.bspc.2020.102194_bib0280) 2018; 41 Islam (10.1016/j.bspc.2020.102194_bib0325) 2016; 72 Chebbout (10.1016/j.bspc.2020.102194_bib0020) 2017; 73 Tadesse (10.1016/j.bspc.2020.102194_bib0045) 2019 Westerman (10.1016/j.bspc.2020.102194_bib0145) 2019; 15 Lin (10.1016/j.bspc.2020.102194_bib0320) 2020; 42 Kumar (10.1016/j.bspc.2020.102194_bib0345) 2018; 38 Kennedy (10.1016/j.bspc.2020.102194_bib0330) 2016; 49 LeCun (10.1016/j.bspc.2020.102194_bib0200) 2015; 521 Afonso (10.1016/j.bspc.2020.102194_bib0170) 1999; 46 Czabanski (10.1016/j.bspc.2020.102194_bib0360) 2020; 20 Krijthe (10.1016/j.bspc.2020.102194_bib0135) 2013; 34 Andersen (10.1016/j.bspc.2020.102194_bib0355) 2019; 115 Kim (10.1016/j.bspc.2020.102194_bib0265) 2020; 20 Faust (10.1016/j.bspc.2020.102194_bib0350) 2018; 102 Hochreiter (10.1016/j.bspc.2020.102194_bib0250) 1998; 06 Anselmino (10.1016/j.bspc.2020.102194_bib0025) 2015; 16 Aarabi (10.1016/j.bspc.2020.102194_bib0010) 2018; 8 European Heart Rhythm A (10.1016/j.bspc.2020.102194_bib0160) 2010; 12 Lagerholm (10.1016/j.bspc.2020.102194_bib0180) 2000; 47 Maglaveras (10.1016/j.bspc.2020.102194_bib0065) 1998; 45 Cui (10.1016/j.bspc.2020.102194_bib0340) 2017; 19 Valderrama (10.1016/j.bspc.2020.102194_bib0120) 2005; 29 Sanabila (10.1016/j.bspc.2020.102194_bib0275) 2016 Khazaee (10.1016/j.bspc.2020.102194_bib0050) 2013; 19 Hao (10.1016/j.bspc.2020.102194_bib0040) 2019 Chugh (10.1016/j.bspc.2020.102194_bib0140) 2014; 129 Mrazova (10.1016/j.bspc.2020.102194_bib0195) 2012; 12 Zoni-Berisso (10.1016/j.bspc.2020.102194_bib0125) 2014; 6 Hochreiter (10.1016/j.bspc.2020.102194_bib0085) 1997; 9 Naccarelli (10.1016/j.bspc.2020.102194_bib0030) 2009; 104 Kim (10.1016/j.bspc.2020.102194_bib0095) 2017; 25 Castro (10.1016/j.bspc.2020.102194_bib0185) 2015; 19 Erdenebayar (10.1016/j.bspc.2020.102194_bib0075) 2019; 34 Sundermeyer (10.1016/j.bspc.2020.102194_bib0100) 2015; 23 Gao (10.1016/j.bspc.2020.102194_bib0255) 2019 Oh (10.1016/j.bspc.2020.102194_bib0090) 2018; 102 Donoho (10.1016/j.bspc.2020.102194_bib0305) 1994; 81 Li (10.1016/j.bspc.2020.102194_bib0205) 2017 Butterworth (10.1016/j.bspc.2020.102194_bib0300) 1930; 7 Cerasuolo (10.1016/j.bspc.2020.102194_bib0150) 2017; 30 Goldberger (10.1016/j.bspc.2020.102194_bib0210) 2003; 101 Yildirim (10.1016/j.bspc.2020.102194_bib0260) 2018; 96 Coskun (10.1016/j.bspc.2020.102194_bib0070) 2017; 7 Chawla (10.1016/j.bspc.2020.102194_bib0270) 2002; 16 Betancourt (10.1016/j.bspc.2020.102194_bib0285) 2019 Osowski (10.1016/j.bspc.2020.102194_bib0175) 2004; 51 Chauhan (10.1016/j.bspc.2020.102194_bib0105) 2015 Carbonell (10.1016/j.bspc.2020.102194_bib0190) 1983 Moody (10.1016/j.bspc.2020.102194_bib0235) 2001; 28 Weil (10.1016/j.bspc.2020.102194_bib0015) 2015 Jun (10.1016/j.bspc.2020.102194_bib0240) 2018 Saxena (10.1016/j.bspc.2020.102194_bib0290) 2018; 2 Donoho (10.1016/j.bspc.2020.102194_bib0310) 1995; 41 Pourbabaee (10.1016/j.bspc.2020.102194_bib0230) 2018; 48 Alfaouri (10.1016/j.bspc.2020.102194_bib0315) 2008; 5 Acharya (10.1016/j.bspc.2020.102194_bib0225) 2017; 89 Xu (10.1016/j.bspc.2020.102194_bib0245) 2018 Andersen (10.1016/j.bspc.2020.102194_bib0335) 2017 Sodmann (10.1016/j.bspc.2020.102194_bib0035) 2018; 39 Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries (10.1016/j.bspc.2020.102194_bib0005) 2010; Vol. 2 Goldberger (10.1016/j.bspc.2020.102194_bib0115) 2000; 101 |
References_xml | – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0085 article-title: Long Short-Term Memory publication-title: Neural Computation – volume: 30 start-page: 28 year: 2017 end-page: 37 ident: bib0150 article-title: The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack publication-title: Current Opinion in Neurology – year: 2018 ident: bib0240 article-title: ECG arrhythmia classification using a 2-D convolutional neural network publication-title: ArXiv – volume: 72 start-page: 160 year: 2016 end-page: 169 ident: bib0325 article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection publication-title: Computers in Biology and Medicine – volume: 102 start-page: 327 year: 2018 end-page: 335 ident: bib0350 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Computers in Biology and Medicine – volume: 29 start-page: 75 year: 2005 end-page: 80 ident: bib0120 article-title: Atrial Fibrillation publication-title: American Journal of Preventive Medicine – volume: 52 start-page: 191 year: 1998 end-page: 208 ident: bib0060 article-title: ECG pattern recognition and classification using non-linear transformations and neural networks: A review publication-title: International Journal of Medical Informatics – volume: 7 start-page: 536 year: 1930 end-page: 541 ident: bib0300 article-title: On the Theory of Filter Amplifiers publication-title: Experimental Wireless and the Wireless Engineer – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0200 article-title: Deep learning publication-title: Nature – volume: 47 start-page: 838 year: 2000 end-page: 848 ident: bib0180 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Transactions on Biomedical Engineering – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: bib0305 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – volume: 34 start-page: 2746 year: 2013 end-page: 2751 ident: bib0135 article-title: Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060 publication-title: European Heart Journal – volume: 101 start-page: 215 year: 2003 end-page: 220 ident: bib0210 article-title: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation – start-page: 1 year: 2018 end-page: 8 ident: bib0245 article-title: Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks publication-title: Journal of Healthcare Engineering – volume: 20 start-page: 3069 year: 2020 ident: bib0265 article-title: ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks publication-title: Sensors – volume: 28 start-page: 113 year: 2001 end-page: 116 ident: bib0235 article-title: Predicting the Onset of Paroxysmal Atrial Fibrillation: The Computers in Cardiology Challenge 2001 publication-title: Computers in Cardiology – volume: 6 start-page: 213 year: 2014 end-page: 220 ident: bib0125 article-title: Epidemiology of atrial fibrillation: European perspective publication-title: Clinical Epidemiology – volume: 75 start-page: 1689 year: 2020 end-page: 1713 ident: bib0155 article-title: Atrial Fibrillation publication-title: Journal of the American College of Cardiology – volume: 2 start-page: 44 year: 2013 end-page: 50 ident: bib0165 article-title: DWT-Based Feature Extraction from ecg Signal publication-title: American J. of Eng. Research (AJER) – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: bib0090 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Computers in Biology and Medicine – volume: 104 start-page: 1534 year: 2009 end-page: 1539 ident: bib0030 article-title: Increasing Prevalence of Atrial Fibrillation and Flutter in the United States publication-title: The American Journal of Cardiology – volume: 49 start-page: 871 year: 2016 end-page: 876 ident: bib0330 article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification publication-title: Journal of Electrocardiology – volume: 16 start-page: 795 year: 2015 end-page: 801 ident: bib0025 article-title: Atrial fibrillation and female sex publication-title: Journal of Cardiovascular Medicine – volume: 39 start-page: 104005 year: 2018 ident: bib0035 article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms publication-title: Physiological Measurement – volume: Vol. 2 year: 2010 ident: bib0005 article-title: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health publication-title: Epidemiology of Cardiovascular Disease – volume: 5 start-page: 276 year: 2008 end-page: 281 ident: bib0315 article-title: ECG Signal Denoising By Wavelet Transform Thresholding publication-title: American Journal of Applied Sciences – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0115 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation [Online]. – start-page: 111 year: 2019 end-page: 117 ident: bib0285 article-title: ECG Denoising by using FIR and IIR Filtering Techniques publication-title: Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology – volume: 19 start-page: 1 year: 2013 end-page: 9 ident: bib0050 article-title: Heart Arrhythmia Detection using support vector machines publication-title: Intelligent Automation & Soft Computing – volume: 46 start-page: 192 year: 1999 end-page: 202 ident: bib0170 article-title: ECG beat detection using filter banks publication-title: IEEE Transactions on Biomedical Engineering – volume: 25 start-page: 2323 year: 2017 end-page: 2336 ident: bib0095 article-title: Speaker-Independent Silent Speech Recognition From Flesh-Point Articulatory Movements Using an LSTM Neural Network publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 51 start-page: 582 year: 2004 end-page: 589 ident: bib0175 article-title: Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition publication-title: IEEE Transactions on Biomedical Engineering – volume: 12 start-page: 1360 year: 2010 end-page: 1420 ident: bib0160 article-title: Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC) publication-title: EP Europace – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: bib0225 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Computers in Biology and Medicine – volume: 20 start-page: 765 year: 2020 ident: bib0360 article-title: Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine publication-title: Sensors – volume: 06 start-page: 107 year: 1998 end-page: 116 ident: bib0250 article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions publication-title: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems – volume: 115 start-page: 465 year: 2019 end-page: 473 ident: bib0355 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Systems with Applications – year: 2009 ident: bib0295 article-title: Advanced Digital Signal Processing and Noise Reduction – volume: 42 start-page: 318 year: 2020 end-page: 327 ident: bib0320 article-title: Focal Loss for Dense Object Detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2019 ident: bib0045 article-title: Cardiovascular disease diagnosis using cross-domain transfer learning publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 34 year: 2019 ident: bib0075 article-title: Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal publication-title: Journal of Korean Medical Science – volume: 10 start-page: 227 year: 1983 end-page: 230 ident: bib0110 article-title: A new method for detecting atrial fibrillation using R-R intervals publication-title: Computers in Cardiology – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: bib0310 article-title: De-noising by soft-thresholding publication-title: IEEE Transactions on Information Theory – start-page: 2039 year: 2017 end-page: 2042 ident: bib0335 article-title: A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – start-page: 15 year: 2013 end-page: 22 ident: bib0055 article-title: Arrhythmia detection from heartbeat using k-nearest neighbor classifier publication-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine – volume: 114 start-page: 119 year: 2006 end-page: 125 ident: bib0130 article-title: Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence publication-title: Circulation – volume: 12 start-page: 194 year: 2012 end-page: 199 ident: bib0195 article-title: Can Deep Neural Networks Discover Meaningful Pattern Features? publication-title: Procedia Computer Science – volume: 129 start-page: 837 year: 2014 end-page: 847 ident: bib0140 article-title: Worldwide Epidemiology of Atrial Fibrillation publication-title: Circulation – volume: 19 start-page: 677 year: 2017 ident: bib0340 article-title: Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach publication-title: Entropy – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0270 article-title: SMOTE: Synthetic Minority Over-sampling Technique publication-title: Journal of Artificial Intelligence Research – volume: 2 start-page: 51 year: 2018 end-page: 58 ident: bib0290 article-title: Denoising of ECG Signals Using FIR & IIR Filter: A Performance Analysis publication-title: International Journal of Engineering & Technology – start-page: 105286 year: 2019 ident: bib0040 article-title: Multi-branch Fusion Network for Myocardial Infarction Screening from 12-lead ECG Images publication-title: Computer Methods and Programs in Biomedicine – volume: 8 start-page: 66 year: 2018 ident: bib0010 article-title: Potential Impact of Oral Inflammations on Cardiac Functions and Atrial Fibrillation publication-title: Biomolecules – volume: 19 start-page: 1660 year: 2015 end-page: 1671 ident: bib0185 article-title: A Method for Context-Based Adaptive QRS Clustering in Real Time publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2017 ident: bib0205 article-title: Classification of ECG signals based on 1D convolution neural network publication-title: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom) – year: 2015 ident: bib0105 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) – volume: 15 start-page: 136 year: 2019 end-page: 144 ident: bib0145 article-title: Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes publication-title: Current Cardiology Reviews – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: bib0215 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Engineering in Medicine and Biology Magazine – year: 1983 ident: bib0190 article-title: An Overview of Machine Learning publication-title: Machine Learning. Symbolic Computation – start-page: 1 year: 2015 end-page: 8 ident: bib0015 article-title: Cardiomyocyte Remodeling in Atrial Fibrillation and Hibernating Myocardium: Shared Pathophysiologic Traits Identify Novel Treatment Strategies? publication-title: BioMed Research International – year: 2018 ident: bib0220 article-title: Arrhythmia Detection from 2-lead ECG using Convolutional Denoising Autoencoders – volume: 48 start-page: 2095 year: 2018 end-page: 2104 ident: bib0230 article-title: Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 45 start-page: 805 year: 1998 end-page: 813 ident: bib0065 article-title: An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database publication-title: IEEE Transactions on Biomedical Engineering – volume: 19 year: 2019 ident: bib0080 article-title: Atrial fibrillation classification based on convolutional neural networks publication-title: BMC Medical Informatics and Decision Making – volume: 41 start-page: 242 year: 2018 end-page: 254 ident: bib0280 article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier publication-title: Biomedical Signal Processing and Control – volume: 73 start-page: 490 year: 2017 end-page: 498 ident: bib0020 article-title: A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery publication-title: Anaesthesia – volume: 23 start-page: 517 year: 2015 end-page: 529 ident: bib0100 article-title: From Feedforward to Recurrent LSTM Neural Networks for Language Modeling publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 38 start-page: 564 year: 2018 end-page: 573 ident: bib0345 article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform publication-title: Biocybernetics and Biomedical Engineering – start-page: 572 year: 2016 end-page: 577 ident: bib0275 article-title: Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data publication-title: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS) – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: bib0260 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Computers in Biology and Medicine – volume: 7 start-page: 165 year: 2017 end-page: 176 ident: bib0070 article-title: An overview of popular deep learning methods publication-title: European Journal of Technic – start-page: 1 year: 2019 end-page: 10 ident: bib0255 article-title: An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset publication-title: Journal of Healthcare Engineering – volume: Vol. 2 year: 2010 ident: 10.1016/j.bspc.2020.102194_bib0005 article-title: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health – volume: 29 start-page: 75 issue: 5 year: 2005 ident: 10.1016/j.bspc.2020.102194_bib0120 article-title: Atrial Fibrillation publication-title: American Journal of Preventive Medicine doi: 10.1016/j.amepre.2005.07.021 – volume: 34 issue: 7 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0075 article-title: Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal publication-title: Journal of Korean Medical Science doi: 10.3346/jkms.2019.34.e64 – volume: 7 start-page: 536 year: 1930 ident: 10.1016/j.bspc.2020.102194_bib0300 article-title: On the Theory of Filter Amplifiers publication-title: Experimental Wireless and the Wireless Engineer – volume: 41 start-page: 613 issue: 3 year: 1995 ident: 10.1016/j.bspc.2020.102194_bib0310 article-title: De-noising by soft-thresholding publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.382009 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0245 article-title: Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks publication-title: Journal of Healthcare Engineering – volume: 114 start-page: 119 issue: 2 year: 2006 ident: 10.1016/j.bspc.2020.102194_bib0130 article-title: Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.595140 – start-page: 2039 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0335 article-title: A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) doi: 10.1109/EMBC.2017.8037253 – volume: 41 start-page: 242 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0280 article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.12.004 – volume: 19 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.bspc.2020.102194_bib0050 article-title: Heart Arrhythmia Detection using support vector machines publication-title: Intelligent Automation & Soft Computing doi: 10.1080/10798587.2013.771456 – volume: 47 start-page: 838 issue: 7 year: 2000 ident: 10.1016/j.bspc.2020.102194_bib0180 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.846677 – volume: 34 start-page: 2746 issue: 35 year: 2013 ident: 10.1016/j.bspc.2020.102194_bib0135 article-title: Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060 publication-title: European Heart Journal doi: 10.1093/eurheartj/eht280 – year: 2009 ident: 10.1016/j.bspc.2020.102194_bib0295 – volume: 42 start-page: 318 issue: 2 year: 2020 ident: 10.1016/j.bspc.2020.102194_bib0320 article-title: Focal Loss for Dense Object Detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2858826 – volume: 10 start-page: 227 year: 1983 ident: 10.1016/j.bspc.2020.102194_bib0110 article-title: A new method for detecting atrial fibrillation using R-R intervals publication-title: Computers in Cardiology – volume: 5 start-page: 276 issue: 3 year: 2008 ident: 10.1016/j.bspc.2020.102194_bib0315 article-title: ECG Signal Denoising By Wavelet Transform Thresholding publication-title: American Journal of Applied Sciences doi: 10.3844/ajassp.2008.276.281 – volume: 72 start-page: 160 year: 2016 ident: 10.1016/j.bspc.2020.102194_bib0325 article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2016.03.015 – volume: 23 start-page: 517 issue: 3 year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0100 article-title: From Feedforward to Recurrent LSTM Neural Networks for Language Modeling publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2015.2400218 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.bspc.2020.102194_bib0085 article-title: Long Short-Term Memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 46 start-page: 192 issue: 2 year: 1999 ident: 10.1016/j.bspc.2020.102194_bib0170 article-title: ECG beat detection using filter banks publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.740882 – volume: 20 start-page: 765 issue: 3 year: 2020 ident: 10.1016/j.bspc.2020.102194_bib0360 article-title: Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine publication-title: Sensors doi: 10.3390/s20030765 – volume: 16 start-page: 795 issue: 12 year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0025 article-title: Atrial fibrillation and female sex publication-title: Journal of Cardiovascular Medicine doi: 10.2459/JCM.0000000000000239 – volume: 101 start-page: 215 issue: 23 year: 2003 ident: 10.1016/j.bspc.2020.102194_bib0210 article-title: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation – volume: 2 start-page: 44 issue: 3 year: 2013 ident: 10.1016/j.bspc.2020.102194_bib0165 article-title: DWT-Based Feature Extraction from ecg Signal publication-title: American J. of Eng. Research (AJER) – volume: 75 start-page: 1689 issue: 14 year: 2020 ident: 10.1016/j.bspc.2020.102194_bib0155 article-title: Atrial Fibrillation publication-title: Journal of the American College of Cardiology doi: 10.1016/j.jacc.2020.02.025 – volume: 51 start-page: 582 issue: 4 year: 2004 ident: 10.1016/j.bspc.2020.102194_bib0175 article-title: Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.824138 – volume: 06 start-page: 107 issue: 02 year: 1998 ident: 10.1016/j.bspc.2020.102194_bib0250 article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions publication-title: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems doi: 10.1142/S0218488598000094 – volume: 15 start-page: 136 issue: 2 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0145 article-title: Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes publication-title: Current Cardiology Reviews doi: 10.2174/1573403X15666181205110624 – start-page: 572 year: 2016 ident: 10.1016/j.bspc.2020.102194_bib0275 article-title: Generative oversampling method (GenOMe) for imbalanced data on apnea detection using ECG data publication-title: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS) doi: 10.1109/ICACSIS.2016.7872805 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0225 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2017.08.022 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.bspc.2020.102194_bib0215 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.932724 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0200 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 38 start-page: 564 issue: 3 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0345 article-title: Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2018.04.004 – start-page: 111 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0285 article-title: ECG Denoising by using FIR and IIR Filtering Techniques publication-title: Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology doi: 10.1145/3340074.3340088 – volume: 2 start-page: 51 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0290 article-title: Denoising of ECG Signals Using FIR & IIR Filter: A Performance Analysis publication-title: International Journal of Engineering & Technology – volume: 45 start-page: 805 issue: 7 year: 1998 ident: 10.1016/j.bspc.2020.102194_bib0065 article-title: An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.686788 – volume: 30 start-page: 28 issue: 1 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0150 article-title: The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0000000000000410 – volume: 19 start-page: 677 issue: 12 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0340 article-title: Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach publication-title: Entropy doi: 10.3390/e19120677 – volume: 129 start-page: 837 issue: 8 year: 2014 ident: 10.1016/j.bspc.2020.102194_bib0140 article-title: Worldwide Epidemiology of Atrial Fibrillation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005119 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0255 article-title: An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset publication-title: Journal of Healthcare Engineering – year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0205 article-title: Classification of ECG signals based on 1D convolution neural network publication-title: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom) doi: 10.1109/HealthCom.2017.8210784 – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0015 article-title: Cardiomyocyte Remodeling in Atrial Fibrillation and Hibernating Myocardium: Shared Pathophysiologic Traits Identify Novel Treatment Strategies? publication-title: BioMed Research International doi: 10.1155/2015/587361 – volume: 39 start-page: 104005 issue: 10 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0035 article-title: A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms publication-title: Physiological Measurement doi: 10.1088/1361-6579/aae304 – start-page: 15 year: 2013 ident: 10.1016/j.bspc.2020.102194_bib0055 article-title: Arrhythmia detection from heartbeat using k-nearest neighbor classifier publication-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine doi: 10.1109/BIBM.2013.6732594 – volume: 48 start-page: 2095 issue: 12 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0230 article-title: Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2705582 – year: 1983 ident: 10.1016/j.bspc.2020.102194_bib0190 article-title: An Overview of Machine Learning – volume: 19 start-page: 1660 issue: 5 year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0185 article-title: A Method for Context-Based Adaptive QRS Clustering in Real Time publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2014.2361659 – volume: 52 start-page: 191 issue: 1–3 year: 1998 ident: 10.1016/j.bspc.2020.102194_bib0060 article-title: ECG pattern recognition and classification using non-linear transformations and neural networks: A review publication-title: International Journal of Medical Informatics doi: 10.1016/S1386-5056(98)00138-5 – volume: 81 start-page: 425 issue: 3 year: 1994 ident: 10.1016/j.bspc.2020.102194_bib0305 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 12 start-page: 194 year: 2012 ident: 10.1016/j.bspc.2020.102194_bib0195 article-title: Can Deep Neural Networks Discover Meaningful Pattern Features? publication-title: Procedia Computer Science doi: 10.1016/j.procs.2012.09.053 – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0090 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.06.002 – volume: 8 start-page: 66 issue: 3 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0010 article-title: Potential Impact of Oral Inflammations on Cardiac Functions and Atrial Fibrillation publication-title: Biomolecules doi: 10.3390/biom8030066 – volume: 6 start-page: 213 year: 2014 ident: 10.1016/j.bspc.2020.102194_bib0125 article-title: Epidemiology of atrial fibrillation: European perspective publication-title: Clinical Epidemiology doi: 10.2147/CLEP.S47385 – volume: 19 issue: 1 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0080 article-title: Atrial fibrillation classification based on convolutional neural networks publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-019-0946-1 – start-page: 105286 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0040 article-title: Multi-branch Fusion Network for Myocardial Infarction Screening from 12-lead ECG Images publication-title: Computer Methods and Programs in Biomedicine – volume: 12 start-page: 1360 issue: 10 year: 2010 ident: 10.1016/j.bspc.2020.102194_bib0160 article-title: Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC) publication-title: EP Europace doi: 10.1093/europace/euq350 – year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0220 – volume: 73 start-page: 490 issue: 4 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0020 article-title: A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery publication-title: Anaesthesia doi: 10.1111/anae.14118 – volume: 28 start-page: 113 year: 2001 ident: 10.1016/j.bspc.2020.102194_bib0235 article-title: Predicting the Onset of Paroxysmal Atrial Fibrillation: The Computers in Cardiology Challenge 2001 publication-title: Computers in Cardiology – volume: 20 start-page: 3069 issue: 11 year: 2020 ident: 10.1016/j.bspc.2020.102194_bib0265 article-title: ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks publication-title: Sensors doi: 10.3390/s20113069 – volume: 7 start-page: 165 issue: 2 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0070 article-title: An overview of popular deep learning methods publication-title: European Journal of Technic doi: 10.23884/ejt.2017.7.2.11 – year: 2015 ident: 10.1016/j.bspc.2020.102194_bib0105 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks publication-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) doi: 10.1109/DSAA.2015.7344872 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.bspc.2020.102194_bib0115 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation [Online]. – year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0045 article-title: Cardiovascular disease diagnosis using cross-domain transfer learning publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) doi: 10.1109/EMBC.2019.8857737 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.bspc.2020.102194_bib0270 article-title: SMOTE: Synthetic Minority Over-sampling Technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 49 start-page: 871 issue: 6 year: 2016 ident: 10.1016/j.bspc.2020.102194_bib0330 article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification publication-title: Journal of Electrocardiology doi: 10.1016/j.jelectrocard.2016.07.033 – volume: 25 start-page: 2323 issue: 12 year: 2017 ident: 10.1016/j.bspc.2020.102194_bib0095 article-title: Speaker-Independent Silent Speech Recognition From Flesh-Point Articulatory Movements Using an LSTM Neural Network publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2017.2758999 – volume: 102 start-page: 327 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0350 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.07.001 – volume: 115 start-page: 465 year: 2019 ident: 10.1016/j.bspc.2020.102194_bib0355 article-title: A deep learning approach for real-time detection of atrial fibrillation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.011 – volume: 104 start-page: 1534 issue: 11 year: 2009 ident: 10.1016/j.bspc.2020.102194_bib0030 article-title: Increasing Prevalence of Atrial Fibrillation and Flutter in the United States publication-title: The American Journal of Cardiology doi: 10.1016/j.amjcard.2009.07.022 – year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0240 article-title: ECG arrhythmia classification using a 2-D convolutional neural network publication-title: ArXiv – volume: 96 start-page: 189 year: 2018 ident: 10.1016/j.bspc.2020.102194_bib0260 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.03.016 |
SSID | ssj0048714 |
Score | 2.6223524 |
Snippet | •The hybrid CNN-LSTM approach provides the best combination of performance (sensitivity, specificity) in comparison with all previous relevant studies.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102194 |
SubjectTerms | arrhythmia detection atrial fibrillation CNN focal loss LSTM |
Title | Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets |
URI | https://dx.doi.org/10.1016/j.bspc.2020.102194 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZM-ZQ-9la1JdrMmR_FR7SMXFbyFfRaLVanx0Et_e3eSKBaKh17DDIQvw8y34dtvELqzkWctZ4oYQT3ChNBEWMqI5DziDREC6QC1RcJ7I_Y0DscV1FrfhQFZZdn7i56ed-vySb1Es76YTOoDx6V55E4ngatTSgNw_GSsAVX-8L2ReTg-nvt7QzCB6PLiTKHxkssF2BgGuYOBH7O_h9PWwOkeocOSKeJm8TLHqGJmJ-hgyz_wFMnmKps7ymk0bubrN3AXFPzTQt-G2ybLhVYzDOr2Nyxw7wsuaOFWkpCXwfAVJ4UIHLuQ_ocElaMDBHdaj7gtMjffsuUZGnU7w1aPlEsTiKKcZ0SJWBodShtRGodMSj_Q1ML2cxtEypOB9UxDKKUdjzA8Ei5UuTOy9a1mVjU0PUfV2XxmLhDWrgNFnoh9l8Bij8ZSxtq6-S4ZE4bRS-Sv0UpV6SgOiy2m6Vo69p4CwikgnBYIX6L7Tc6i8NPYGR2uP0L6qypS1_B35F39M-8a7QegWcl_sdygava5MreOdGSylldVDe01-8-95AeUXdXZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqAcEC2tSnntoT1V29i764194BAlhKQEXwgSN3efFQhCRIwqLv1T_YPM-oGohDggcbV2rPXMaOYb65sZgK8-jbyXwlCneESFUpYqzwXVUqayq5IAOgLbIpejU_HzLDlbgn9tL0ygVTaxv47pVbRunnQabXbm5-edE8TSMsXqhKGfcs7aDdZH7u4P1m2L_fEAjfyNseHBtD-izWoBariUJTUq084m2qecZ4nQOmaW-7Aj3LPURJr5yHWVMRazrZOpwqMGK0kfeyu86VqO730DbwWGi7A24cffB14JFgDVQPFwOxqu13Tq1KQyvZiHuYmsGpkQZ-LpbPgoww3XYa2BpqRXf_17WHKzD7D6aGDhBujebXmNGNdZ0qv2fZBhaBm4rAl1ZODKitk1I4FO_5soMroLHWGkn-d0cjI9JnnNOid4ZHylA60SLUAO-odkoEpMqOXiI5y-iio_wfLseuY-A7EY8tJIZTEKiCzimdaZ9QgotBDKCb4JcautwjQjzMMmjcui5apdFEHDRdBwUWt4E74_yMzrAR7Pnk5aIxT_uWGBGeYZuS8vlNuDldH0eFJMxvnRFrxjgTBT_d_ZhuXy5tbtIOIp9W7lYQR-vbZL3wNzihPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Atrial+Fibrillation+Detection+using+a+Hybrid+CNN-LSTM+Network+on+Imbalanced+ECG+Datasets&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Petmezas%2C+Georgios&rft.au=Haris%2C+Kostas&rft.au=Stefanopoulos%2C+Leandros&rft.au=Kilintzis%2C+Vassilis&rft.date=2021-01-01&rft.issn=1746-8094&rft.volume=63&rft.spage=102194&rft_id=info:doi/10.1016%2Fj.bspc.2020.102194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2020_102194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |