Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite

[Display omitted] A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 607; no. Pt 2; pp. 1313 - 1322
Main Authors Feng, Xiwen, Han, Guangda, Cai, Jihai, Wang, Xiaoying
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
AbstractList A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
[Display omitted] A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
Author Han, Guangda
Cai, Jihai
Feng, Xiwen
Wang, Xiaoying
Author_xml – sequence: 1
  givenname: Xiwen
  surname: Feng
  fullname: Feng, Xiwen
– sequence: 2
  givenname: Guangda
  surname: Han
  fullname: Han, Guangda
– sequence: 3
  givenname: Jihai
  surname: Cai
  fullname: Cai, Jihai
– sequence: 4
  givenname: Xiaoying
  surname: Wang
  fullname: Wang, Xiaoying
  email: xyw@scut.edu.cn
BookMark eNqFkctq3TAQhkVJoCeXF8hKy27s6GJZFnSRcHJpIaWbFLoTsjymMrZ0IsmBvn1kTldZpIthZpj_G5j5z9CJDx4QuqKkpoS211M9WZdqRhitiaoJbz-hHSVKVJISfoJ2pEwqJZX8jM5SmgihVAi1Q9PterM3sQ8ev6zG53XBdyGn6sdv8IC98cGG5RCSy4BNwsZjmMHmGOwfWJw1M07gU4h4LLGVLrtXwAPkonJlaxixdzkW_gKdjmZOcPkvn6NfD_fP-2_V08_H7_vbp8ryts2VVXIcQHQWmFK97LtRdlyAFKMpvW1kz4i0lg9CdSB7zgUTgjDRd2ZsTGf5Ofpy3HuI4WWFlPXikoV5Nh7CmjRreds0rO3k_6VCSskbJmiRdkepjSGlCKO2LpvtxByNmzUlenNCT3pzQm9OaKJ0caKg7B16iG4x8e_H0NcjBOVVrw6iTtaBtzC4WF6rh-A-wt8AD86mIw
CitedBy_id crossref_primary_10_1149_1945_7111_ad162f
crossref_primary_10_1016_j_talanta_2023_124644
crossref_primary_10_1016_j_snb_2023_134153
crossref_primary_10_1016_j_mtchem_2024_102344
crossref_primary_10_1021_acs_iecr_3c00595
crossref_primary_10_1016_j_foodchem_2022_134228
crossref_primary_10_1016_j_aca_2022_340127
crossref_primary_10_1016_j_ccr_2024_215746
crossref_primary_10_1016_j_cej_2024_150776
crossref_primary_10_1016_j_aca_2023_342027
crossref_primary_10_1002_asia_202200823
crossref_primary_10_2174_1573413719666221221095901
crossref_primary_10_1016_j_jece_2023_111563
crossref_primary_10_1016_j_jece_2024_112218
crossref_primary_10_1016_j_electacta_2024_145148
crossref_primary_10_1016_j_talanta_2024_127361
crossref_primary_10_1007_s10854_023_10603_7
crossref_primary_10_1016_j_ijoes_2024_100687
crossref_primary_10_1016_j_microc_2024_111433
crossref_primary_10_1016_j_pmatsci_2023_101105
crossref_primary_10_1007_s11947_024_03507_9
crossref_primary_10_1039_D3NR06502B
crossref_primary_10_1007_s11581_024_05502_8
crossref_primary_10_1016_j_foodchem_2024_140023
crossref_primary_10_1186_s43074_023_00091_7
crossref_primary_10_1016_j_jcis_2022_03_086
crossref_primary_10_1039_D4EN00255E
crossref_primary_10_1016_j_matdes_2023_111867
crossref_primary_10_1021_acsanm_4c00200
crossref_primary_10_1002_adsr_202200014
crossref_primary_10_1039_D3AN01580G
crossref_primary_10_1016_j_jhazmat_2022_129919
crossref_primary_10_1016_j_electacta_2024_144643
crossref_primary_10_1016_j_electacta_2024_144841
crossref_primary_10_1021_acssensors_3c01569
crossref_primary_10_1016_j_jtice_2024_105521
crossref_primary_10_1016_j_ijoes_2023_100034
crossref_primary_10_1515_ntrev_2022_0034
crossref_primary_10_1002_admt_202200210
crossref_primary_10_1016_j_jiec_2023_04_023
crossref_primary_10_1002_slct_202406081
crossref_primary_10_3390_molecules27030761
crossref_primary_10_1007_s00604_024_06747_w
crossref_primary_10_1016_j_mtchem_2023_101747
crossref_primary_10_1039_D4AY02237H
crossref_primary_10_1016_j_talanta_2024_126100
crossref_primary_10_3390_bios14050258
crossref_primary_10_3390_nano14050447
crossref_primary_10_1016_j_microc_2022_107508
crossref_primary_10_1016_j_jece_2025_115623
crossref_primary_10_1021_acssensors_4c01027
crossref_primary_10_1016_j_progpolymsci_2023_101675
crossref_primary_10_1016_j_jece_2023_110057
crossref_primary_10_1038_s41598_022_24700_w
crossref_primary_10_1016_j_ccr_2022_215002
crossref_primary_10_1016_j_cej_2024_155893
crossref_primary_10_1016_j_mtcomm_2023_105567
crossref_primary_10_1063_5_0211843
crossref_primary_10_1007_s11244_024_01973_1
crossref_primary_10_3390_nano12030397
crossref_primary_10_3390_molecules28217347
crossref_primary_10_1021_acsmeasuresciau_3c00050
crossref_primary_10_1021_acssuschemeng_3c04843
crossref_primary_10_1080_03067319_2023_2185778
crossref_primary_10_1007_s10008_023_05685_6
crossref_primary_10_1016_j_colsurfb_2025_114634
crossref_primary_10_1016_j_est_2022_104711
crossref_primary_10_1016_j_bios_2023_115583
crossref_primary_10_1016_j_aca_2023_341683
crossref_primary_10_1016_j_apmt_2024_102310
crossref_primary_10_1149_1945_7111_ad26e2
crossref_primary_10_3390_molecules27228064
crossref_primary_10_1016_j_jclepro_2023_140395
crossref_primary_10_1016_j_mtadv_2023_100376
crossref_primary_10_3390_nano12091528
crossref_primary_10_1016_j_electacta_2024_145237
crossref_primary_10_3390_diagnostics13040632
crossref_primary_10_1021_acs_analchem_3c03555
crossref_primary_10_3390_app14199027
crossref_primary_10_1016_j_microc_2024_110337
crossref_primary_10_1016_j_molstruc_2024_139830
crossref_primary_10_1007_s11696_022_02218_9
crossref_primary_10_1016_j_ijoes_2023_100219
crossref_primary_10_1016_j_mtelec_2023_100067
crossref_primary_10_1016_j_foodchem_2025_143362
crossref_primary_10_1016_j_colsurfa_2022_128582
crossref_primary_10_1016_j_foodchem_2024_140353
crossref_primary_10_1039_D3MA00340J
Cites_doi 10.1016/j.foodchem.2021.130006
10.1007/s00604-016-1931-3
10.1016/j.bios.2019.111529
10.1016/j.electacta.2013.08.077
10.1016/j.jtice.2018.09.021
10.1016/j.bios.2013.07.056
10.1016/j.snb.2015.05.118
10.1016/j.electacta.2010.10.058
10.1016/j.foodcont.2016.11.014
10.1002/elan.202060598
10.1039/C9QI00176J
10.1007/s00604-015-1717-z
10.1016/j.bios.2018.02.057
10.1016/j.electacta.2007.03.072
10.1007/s00604-018-2784-8
10.1007/s00604-013-0999-2
10.1016/j.snb.2018.10.074
10.1016/j.synthmet.2018.11.011
10.1016/j.jelechem.2020.114934
10.1016/j.trac.2019.01.008
10.1021/ja312092x
10.1021/ac60312a018
10.1039/C9QI00255C
10.1007/s00604-019-3735-8
10.1039/C9NJ02291K
10.1002/anie.200903463
10.1016/j.jpowsour.2016.06.115
10.1016/j.snb.2020.127815
10.1016/j.chemosphere.2020.126827
10.3390/s21124131
10.1016/j.jhazmat.2020.122776
10.1016/j.carbpol.2016.05.045
10.1007/s00604-021-04710-7
10.1021/acs.analchem.6b04259
10.1016/j.talanta.2016.12.067
10.1016/S1452-3981(23)17303-2
10.1002/elan.201400563
10.1039/C5AY01710F
10.1016/j.bios.2013.08.007
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.09.036
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 1322
ExternalDocumentID 10_1016_j_jcis_2021_09_036
S0021979721014934
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-c97fde58ce299b7b8f7835e75fa99bc47b207cc3d598e7b335255025b8af4a8c3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 09:45:06 EDT 2025
Thu Jul 10 23:32:19 EDT 2025
Tue Jul 01 01:19:11 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Fri Feb 23 02:43:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Au@CQDs-MXene nanocomposites
Sensitive detection
One-pot green synthesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-c97fde58ce299b7b8f7835e75fa99bc47b207cc3d598e7b335255025b8af4a8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2577734251
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2636442687
proquest_miscellaneous_2577734251
crossref_citationtrail_10_1016_j_jcis_2021_09_036
crossref_primary_10_1016_j_jcis_2021_09_036
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_09_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xu, Chen, Xu, Duan, Yu (b0130) 2020; 880
Cai, Ye, Wang, Lin, Lin, Zhang, Wu (b0145) 2016; 151
Zhang, Cheng, Gan (b0195) 2015; 10
Lin, Wen, Zhang, Lu, Li, Jiao, Yang (b0190) 2011; 56
Bruning-Fann, Kaneene (b0015) 1993; 35
Niu, Huang, Zhang, Yan, Sun (b0155) 2020; 880
Jiang, Fan, Du (b0035) 2014; 51
Nasraoui, Al-Hamry, Teixeira, Ameur, Kanoun (b0040) 2020; 880
Li, Ping, Ying (b0005) 2019; 113
Afkhami, Soltani-Felehgari, Madrakian, Ghaedi (b0200) 2014; 51
Wan, Zheng, Wan, Yin, Song (b0225) 2017; 73
Saeed, Singh, Abbas, Issa, Dempsey (b0230) 2015; 27
Zhang, Zhu, Wang, Ma, Sun, Li, Wang, Yue, Ouyang, Ji (b0025) 2019; 6
Shen, Rao, Bai, Sheng, Zheng (b0055) 2017; 165
Tu, Gao, Ma, Zou, Yu, Li, Qu, Huang, Lu (b0085) 2020; 396
Huang, Liu, Mei, Zhou, Guo, Wang, Feng (b0210) 2016; 183
Rasheed, Pandey, Jabbar, Mahmoud (b0120) 2021; 880
Han, Cai, Liu, Ren, Wang (b0180) 2020; 541
Abdel Hameed, Medany (b0070) 2019; 247
Zhuang, Lin, Zhang, Qiu, Yang (b0110) 2016; 183
Zhang, Li, Zheng (b0080) 2015; 7
Chen, Jiang, Lai, Peroulis, Stanciu (b0170) 2020; 11
Kang, Zhang, Wang, Zhang, Zhao, Zhou, Cai (b0090) 2019; 6
Taib, Shameli, Nia, Etesami, Miyake, Ali, Abouzari-Lotf, Izadiyan (b0050) 2019; 95
Lu (b0185) 2019; 281
Li, Hu, Wang, Weng, Chen, Feng (b0165) 2015; 208
Yang, Ratinac, Ringer, Thordarson, Gooding, Braet (b0020) 2010; 49
Heinecke, Khin, Pereira, Suarez, Iretskii, Doctorovich, Ford (b0030) 2013; 135
Li, Zhao, Zhang, Hou, Liu (b0205) 2013; 180
Jun, Kim, Rho, Chang, Yoon (b0150) 2020; 254
Jiao, Li, Yun, Cui (b0065) 2018; 185
Brylev, Sarrazin, Roué, Bélanger (b0010) 2007; 52
Liu, Zhou, Gong, Wu, Bao, Pan, Gu (b0060) 2013; 111
Yin, Wang, Tan, Li, Tu (b0100) 2021; 188
Yu, Li, Song (b0095) 2019; 186
Kanoun, Lazarević-Pašti, Pašti, Nasraoui, Talbi, Brahem, Adiraju, Sheremet, Rodriguez, Ben Ali, Al-Hamry (b0045) 2021; 21
Ma, Tu, Gao, Xie, Yu (b0125) 2020; 309
Zhong, Gao, Zou, Liu, Li, Gao, Yu, Wang, Lu (b0115) 2021; 360
Han, Zhang, Dong, Cheng, Guo (b0175) 2019; 142
Qiang, Yang, Hou, Wang (b0140) 2019; 43
Yang, Yang, Liu, Mao (b0220) 2015; 220
Ma, Yin, Wu, Ye (b0105) 2017; 89
Wang, Ju, Zhang, Song, Wei, Feng (b0160) 2016; 326
Guidelli, Pergola, Raspi (b0135) 1972; 44
Ghanei-Motlagh, Taher (b0215) 2018; 109
Atta, Galal, Ahmed, Abdelkader (b0075) 2021; 33
Ma (10.1016/j.jcis.2021.09.036_b0105) 2017; 89
Wan (10.1016/j.jcis.2021.09.036_b0225) 2017; 73
Zhang (10.1016/j.jcis.2021.09.036_b0195) 2015; 10
Yu (10.1016/j.jcis.2021.09.036_b0095) 2019; 186
Li (10.1016/j.jcis.2021.09.036_b0165) 2015; 208
Chen (10.1016/j.jcis.2021.09.036_b0170) 2020; 11
Zhuang (10.1016/j.jcis.2021.09.036_b0110) 2016; 183
Xu (10.1016/j.jcis.2021.09.036_b0130) 2020; 880
Lin (10.1016/j.jcis.2021.09.036_b0190) 2011; 56
Taib (10.1016/j.jcis.2021.09.036_b0050) 2019; 95
Niu (10.1016/j.jcis.2021.09.036_b0155) 2020; 880
Zhang (10.1016/j.jcis.2021.09.036_b0080) 2015; 7
Ghanei-Motlagh (10.1016/j.jcis.2021.09.036_b0215) 2018; 109
Kang (10.1016/j.jcis.2021.09.036_b0090) 2019; 6
Li (10.1016/j.jcis.2021.09.036_b0005) 2019; 113
Lu (10.1016/j.jcis.2021.09.036_b0185) 2019; 281
Heinecke (10.1016/j.jcis.2021.09.036_b0030) 2013; 135
Saeed (10.1016/j.jcis.2021.09.036_b0230) 2015; 27
Qiang (10.1016/j.jcis.2021.09.036_b0140) 2019; 43
Huang (10.1016/j.jcis.2021.09.036_b0210) 2016; 183
Cai (10.1016/j.jcis.2021.09.036_b0145) 2016; 151
Atta (10.1016/j.jcis.2021.09.036_b0075) 2021; 33
Li (10.1016/j.jcis.2021.09.036_b0205) 2013; 180
Tu (10.1016/j.jcis.2021.09.036_b0085) 2020; 396
Abdel Hameed (10.1016/j.jcis.2021.09.036_b0070) 2019; 247
Brylev (10.1016/j.jcis.2021.09.036_b0010) 2007; 52
Han (10.1016/j.jcis.2021.09.036_b0180) 2020; 541
Afkhami (10.1016/j.jcis.2021.09.036_b0200) 2014; 51
Jiang (10.1016/j.jcis.2021.09.036_b0035) 2014; 51
Rasheed (10.1016/j.jcis.2021.09.036_b0120) 2021; 880
Wang (10.1016/j.jcis.2021.09.036_b0160) 2016; 326
Zhong (10.1016/j.jcis.2021.09.036_b0115) 2021; 360
Bruning-Fann (10.1016/j.jcis.2021.09.036_b0015) 1993; 35
Han (10.1016/j.jcis.2021.09.036_b0175) 2019; 142
Shen (10.1016/j.jcis.2021.09.036_b0055) 2017; 165
Yang (10.1016/j.jcis.2021.09.036_b0220) 2015; 220
Yang (10.1016/j.jcis.2021.09.036_b0020) 2010; 49
Yin (10.1016/j.jcis.2021.09.036_b0100) 2021; 188
Ma (10.1016/j.jcis.2021.09.036_b0125) 2020; 309
Jun (10.1016/j.jcis.2021.09.036_b0150) 2020; 254
Liu (10.1016/j.jcis.2021.09.036_b0060) 2013; 111
Guidelli (10.1016/j.jcis.2021.09.036_b0135) 1972; 44
Kanoun (10.1016/j.jcis.2021.09.036_b0045) 2021; 21
Jiao (10.1016/j.jcis.2021.09.036_b0065) 2018; 185
Zhang (10.1016/j.jcis.2021.09.036_b0025) 2019; 6
Nasraoui (10.1016/j.jcis.2021.09.036_b0040) 2020; 880
References_xml – volume: 21
  start-page: 4131
  year: 2021
  ident: b0045
  article-title: A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring
  publication-title: Sensors
– volume: 7
  start-page: 8366
  year: 2015
  ident: b0080
  article-title: An electrochemical sensor for the sensitive determination of nitrites based on Pt–PANI–graphene nanocomposites
  publication-title: Anal. Methods
– volume: 208
  start-page: 468
  year: 2015
  ident: b0165
  article-title: Yuan-Yuan, Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite, Sensors and Actuators
  publication-title: B. Chemical
– volume: 142
  year: 2019
  ident: b0175
  article-title: Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS
  publication-title: Biosens. Bioelectron.
– volume: 396
  year: 2020
  ident: b0085
  article-title: Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide
  publication-title: J. Hazard. Mater.
– volume: 73
  start-page: 1507
  year: 2017
  ident: b0225
  article-title: A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite
  publication-title: Food Control
– volume: 186
  start-page: 624
  year: 2019
  ident: b0095
  article-title: Amperometric determination of nitrite by using a nanocomposite prepared from gold nanoparticles, reduced graphene oxide and multi-walled carbon nanotubes
  publication-title: Microchim. Acta
– volume: 52
  start-page: 6237
  year: 2007
  ident: b0010
  article-title: Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes
  publication-title: Electrochim. Acta
– volume: 89
  start-page: 1323
  year: 2017
  ident: b0105
  article-title: Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles
  publication-title: Anal. Chem.
– volume: 880
  year: 2020
  ident: b0130
  article-title: Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin
  publication-title: J. Electroanal. Chem.
– volume: 111
  start-page: 876
  year: 2013
  ident: b0060
  article-title: The investigation of electrochemical properties for Fe
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 279
  year: 2018
  ident: b0215
  article-title: A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing
  publication-title: Biosens. Bioelectron.
– volume: 880
  year: 2021
  ident: b0120
  article-title: Platinum nanoparticles/Ti
  publication-title: J. Electroanal. Chem.
– volume: 35
  start-page: 521
  year: 1993
  ident: b0015
  article-title: The effects of nitrate, nitrite and N-nitroso compounds on human health: a review
  publication-title: Vet. Hum. Toxicol.
– volume: 220
  start-page: 652
  year: 2015
  ident: b0220
  article-title: Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite
  publication-title: Sens. Actuators, B
– volume: 165
  start-page: 304
  year: 2017
  ident: b0055
  article-title: Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing
  publication-title: Talanta
– volume: 11
  year: 2020
  ident: b0170
  article-title: Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds
  publication-title: Nat. Commun.
– volume: 51
  start-page: 343
  year: 2014
  end-page: 348
  ident: b0035
  article-title: Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 1432
  year: 2019
  ident: b0090
  article-title: Highly sensitive detection of nitrite by using gold nanoparticle-decorated α-Fe
  publication-title: Inorg. Chem. Front.
– volume: 281
  start-page: 182
  year: 2019
  ident: b0185
  article-title: Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid
  publication-title: Sensors And Actuators B-Chemical
– volume: 185
  start-page: 249
  year: 2018
  ident: b0065
  article-title: Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite
  publication-title: Mikrochim. Acta
– volume: 309
  year: 2020
  ident: b0125
  article-title: Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin
  publication-title: Sens. Actuators, B
– volume: 254
  year: 2020
  ident: b0150
  article-title: Ultrasound-assisted Ti
  publication-title: Chemosphere
– volume: 180
  start-page: 821
  year: 2013
  ident: b0205
  article-title: A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene
  publication-title: Microchim. Acta
– volume: 360
  year: 2021
  ident: b0115
  article-title: MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples
  publication-title: Food Chem.
– volume: 183
  start-page: 2807
  year: 2016
  ident: b0110
  article-title: A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite
  publication-title: Microchim. Acta
– volume: 95
  start-page: 616
  year: 2019
  ident: b0050
  article-title: Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 51
  start-page: 379
  year: 2014
  ident: b0200
  article-title: Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite
  publication-title: Biosens. Bioelectron.
– volume: 27
  start-page: 1086
  year: 2015
  ident: b0230
  article-title: Electrocatalytic Nitrite Determination Using Iron Phthalocyanine Modified Gold Nanoparticles
  publication-title: Electroanalysis
– volume: 6
  start-page: 1501
  year: 2019
  ident: b0025
  article-title: High-performance electrochemical nitrite sensing enabled using commercial carbon fiber cloth
  publication-title: Inorg. Chem. Front.
– volume: 188
  start-page: 53
  year: 2021
  ident: b0100
  article-title: Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite
  publication-title: Microchim. Acta
– volume: 135
  start-page: 4007
  year: 2013
  ident: b0030
  article-title: Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
  publication-title: J. Am. Chem. Soc.
– volume: 541
  year: 2020
  ident: b0180
  article-title: Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection
  publication-title: Appl. Surf. Sci.
– volume: 113
  start-page: 1
  year: 2019
  ident: b0005
  article-title: Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection
  publication-title: Trends Anal. Chem.
– volume: 33
  start-page: 1510
  year: 2021
  ident: b0075
  article-title: Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles
  publication-title: Electroanalysis
– volume: 151
  start-page: 130
  year: 2016
  ident: b0145
  article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition
  publication-title: Carbohydr. Polym.
– volume: 49
  start-page: 2114
  year: 2010
  end-page: 2138
  ident: b0020
  article-title: Carbon nanomaterials in biosensors: should you use nanotubes or graphene?
  publication-title: Angew. Chem. Int. Ed.
– volume: 880
  year: 2020
  ident: b0155
  article-title: Synthesis of gold nanoflakes decorated biomass-derived porous carbon and its application in electrochemical sensing of luteolin
  publication-title: J. Electroanal. Chem.
– volume: 44
  start-page: 745
  year: 1972
  ident: b0135
  article-title: Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media
  publication-title: Anal. Chem.
– volume: 43
  start-page: 10826
  year: 2019
  ident: b0140
  article-title: Synthesis of carbon quantum dots with green luminescence from potato starch
  publication-title: New J. Chem.
– volume: 56
  start-page: 1030
  year: 2011
  ident: b0190
  article-title: Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection
  publication-title: Electrochim. Acta
– volume: 247
  start-page: 67
  year: 2019
  ident: b0070
  article-title: Evaluation of core-shell structured cobalt@platinum nanoparticles-decorated graphene for nitrite sensing
  publication-title: Synth. Met.
– volume: 183
  start-page: 791
  year: 2016
  ident: b0210
  article-title: Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks
  publication-title: Microchim. Acta
– volume: 880
  year: 2020
  ident: b0040
  article-title: Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles
  publication-title: J. Electroanal. Chem.
– volume: 326
  start-page: 227
  year: 2016
  ident: b0160
  article-title: Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions
  publication-title: J. Power Sources
– volume: 10
  start-page: 5905
  year: 2015
  ident: b0195
  article-title: Electrochemical nitrite nanosensor Based on Au Nanoparticles/Graphene Nanocomposites
  publication-title: Int. J. Electrochem. Sci.
– volume: 360
  year: 2021
  ident: 10.1016/j.jcis.2021.09.036_b0115
  article-title: MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.130006
– volume: 880
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0040
  article-title: Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles
  publication-title: J. Electroanal. Chem.
– volume: 183
  start-page: 2807
  year: 2016
  ident: 10.1016/j.jcis.2021.09.036_b0110
  article-title: A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-016-1931-3
– volume: 142
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0175
  article-title: Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111529
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0170
  article-title: Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds
  publication-title: Nat. Commun.
– volume: 111
  start-page: 876
  year: 2013
  ident: 10.1016/j.jcis.2021.09.036_b0060
  article-title: The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.077
– volume: 95
  start-page: 616
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0050
  article-title: Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.09.021
– volume: 51
  start-page: 379
  year: 2014
  ident: 10.1016/j.jcis.2021.09.036_b0200
  article-title: Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.07.056
– volume: 220
  start-page: 652
  year: 2015
  ident: 10.1016/j.jcis.2021.09.036_b0220
  article-title: Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.05.118
– volume: 56
  start-page: 1030
  year: 2011
  ident: 10.1016/j.jcis.2021.09.036_b0190
  article-title: Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.10.058
– volume: 73
  start-page: 1507
  year: 2017
  ident: 10.1016/j.jcis.2021.09.036_b0225
  article-title: A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.11.014
– volume: 541
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0180
  article-title: Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection
  publication-title: Appl. Surf. Sci.
– volume: 33
  start-page: 1510
  year: 2021
  ident: 10.1016/j.jcis.2021.09.036_b0075
  article-title: Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles
  publication-title: Electroanalysis
  doi: 10.1002/elan.202060598
– volume: 880
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0155
  article-title: Synthesis of gold nanoflakes decorated biomass-derived porous carbon and its application in electrochemical sensing of luteolin
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 1432
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0090
  article-title: Highly sensitive detection of nitrite by using gold nanoparticle-decorated α-Fe2O3 nanorod arrays as self-supporting photo-electrodes
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00176J
– volume: 183
  start-page: 791
  year: 2016
  ident: 10.1016/j.jcis.2021.09.036_b0210
  article-title: Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-015-1717-z
– volume: 35
  start-page: 521
  year: 1993
  ident: 10.1016/j.jcis.2021.09.036_b0015
  article-title: The effects of nitrate, nitrite and N-nitroso compounds on human health: a review
  publication-title: Vet. Hum. Toxicol.
– volume: 109
  start-page: 279
  year: 2018
  ident: 10.1016/j.jcis.2021.09.036_b0215
  article-title: A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.02.057
– volume: 52
  start-page: 6237
  year: 2007
  ident: 10.1016/j.jcis.2021.09.036_b0010
  article-title: Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.03.072
– volume: 185
  start-page: 249
  year: 2018
  ident: 10.1016/j.jcis.2021.09.036_b0065
  article-title: Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite
  publication-title: Mikrochim. Acta
  doi: 10.1007/s00604-018-2784-8
– volume: 180
  start-page: 821
  year: 2013
  ident: 10.1016/j.jcis.2021.09.036_b0205
  article-title: A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-013-0999-2
– volume: 281
  start-page: 182
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0185
  article-title: Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid
  publication-title: Sensors And Actuators B-Chemical
  doi: 10.1016/j.snb.2018.10.074
– volume: 247
  start-page: 67
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0070
  article-title: Evaluation of core-shell structured cobalt@platinum nanoparticles-decorated graphene for nitrite sensing
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2018.11.011
– volume: 880
  year: 2021
  ident: 10.1016/j.jcis.2021.09.036_b0120
  article-title: Platinum nanoparticles/Ti3C2Tx (MXene) composite for the effectual electrochemical sensing of Bisphenol A in aqueous media
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114934
– volume: 113
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0005
  article-title: Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.01.008
– volume: 135
  start-page: 4007
  year: 2013
  ident: 10.1016/j.jcis.2021.09.036_b0030
  article-title: Nitrite Reduction Mediated by Heme Models. Routes to NO and HNO?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312092x
– volume: 44
  start-page: 745
  year: 1972
  ident: 10.1016/j.jcis.2021.09.036_b0135
  article-title: Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media
  publication-title: Anal. Chem.
  doi: 10.1021/ac60312a018
– volume: 6
  start-page: 1501
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0025
  article-title: High-performance electrochemical nitrite sensing enabled using commercial carbon fiber cloth
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00255C
– volume: 186
  start-page: 624
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0095
  article-title: Amperometric determination of nitrite by using a nanocomposite prepared from gold nanoparticles, reduced graphene oxide and multi-walled carbon nanotubes
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-019-3735-8
– volume: 208
  start-page: 468
  year: 2015
  ident: 10.1016/j.jcis.2021.09.036_b0165
  article-title: Yuan-Yuan, Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite, Sensors and Actuators
  publication-title: B. Chemical
– volume: 43
  start-page: 10826
  year: 2019
  ident: 10.1016/j.jcis.2021.09.036_b0140
  article-title: Synthesis of carbon quantum dots with green luminescence from potato starch
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ02291K
– volume: 49
  start-page: 2114
  issue: 12
  year: 2010
  ident: 10.1016/j.jcis.2021.09.036_b0020
  article-title: Carbon nanomaterials in biosensors: should you use nanotubes or graphene?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200903463
– volume: 326
  start-page: 227
  year: 2016
  ident: 10.1016/j.jcis.2021.09.036_b0160
  article-title: Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.115
– volume: 309
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0125
  article-title: Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.127815
– volume: 254
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0150
  article-title: Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126827
– volume: 21
  start-page: 4131
  year: 2021
  ident: 10.1016/j.jcis.2021.09.036_b0045
  article-title: A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring
  publication-title: Sensors
  doi: 10.3390/s21124131
– volume: 396
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0085
  article-title: Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122776
– volume: 151
  start-page: 130
  year: 2016
  ident: 10.1016/j.jcis.2021.09.036_b0145
  article-title: Preparation of copper-chelate quaternized carboxymethyl chitosan/organic rectorite nanocomposites for algae inhibition
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.05.045
– volume: 188
  start-page: 53
  year: 2021
  ident: 10.1016/j.jcis.2021.09.036_b0100
  article-title: Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-021-04710-7
– volume: 89
  start-page: 1323
  year: 2017
  ident: 10.1016/j.jcis.2021.09.036_b0105
  article-title: Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04259
– volume: 165
  start-page: 304
  year: 2017
  ident: 10.1016/j.jcis.2021.09.036_b0055
  article-title: Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.12.067
– volume: 10
  start-page: 5905
  year: 2015
  ident: 10.1016/j.jcis.2021.09.036_b0195
  article-title: Electrochemical nitrite nanosensor Based on Au Nanoparticles/Graphene Nanocomposites
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)17303-2
– volume: 27
  start-page: 1086
  year: 2015
  ident: 10.1016/j.jcis.2021.09.036_b0230
  article-title: Electrocatalytic Nitrite Determination Using Iron Phthalocyanine Modified Gold Nanoparticles
  publication-title: Electroanalysis
  doi: 10.1002/elan.201400563
– volume: 7
  start-page: 8366
  year: 2015
  ident: 10.1016/j.jcis.2021.09.036_b0080
  article-title: An electrochemical sensor for the sensitive determination of nitrites based on Pt–PANI–graphene nanocomposites
  publication-title: Anal. Methods
  doi: 10.1039/C5AY01710F
– volume: 880
  year: 2020
  ident: 10.1016/j.jcis.2021.09.036_b0130
  article-title: Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin
  publication-title: J. Electroanal. Chem.
– volume: 51
  start-page: 343
  year: 2014
  ident: 10.1016/j.jcis.2021.09.036_b0035
  article-title: Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.08.007
SSID ssj0011559
Score 2.5403986
Snippet [Display omitted] A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the...
A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1313
SubjectTerms Au@CQDs-MXene nanocomposites
catalytic activity
detection limit
electrical conductivity
electrochemistry
glassy carbon electrode
nanocomposites
nanogold
nitrites
One-pot green synthesis
Sensitive detection
sensors (equipment)
surface area
tap water
voltammetry
Title Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite
URI https://dx.doi.org/10.1016/j.jcis.2021.09.036
https://www.proquest.com/docview/2577734251
https://www.proquest.com/docview/2636442687
Volume 607
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigcEBQqykflSr0h0yS2Y-fGaqFaWrWnVtqbZTuOtKvilN3kym9nJnEqQGIP3JJoRok89sw4fvOGkDNeZLVQQTJYOoGJXCjmRO2ZdlZY7yWvaixwvr4pF3ficimXe2Q-1cIgrDL5_tGnD946PTlPo3n-sFphjS-sNoXsM5jmc-QEFULhLP_08xHmkeOx2wjzyBlKp8KZEeO19iuk7C7ykeu0_Fdw-stND7Hn4gV5npJGOhu_6yXZC_GQHMynXm2H5NlvtIKvyHrWf57bjWsj_dHDyPXf6Ze227LrJTg2Gm1sEUiOaK1A7ZbaSFMzHJ_YA-gWNrfthkJCO1wO-CJah27AbUXaNhQ8wQb0X5O7i6-38wVLPRWY52XZMV-ppg5S-wBxyCmnG_z1E5RsLNx7oVyRKe95LSsdlMOKLNjDFNJp2wirPT8i-7GN4Q2h3sHez1qdVbCzzQqnOTa0kqIB9aZy1THJp8E0PhGOY9-LezMhy9YGDWDQACarDBjgmHx81HkY6TZ2SsvJRuaPSWMgHuzUO50MasBQeERiY2h7EJJKKQ5-LN8hU3JIIotSq7f_-f535GmBVRQD-Ps92e82ffgAuU3nTobJe0KezL5dLW5-AdME-p4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZGdxgcpjFADBgYiRuKlsR27NxWFaaOrT1tUm-W7ThSK3BGm_z_vJc4EyDRA7ck8lMiP_v9iL_3PUI-sTytuPQiga3jE55xmVheuURZw41zgpUVFjgvlsX8nn9bidUBmY21MAirjLZ_sOm9tY5PLuJsXjys11jjC7tNIvsMhvmMPyGHyE4lJuRwen0zXz4eJuDJ24D0yBIUiLUzA8xr49bI2p1nA91p8S__9Jel7t3P1Qk5jnEjnQ6f9pwc-HBKjmZju7ZT8uw3ZsEXZDPtLmdma5tAf3Ywed0P-qVpd8liBbaNBhMaxJIjYMtTs6Mm0NgPx0UCAbqD_LbZUohp-8seYkQr3_bQrUCbmoIx2IL8S3J_9fVuNk9iW4XEsaJoE1fKuvJCOQ-uyEqravz746WoDdw7Lm2eSudYJUrlpcWiLEhjcmGVqblRjr0ik9AE_5pQZyH9M0alJSS3aW4Vw55WgtcgXpe2PCPZOJnaRc5xbH3xXY_gso1GBWhUgE5LDQo4I58fZR4Gxo29o8WoI_3HutHgEvbKfRwVqkFReEpigm86GCSklAxMWbZnTMEgjswLJd_85_s_kKP53eJW314vb96SpzkWVfRY8Hdk0m47fw6hTmvfx6X8C2VC_U8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Au%40Carbon+quantum+Dots-MXene+nanocomposite+as+an+electrochemical+sensor+for+sensitive+detection+of+nitrite&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Feng%2C+Xiwen&rft.au=Han%2C+Guangda&rft.au=Cai%2C+Jihai&rft.au=Wang%2C+Xiaoying&rft.date=2022-02-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=607&rft.issue=Pt+2&rft.spage=1313&rft_id=info:doi/10.1016%2Fj.jcis.2021.09.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon