A note on the validity of cross-validation for evaluating autoregressive time series prediction
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not stra...
Saved in:
Published in | Computational statistics & data analysis Vol. 120; pp. 70 - 83 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often replaced by practitioners in favour of an out-of-sample (OOS) evaluation. It is shown that for purely autoregressive models, the use of standard K-fold CV is possible provided the models considered have uncorrelated errors. Such a setup occurs, for example, when the models nest a more appropriate model. This is very common when Machine Learning methods are used for prediction, and where CV can control for overfitting the data. Theoretical insights supporting these arguments are presented, along with a simulation study and a real-world example. It is shown empirically that K-fold CV performs favourably compared to both OOS evaluation and other time-series-specific techniques such as non-dependent cross-validation. |
---|---|
AbstractList | One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often replaced by practitioners in favour of an out-of-sample (OOS) evaluation. It is shown that for purely autoregressive models, the use of standard K-fold CV is possible provided the models considered have uncorrelated errors. Such a setup occurs, for example, when the models nest a more appropriate model. This is very common when Machine Learning methods are used for prediction, and where CV can control for overfitting the data. Theoretical insights supporting these arguments are presented, along with a simulation study and a real-world example. It is shown empirically that K-fold CV performs favourably compared to both OOS evaluation and other time-series-specific techniques such as non-dependent cross-validation. |
Author | Bergmeir, Christoph Hyndman, Rob J. Koo, Bonsoo |
Author_xml | – sequence: 1 givenname: Christoph orcidid: 0000-0002-3665-9021 surname: Bergmeir fullname: Bergmeir, Christoph email: christoph.bergmeir@monash.edu organization: Faculty of Information Technology, Monash University, Melbourne, Australia – sequence: 2 givenname: Rob J. surname: Hyndman fullname: Hyndman, Rob J. organization: Department of Econometrics & Business Statistics, Monash University, Melbourne, Australia – sequence: 3 givenname: Bonsoo surname: Koo fullname: Koo, Bonsoo organization: Department of Econometrics & Business Statistics, Monash University, Melbourne, Australia |
BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wIz5GZMZcFOKf1Bwo-uQSW5qSjspSSz07c20rlx0dTmX813uOTM0GcIACN1TUlNCxcOmNsnqmhEqa0prQvgVmtJWskryRzZB02KSVddIfoNmKW0IIayR7RSpBR5CBhwGnL8BH_TWW5-PODhsYkipOm109sXgQsRQ9E-RwxrrnxwirCOk5A-As98BThA9JLyPYL0ZoVt07fQ2wd3fnKOvl-fP5Vu1-nh9Xy5WleFC5KoHyo0A3ktJBe2F01RqbjpJnGws74zuXSNEJ5nuNVjWammtNq0TFArA-Ryx893T1xGc2ke_0_GoKFFjRWqjxorUWJGiVJWKCtT-g4zPp6w5ar-9jD6dUSihDh6iSsbDYEruCCYrG_wl_BcV-YbL |
CitedBy_id | crossref_primary_10_1371_journal_pone_0265660 crossref_primary_10_1016_j_ijforecast_2021_11_007 crossref_primary_10_1080_14697688_2022_2097120 crossref_primary_10_1007_s00521_022_07254_w crossref_primary_10_1016_j_csda_2025_108173 crossref_primary_10_3390_diagnostics12071531 crossref_primary_10_1016_j_apm_2024_115658 crossref_primary_10_1002_for_2773 crossref_primary_10_1016_j_ijforecast_2021_03_004 crossref_primary_10_3934_DSFE_2021001 crossref_primary_10_1017_asb_2021_29 crossref_primary_10_1007_s10163_020_01022_5 crossref_primary_10_1016_j_cej_2025_161634 crossref_primary_10_1016_j_apenergy_2022_118674 crossref_primary_10_1017_nie_2021_10 crossref_primary_10_1016_j_micpro_2022_104596 crossref_primary_10_1109_JSEN_2021_3102586 crossref_primary_10_1017_nie_2021_13 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1007_s10479_023_05195_8 crossref_primary_10_2139_ssrn_3836631 crossref_primary_10_1016_j_isatra_2019_07_009 crossref_primary_10_1016_j_ymssp_2019_106342 crossref_primary_10_3390_su11133656 crossref_primary_10_1371_journal_pone_0242099 crossref_primary_10_1007_s11042_020_09820_7 crossref_primary_10_1016_j_irfa_2021_101811 crossref_primary_10_2139_ssrn_4015755 crossref_primary_10_3390_en15228567 crossref_primary_10_1287_ijoo_2022_0086 crossref_primary_10_1016_j_chemosphere_2018_12_095 crossref_primary_10_1007_s13385_022_00307_3 crossref_primary_10_2478_jaiscr_2024_0016 crossref_primary_10_3389_fpls_2020_01120 crossref_primary_10_1016_j_ijforecast_2024_08_006 crossref_primary_10_3390_forecast5040036 crossref_primary_10_1002_widm_1484 crossref_primary_10_2139_ssrn_4001910 crossref_primary_10_3390_su12166574 crossref_primary_10_1007_s11356_023_29769_y crossref_primary_10_3390_rs16132372 crossref_primary_10_1080_1350486X_2021_2010584 crossref_primary_10_1016_j_geoen_2023_212270 crossref_primary_10_2139_ssrn_4482846 crossref_primary_10_1001_jamanetworkopen_2024_7822 crossref_primary_10_1016_j_trb_2022_10_014 crossref_primary_10_1016_j_apenergy_2020_114978 crossref_primary_10_1088_1742_6596_1869_1_012086 crossref_primary_10_1177_1536867X20909697 crossref_primary_10_1109_TASE_2020_3022037 crossref_primary_10_3233_JIFS_211436 crossref_primary_10_1002_advs_202002021 crossref_primary_10_1016_j_ecoinf_2022_101897 crossref_primary_10_1007_s10489_024_05273_9 crossref_primary_10_1093_wber_lhac017 crossref_primary_10_7717_peerj_cs_490 crossref_primary_10_1016_j_spasta_2019_100394 crossref_primary_10_1214_24_AOAS1900 crossref_primary_10_2139_ssrn_4182794 crossref_primary_10_1111_jtsa_12737 crossref_primary_10_3390_healthcare12222205 crossref_primary_10_1093_jjfinec_nbae028 crossref_primary_10_1016_j_jfineco_2023_103737 crossref_primary_10_53391_mmnsa_1577228 crossref_primary_10_3390_s19061280 crossref_primary_10_1093_heapol_czab027 crossref_primary_10_1016_j_jeconom_2021_04_013 crossref_primary_10_1002_jae_2910 crossref_primary_10_3390_math8060927 crossref_primary_10_1016_j_techfore_2024_123319 crossref_primary_10_1007_s10614_019_09966_z crossref_primary_10_1016_j_pacfin_2021_101678 crossref_primary_10_1371_journal_pcbi_1007263 crossref_primary_10_1016_j_eswa_2023_121702 crossref_primary_10_1002_ecy_3431 crossref_primary_10_1002_for_2678 crossref_primary_10_3390_s20133743 crossref_primary_10_1016_j_ejor_2020_05_059 crossref_primary_10_1515_ijb_2021_0134 crossref_primary_10_1590_1806_9479_2021_249013 crossref_primary_10_1016_j_ijforecast_2021_11_013 crossref_primary_10_1089_big_2021_0112 crossref_primary_10_2139_ssrn_4428178 crossref_primary_10_1007_s10614_024_10825_9 crossref_primary_10_1016_j_compchemeng_2021_107442 crossref_primary_10_1016_j_kjs_2023_02_017 crossref_primary_10_1080_20464177_2019_1633223 crossref_primary_10_1016_j_ins_2019_11_027 crossref_primary_10_2139_ssrn_3334458 crossref_primary_10_3390_f15081332 crossref_primary_10_1016_j_asoc_2019_105837 crossref_primary_10_1007_s10618_022_00894_5 crossref_primary_10_1093_oncolo_oyad261 crossref_primary_10_1016_j_asoc_2021_108286 crossref_primary_10_1155_2022_7715078 crossref_primary_10_1007_s00034_023_02454_8 crossref_primary_10_1016_j_compchemeng_2022_107844 crossref_primary_10_1016_j_ijforecast_2020_02_005 crossref_primary_10_1016_j_fsidi_2020_301090 crossref_primary_10_1007_s13253_023_00564_z crossref_primary_10_3390_su10082801 crossref_primary_10_1109_ACCESS_2021_3059187 crossref_primary_10_1038_s42004_022_00744_x crossref_primary_10_1016_j_cor_2024_106905 crossref_primary_10_1002_ldr_3922 crossref_primary_10_1016_j_scitotenv_2021_145765 crossref_primary_10_1287_inte_2023_1164 crossref_primary_10_1080_13683500_2023_2165482 crossref_primary_10_1109_TDSC_2022_3192671 crossref_primary_10_1016_j_ijar_2021_06_014 crossref_primary_10_1371_journal_pone_0208203 crossref_primary_10_1016_j_ins_2022_09_002 crossref_primary_10_3390_electronics10212717 crossref_primary_10_1002_jae_2967 crossref_primary_10_1016_j_autcon_2024_105904 crossref_primary_10_1016_j_jisa_2020_102596 crossref_primary_10_1016_j_ribaf_2022_101747 crossref_primary_10_2139_ssrn_3282408 crossref_primary_10_1016_j_epsr_2019_106003 crossref_primary_10_1007_s11336_021_09827_5 crossref_primary_10_3390_risks8030098 crossref_primary_10_1098_rstb_2019_0392 crossref_primary_10_1108_IJESM_02_2021_0009 crossref_primary_10_1016_j_jeconom_2024_105937 crossref_primary_10_3390_f14101962 crossref_primary_10_1002_eng2_12788 crossref_primary_10_1016_j_insmatheco_2020_03_002 crossref_primary_10_1007_s10333_023_00924_y crossref_primary_10_1016_j_asoc_2023_110374 crossref_primary_10_1016_j_compag_2019_105174 crossref_primary_10_1080_14697688_2024_2439458 crossref_primary_10_1007_s10687_018_0321_0 crossref_primary_10_1080_17538157_2021_1988957 crossref_primary_10_1007_s11277_024_11307_9 crossref_primary_10_1515_snde_2023_0030 crossref_primary_10_1016_j_najef_2022_101705 crossref_primary_10_1016_j_egyai_2021_100121 crossref_primary_10_2139_ssrn_4775572 crossref_primary_10_1016_j_ijforecast_2020_06_008 crossref_primary_10_3390_a17110519 crossref_primary_10_1177_0142331220920482 crossref_primary_10_1016_j_jbi_2019_103116 crossref_primary_10_1111_icad_12408 crossref_primary_10_1007_s11063_023_11239_8 crossref_primary_10_1016_j_ijforecast_2022_05_007 crossref_primary_10_2139_ssrn_4178392 crossref_primary_10_4054_DemRes_2021_45_28 crossref_primary_10_2139_ssrn_4353052 crossref_primary_10_1016_j_resourpol_2024_105076 crossref_primary_10_1109_TEVC_2022_3189500 crossref_primary_10_1016_j_bar_2025_101563 crossref_primary_10_1016_j_neuroimage_2023_120458 crossref_primary_10_1016_j_omega_2024_103073 crossref_primary_10_1016_j_resourpol_2023_104248 crossref_primary_10_1186_s12938_020_00782_3 crossref_primary_10_1016_j_asoc_2020_106615 crossref_primary_10_1007_s11694_022_01351_z crossref_primary_10_1016_j_jfs_2025_101372 crossref_primary_10_1016_j_ifacol_2020_12_782 crossref_primary_10_52547_jsdp_19_1_39 crossref_primary_10_1007_s00477_018_1585_2 crossref_primary_10_1016_j_neucom_2019_06_109 crossref_primary_10_1039_D4TA06740A crossref_primary_10_1007_s12559_021_09849_2 crossref_primary_10_1016_j_mlwa_2022_100355 crossref_primary_10_1038_s41598_020_73773_y crossref_primary_10_3390_rs13214325 crossref_primary_10_5194_nhess_22_2401_2022 crossref_primary_10_1016_j_worlddev_2022_106035 crossref_primary_10_1080_14697688_2020_1790635 crossref_primary_10_1007_s00521_020_04840_8 crossref_primary_10_1038_s41598_021_90063_3 crossref_primary_10_1109_TKDE_2018_2863705 crossref_primary_10_1016_j_ijforecast_2021_05_005 crossref_primary_10_3390_en16010155 crossref_primary_10_1016_j_compind_2021_103555 crossref_primary_10_1016_j_ecoinf_2019_101019 crossref_primary_10_1002_cem_3618 crossref_primary_10_1016_j_patcog_2021_108441 crossref_primary_10_2139_ssrn_3975543 crossref_primary_10_1080_21645515_2023_2251830 crossref_primary_10_2139_ssrn_4605803 crossref_primary_10_1007_s10994_020_05923_2 crossref_primary_10_3390_ijerph17031088 crossref_primary_10_3390_w14040552 crossref_primary_10_3390_s21041237 crossref_primary_10_1007_s11336_021_09825_7 crossref_primary_10_1007_s42452_024_06387_y crossref_primary_10_1016_j_gfj_2023_100904 crossref_primary_10_1093_jjfinec_nbab023 crossref_primary_10_1109_TNSE_2022_3152983 crossref_primary_10_2196_57164 crossref_primary_10_1007_s10618_025_01095_6 crossref_primary_10_1016_j_eja_2018_03_001 crossref_primary_10_59294_HIUJS_VOL_5_2023_552 crossref_primary_10_3390_math10132156 crossref_primary_10_1002_for_3124 crossref_primary_10_1016_j_bspc_2018_05_014 crossref_primary_10_2139_ssrn_3846927 crossref_primary_10_1038_s41467_020_17347_6 crossref_primary_10_2139_ssrn_4128509 crossref_primary_10_1007_s10994_020_05910_7 crossref_primary_10_1016_j_envsoft_2022_105321 crossref_primary_10_1016_j_egyai_2023_100243 crossref_primary_10_1007_s11269_021_02865_9 crossref_primary_10_1007_s12652_020_02001_2 crossref_primary_10_1093_icesjms_fsac179 crossref_primary_10_1111_2041_210X_14030 crossref_primary_10_1016_j_econlet_2023_111369 crossref_primary_10_1002_qre_3686 crossref_primary_10_3390_electronics10020151 crossref_primary_10_1007_s00521_021_05702_7 crossref_primary_10_1016_j_asoc_2020_106827 crossref_primary_10_1029_2018WR023378 crossref_primary_10_2196_12163 crossref_primary_10_1002_for_3013 crossref_primary_10_1016_j_compchemeng_2021_107573 crossref_primary_10_1016_j_jaerosci_2021_105833 crossref_primary_10_1371_journal_pone_0244094 crossref_primary_10_1016_j_atech_2023_100302 crossref_primary_10_1016_j_eswa_2022_118873 crossref_primary_10_1016_j_egyr_2022_11_167 crossref_primary_10_1371_journal_pcbi_1012324 crossref_primary_10_3390_jmse9050524 crossref_primary_10_1002_for_3248 crossref_primary_10_1111_1475_4932_12721 crossref_primary_10_2139_ssrn_2785583 crossref_primary_10_1016_j_commatsci_2020_110132 crossref_primary_10_1016_j_ecolmodel_2020_109076 crossref_primary_10_3390_en16104085 crossref_primary_10_1007_s00500_023_08444_x crossref_primary_10_1007_s43069_024_00334_8 crossref_primary_10_1016_j_seps_2022_101298 crossref_primary_10_1016_j_wasman_2019_03_037 crossref_primary_10_1016_j_resuscitation_2020_10_037 crossref_primary_10_1016_j_oceaneng_2022_111460 crossref_primary_10_1007_s10479_025_06486_y crossref_primary_10_3389_fmars_2023_1333038 crossref_primary_10_1016_j_ijforecast_2023_10_009 crossref_primary_10_3390_jmse9090985 crossref_primary_10_1016_j_energy_2023_126794 crossref_primary_10_1016_j_scitotenv_2019_02_085 crossref_primary_10_1016_j_jclepro_2021_128358 crossref_primary_10_1016_j_eswa_2021_115104 crossref_primary_10_3390_math9060620 crossref_primary_10_1214_23_BA1409 crossref_primary_10_3390_land10090896 crossref_primary_10_2139_ssrn_3943888 crossref_primary_10_2196_41513 crossref_primary_10_3389_fevo_2018_00149 crossref_primary_10_1016_j_bar_2024_101457 crossref_primary_10_2139_ssrn_4812038 crossref_primary_10_2139_ssrn_3907281 crossref_primary_10_3390_atmos11121305 crossref_primary_10_3390_math9131485 crossref_primary_10_1111_ibi_13076 crossref_primary_10_1007_s10994_024_06585_0 crossref_primary_10_3390_agriculture15010071 crossref_primary_10_1001_jamanetworkopen_2018_4087 crossref_primary_10_1016_j_jpowsour_2018_08_019 crossref_primary_10_3390_en12010094 crossref_primary_10_1177_1471082X231225307 crossref_primary_10_1016_j_ijforecast_2018_01_001 crossref_primary_10_11627_jkise_2018_41_1_084 crossref_primary_10_1016_j_ijforecast_2022_07_004 crossref_primary_10_1016_j_jempfin_2021_08_009 crossref_primary_10_2139_ssrn_3768753 crossref_primary_10_1016_j_jempfin_2022_09_002 crossref_primary_10_3982_QE1947 crossref_primary_10_32604_cmc_2024_047836 crossref_primary_10_3390_risks12100156 crossref_primary_10_1002_widm_1475 crossref_primary_10_2139_ssrn_3491596 crossref_primary_10_3390_e24010092 crossref_primary_10_1002_for_2908 crossref_primary_10_1017_nie_2024_1 crossref_primary_10_1186_s40854_024_00657_9 crossref_primary_10_3390_math8091550 crossref_primary_10_3390_rs15143493 crossref_primary_10_1002_isaf_1507 crossref_primary_10_1007_s11269_021_02989_y crossref_primary_10_3390_resources11120111 crossref_primary_10_1016_j_energy_2022_126100 crossref_primary_10_3390_app13031610 crossref_primary_10_1080_07350015_2020_1832503 crossref_primary_10_1007_s11269_021_02810_w crossref_primary_10_3103_S0027134923070159 crossref_primary_10_1111_boer_12451 crossref_primary_10_3758_s13428_024_02474_5 crossref_primary_10_1016_j_jclimf_2024_100058 crossref_primary_10_2139_ssrn_3633110 crossref_primary_10_3390_inventions8030076 crossref_primary_10_1007_s00521_021_06111_6 crossref_primary_10_1080_00273171_2023_2283837 crossref_primary_10_1080_01621459_2023_2206082 crossref_primary_10_1093_ee_nvae085 crossref_primary_10_3390_en11071906 crossref_primary_10_1111_poms_13426 crossref_primary_10_3390_forecast5020027 crossref_primary_10_3390_jrfm14050198 crossref_primary_10_1016_j_ijadhadh_2019_01_021 crossref_primary_10_2139_ssrn_3996166 crossref_primary_10_1016_j_pdisas_2020_100069 crossref_primary_10_1016_j_eswa_2024_123382 |
Cites_doi | 10.1093/biomet/65.2.297 10.1016/S0304-4076(00)00030-0 10.1109/TNNLS.2012.2222925 10.1111/j.2517-6161.1974.tb00994.x 10.1016/j.ins.2011.12.028 10.1214/ss/1009213287 10.1016/0304-4149(88)90045-2 10.1016/j.csda.2010.03.004 10.1093/biomet/81.2.351 10.1109/TNNLS.2012.2199516 10.1016/j.csda.2014.02.001 10.1214/09-SS054 10.1111/j.1467-9892.1992.tb00102.x 10.2307/1913568 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.csda.2017.11.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
EndPage | 83 |
ExternalDocumentID | 10_1016_j_csda_2017_11_003 S0167947317302384 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-be13c6e3b77161b6fa17a3c970f74d39cabf466972abaed28a7ddac8f61e16133 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Tue Jul 01 02:24:32 EDT 2025 Thu Apr 24 22:56:31 EDT 2025 Fri Feb 23 02:23:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Autoregression Cross-validation Time series |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-be13c6e3b77161b6fa17a3c970f74d39cabf466972abaed28a7ddac8f61e16133 |
ORCID | 0000-0002-3665-9021 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_csda_2017_11_003 crossref_citationtrail_10_1016_j_csda_2017_11_003 elsevier_sciencedirect_doi_10_1016_j_csda_2017_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kunst (b13) 2008; 37 Györfi, Härdle, Sarda, Vieu (b10) 1989 Racine (b20) 2000; 99 Andrews (b1) 1987 Bergmeir, Benítez (b3) 2012; 191 Borra, Di Ciaccio (b5) 2010; 54 R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Tong (b22) 1993 . Bergmeir, Costantini, Benítez (b4) 2014; 76 Opsomer, Wang, Yang (b18) 2001; 16 Budka, Gabrys (b7) 2013; 24 Ljung, Box (b14) 1978 Mokkadem (b16) 1988; 29 Stone (b21) 1974; 36 Brockwell, Davis (b6) 1991 Burman, Chow, Nolan (b8) 1994; 81 McQuarrie, Tsai (b15) 1998 Moreno-Torres, Saez, Herrera (b17) 2012; 23 Arlot, Celisse (b2) 2010; 4 Burman, Nolan (b9) 1992; 13 Hyndman, Koehler, Ord, Snyder (b12) 2008 Hastie, Tibshirani, Friedman (b11) 2009 Budka (10.1016/j.csda.2017.11.003_b7) 2013; 24 Burman (10.1016/j.csda.2017.11.003_b8) 1994; 81 Arlot (10.1016/j.csda.2017.11.003_b2) 2010; 4 Burman (10.1016/j.csda.2017.11.003_b9) 1992; 13 Opsomer (10.1016/j.csda.2017.11.003_b18) 2001; 16 Kunst (10.1016/j.csda.2017.11.003_b13) 2008; 37 Andrews (10.1016/j.csda.2017.11.003_b1) 1987 Bergmeir (10.1016/j.csda.2017.11.003_b3) 2012; 191 Tong (10.1016/j.csda.2017.11.003_b22) 1993 McQuarrie (10.1016/j.csda.2017.11.003_b15) 1998 Stone (10.1016/j.csda.2017.11.003_b21) 1974; 36 Bergmeir (10.1016/j.csda.2017.11.003_b4) 2014; 76 Hastie (10.1016/j.csda.2017.11.003_b11) 2009 Ljung (10.1016/j.csda.2017.11.003_b14) 1978 Racine (10.1016/j.csda.2017.11.003_b20) 2000; 99 Borra (10.1016/j.csda.2017.11.003_b5) 2010; 54 Györfi (10.1016/j.csda.2017.11.003_b10) 1989 Hyndman (10.1016/j.csda.2017.11.003_b12) 2008 Brockwell (10.1016/j.csda.2017.11.003_b6) 1991 Moreno-Torres (10.1016/j.csda.2017.11.003_b17) 2012; 23 Mokkadem (10.1016/j.csda.2017.11.003_b16) 1988; 29 10.1016/j.csda.2017.11.003_b19 |
References_xml | – year: 1989 ident: b10 publication-title: Nonparametric Curve Estimation from Time Series – start-page: 1465 year: 1987 end-page: 1471 ident: b1 article-title: Consistency in nonlinear econometric models: A generic uniform law of large numbers publication-title: Econometrica – year: 1993 ident: b22 publication-title: Non-linear Time Series: A Dynamical System Approach – volume: 23 start-page: 1304 year: 2012 end-page: 1312 ident: b17 article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 297 year: 1978 end-page: 303 ident: b14 article-title: On a measure of lack of fit in time series models publication-title: Biometrika – year: 1991 ident: b6 publication-title: Time Series: Theory and Methods – year: 2008 ident: b12 publication-title: Forecasting with Exponential Smoothing: The State Space Approach – volume: 99 start-page: 39 year: 2000 end-page: 61 ident: b20 article-title: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation publication-title: J. Econometrics – volume: 54 start-page: 2976 year: 2010 end-page: 2989 ident: b5 article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods publication-title: Comput. Statist. Data Anal. – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: b2 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – reference: . – volume: 13 start-page: 189 year: 1992 end-page: 207 ident: b9 article-title: Data-dependent estimation of prediction functions publication-title: J. Time Series Anal. – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: b21 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 81 start-page: 351 year: 1994 end-page: 358 ident: b8 article-title: A Cross-validatory method for dependent data publication-title: Biometrika – reference: R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL – volume: 24 start-page: 22 year: 2013 end-page: 34 ident: b7 article-title: Density-preserving sampling: Robust and efficient alternative to cross-validation for error estimation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 37 start-page: 271 year: 2008 end-page: 284 ident: b13 article-title: Cross validation of prediction models for seasonal time series by parametric bootstrapping publication-title: Austral. J. Statist. – year: 2009 ident: b11 publication-title: Elements of Statistical Learning – volume: 76 start-page: 132 year: 2014 end-page: 143 ident: b4 article-title: On the usefulness of cross-validation for directional forecast evaluation publication-title: Comput. Statist. Data Anal. – year: 1998 ident: b15 publication-title: Regression and time series model selection – volume: 191 start-page: 192 year: 2012 end-page: 213 ident: b3 article-title: On the use of cross-validation for time series predictor evaluation publication-title: Inform. Sci. – volume: 16 start-page: 134 year: 2001 end-page: 153 ident: b18 article-title: Nonparametric regression with correlated errors publication-title: Statist. Sci. – volume: 29 start-page: 309 year: 1988 end-page: 315 ident: b16 article-title: Mixing properties of ARMA processes publication-title: Stochastic Process. Appl. – start-page: 297 year: 1978 ident: 10.1016/j.csda.2017.11.003_b14 article-title: On a measure of lack of fit in time series models publication-title: Biometrika doi: 10.1093/biomet/65.2.297 – volume: 99 start-page: 39 issue: 1 year: 2000 ident: 10.1016/j.csda.2017.11.003_b20 article-title: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation publication-title: J. Econometrics doi: 10.1016/S0304-4076(00)00030-0 – volume: 24 start-page: 22 issue: 1 year: 2013 ident: 10.1016/j.csda.2017.11.003_b7 article-title: Density-preserving sampling: Robust and efficient alternative to cross-validation for error estimation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2222925 – volume: 36 start-page: 111 issue: 2 year: 1974 ident: 10.1016/j.csda.2017.11.003_b21 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 191 start-page: 192 year: 2012 ident: 10.1016/j.csda.2017.11.003_b3 article-title: On the use of cross-validation for time series predictor evaluation publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.12.028 – year: 1998 ident: 10.1016/j.csda.2017.11.003_b15 – volume: 16 start-page: 134 issue: 2 year: 2001 ident: 10.1016/j.csda.2017.11.003_b18 article-title: Nonparametric regression with correlated errors publication-title: Statist. Sci. doi: 10.1214/ss/1009213287 – year: 1993 ident: 10.1016/j.csda.2017.11.003_b22 – year: 1991 ident: 10.1016/j.csda.2017.11.003_b6 – year: 1989 ident: 10.1016/j.csda.2017.11.003_b10 – year: 2008 ident: 10.1016/j.csda.2017.11.003_b12 – volume: 29 start-page: 309 issue: 2 year: 1988 ident: 10.1016/j.csda.2017.11.003_b16 article-title: Mixing properties of ARMA processes publication-title: Stochastic Process. Appl. doi: 10.1016/0304-4149(88)90045-2 – year: 2009 ident: 10.1016/j.csda.2017.11.003_b11 – volume: 54 start-page: 2976 issue: 12 year: 2010 ident: 10.1016/j.csda.2017.11.003_b5 article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.03.004 – volume: 81 start-page: 351 issue: 2 year: 1994 ident: 10.1016/j.csda.2017.11.003_b8 article-title: A Cross-validatory method for dependent data publication-title: Biometrika doi: 10.1093/biomet/81.2.351 – volume: 23 start-page: 1304 issue: 8 year: 2012 ident: 10.1016/j.csda.2017.11.003_b17 article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2199516 – volume: 76 start-page: 132 year: 2014 ident: 10.1016/j.csda.2017.11.003_b4 article-title: On the usefulness of cross-validation for directional forecast evaluation publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2014.02.001 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.csda.2017.11.003_b2 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – ident: 10.1016/j.csda.2017.11.003_b19 – volume: 13 start-page: 189 issue: 3 year: 1992 ident: 10.1016/j.csda.2017.11.003_b9 article-title: Data-dependent estimation of prediction functions publication-title: J. Time Series Anal. doi: 10.1111/j.1467-9892.1992.tb00102.x – volume: 37 start-page: 271 year: 2008 ident: 10.1016/j.csda.2017.11.003_b13 article-title: Cross validation of prediction models for seasonal time series by parametric bootstrapping publication-title: Austral. J. Statist. – start-page: 1465 year: 1987 ident: 10.1016/j.csda.2017.11.003_b1 article-title: Consistency in nonlinear econometric models: A generic uniform law of large numbers publication-title: Econometrica doi: 10.2307/1913568 |
SSID | ssj0002478 |
Score | 2.636751 |
Snippet | One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 70 |
SubjectTerms | Autoregression Cross-validation Time series |
Title | A note on the validity of cross-validation for evaluating autoregressive time series prediction |
URI | https://dx.doi.org/10.1016/j.csda.2017.11.003 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvejB-Iz4IHvwZgq0u-0uR0IkKIGDSuTW7NNgTCGAV3-7M33g48DBU9PJTttMp_NIv_2GkJtYO8s44vy0kgGPfBQoDt-Vlw6SS9y22mKjOBongwl_mMbTGulVe2EQVlnG_iKm59G6lLRKa7YWs1nrCQH0HS4gAeLgG4mcoJwL9PLm5zfMI-JFNEZ-b1xdbpwpMF5mZZF7KBRNZPKsBmf9TU4_Ek7_kByUlSLtFg9zRGouOyb7ow3N6uqEpF2azdeOzjMKUgpOM7NQVdO5p_kNglyS255CcUorau_slSrkLnB5sw3xjuKIeYre6FZ0scSfN6h0Sib9u-feICgnJgSGJck60C5kJnFMC2iDQp14FQrFTEe0veCWdYzSnidJR0RKK2cjqYS1ykifhA4UGDsjO9k8c-eEwlWEiTyO4vBcMimhc9PQ3sQ6jIwzUZ2ElalSU9KJ41SL97TCjb2laN4UzQt9BpKQ1sntRmdRkGlsXR1XbyD95RIpRPstehf_1Lske3AmC1jOFdlZLz_cNVQca93IXapBdrv3w8EYj8PHl-EXlCDYDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUAAF4hQ3W0CFTPB67d0UFBEQJUBoAInO7ImCkBORIETDT_GDzPgIR5ECiXbt8TE7nmP99g0he7F2NuKI89NKBpx5FigO35WXDoJLfGS1xUKxe5W0b_n5XXxXIx_VXhiEVZa-v_DpubcuR-qlNuuDXq9-jQD6BhcQALHxjeQlsvLCvb1C3TY87pzCJO8z1jq7OWkHZWuBwERJMgq0CyOTuEgLqBdCnXgVChWZhjjygtuoYZT2PEkagimtnGVSCWuVkT4JHQjgKij4_WkO7gLbJhy-f-FKGC_cPxKK4-OVO3UKUJkZWiQ7CsUhUodWnbp-R8NvEa61QObL1JQ2i7dfJDWXLZG57pjXdbhM0ibN-iNH-xmFUQpW2rOQxtO-p_kNgnwkn2wK2TCtuMSzB6qQLMHl1T04WIo97SmavxvSwTP-LUKhFXL7L3pcJVNZP3NrhMJVhGEee394LiMpoVTUUE_FOmTGGbZOwkpVqSn5y7GNxlNaAdUeU1RviuqFwgZZT9fJwVhmULB3TDw7rmYg_WGDKYSXCXIbf5TbJTPtm-5letm5utgks3BEFpigLTI1en5x25DujPRObl6U3P-3PX8C2A4TXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+validity+of+cross-validation+for+evaluating+autoregressive+time+series+prediction&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Bergmeir%2C+Christoph&rft.au=Hyndman%2C+Rob+J.&rft.au=Koo%2C+Bonsoo&rft.date=2018-04-01&rft.issn=0167-9473&rft.volume=120&rft.spage=70&rft.epage=83&rft_id=info:doi/10.1016%2Fj.csda.2017.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2017_11_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |