A note on the validity of cross-validation for evaluating autoregressive time series prediction

One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not stra...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 120; pp. 70 - 83
Main Authors Bergmeir, Christoph, Hyndman, Rob J., Koo, Bonsoo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often replaced by practitioners in favour of an out-of-sample (OOS) evaluation. It is shown that for purely autoregressive models, the use of standard K-fold CV is possible provided the models considered have uncorrelated errors. Such a setup occurs, for example, when the models nest a more appropriate model. This is very common when Machine Learning methods are used for prediction, and where CV can control for overfitting the data. Theoretical insights supporting these arguments are presented, along with a simulation study and a real-world example. It is shown empirically that K-fold CV performs favourably compared to both OOS evaluation and other time-series-specific techniques such as non-dependent cross-validation.
AbstractList One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often replaced by practitioners in favour of an out-of-sample (OOS) evaluation. It is shown that for purely autoregressive models, the use of standard K-fold CV is possible provided the models considered have uncorrelated errors. Such a setup occurs, for example, when the models nest a more appropriate model. This is very common when Machine Learning methods are used for prediction, and where CV can control for overfitting the data. Theoretical insights supporting these arguments are presented, along with a simulation study and a real-world example. It is shown empirically that K-fold CV performs favourably compared to both OOS evaluation and other time-series-specific techniques such as non-dependent cross-validation.
Author Bergmeir, Christoph
Hyndman, Rob J.
Koo, Bonsoo
Author_xml – sequence: 1
  givenname: Christoph
  orcidid: 0000-0002-3665-9021
  surname: Bergmeir
  fullname: Bergmeir, Christoph
  email: christoph.bergmeir@monash.edu
  organization: Faculty of Information Technology, Monash University, Melbourne, Australia
– sequence: 2
  givenname: Rob J.
  surname: Hyndman
  fullname: Hyndman, Rob J.
  organization: Department of Econometrics & Business Statistics, Monash University, Melbourne, Australia
– sequence: 3
  givenname: Bonsoo
  surname: Koo
  fullname: Koo, Bonsoo
  organization: Department of Econometrics & Business Statistics, Monash University, Melbourne, Australia
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wIz5GZMZcFOKf1Bwo-uQSW5qSjspSSz07c20rlx0dTmX813uOTM0GcIACN1TUlNCxcOmNsnqmhEqa0prQvgVmtJWskryRzZB02KSVddIfoNmKW0IIayR7RSpBR5CBhwGnL8BH_TWW5-PODhsYkipOm109sXgQsRQ9E-RwxrrnxwirCOk5A-As98BThA9JLyPYL0ZoVt07fQ2wd3fnKOvl-fP5Vu1-nh9Xy5WleFC5KoHyo0A3ktJBe2F01RqbjpJnGws74zuXSNEJ5nuNVjWammtNq0TFArA-Ryx893T1xGc2ke_0_GoKFFjRWqjxorUWJGiVJWKCtT-g4zPp6w5ar-9jD6dUSihDh6iSsbDYEruCCYrG_wl_BcV-YbL
CitedBy_id crossref_primary_10_1371_journal_pone_0265660
crossref_primary_10_1016_j_ijforecast_2021_11_007
crossref_primary_10_1080_14697688_2022_2097120
crossref_primary_10_1007_s00521_022_07254_w
crossref_primary_10_1016_j_csda_2025_108173
crossref_primary_10_3390_diagnostics12071531
crossref_primary_10_1016_j_apm_2024_115658
crossref_primary_10_1002_for_2773
crossref_primary_10_1016_j_ijforecast_2021_03_004
crossref_primary_10_3934_DSFE_2021001
crossref_primary_10_1017_asb_2021_29
crossref_primary_10_1007_s10163_020_01022_5
crossref_primary_10_1016_j_cej_2025_161634
crossref_primary_10_1016_j_apenergy_2022_118674
crossref_primary_10_1017_nie_2021_10
crossref_primary_10_1016_j_micpro_2022_104596
crossref_primary_10_1109_JSEN_2021_3102586
crossref_primary_10_1017_nie_2021_13
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1007_s10479_023_05195_8
crossref_primary_10_2139_ssrn_3836631
crossref_primary_10_1016_j_isatra_2019_07_009
crossref_primary_10_1016_j_ymssp_2019_106342
crossref_primary_10_3390_su11133656
crossref_primary_10_1371_journal_pone_0242099
crossref_primary_10_1007_s11042_020_09820_7
crossref_primary_10_1016_j_irfa_2021_101811
crossref_primary_10_2139_ssrn_4015755
crossref_primary_10_3390_en15228567
crossref_primary_10_1287_ijoo_2022_0086
crossref_primary_10_1016_j_chemosphere_2018_12_095
crossref_primary_10_1007_s13385_022_00307_3
crossref_primary_10_2478_jaiscr_2024_0016
crossref_primary_10_3389_fpls_2020_01120
crossref_primary_10_1016_j_ijforecast_2024_08_006
crossref_primary_10_3390_forecast5040036
crossref_primary_10_1002_widm_1484
crossref_primary_10_2139_ssrn_4001910
crossref_primary_10_3390_su12166574
crossref_primary_10_1007_s11356_023_29769_y
crossref_primary_10_3390_rs16132372
crossref_primary_10_1080_1350486X_2021_2010584
crossref_primary_10_1016_j_geoen_2023_212270
crossref_primary_10_2139_ssrn_4482846
crossref_primary_10_1001_jamanetworkopen_2024_7822
crossref_primary_10_1016_j_trb_2022_10_014
crossref_primary_10_1016_j_apenergy_2020_114978
crossref_primary_10_1088_1742_6596_1869_1_012086
crossref_primary_10_1177_1536867X20909697
crossref_primary_10_1109_TASE_2020_3022037
crossref_primary_10_3233_JIFS_211436
crossref_primary_10_1002_advs_202002021
crossref_primary_10_1016_j_ecoinf_2022_101897
crossref_primary_10_1007_s10489_024_05273_9
crossref_primary_10_1093_wber_lhac017
crossref_primary_10_7717_peerj_cs_490
crossref_primary_10_1016_j_spasta_2019_100394
crossref_primary_10_1214_24_AOAS1900
crossref_primary_10_2139_ssrn_4182794
crossref_primary_10_1111_jtsa_12737
crossref_primary_10_3390_healthcare12222205
crossref_primary_10_1093_jjfinec_nbae028
crossref_primary_10_1016_j_jfineco_2023_103737
crossref_primary_10_53391_mmnsa_1577228
crossref_primary_10_3390_s19061280
crossref_primary_10_1093_heapol_czab027
crossref_primary_10_1016_j_jeconom_2021_04_013
crossref_primary_10_1002_jae_2910
crossref_primary_10_3390_math8060927
crossref_primary_10_1016_j_techfore_2024_123319
crossref_primary_10_1007_s10614_019_09966_z
crossref_primary_10_1016_j_pacfin_2021_101678
crossref_primary_10_1371_journal_pcbi_1007263
crossref_primary_10_1016_j_eswa_2023_121702
crossref_primary_10_1002_ecy_3431
crossref_primary_10_1002_for_2678
crossref_primary_10_3390_s20133743
crossref_primary_10_1016_j_ejor_2020_05_059
crossref_primary_10_1515_ijb_2021_0134
crossref_primary_10_1590_1806_9479_2021_249013
crossref_primary_10_1016_j_ijforecast_2021_11_013
crossref_primary_10_1089_big_2021_0112
crossref_primary_10_2139_ssrn_4428178
crossref_primary_10_1007_s10614_024_10825_9
crossref_primary_10_1016_j_compchemeng_2021_107442
crossref_primary_10_1016_j_kjs_2023_02_017
crossref_primary_10_1080_20464177_2019_1633223
crossref_primary_10_1016_j_ins_2019_11_027
crossref_primary_10_2139_ssrn_3334458
crossref_primary_10_3390_f15081332
crossref_primary_10_1016_j_asoc_2019_105837
crossref_primary_10_1007_s10618_022_00894_5
crossref_primary_10_1093_oncolo_oyad261
crossref_primary_10_1016_j_asoc_2021_108286
crossref_primary_10_1155_2022_7715078
crossref_primary_10_1007_s00034_023_02454_8
crossref_primary_10_1016_j_compchemeng_2022_107844
crossref_primary_10_1016_j_ijforecast_2020_02_005
crossref_primary_10_1016_j_fsidi_2020_301090
crossref_primary_10_1007_s13253_023_00564_z
crossref_primary_10_3390_su10082801
crossref_primary_10_1109_ACCESS_2021_3059187
crossref_primary_10_1038_s42004_022_00744_x
crossref_primary_10_1016_j_cor_2024_106905
crossref_primary_10_1002_ldr_3922
crossref_primary_10_1016_j_scitotenv_2021_145765
crossref_primary_10_1287_inte_2023_1164
crossref_primary_10_1080_13683500_2023_2165482
crossref_primary_10_1109_TDSC_2022_3192671
crossref_primary_10_1016_j_ijar_2021_06_014
crossref_primary_10_1371_journal_pone_0208203
crossref_primary_10_1016_j_ins_2022_09_002
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1002_jae_2967
crossref_primary_10_1016_j_autcon_2024_105904
crossref_primary_10_1016_j_jisa_2020_102596
crossref_primary_10_1016_j_ribaf_2022_101747
crossref_primary_10_2139_ssrn_3282408
crossref_primary_10_1016_j_epsr_2019_106003
crossref_primary_10_1007_s11336_021_09827_5
crossref_primary_10_3390_risks8030098
crossref_primary_10_1098_rstb_2019_0392
crossref_primary_10_1108_IJESM_02_2021_0009
crossref_primary_10_1016_j_jeconom_2024_105937
crossref_primary_10_3390_f14101962
crossref_primary_10_1002_eng2_12788
crossref_primary_10_1016_j_insmatheco_2020_03_002
crossref_primary_10_1007_s10333_023_00924_y
crossref_primary_10_1016_j_asoc_2023_110374
crossref_primary_10_1016_j_compag_2019_105174
crossref_primary_10_1080_14697688_2024_2439458
crossref_primary_10_1007_s10687_018_0321_0
crossref_primary_10_1080_17538157_2021_1988957
crossref_primary_10_1007_s11277_024_11307_9
crossref_primary_10_1515_snde_2023_0030
crossref_primary_10_1016_j_najef_2022_101705
crossref_primary_10_1016_j_egyai_2021_100121
crossref_primary_10_2139_ssrn_4775572
crossref_primary_10_1016_j_ijforecast_2020_06_008
crossref_primary_10_3390_a17110519
crossref_primary_10_1177_0142331220920482
crossref_primary_10_1016_j_jbi_2019_103116
crossref_primary_10_1111_icad_12408
crossref_primary_10_1007_s11063_023_11239_8
crossref_primary_10_1016_j_ijforecast_2022_05_007
crossref_primary_10_2139_ssrn_4178392
crossref_primary_10_4054_DemRes_2021_45_28
crossref_primary_10_2139_ssrn_4353052
crossref_primary_10_1016_j_resourpol_2024_105076
crossref_primary_10_1109_TEVC_2022_3189500
crossref_primary_10_1016_j_bar_2025_101563
crossref_primary_10_1016_j_neuroimage_2023_120458
crossref_primary_10_1016_j_omega_2024_103073
crossref_primary_10_1016_j_resourpol_2023_104248
crossref_primary_10_1186_s12938_020_00782_3
crossref_primary_10_1016_j_asoc_2020_106615
crossref_primary_10_1007_s11694_022_01351_z
crossref_primary_10_1016_j_jfs_2025_101372
crossref_primary_10_1016_j_ifacol_2020_12_782
crossref_primary_10_52547_jsdp_19_1_39
crossref_primary_10_1007_s00477_018_1585_2
crossref_primary_10_1016_j_neucom_2019_06_109
crossref_primary_10_1039_D4TA06740A
crossref_primary_10_1007_s12559_021_09849_2
crossref_primary_10_1016_j_mlwa_2022_100355
crossref_primary_10_1038_s41598_020_73773_y
crossref_primary_10_3390_rs13214325
crossref_primary_10_5194_nhess_22_2401_2022
crossref_primary_10_1016_j_worlddev_2022_106035
crossref_primary_10_1080_14697688_2020_1790635
crossref_primary_10_1007_s00521_020_04840_8
crossref_primary_10_1038_s41598_021_90063_3
crossref_primary_10_1109_TKDE_2018_2863705
crossref_primary_10_1016_j_ijforecast_2021_05_005
crossref_primary_10_3390_en16010155
crossref_primary_10_1016_j_compind_2021_103555
crossref_primary_10_1016_j_ecoinf_2019_101019
crossref_primary_10_1002_cem_3618
crossref_primary_10_1016_j_patcog_2021_108441
crossref_primary_10_2139_ssrn_3975543
crossref_primary_10_1080_21645515_2023_2251830
crossref_primary_10_2139_ssrn_4605803
crossref_primary_10_1007_s10994_020_05923_2
crossref_primary_10_3390_ijerph17031088
crossref_primary_10_3390_w14040552
crossref_primary_10_3390_s21041237
crossref_primary_10_1007_s11336_021_09825_7
crossref_primary_10_1007_s42452_024_06387_y
crossref_primary_10_1016_j_gfj_2023_100904
crossref_primary_10_1093_jjfinec_nbab023
crossref_primary_10_1109_TNSE_2022_3152983
crossref_primary_10_2196_57164
crossref_primary_10_1007_s10618_025_01095_6
crossref_primary_10_1016_j_eja_2018_03_001
crossref_primary_10_59294_HIUJS_VOL_5_2023_552
crossref_primary_10_3390_math10132156
crossref_primary_10_1002_for_3124
crossref_primary_10_1016_j_bspc_2018_05_014
crossref_primary_10_2139_ssrn_3846927
crossref_primary_10_1038_s41467_020_17347_6
crossref_primary_10_2139_ssrn_4128509
crossref_primary_10_1007_s10994_020_05910_7
crossref_primary_10_1016_j_envsoft_2022_105321
crossref_primary_10_1016_j_egyai_2023_100243
crossref_primary_10_1007_s11269_021_02865_9
crossref_primary_10_1007_s12652_020_02001_2
crossref_primary_10_1093_icesjms_fsac179
crossref_primary_10_1111_2041_210X_14030
crossref_primary_10_1016_j_econlet_2023_111369
crossref_primary_10_1002_qre_3686
crossref_primary_10_3390_electronics10020151
crossref_primary_10_1007_s00521_021_05702_7
crossref_primary_10_1016_j_asoc_2020_106827
crossref_primary_10_1029_2018WR023378
crossref_primary_10_2196_12163
crossref_primary_10_1002_for_3013
crossref_primary_10_1016_j_compchemeng_2021_107573
crossref_primary_10_1016_j_jaerosci_2021_105833
crossref_primary_10_1371_journal_pone_0244094
crossref_primary_10_1016_j_atech_2023_100302
crossref_primary_10_1016_j_eswa_2022_118873
crossref_primary_10_1016_j_egyr_2022_11_167
crossref_primary_10_1371_journal_pcbi_1012324
crossref_primary_10_3390_jmse9050524
crossref_primary_10_1002_for_3248
crossref_primary_10_1111_1475_4932_12721
crossref_primary_10_2139_ssrn_2785583
crossref_primary_10_1016_j_commatsci_2020_110132
crossref_primary_10_1016_j_ecolmodel_2020_109076
crossref_primary_10_3390_en16104085
crossref_primary_10_1007_s00500_023_08444_x
crossref_primary_10_1007_s43069_024_00334_8
crossref_primary_10_1016_j_seps_2022_101298
crossref_primary_10_1016_j_wasman_2019_03_037
crossref_primary_10_1016_j_resuscitation_2020_10_037
crossref_primary_10_1016_j_oceaneng_2022_111460
crossref_primary_10_1007_s10479_025_06486_y
crossref_primary_10_3389_fmars_2023_1333038
crossref_primary_10_1016_j_ijforecast_2023_10_009
crossref_primary_10_3390_jmse9090985
crossref_primary_10_1016_j_energy_2023_126794
crossref_primary_10_1016_j_scitotenv_2019_02_085
crossref_primary_10_1016_j_jclepro_2021_128358
crossref_primary_10_1016_j_eswa_2021_115104
crossref_primary_10_3390_math9060620
crossref_primary_10_1214_23_BA1409
crossref_primary_10_3390_land10090896
crossref_primary_10_2139_ssrn_3943888
crossref_primary_10_2196_41513
crossref_primary_10_3389_fevo_2018_00149
crossref_primary_10_1016_j_bar_2024_101457
crossref_primary_10_2139_ssrn_4812038
crossref_primary_10_2139_ssrn_3907281
crossref_primary_10_3390_atmos11121305
crossref_primary_10_3390_math9131485
crossref_primary_10_1111_ibi_13076
crossref_primary_10_1007_s10994_024_06585_0
crossref_primary_10_3390_agriculture15010071
crossref_primary_10_1001_jamanetworkopen_2018_4087
crossref_primary_10_1016_j_jpowsour_2018_08_019
crossref_primary_10_3390_en12010094
crossref_primary_10_1177_1471082X231225307
crossref_primary_10_1016_j_ijforecast_2018_01_001
crossref_primary_10_11627_jkise_2018_41_1_084
crossref_primary_10_1016_j_ijforecast_2022_07_004
crossref_primary_10_1016_j_jempfin_2021_08_009
crossref_primary_10_2139_ssrn_3768753
crossref_primary_10_1016_j_jempfin_2022_09_002
crossref_primary_10_3982_QE1947
crossref_primary_10_32604_cmc_2024_047836
crossref_primary_10_3390_risks12100156
crossref_primary_10_1002_widm_1475
crossref_primary_10_2139_ssrn_3491596
crossref_primary_10_3390_e24010092
crossref_primary_10_1002_for_2908
crossref_primary_10_1017_nie_2024_1
crossref_primary_10_1186_s40854_024_00657_9
crossref_primary_10_3390_math8091550
crossref_primary_10_3390_rs15143493
crossref_primary_10_1002_isaf_1507
crossref_primary_10_1007_s11269_021_02989_y
crossref_primary_10_3390_resources11120111
crossref_primary_10_1016_j_energy_2022_126100
crossref_primary_10_3390_app13031610
crossref_primary_10_1080_07350015_2020_1832503
crossref_primary_10_1007_s11269_021_02810_w
crossref_primary_10_3103_S0027134923070159
crossref_primary_10_1111_boer_12451
crossref_primary_10_3758_s13428_024_02474_5
crossref_primary_10_1016_j_jclimf_2024_100058
crossref_primary_10_2139_ssrn_3633110
crossref_primary_10_3390_inventions8030076
crossref_primary_10_1007_s00521_021_06111_6
crossref_primary_10_1080_00273171_2023_2283837
crossref_primary_10_1080_01621459_2023_2206082
crossref_primary_10_1093_ee_nvae085
crossref_primary_10_3390_en11071906
crossref_primary_10_1111_poms_13426
crossref_primary_10_3390_forecast5020027
crossref_primary_10_3390_jrfm14050198
crossref_primary_10_1016_j_ijadhadh_2019_01_021
crossref_primary_10_2139_ssrn_3996166
crossref_primary_10_1016_j_pdisas_2020_100069
crossref_primary_10_1016_j_eswa_2024_123382
Cites_doi 10.1093/biomet/65.2.297
10.1016/S0304-4076(00)00030-0
10.1109/TNNLS.2012.2222925
10.1111/j.2517-6161.1974.tb00994.x
10.1016/j.ins.2011.12.028
10.1214/ss/1009213287
10.1016/0304-4149(88)90045-2
10.1016/j.csda.2010.03.004
10.1093/biomet/81.2.351
10.1109/TNNLS.2012.2199516
10.1016/j.csda.2014.02.001
10.1214/09-SS054
10.1111/j.1467-9892.1992.tb00102.x
10.2307/1913568
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.csda.2017.11.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 83
ExternalDocumentID 10_1016_j_csda_2017_11_003
S0167947317302384
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-be13c6e3b77161b6fa17a3c970f74d39cabf466972abaed28a7ddac8f61e16133
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Tue Jul 01 02:24:32 EDT 2025
Thu Apr 24 22:56:31 EDT 2025
Fri Feb 23 02:23:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autoregression
Cross-validation
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-be13c6e3b77161b6fa17a3c970f74d39cabf466972abaed28a7ddac8f61e16133
ORCID 0000-0002-3665-9021
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_csda_2017_11_003
crossref_citationtrail_10_1016_j_csda_2017_11_003
elsevier_sciencedirect_doi_10_1016_j_csda_2017_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kunst (b13) 2008; 37
Györfi, Härdle, Sarda, Vieu (b10) 1989
Racine (b20) 2000; 99
Andrews (b1) 1987
Bergmeir, Benítez (b3) 2012; 191
Borra, Di Ciaccio (b5) 2010; 54
R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
Tong (b22) 1993
.
Bergmeir, Costantini, Benítez (b4) 2014; 76
Opsomer, Wang, Yang (b18) 2001; 16
Budka, Gabrys (b7) 2013; 24
Ljung, Box (b14) 1978
Mokkadem (b16) 1988; 29
Stone (b21) 1974; 36
Brockwell, Davis (b6) 1991
Burman, Chow, Nolan (b8) 1994; 81
McQuarrie, Tsai (b15) 1998
Moreno-Torres, Saez, Herrera (b17) 2012; 23
Arlot, Celisse (b2) 2010; 4
Burman, Nolan (b9) 1992; 13
Hyndman, Koehler, Ord, Snyder (b12) 2008
Hastie, Tibshirani, Friedman (b11) 2009
Budka (10.1016/j.csda.2017.11.003_b7) 2013; 24
Burman (10.1016/j.csda.2017.11.003_b8) 1994; 81
Arlot (10.1016/j.csda.2017.11.003_b2) 2010; 4
Burman (10.1016/j.csda.2017.11.003_b9) 1992; 13
Opsomer (10.1016/j.csda.2017.11.003_b18) 2001; 16
Kunst (10.1016/j.csda.2017.11.003_b13) 2008; 37
Andrews (10.1016/j.csda.2017.11.003_b1) 1987
Bergmeir (10.1016/j.csda.2017.11.003_b3) 2012; 191
Tong (10.1016/j.csda.2017.11.003_b22) 1993
McQuarrie (10.1016/j.csda.2017.11.003_b15) 1998
Stone (10.1016/j.csda.2017.11.003_b21) 1974; 36
Bergmeir (10.1016/j.csda.2017.11.003_b4) 2014; 76
Hastie (10.1016/j.csda.2017.11.003_b11) 2009
Ljung (10.1016/j.csda.2017.11.003_b14) 1978
Racine (10.1016/j.csda.2017.11.003_b20) 2000; 99
Borra (10.1016/j.csda.2017.11.003_b5) 2010; 54
Györfi (10.1016/j.csda.2017.11.003_b10) 1989
Hyndman (10.1016/j.csda.2017.11.003_b12) 2008
Brockwell (10.1016/j.csda.2017.11.003_b6) 1991
Moreno-Torres (10.1016/j.csda.2017.11.003_b17) 2012; 23
Mokkadem (10.1016/j.csda.2017.11.003_b16) 1988; 29
10.1016/j.csda.2017.11.003_b19
References_xml – year: 1989
  ident: b10
  publication-title: Nonparametric Curve Estimation from Time Series
– start-page: 1465
  year: 1987
  end-page: 1471
  ident: b1
  article-title: Consistency in nonlinear econometric models: A generic uniform law of large numbers
  publication-title: Econometrica
– year: 1993
  ident: b22
  publication-title: Non-linear Time Series: A Dynamical System Approach
– volume: 23
  start-page: 1304
  year: 2012
  end-page: 1312
  ident: b17
  article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 297
  year: 1978
  end-page: 303
  ident: b14
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
– year: 1991
  ident: b6
  publication-title: Time Series: Theory and Methods
– year: 2008
  ident: b12
  publication-title: Forecasting with Exponential Smoothing: The State Space Approach
– volume: 99
  start-page: 39
  year: 2000
  end-page: 61
  ident: b20
  article-title: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation
  publication-title: J. Econometrics
– volume: 54
  start-page: 2976
  year: 2010
  end-page: 2989
  ident: b5
  article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods
  publication-title: Comput. Statist. Data Anal.
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b2
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– reference: .
– volume: 13
  start-page: 189
  year: 1992
  end-page: 207
  ident: b9
  article-title: Data-dependent estimation of prediction functions
  publication-title: J. Time Series Anal.
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: b21
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 81
  start-page: 351
  year: 1994
  end-page: 358
  ident: b8
  article-title: A Cross-validatory method for dependent data
  publication-title: Biometrika
– reference: R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
– volume: 24
  start-page: 22
  year: 2013
  end-page: 34
  ident: b7
  article-title: Density-preserving sampling: Robust and efficient alternative to cross-validation for error estimation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 37
  start-page: 271
  year: 2008
  end-page: 284
  ident: b13
  article-title: Cross validation of prediction models for seasonal time series by parametric bootstrapping
  publication-title: Austral. J. Statist.
– year: 2009
  ident: b11
  publication-title: Elements of Statistical Learning
– volume: 76
  start-page: 132
  year: 2014
  end-page: 143
  ident: b4
  article-title: On the usefulness of cross-validation for directional forecast evaluation
  publication-title: Comput. Statist. Data Anal.
– year: 1998
  ident: b15
  publication-title: Regression and time series model selection
– volume: 191
  start-page: 192
  year: 2012
  end-page: 213
  ident: b3
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inform. Sci.
– volume: 16
  start-page: 134
  year: 2001
  end-page: 153
  ident: b18
  article-title: Nonparametric regression with correlated errors
  publication-title: Statist. Sci.
– volume: 29
  start-page: 309
  year: 1988
  end-page: 315
  ident: b16
  article-title: Mixing properties of ARMA processes
  publication-title: Stochastic Process. Appl.
– start-page: 297
  year: 1978
  ident: 10.1016/j.csda.2017.11.003_b14
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 99
  start-page: 39
  issue: 1
  year: 2000
  ident: 10.1016/j.csda.2017.11.003_b20
  article-title: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation
  publication-title: J. Econometrics
  doi: 10.1016/S0304-4076(00)00030-0
– volume: 24
  start-page: 22
  issue: 1
  year: 2013
  ident: 10.1016/j.csda.2017.11.003_b7
  article-title: Density-preserving sampling: Robust and efficient alternative to cross-validation for error estimation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2222925
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 10.1016/j.csda.2017.11.003_b21
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 191
  start-page: 192
  year: 2012
  ident: 10.1016/j.csda.2017.11.003_b3
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.12.028
– year: 1998
  ident: 10.1016/j.csda.2017.11.003_b15
– volume: 16
  start-page: 134
  issue: 2
  year: 2001
  ident: 10.1016/j.csda.2017.11.003_b18
  article-title: Nonparametric regression with correlated errors
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1009213287
– year: 1993
  ident: 10.1016/j.csda.2017.11.003_b22
– year: 1991
  ident: 10.1016/j.csda.2017.11.003_b6
– year: 1989
  ident: 10.1016/j.csda.2017.11.003_b10
– year: 2008
  ident: 10.1016/j.csda.2017.11.003_b12
– volume: 29
  start-page: 309
  issue: 2
  year: 1988
  ident: 10.1016/j.csda.2017.11.003_b16
  article-title: Mixing properties of ARMA processes
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/0304-4149(88)90045-2
– year: 2009
  ident: 10.1016/j.csda.2017.11.003_b11
– volume: 54
  start-page: 2976
  issue: 12
  year: 2010
  ident: 10.1016/j.csda.2017.11.003_b5
  article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.03.004
– volume: 81
  start-page: 351
  issue: 2
  year: 1994
  ident: 10.1016/j.csda.2017.11.003_b8
  article-title: A Cross-validatory method for dependent data
  publication-title: Biometrika
  doi: 10.1093/biomet/81.2.351
– volume: 23
  start-page: 1304
  issue: 8
  year: 2012
  ident: 10.1016/j.csda.2017.11.003_b17
  article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2199516
– volume: 76
  start-page: 132
  year: 2014
  ident: 10.1016/j.csda.2017.11.003_b4
  article-title: On the usefulness of cross-validation for directional forecast evaluation
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2014.02.001
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.csda.2017.11.003_b2
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– ident: 10.1016/j.csda.2017.11.003_b19
– volume: 13
  start-page: 189
  issue: 3
  year: 1992
  ident: 10.1016/j.csda.2017.11.003_b9
  article-title: Data-dependent estimation of prediction functions
  publication-title: J. Time Series Anal.
  doi: 10.1111/j.1467-9892.1992.tb00102.x
– volume: 37
  start-page: 271
  year: 2008
  ident: 10.1016/j.csda.2017.11.003_b13
  article-title: Cross validation of prediction models for seasonal time series by parametric bootstrapping
  publication-title: Austral. J. Statist.
– start-page: 1465
  year: 1987
  ident: 10.1016/j.csda.2017.11.003_b1
  article-title: Consistency in nonlinear econometric models: A generic uniform law of large numbers
  publication-title: Econometrica
  doi: 10.2307/1913568
SSID ssj0002478
Score 2.636751
Snippet One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Autoregression
Cross-validation
Time series
Title A note on the validity of cross-validation for evaluating autoregressive time series prediction
URI https://dx.doi.org/10.1016/j.csda.2017.11.003
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvejB-Iz4IHvwZgq0u-0uR0IkKIGDSuTW7NNgTCGAV3-7M33g48DBU9PJTttMp_NIv_2GkJtYO8s44vy0kgGPfBQoDt-Vlw6SS9y22mKjOBongwl_mMbTGulVe2EQVlnG_iKm59G6lLRKa7YWs1nrCQH0HS4gAeLgG4mcoJwL9PLm5zfMI-JFNEZ-b1xdbpwpMF5mZZF7KBRNZPKsBmf9TU4_Ek7_kByUlSLtFg9zRGouOyb7ow3N6uqEpF2azdeOzjMKUgpOM7NQVdO5p_kNglyS255CcUorau_slSrkLnB5sw3xjuKIeYre6FZ0scSfN6h0Sib9u-feICgnJgSGJck60C5kJnFMC2iDQp14FQrFTEe0veCWdYzSnidJR0RKK2cjqYS1ykifhA4UGDsjO9k8c-eEwlWEiTyO4vBcMimhc9PQ3sQ6jIwzUZ2ElalSU9KJ41SL97TCjb2laN4UzQt9BpKQ1sntRmdRkGlsXR1XbyD95RIpRPstehf_1Lske3AmC1jOFdlZLz_cNVQca93IXapBdrv3w8EYj8PHl-EXlCDYDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUAAF4hQ3W0CFTPB67d0UFBEQJUBoAInO7ImCkBORIETDT_GDzPgIR5ECiXbt8TE7nmP99g0he7F2NuKI89NKBpx5FigO35WXDoJLfGS1xUKxe5W0b_n5XXxXIx_VXhiEVZa-v_DpubcuR-qlNuuDXq9-jQD6BhcQALHxjeQlsvLCvb1C3TY87pzCJO8z1jq7OWkHZWuBwERJMgq0CyOTuEgLqBdCnXgVChWZhjjygtuoYZT2PEkagimtnGVSCWuVkT4JHQjgKij4_WkO7gLbJhy-f-FKGC_cPxKK4-OVO3UKUJkZWiQ7CsUhUodWnbp-R8NvEa61QObL1JQ2i7dfJDWXLZG57pjXdbhM0ibN-iNH-xmFUQpW2rOQxtO-p_kNgnwkn2wK2TCtuMSzB6qQLMHl1T04WIo97SmavxvSwTP-LUKhFXL7L3pcJVNZP3NrhMJVhGEee394LiMpoVTUUE_FOmTGGbZOwkpVqSn5y7GNxlNaAdUeU1RviuqFwgZZT9fJwVhmULB3TDw7rmYg_WGDKYSXCXIbf5TbJTPtm-5letm5utgks3BEFpigLTI1en5x25DujPRObl6U3P-3PX8C2A4TXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+the+validity+of+cross-validation+for+evaluating+autoregressive+time+series+prediction&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Bergmeir%2C+Christoph&rft.au=Hyndman%2C+Rob+J.&rft.au=Koo%2C+Bonsoo&rft.date=2018-04-01&rft.issn=0167-9473&rft.volume=120&rft.spage=70&rft.epage=83&rft_id=info:doi/10.1016%2Fj.csda.2017.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2017_11_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon