N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation

Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1. Photocatalytic fi...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 609; pp. 341 - 352
Main Authors Li, Chang, Gu, MengZhen, Gao, MingMing, Liu, KeNing, Zhao, XinYu, Cao, NaiWen, Feng, Jing, Ren, YueMing, Wei, Tong, Zhang, MingYi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1. Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat−1h−1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat−1h−1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat−1h−1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
AbstractList Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
Photocatalytic fixation of nitrogen to ammonia (NH₃) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N₂ and the band position of TiO₂ are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO₂ hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcₐₜ⁻¹h⁻¹. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H₂O₂ treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcₐₜ⁻¹h⁻¹ after reducing oxygen vacancies by H₂O₂ treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcₐₜ⁻¹h⁻¹, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1. Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat−1h−1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat−1h−1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat−1h−1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
Author Zhang, MingYi
Ren, YueMing
Wei, Tong
Feng, Jing
Gu, MengZhen
Gao, MingMing
Cao, NaiWen
Liu, KeNing
Zhao, XinYu
Li, Chang
Author_xml – sequence: 1
  givenname: Chang
  surname: Li
  fullname: Li, Chang
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 2
  givenname: MengZhen
  surname: Gu
  fullname: Gu, MengZhen
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 3
  givenname: MingMing
  surname: Gao
  fullname: Gao, MingMing
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 4
  givenname: KeNing
  surname: Liu
  fullname: Liu, KeNing
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 5
  givenname: XinYu
  surname: Zhao
  fullname: Zhao, XinYu
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 6
  givenname: NaiWen
  surname: Cao
  fullname: Cao, NaiWen
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 7
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
  email: fengjing@hrbeu.edu.cn
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 8
  givenname: YueMing
  surname: Ren
  fullname: Ren, YueMing
  organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
– sequence: 9
  givenname: Tong
  surname: Wei
  fullname: Wei, Tong
  email: weitong666@163.com
  organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
– sequence: 10
  givenname: MingYi
  surname: Zhang
  fullname: Zhang, MingYi
  organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
BookMark eNqNkUFr3DAQhUVJoJu0f6AnHXvxZmSvZRt6KaFNCqG5pGchy-P1LFrJlbRJ9t9HzvaUQyga0OG9bwbeu2Bnzjtk7IuAtQAhr3brnaG4LqEUa5GnhQ9sJaCri0ZAdcZWkJWia7rmI7uIcQcgRF13K2Z_F4OfyW35A92XfPLW-ie-JxN8nCcMGPkTpYnr_uAG7RL3z8ctOv6ojXaGsjz6wCfaTvbI58knb3TS9pjIcEcp-MU80rNO5N0ndj5qG_Hzv_-S_fn54-H6tri7v_l1_f2uMJWUqeiNHitdjWVZA5Z6kFXdbETbjKgb0UMn-yyYjZTYt10jNtjLapA19DU2-XXVJft62jsH__eAMak9RYPWaof-EFUp8x2ApvofK3QbCbJdrOXJumQTA45qDrTX4agEqKUFtVNLC2ppQYk8LWSofQMZSq9hpKDJvo9-O6GYo3okDCrmwJ3BgQKapAZP7-EvgMim0w
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_05_278
crossref_primary_10_1016_j_cej_2023_147644
crossref_primary_10_1039_D2NJ06240B
crossref_primary_10_1016_j_cattod_2023_02_011
crossref_primary_10_1016_j_molliq_2023_123556
crossref_primary_10_1142_S2010135X2450005X
crossref_primary_10_1016_j_apsusc_2024_159424
crossref_primary_10_1021_acs_iecr_3c02054
crossref_primary_10_1002_asia_202200822
crossref_primary_10_1016_j_optmat_2023_114103
crossref_primary_10_1016_j_seppur_2022_123054
crossref_primary_10_1021_acs_energyfuels_2c01390
crossref_primary_10_1016_j_apsusc_2023_156471
crossref_primary_10_1111_jace_19018
crossref_primary_10_1016_j_seppur_2024_130349
crossref_primary_10_1016_j_jcis_2023_04_085
crossref_primary_10_1016_j_jece_2023_110797
crossref_primary_10_1016_j_jssc_2022_123810
crossref_primary_10_1016_j_cjche_2023_03_028
crossref_primary_10_1016_j_arabjc_2022_104397
crossref_primary_10_1016_S1872_5813_24_60468_8
crossref_primary_10_1016_j_solidstatesciences_2024_107726
crossref_primary_10_1016_j_actphy_2025_100071
crossref_primary_10_1039_D4TA00599F
crossref_primary_10_1016_j_cej_2024_149583
crossref_primary_10_1016_j_mcat_2023_113471
crossref_primary_10_1002_slct_202403521
crossref_primary_10_1016_j_colsurfa_2022_130874
crossref_primary_10_1002_smll_202309500
crossref_primary_10_1016_j_cej_2023_142421
crossref_primary_10_1016_j_jallcom_2023_169607
crossref_primary_10_1039_D4QI03182B
crossref_primary_10_5004_dwt_2023_29567
crossref_primary_10_3390_nitrogen5020023
crossref_primary_10_1016_j_mtchem_2024_102292
crossref_primary_10_1016_j_optmat_2023_113560
crossref_primary_10_1039_D3GC05006H
crossref_primary_10_1021_acs_jpcc_4c01497
crossref_primary_10_1016_j_jece_2023_110887
crossref_primary_10_1016_j_ceramint_2023_04_141
crossref_primary_10_3390_ma16175810
crossref_primary_10_1021_acs_iecr_4c01391
crossref_primary_10_1016_j_chemphys_2023_111917
crossref_primary_10_1016_j_jcat_2024_115347
crossref_primary_10_1021_acs_inorgchem_4c04225
crossref_primary_10_1016_S1872_2067_24_60072_0
crossref_primary_10_3390_membranes15030090
crossref_primary_10_1002_adsu_202200450
crossref_primary_10_1021_acs_langmuir_4c03909
crossref_primary_10_1016_j_mtcomm_2025_111969
crossref_primary_10_1016_j_seppur_2024_128614
crossref_primary_10_3390_molecules28248013
crossref_primary_10_1016_j_ijhydene_2024_09_070
crossref_primary_10_1021_acsanm_4c00179
crossref_primary_10_1016_j_aca_2023_342047
crossref_primary_10_1016_j_jece_2024_112276
crossref_primary_10_1016_j_ccr_2022_214953
crossref_primary_10_1016_j_jcis_2024_02_130
crossref_primary_10_3390_molecules28217277
crossref_primary_10_3390_en15176248
crossref_primary_10_1016_j_rser_2022_112967
crossref_primary_10_1016_j_compscitech_2022_109657
crossref_primary_10_1016_j_jallcom_2025_178634
crossref_primary_10_1016_j_seppur_2024_129536
crossref_primary_10_1039_D3CY00675A
crossref_primary_10_1021_acsaem_2c01674
crossref_primary_10_3390_w16060875
crossref_primary_10_1016_j_apsusc_2023_158403
crossref_primary_10_1021_acsanm_4c02400
crossref_primary_10_1021_acsaenm_4c00707
crossref_primary_10_1016_j_cej_2022_137030
crossref_primary_10_1021_acs_energyfuels_2c01083
crossref_primary_10_1016_j_seppur_2025_132501
crossref_primary_10_1016_j_jre_2023_09_016
crossref_primary_10_1002_gch2_202300185
crossref_primary_10_2139_ssrn_4141612
crossref_primary_10_3390_pr12091879
crossref_primary_10_1016_j_inoche_2023_111212
crossref_primary_10_1016_j_jallcom_2023_172822
crossref_primary_10_1016_j_jpowsour_2024_234621
crossref_primary_10_1002_smll_202303980
crossref_primary_10_1016_j_jcis_2024_06_204
crossref_primary_10_1039_D4NR02342K
crossref_primary_10_1016_j_jphotochem_2024_116165
crossref_primary_10_1039_D2TA03977J
crossref_primary_10_1016_j_jcis_2024_04_219
Cites_doi 10.1002/smtd.201800352
10.1016/j.apsusc.2020.148257
10.1016/j.jhazmat.2020.123857
10.1016/S1381-1169(00)00362-9
10.1016/j.mattod.2019.03.002
10.1002/smll.201907091
10.1021/jacs.7b06634
10.1038/s41467-019-12994-w
10.1016/j.tsf.2017.01.043
10.1016/j.catcom.2019.105841
10.1016/j.apsusc.2017.04.055
10.1002/adfm.202008983
10.1016/j.apcatb.2020.119580
10.1016/j.jallcom.2020.158199
10.1021/ja207826q
10.1002/adma.201801369
10.1016/j.jcis.2019.12.057
10.1016/j.jcis.2020.11.011
10.1016/j.apcatb.2019.05.005
10.1016/j.apcatb.2019.118416
10.1016/j.apsusc.2019.145167
10.1021/acsanm.8b01528
10.1039/b004885m
10.1016/j.cattod.2018.11.043
10.1002/advs.201600343
10.1002/adfm.201902449
10.1016/j.jcis.2021.06.055
10.1016/j.jcis.2019.11.058
10.1016/j.cej.2021.133085
10.1016/j.apsusc.2020.146517
10.1016/j.ceramint.2021.03.265
10.1038/srep29902
10.1016/j.jcis.2021.06.108
10.1021/jacs.0c05097
10.1016/j.apsusc.2021.150680
10.1016/j.jcis.2020.11.064
10.1016/j.apsusc.2020.147658
10.1016/j.seppur.2021.119287
10.1016/j.apsusc.2012.12.048
10.1021/jacs.0c05050
10.1002/anie.201107681
10.1016/j.apcatb.2019.117781
10.1016/j.cej.2019.123275
10.1016/j.cej.2020.126389
10.1016/j.materresbull.2021.111291
10.1002/adfm.202003556
10.1021/acssuschemeng.7b01114
10.1016/j.apcatb.2019.117896
10.1016/j.matlet.2017.05.070
10.1016/j.jechem.2020.04.074
10.1016/j.jallcom.2021.159298
10.1002/anie.201705628
10.1016/j.ces.2021.116440
10.1016/j.jtice.2021.04.009
10.1039/C4RA13734E
10.1039/D0NA00183J
10.1016/j.seppur.2021.119362
10.1002/aenm.201300294
10.1021/acsami.9b20767
10.1021/jp066156o
10.1016/j.apcata.2020.117647
10.1002/adma.201606793
10.1016/j.cej.2020.126033
10.1016/j.apcatb.2017.09.070
10.1021/acsami.9b12328
10.1039/C3TA13841K
10.1016/j.nanoen.2018.07.045
10.1021/ja00464a015
10.1002/adma.202007479
10.1016/j.rinp.2018.09.014
10.1016/j.apsusc.2020.147289
10.1016/j.jcis.2019.09.011
10.1021/acscatal.5b00444
10.1016/j.seppur.2021.118424
10.1016/j.scib.2021.02.007
10.1021/acsaem.0c02202
10.1021/acssuschemeng.8b05332
10.1021/jacs.8b02076
10.1016/j.jece.2016.01.032
10.1016/j.jcis.2019.11.122
10.1021/acs.jpclett.9b03507
10.1039/D1QM00269D
10.1002/anie.201912733
10.1002/smtd.201800337
10.1038/s41467-018-03765-0
10.1002/anie.201612635
10.1063/1.3272272
10.1002/ejic.202000406
10.1016/j.apcatb.2013.07.047
10.1016/j.cej.2021.128827
10.1039/C7MH00557A
10.1016/j.cej.2021.128629
10.1016/j.seppur.2021.119236
10.1007/s11671-007-9064-6
10.1016/j.jallcom.2021.159400
10.1021/jacs.8b08379
10.1016/j.matchemphys.2020.124158
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.11.180
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 352
ExternalDocumentID 10_1016_j_jcis_2021_11_180
S0021979721020993
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-bcaf3a3f2250e2ad63574187fea71b096b250c466eb89714eb63d650b5e7e7e93
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 10:36:03 EDT 2025
Thu Jul 10 18:32:52 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Tue Jul 01 01:19:15 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic nitrogen fixation
Oxygen vacancies
N-doping
Hollow microspheres
TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-bcaf3a3f2250e2ad63574187fea71b096b250c466eb89714eb63d650b5e7e7e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2609460689
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2636600739
proquest_miscellaneous_2609460689
crossref_primary_10_1016_j_jcis_2021_11_180
crossref_citationtrail_10_1016_j_jcis_2021_11_180
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mousavi, Ghasemi (b0370) 2021; 121
Liu, Li, Lu, Li, Wang, Wang, Zhang, Fan, Zhang (b0075) 2021; 603
Liu, Chen, Yu, Ding (b0085) 2019; 58
Wang, Gao, Zhao, Yan, Zhu (b0065) 2020; 16
Qin, Li, Lu, Meng, Ma, Yan, Meng (b0280) 2020; 384
Hirakawa, Hashimoto, Shiraishi, Hirai (b0165) 2017; 139
Wang, Feng, Liu, Wang, Hu, Hu, Chen, Xue (b0230) 2021; 414
Kordali, Kyriacou, Lambrou (b0050) 2000
Wan, Xu, Lv (b0005) 2019; 27
Liu, Geng, Hao, Liu, Yuan, Li (b0015) 2021; 5
Xia, Zhang, Murowchick, Liu, Chen (b0310) 2013; 3
Abdelhamid, Mahmoud, Kamal, Sanaa, Eraky (b0260) 2020; 817
Schrauzer, Guth (b0110) 1977; 99
Zhang, Hu, Zhang, Wang, Sun, Li, Qiao, Wang, Zhou (b0325) 2017; 5
Xiao, Wang, Lyu, Luo, Wang, Liu, Cheng, Wang (b0235) 2019; 31
Sun, Liang, Qian, Xu, Han, Tian (b0120) 2020; 12
Li, Chen, Tan, Li, Li, Li, Wang (b0025) 2019; 11
Feng, Gao, Zhang, Gu, Wang, Zeng, Ren (b0520) 2018; 11
Huang, Li, Wang, Dong, Chu, Zhang, Zhang (b0345) 2015; 5
Wang, Ji, Zhang, Sun, Duan (b0205) 2021; 47
Zhong, Wang, Dai, Yang, Zuo, Yao, Wu, Li (b0250) 2021
Li, Ti, Zhao, Zhang, Wu, He (b0130) 2021; 870
Liu, Liu, Sun, Wan, Fu, Fan (b0140) 2021; 411
Zhang, Jalil, Wu, Chen, Liu, Gao, Ye, Qi, Ju, Wang, Wu (b0175) 2018; 140
Zhao, Zhang, Zhu, Zhang, Tang, Tan, Wang (b0200) 2014; 144
Liu, Chen, Du, Ai, Lo, Wang, Chen, Xing, Wang, Pan (b0010) 2021; 31
Kong, Li, Chen, Tian, Fang, Zheng, Zhao (b0185) 2011; 133
Wang, Ge, Ran, Yi (b0275) 2019; 24
Han, Choi, Hong, Wu, Soo, Jung, Qiu, Sun (b0380) 2019; 257
Chen, Li, Kong, Ong, Zhao (b0045) 2018; 5
Dong, Feng, Fan, Pi, Hu, Han, Liu, Sun, Sun (b0330) 2015; 5
Wan, Mao, Chen (b0355) 2021; 403
Zeng, Yin, Gao, Wang, Feng, Ren, Wei, Fan (b0460) 2020; 561
Chen, Wang, Chai, Zhang, Zhu (b0505) 2021; 33
Li, Li, Ai, Jia, Zhang (b0365) 2018; 57
Wang, Zhu, Zhang, Liu (b0385) 2007; 111
Gao, Li, Luo, Luo, Zhang, Huang, Luo (b0190) 2021; 585
Xu, Wang, Dai, Wang, Lu, Zhang, Chen, Song (b0265) 2021; 260
Li, Zhou, Wang, Guo, Chen, Low, Long, Liu, Ding, Wu, Xiong (b0115) 2020; 142
Bian, Wen, Wang, Yang, Chu, Yu (b0030) 2020; 11
Gao, Feng, He, Zeng, Wang, Ren, Wei (b0225) 2020; 507
Han, Liu, Ma, Cui, Xie, Wang, Wu, Gao, Xu, Sun (b0035) 2018; 52
Wang, Feng, Zhang, Zeng, Gao, Lv, Wei, Ren, Fan (b0435) 2020; 561
Gao, Feng, Zhang, Gu, Wang, Zeng, Lv, Ren, Wei, Fan (b0515) 2018; 1
Ding, Sun, Liu, Sun, Meng, Zheng (b0210) 2021; 276
Wang, Jia, Pan, Xu, Liu, Cui, Guo, Sun (b0150) 2019; 7
Nakamura, Negishi, Kutsuna, Ihara, Sugihara, Takeuchi (b0350) 2000; 161
Ou, Xu, Wen, Lin, Ge, Tang, Liang, Yang, Huang, Zu, Yu (b0420) 2018; 9
Zhu, Chen, Wang, Liao, Dong, Chee, Wang, Dong, Ajayan, Gao, Shen, Ye (b0485) 2020; 30
Ying, Chen, Zhang, Peng, Li (b0095) 2019; 254
Rumaiz, Woicik, Cockayne, Lin, Jaffari, Shah (b0295) 2009; 95
Zhang, Xu, Lv, Bai, Liao, Zhai, Zhang, Chen (b0160) 2020; 264
Mansingh, Das, Behera, Subudhi, Sultana, Parida (b0215) 2020; 2
Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (b0060) 2019; 3
Zhang, Xue, Shen, Jia, Gao, Liu, Jia (b0320) 2021; 870
Wang, Ren, Ou, Xu, Yang, Li, Zhang (b0070) 2021; 66
Wei, Li, Yan, Luo, Guo, Dai, Luo (b0285) 2018; 222
Yang, Nash, Anibal, Dunwell, Kattel, Stavitski, Attenkofer, Chen, Yan, Xu (b0020) 2018; 140
Vu, Quach, Do (b0240) 2021; 5
Craig, Coulter, Dolan, Soriano-López, Mates-Torres, Schmitt, García-Melchor (b0470) 2019; 10
Stegemann, Moraes, Duarte, Massi (b0400) 2017; 625
Vesali-Kermani, Habibi-Yangjeh, Diarmand-Khalilabad, Ghosh (b0105) 2020; 563
Guan, Wang, Zhang, Liu, Xu, Wang, Zhao, Feng, Shang, Sun (b0145) 2021; 282
Dolat, Moszyński, Guskos, Ohtani, Morawski (b0335) 2013; 266
Yao, Zhang, Huang, Du, Hong, Chen, Hu, Wang (b0040) 2020; 601
Nguyen, Mousavi, Ghasemi, Van Le, Delbari, Asl, Shokouhimehr, Mohammadi, Azizian-Kalandaragh, Namini (b0100) 2021; 587
Ji, Wu, Jia, Peng, Xiao, Liu, Liu, Fan, Han, Hao (b0410) 2021; 140
Lv, Liu, Zhu, Zhu (b0180) 2014; 2
Park, Kim, Kim, Kim (b0395) 2017; 202
Xi, Ouyang, Li, Ye, Ma, Su, Bai, Wang (b0415) 2012; 51
Zeng, Gao, Liu, Li, Cao, Zhao, Feng, Ren, Wei (b0455) 2021; 535
Huang, Dou, Li, Zhong, Li, Wang (b0195) 2021; 403
Zhang, Wang, Gao, Deng, Ding, Zhuo, Bao, Ji, Qiu, Wang (b0375) 2021; 567
Chen, Ren, Zhang, Cheng, Luo, Zhu, Ding, Wang (b0055) 2019; 3
Han, Yang, Liu, Zheng, Wang, Meng, Zhang, Fu, Chen (b0135) 2020; 3
Gong, Andelman, Neumark, O’Brien, Kuskovsky (b0360) 2007; 2
Wang, He, Chen, Du, Ostrikov, Huang, Wang (b0500) 2020; 32
Fei, Yu, Liu, Song, Xu, Mo, Liu, Deng, Ji, Cheng, Lei (b0090) 2019; 557
He, Yu, Lou (b0480) 2017; 56
Wang, Zhao, Gao, Cao, Liu, Li, Zhao, Ren, Feng, Wei (b0440) 2021; 264
Zhang, Hu, Liu, Yu, Zhang (b0465) 2017; 4
Zhu, Li, Lian, Wan, Huang, Zhang, Zhong (b0305) 2021; 276
Cao, Zhao, Gao, Li, Ding, Li, Liu, Du, Li, Feng, Ren (b0450) 2021; 275
Chu, Nan, Li, Guo, Tian, Liu (b0125) 2021; 53
Guskos, Typek, Guskos, Zolnierkiewicz, Berczynski, Dolat, Grzmil, Morawski (b0340) 2013; 11
Hu, Wang, Yao, Gao, Han, Zhang, Zhang, Xu, Song (b0495) 2019; 29
Bi, Du, Abul, Sun, Yu, Su, Bing she, Abdullah (b0300) 2021; 234
Bhatia, Dhir (b0290) 2016; 4
Xue, Jiang, Yuan, Yang, Hou, Cao, Feng, Wang (b0425) 2016; 6
Meng, Lv, Sun, Hong, Xing, Qiang, Chen, Jin (b0220) 2019; 256
Yin, Jin, Lu, Huang, Zhang, Peng, Xi, Yan (b0490) 2020; 142
Zhao, Zhang, Song, Wen, Cheng (b0155) 2020; 523
Oh, Kim (b0270) 2015; 27
Song, Wang, Li, Sun, Guan, Zhai, Gao, Li, Zhao, Sun (b0080) 2021; 602
Wu, Tan, Liu, Lei, Wang, Zhang (b0245) 2019; 335
Kovalevskiy, Selishchev, Svintsitskiy, Selishcheva, Berezin, Kozlov (b0390) 2020; 134
Cao, Gu, Gao, Li, Liu, Zhao, Feng, Ren, Wei (b0445) 2020; 530
Zhuang, Ge, Yang, Li, Jia, Yao, Zhu (b0170) 2017; 29
Zhao, Wang, Mao, Bao, Wang, Wang, Liu, Zheng, Dai, Cheng, Huang (b0255) 2022; 430
Li, Wang, An, Dong, Feng, Wei, Ren, Ma (b0510) 2021; 539
Zhang, Chen, Zhang, Yin, Yang (b0315) 2020; 401
Amin, Apfel, Amin, Apfel (b0475) 2020; 2020
Georgieva, Valova, Armyanov, Tatchev, Sotiropoulos, Avramova, Dimitrova, Hubin, Steenhaut (b0405) 2017; 413
Wang, Sun, Huo, Yan, Ma, Bu, Sun, Hua, Yang, Bi, Zhang (b0430) 2021; 856
Xue (10.1016/j.jcis.2021.11.180_b0425) 2016; 6
Wang (10.1016/j.jcis.2021.11.180_b0065) 2020; 16
Nguyen (10.1016/j.jcis.2021.11.180_b0100) 2021; 587
Mousavi (10.1016/j.jcis.2021.11.180_b0370) 2021; 121
Rumaiz (10.1016/j.jcis.2021.11.180_b0295) 2009; 95
Craig (10.1016/j.jcis.2021.11.180_b0470) 2019; 10
Huang (10.1016/j.jcis.2021.11.180_b0195) 2021; 403
Meng (10.1016/j.jcis.2021.11.180_b0220) 2019; 256
Gong (10.1016/j.jcis.2021.11.180_b0360) 2007; 2
Li (10.1016/j.jcis.2021.11.180_b0130) 2021; 870
Han (10.1016/j.jcis.2021.11.180_b0135) 2020; 3
Gao (10.1016/j.jcis.2021.11.180_b0225) 2020; 507
Han (10.1016/j.jcis.2021.11.180_b0035) 2018; 52
Gao (10.1016/j.jcis.2021.11.180_b0515) 2018; 1
Xi (10.1016/j.jcis.2021.11.180_b0415) 2012; 51
Zhang (10.1016/j.jcis.2021.11.180_b0320) 2021; 870
Zeng (10.1016/j.jcis.2021.11.180_b0460) 2020; 561
Zhao (10.1016/j.jcis.2021.11.180_b0155) 2020; 523
Bhatia (10.1016/j.jcis.2021.11.180_b0290) 2016; 4
Abdelhamid (10.1016/j.jcis.2021.11.180_b0260) 2020; 817
Yin (10.1016/j.jcis.2021.11.180_b0490) 2020; 142
Mansingh (10.1016/j.jcis.2021.11.180_b0215) 2020; 2
Zhang (10.1016/j.jcis.2021.11.180_b0465) 2017; 4
Wang (10.1016/j.jcis.2021.11.180_b0385) 2007; 111
Wang (10.1016/j.jcis.2021.11.180_b0435) 2020; 561
Zhao (10.1016/j.jcis.2021.11.180_b0255) 2022; 430
Bi (10.1016/j.jcis.2021.11.180_b0300) 2021; 234
Wang (10.1016/j.jcis.2021.11.180_b0500) 2020; 32
Amin (10.1016/j.jcis.2021.11.180_b0475) 2020; 2020
Yang (10.1016/j.jcis.2021.11.180_b0020) 2018; 140
Zhao (10.1016/j.jcis.2021.11.180_b0200) 2014; 144
Dong (10.1016/j.jcis.2021.11.180_b0330) 2015; 5
Liu (10.1016/j.jcis.2021.11.180_b0010) 2021; 31
Vu (10.1016/j.jcis.2021.11.180_b0240) 2021; 5
Wang (10.1016/j.jcis.2021.11.180_b0205) 2021; 47
Chen (10.1016/j.jcis.2021.11.180_b0045) 2018; 5
Kong (10.1016/j.jcis.2021.11.180_b0185) 2011; 133
Bian (10.1016/j.jcis.2021.11.180_b0030) 2020; 11
Liu (10.1016/j.jcis.2021.11.180_b0015) 2021; 5
Fei (10.1016/j.jcis.2021.11.180_b0090) 2019; 557
Wang (10.1016/j.jcis.2021.11.180_b0150) 2019; 7
Cao (10.1016/j.jcis.2021.11.180_b0450) 2021; 275
Chu (10.1016/j.jcis.2021.11.180_b0125) 2021; 53
Li (10.1016/j.jcis.2021.11.180_b0365) 2018; 57
Oh (10.1016/j.jcis.2021.11.180_b0270) 2015; 27
Ji (10.1016/j.jcis.2021.11.180_b0410) 2021; 140
Zhuang (10.1016/j.jcis.2021.11.180_b0170) 2017; 29
Zhong (10.1016/j.jcis.2021.11.180_b0250) 2021
Ou (10.1016/j.jcis.2021.11.180_b0420) 2018; 9
Feng (10.1016/j.jcis.2021.11.180_b0520) 2018; 11
Chen (10.1016/j.jcis.2021.11.180_b0505) 2021; 33
Kordali (10.1016/j.jcis.2021.11.180_b0050) 2000
Lv (10.1016/j.jcis.2021.11.180_b0180) 2014; 2
Li (10.1016/j.jcis.2021.11.180_b0115) 2020; 142
Dolat (10.1016/j.jcis.2021.11.180_b0335) 2013; 266
Zeng (10.1016/j.jcis.2021.11.180_b0455) 2021; 535
Song (10.1016/j.jcis.2021.11.180_b0080) 2021; 602
Guskos (10.1016/j.jcis.2021.11.180_b0340) 2013; 11
Wang (10.1016/j.jcis.2021.11.180_b0430) 2021; 856
Park (10.1016/j.jcis.2021.11.180_b0395) 2017; 202
Wang (10.1016/j.jcis.2021.11.180_b0230) 2021; 414
Guan (10.1016/j.jcis.2021.11.180_b0145) 2021; 282
Chen (10.1016/j.jcis.2021.11.180_b0055) 2019; 3
Vesali-Kermani (10.1016/j.jcis.2021.11.180_b0105) 2020; 563
Zhu (10.1016/j.jcis.2021.11.180_b0485) 2020; 30
Wang (10.1016/j.jcis.2021.11.180_b0070) 2021; 66
Cao (10.1016/j.jcis.2021.11.180_b0445) 2020; 530
Ding (10.1016/j.jcis.2021.11.180_b0210) 2021; 276
Hu (10.1016/j.jcis.2021.11.180_b0495) 2019; 29
Han (10.1016/j.jcis.2021.11.180_b0380) 2019; 257
Sun (10.1016/j.jcis.2021.11.180_b0120) 2020; 12
Li (10.1016/j.jcis.2021.11.180_b0510) 2021; 539
Wan (10.1016/j.jcis.2021.11.180_b0005) 2019; 27
Li (10.1016/j.jcis.2021.11.180_b0025) 2019; 11
Zhang (10.1016/j.jcis.2021.11.180_b0175) 2018; 140
Schrauzer (10.1016/j.jcis.2021.11.180_b0110) 1977; 99
Yao (10.1016/j.jcis.2021.11.180_b0040) 2020; 601
Xiao (10.1016/j.jcis.2021.11.180_b0235) 2019; 31
Huang (10.1016/j.jcis.2021.11.180_b0345) 2015; 5
Liu (10.1016/j.jcis.2021.11.180_b0075) 2021; 603
Wu (10.1016/j.jcis.2021.11.180_b0245) 2019; 335
Zhang (10.1016/j.jcis.2021.11.180_b0315) 2020; 401
Zhang (10.1016/j.jcis.2021.11.180_b0325) 2017; 5
Liu (10.1016/j.jcis.2021.11.180_b0085) 2019; 58
Nakamura (10.1016/j.jcis.2021.11.180_b0350) 2000; 161
Georgieva (10.1016/j.jcis.2021.11.180_b0405) 2017; 413
Xu (10.1016/j.jcis.2021.11.180_b0265) 2021; 260
Ying (10.1016/j.jcis.2021.11.180_b0095) 2019; 254
Kovalevskiy (10.1016/j.jcis.2021.11.180_b0390) 2020; 134
Xia (10.1016/j.jcis.2021.11.180_b0310) 2013; 3
Wang (10.1016/j.jcis.2021.11.180_b0275) 2019; 24
Zhang (10.1016/j.jcis.2021.11.180_b0375) 2021; 567
He (10.1016/j.jcis.2021.11.180_b0480) 2017; 56
Wei (10.1016/j.jcis.2021.11.180_b0285) 2018; 222
Stegemann (10.1016/j.jcis.2021.11.180_b0400) 2017; 625
Zhang (10.1016/j.jcis.2021.11.180_b0160) 2020; 264
Liu (10.1016/j.jcis.2021.11.180_b0140) 2021; 411
Ithisuphalap (10.1016/j.jcis.2021.11.180_b0060) 2019; 3
Zhu (10.1016/j.jcis.2021.11.180_b0305) 2021; 276
Qin (10.1016/j.jcis.2021.11.180_b0280) 2020; 384
Wan (10.1016/j.jcis.2021.11.180_b0355) 2021; 403
Gao (10.1016/j.jcis.2021.11.180_b0190) 2021; 585
Hirakawa (10.1016/j.jcis.2021.11.180_b0165) 2017; 139
Wang (10.1016/j.jcis.2021.11.180_b0440) 2021; 264
References_xml – volume: 11
  start-page: 1996
  year: 2013
  end-page: 2004
  ident: b0340
  article-title: Magnetic resonance study of annealed and rinsed N-doped TiO
  publication-title: Cent. Eur. J. Chem.
– volume: 817
  year: 2020
  ident: b0260
  article-title: Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity
  publication-title: J. Alloys Compd.
– volume: 563
  start-page: 81
  year: 2020
  end-page: 91
  ident: b0105
  article-title: Nitrogen photofixation ability of g-C
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 7257
  year: 2020
  end-page: 7269
  ident: b0120
  article-title: Sulfur vacancy-rich O-doped 1T-MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 95
  year: 2009
  ident: b0295
  article-title: Oxygen vacancies in N doped anatase TiO
  publication-title: Appl. Phys. Lett.
– volume: 411
  year: 2021
  ident: b0140
  article-title: Novel phosphorus-doped Bi
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 117
  year: 2019
  end-page: 122
  ident: b0150
  article-title: Boron-doped TiO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 603
  start-page: 17
  year: 2021
  end-page: 24
  ident: b0075
  article-title: Atomically dispersed Palladium-Ethylene Glycol-Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 1267
  year: 2016
  end-page: 1273
  ident: b0290
  article-title: Transition metal doped TiO
  publication-title: J. Environ. Chem. Eng.
– volume: 275
  year: 2021
  ident: b0450
  article-title: Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes
  publication-title: Sep. Purif. Technol.
– volume: 260
  year: 2021
  ident: b0265
  article-title: Resin microsphere templates for TiO
  publication-title: Mater. Chem. Phys.
– volume: 52
  start-page: 264
  year: 2018
  end-page: 270
  ident: b0035
  article-title: Ambient N
  publication-title: Nano Energy
– volume: 3
  start-page: 11275
  year: 2020
  end-page: 11284
  ident: b0135
  article-title: Effect of Zn vacancies in Zn
  publication-title: ACS Appl. Energy Mater.
– volume: 602
  start-page: 748
  year: 2021
  end-page: 755
  ident: b0080
  article-title: Defect density modulation of La
  publication-title: J. Colloid Interface Sci.
– volume: 430
  start-page: 133085
  year: 2022
  ident: b0255
  article-title: Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 2395
  year: 2012
  end-page: 2399
  ident: b0415
  article-title: Ultrathin W
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1800352
  year: 2019
  ident: b0060
  article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis
  publication-title: Small Methods
– volume: 870
  year: 2021
  ident: b0320
  article-title: Black single-crystal TiO
  publication-title: J. Alloy. Compd.
– volume: 856
  year: 2021
  ident: b0430
  article-title: Porous Co
  publication-title: J. Alloy. Compd.
– volume: 31
  year: 2019
  ident: b0235
  article-title: Hollow nanostructures for photocatalysis: advantages and challenges
  publication-title: Adv. Mater.
– volume: 535
  year: 2021
  ident: b0455
  article-title: Boosting charge separation and surface defects for superb photocatalytic activity of magnesium oxide/graphene nanosheets
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 1600343
  year: 2017
  ident: b0465
  article-title: Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphous-Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning
  publication-title: Adv. Sci.
– volume: 58
  start-page: 18903
  year: 2019
  end-page: 18907
  ident: b0085
  article-title: Carbon-nanoplated CoS@ TiO
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 19180
  year: 2021
  end-page: 19190
  ident: b0205
  article-title: TiO
  publication-title: Ceram. Int.
– volume: 11
  start-page: 37927
  year: 2019
  end-page: 37938
  ident: b0025
  article-title: Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 282
  year: 2021
  ident: b0145
  article-title: Enhanced photocatalytic N
  publication-title: Appl. Catal. B: Environ.
– volume: 140
  start-page: 13387
  year: 2018
  end-page: 13391
  ident: b0020
  article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 161
  start-page: 205
  year: 2000
  end-page: 212
  ident: b0350
  article-title: Role of oxygen vacancy in the plasma-treated TiO
  publication-title: J. Mol. Catal. A: Chem.
– volume: 401
  year: 2020
  ident: b0315
  article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 9
  year: 2018
  end-page: 27
  ident: b0045
  article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects
  publication-title: Mater. Horiz.
– volume: 66
  start-page: 1228
  year: 2021
  end-page: 1252
  ident: b0070
  article-title: Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis
  publication-title: Sci. Bull.
– volume: 587
  start-page: 538
  year: 2021
  end-page: 549
  ident: b0100
  article-title: In situ preparation of g-C
  publication-title: J. Colloid Interface Sci.
– volume: 27
  start-page: 222
  year: 2015
  end-page: 226
  ident: b0270
  article-title: Properties of oriented strandboard bonded with pjenol-urea-formaldehyde resin
  publication-title: J. Trop. For. Sci.
– volume: 32
  year: 2020
  ident: b0500
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO
  publication-title: Adv. Mater.
– volume: 33
  year: 2021
  ident: b0505
  article-title: Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C
  publication-title: Adv. Mater.
– volume: 57
  start-page: 122
  year: 2018
  end-page: 138
  ident: b0365
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Ed.
– volume: 264
  year: 2021
  ident: b0440
  article-title: Nitrogen-defective g-C
  publication-title: Sep. Purif. Technol.
– volume: 5
  start-page: 14610
  year: 2015
  end-page: 14630
  ident: b0330
  article-title: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review
  publication-title: RSC Adv.
– volume: 266
  start-page: 410
  year: 2013
  end-page: 419
  ident: b0335
  article-title: Preparation of photoactive nitrogen-doped rutile
  publication-title: Appl. Surf. Sci.
– volume: 140
  start-page: 9434
  year: 2018
  end-page: 9443
  ident: b0175
  article-title: Refining defect states in W
  publication-title: J. Am. Chem. Soc.
– volume: 222
  start-page: 88
  year: 2018
  end-page: 98
  ident: b0285
  article-title: One-step fabrication of g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 111
  start-page: 1010
  year: 2007
  end-page: 1014
  ident: b0385
  article-title: An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1174
  year: 2014
  end-page: 1182
  ident: b0180
  article-title: Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO
  publication-title: J. Mater. Chem. A
– volume: 142
  start-page: 12430
  year: 2020
  end-page: 12439
  ident: b0115
  article-title: Visible-light-driven nitrogen fixation catalyzed by Bi
  publication-title: J. Am. Chem. Soc.
– year: 2021
  ident: b0250
  article-title: Upconversion hollow nanospheres CeF
  publication-title: J. Rare Earths
– volume: 561
  start-page: 793
  year: 2020
  end-page: 800
  ident: b0435
  article-title: Pt enhanced the photo-Fenton activity of ZnFe
  publication-title: J. Colloid Interface Sci.
– volume: 16
  start-page: 1907091
  year: 2020
  ident: b0065
  article-title: Synergistically coupling black phosphorus quantum dots with MnO
  publication-title: Small
– volume: 2
  start-page: 2004
  year: 2020
  end-page: 2017
  ident: b0215
  article-title: Bandgap engineering via boron and sulphur doped carbon modified anatase TiO
  publication-title: Nanoscale Adv.
– volume: 56
  start-page: 3897
  year: 2017
  end-page: 3900
  ident: b0480
  article-title: Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 2008983
  year: 2021
  ident: b0010
  article-title: Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition
  publication-title: Adv. Funct. Mater.
– volume: 403
  year: 2021
  ident: b0195
  article-title: Excellent visible light responsive photocatalytic behavior of N-doped TiO
  publication-title: J. Hazard. Mater.
– volume: 384
  year: 2020
  ident: b0280
  article-title: Nitrogen-doped hydrogenated TiO
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 69
  year: 2019
  end-page: 90
  ident: b0005
  article-title: Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions
  publication-title: Mater. Today
– volume: 257
  year: 2019
  ident: b0380
  article-title: Activated TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 539
  year: 2021
  ident: b0510
  article-title: Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 1052
  year: 2020
  end-page: 1058
  ident: b0030
  article-title: Edge-rich black phosphorus for photocatalytic nitrogen fixation
  publication-title: J. Phys. Chem. Lett.
– volume: 144
  start-page: 468
  year: 2014
  end-page: 477
  ident: b0200
  article-title: Enhanced nitrogen photofixation on Fe-doped TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 29
  year: 2019
  ident: b0495
  article-title: Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-Site metal cation in NdNiO
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2528
  year: 2021
  end-page: 2536
  ident: b0240
  article-title: The construction of Ru-doped In
  publication-title: Energy Fuels
– start-page: 1673
  year: 2000
  end-page: 1674
  ident: b0050
  article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
  publication-title: Chem. Commun.
– volume: 53
  start-page: 132
  year: 2021
  end-page: 138
  ident: b0125
  article-title: Amorphous MoS
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 4094
  year: 2015
  end-page: 4103
  ident: b0345
  article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO
  publication-title: ACS Catal.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0420
  article-title: Tuning defects in oxides at room temperature by lithium reduction
  publication-title: Nat. Commun.
– volume: 30
  start-page: 2003556
  year: 2020
  ident: b0485
  article-title: Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting
  publication-title: Adv. Funct. Mater.
– volume: 403
  year: 2021
  ident: b0355
  article-title: Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In
  publication-title: Chem. Eng. J.
– volume: 414
  year: 2021
  ident: b0230
  article-title: Bi
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0470
  article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential
  publication-title: Nat. Commun.
– volume: 99
  start-page: 7189
  year: 1977
  end-page: 7193
  ident: b0110
  article-title: Photocatalysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 585
  start-page: 20
  year: 2021
  end-page: 29
  ident: b0190
  article-title: In situ modification of cobalt on MXene/TiO
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 6894
  year: 2017
  end-page: 6901
  ident: b0325
  article-title: Ti
  publication-title: ACS Sustainable Chem. Eng.
– volume: 202
  start-page: 66
  year: 2017
  end-page: 69
  ident: b0395
  article-title: A facile graft polymerization approach to N-doped TiO
  publication-title: Mater. Lett.
– volume: 2020
  start-page: 2679
  year: 2020
  end-page: 2690
  ident: b0475
  article-title: Metal-rich chalcogenides as sustainable electrocatalysts for oxygen evolution and reduction: State of the art and future perspectives
  publication-title: Eur. J. Inorg. Chem.
– volume: 121
  start-page: 168
  year: 2021
  end-page: 183
  ident: b0370
  article-title: Novel visible-light-responsive black-TiO
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 140
  year: 2021
  ident: b0410
  article-title: In-situ growth of TiO
  publication-title: Mater. Res. Bull.
– volume: 264
  year: 2020
  ident: b0160
  article-title: Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation
  publication-title: Appl. Catal. B: Environ.
– volume: 2
  year: 2007
  ident: b0360
  article-title: Origin of defect-related green emission from ZnO nanoparticles: Effect of surface modification
  publication-title: Nanoscale Res. Lett.
– volume: 5
  start-page: 5516
  year: 2021
  end-page: 5533
  ident: b0015
  article-title: Electrocatalytic nitrogen reduction reaction under ambient condition: Current status, challenges, and perspectives
  publication-title: Mater. Chem. Front.
– volume: 1
  start-page: 6733
  year: 2018
  end-page: 6741
  ident: b0515
  article-title: Wrinkled ultrathin graphitic C
  publication-title: ACS Appl. Nano Mater.
– volume: 507
  year: 2020
  ident: b0225
  article-title: Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 1800337
  year: 2019
  ident: b0055
  article-title: Advances in electrocatalytic N
  publication-title: Small Methods
– volume: 139
  start-page: 10929
  year: 2017
  end-page: 10936
  ident: b0165
  article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1516
  year: 2013
  end-page: 1523
  ident: b0310
  article-title: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO
  publication-title: Adv. Energy Mater.
– volume: 134
  year: 2020
  ident: b0390
  article-title: Synergistic effect of polychromatic radiation on visible light activity of N doped TiO
  publication-title: Catal. Commun.
– volume: 254
  start-page: 351
  year: 2019
  end-page: 359
  ident: b0095
  article-title: Efficiently enhanced N
  publication-title: Appl. Catal. B: Environ.
– volume: 530
  year: 2020
  ident: b0445
  article-title: A three-layer photocatalyst carbon fibers/TiO
  publication-title: Appl. Surf. Sci.
– volume: 601
  year: 2020
  ident: b0040
  article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C
  publication-title: Appl. Catal. A
– volume: 234
  year: 2021
  ident: b0300
  article-title: Tuning oxygen vacancy content in TiO
  publication-title: Chem. Eng. Sci.
– volume: 870
  year: 2021
  ident: b0130
  article-title: Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C
  publication-title: J. Alloy. Compd.
– volume: 625
  start-page: 49
  year: 2017
  end-page: 55
  ident: b0400
  article-title: Thermal annealing effect on nitrogen-doped TiO
  publication-title: Thin Solid Films
– volume: 413
  start-page: 284
  year: 2017
  end-page: 291
  ident: b0405
  article-title: A simple preparation method and characterization of B and N co-doped TiO
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  ident: b0425
  article-title: Floating photocatalyst of B-N–TiO
  publication-title: Sci. Rep.
– volume: 142
  start-page: 18378
  year: 2020
  end-page: 18386
  ident: b0490
  article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media
  publication-title: J. Am. Chem. Soc.
– volume: 276
  year: 2021
  ident: b0210
  article-title: Ultrasonically synthesized N-TiO
  publication-title: Sep. Purif. Technol.
– volume: 276
  year: 2021
  ident: b0305
  article-title: Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO
  publication-title: Sep. Purif. Technol.
– volume: 523
  year: 2020
  ident: b0155
  article-title: Phosphorus cation substitution in TiO
  publication-title: Appl. Surf. Sci.
– volume: 561
  start-page: 257
  year: 2020
  end-page: 264
  ident: b0460
  article-title: In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: Ultrahigh photocatalytic efficiency based on synergistic catalysis
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 331
  year: 2018
  end-page: 334
  ident: b0520
  article-title: Comparing the photocatalytic properties of g-C
  publication-title: Results Phys.
– volume: 133
  start-page: 16414
  year: 2011
  end-page: 16417
  ident: b0185
  article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO
  publication-title: J. Am. Chem. Soc.
– volume: 567
  year: 2021
  ident: b0375
  article-title: Pd-Co alloy supported on TiO
  publication-title: Appl. Surf. Sci.
– volume: 557
  start-page: 498
  year: 2019
  end-page: 505
  ident: b0090
  article-title: Graphene quantum dots modified flower like Bi
  publication-title: J. Colloid Interface Sci.
– volume: 24
  start-page: 137
  year: 2019
  end-page: 146
  ident: b0275
  article-title: Effect of template size of phenolic resin prepared by hydrothermal method on magnetic properties of ZnFe
  publication-title: Mater. Sci. Eng. powder metal
– volume: 29
  start-page: 1606793
  year: 2017
  ident: b0170
  article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv. Mater.
– volume: 256
  year: 2019
  ident: b0220
  article-title: High-efficiency Fe-Mediated Bi
  publication-title: Appl. Catal. B: Environ.
– volume: 335
  start-page: 214
  year: 2019
  end-page: 220
  ident: b0245
  article-title: TiO
  publication-title: Catal. Today
– volume: 3
  start-page: 1800352
  issue: 6
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0060
  article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis
  publication-title: Small Methods
  doi: 10.1002/smtd.201800352
– volume: 539
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0510
  article-title: Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148257
– volume: 403
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0195
  article-title: Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123857
– volume: 11
  start-page: 1996
  year: 2013
  ident: 10.1016/j.jcis.2021.11.180_b0340
  article-title: Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles
  publication-title: Cent. Eur. J. Chem.
– volume: 161
  start-page: 205
  year: 2000
  ident: 10.1016/j.jcis.2021.11.180_b0350
  article-title: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00362-9
– volume: 27
  start-page: 69
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0005
  article-title: Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.03.002
– volume: 16
  start-page: 1907091
  issue: 18
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0065
  article-title: Synergistically coupling black phosphorus quantum dots with MnO2 nanosheets for efficient electrochemical nitrogen reduction under ambient conditions
  publication-title: Small
  doi: 10.1002/smll.201907091
– volume: 139
  start-page: 10929
  issue: 31
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0165
  article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06634
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0470
  article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12994-w
– volume: 625
  start-page: 49
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0400
  article-title: Thermal annealing effect on nitrogen-doped TiO2 thin films grown by high power impulse magnetron sputtering plasma power source
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2017.01.043
– volume: 134
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0390
  article-title: Synergistic effect of polychromatic radiation on visible light activity of N doped TiO2 photocatalyst
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2019.105841
– volume: 413
  start-page: 284
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0405
  article-title: A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.055
– volume: 31
  start-page: 2008983
  issue: 11
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0010
  article-title: Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008983
– volume: 282
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0145
  article-title: Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119580
– volume: 856
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0430
  article-title: Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.158199
– volume: 133
  start-page: 16414
  issue: 41
  year: 2011
  ident: 10.1016/j.jcis.2021.11.180_b0185
  article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207826q
– volume: 31
  issue: 38
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0235
  article-title: Hollow nanostructures for photocatalysis: advantages and challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801369
– volume: 563
  start-page: 81
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0105
  article-title: Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.057
– volume: 587
  start-page: 538
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0100
  article-title: In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.011
– volume: 254
  start-page: 351
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0095
  article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.05.005
– volume: 32
  issue: 26
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0500
  article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes
  publication-title: Adv. Mater.
– volume: 264
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0160
  article-title: Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118416
– volume: 507
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0225
  article-title: Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@ carbon microsphere/g-C3N4 with a hierarchical sandwich-structure
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.145167
– volume: 1
  start-page: 6733
  issue: 12
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0515
  article-title: Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b01528
– start-page: 1673
  issue: 17
  year: 2000
  ident: 10.1016/j.jcis.2021.11.180_b0050
  article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
  publication-title: Chem. Commun.
  doi: 10.1039/b004885m
– volume: 335
  start-page: 214
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0245
  article-title: TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.11.043
– volume: 4
  start-page: 1600343
  issue: 3
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0465
  article-title: Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphous-Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600343
– volume: 29
  issue: 30
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0495
  article-title: Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-Site metal cation in NdNiO3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902449
– volume: 602
  start-page: 748
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0080
  article-title: Defect density modulation of La2TiO5: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.055
– volume: 561
  start-page: 793
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0435
  article-title: Pt enhanced the photo-Fenton activity of ZnFe2O4/α-Fe2O3 heterostructure synthesized via one-step hydrothermal method
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.11.058
– volume: 430
  start-page: 133085
  year: 2022
  ident: 10.1016/j.jcis.2021.11.180_b0255
  article-title: Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO2 nanosheets
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133085
– volume: 523
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0155
  article-title: Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146517
– volume: 47
  start-page: 19180
  issue: 13
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0205
  article-title: TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.03.265
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jcis.2021.11.180_b0425
  article-title: Floating photocatalyst of B-N–TiO2/expanded perlite: A sol–gel synthesis with optimized mesoporous and high photocatalytic activity
  publication-title: Sci. Rep.
  doi: 10.1038/srep29902
– volume: 603
  start-page: 17
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0075
  article-title: Atomically dispersed Palladium-Ethylene Glycol-Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.108
– volume: 142
  start-page: 12430
  issue: 28
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0115
  article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05097
– volume: 5
  start-page: 2528
  issue: 9
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0240
  article-title: The construction of Ru-doped In2O3 hollow peanut-like structure for an enhanced photocatalytic nitrogen reduction under solar light irradiation, Sustain
  publication-title: Energy Fuels
– volume: 567
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0375
  article-title: Pd-Co alloy supported on TiO2 with oxygen vacancies for efficient N2 and O2 electrocatalytic reduction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150680
– volume: 585
  start-page: 20
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0190
  article-title: In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.064
– volume: 535
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0455
  article-title: Boosting charge separation and surface defects for superb photocatalytic activity of magnesium oxide/graphene nanosheets
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147658
– volume: 276
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0210
  article-title: Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119287
– volume: 266
  start-page: 410
  year: 2013
  ident: 10.1016/j.jcis.2021.11.180_b0335
  article-title: Preparation of photoactive nitrogen-doped rutile
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.12.048
– volume: 142
  start-page: 18378
  issue: 43
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0490
  article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05050
– volume: 51
  start-page: 2395
  issue: 10
  year: 2012
  ident: 10.1016/j.jcis.2021.11.180_b0415
  article-title: Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107681
– volume: 256
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0220
  article-title: High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: reduced surface work function and ameliorated surface reaction
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117781
– volume: 384
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0280
  article-title: Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123275
– volume: 403
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0355
  article-title: Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In2O3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126389
– year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0250
  article-title: Upconversion hollow nanospheres CeF3 co-doped with Yb3+ and Tm3+ for photocatalytic nitrogen fixation
  publication-title: J. Rare Earths
– volume: 140
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0410
  article-title: In-situ growth of TiO2 phase junction nanorods with Ti3+ and oxygen vacancies to enhance photocatalytic activity
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2021.111291
– volume: 817
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0260
  article-title: Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity
  publication-title: J. Alloys Compd.
– volume: 30
  start-page: 2003556
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0485
  article-title: Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003556
– volume: 5
  start-page: 6894
  issue: 8
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0325
  article-title: Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01114
– volume: 257
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0380
  article-title: Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117896
– volume: 202
  start-page: 66
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0395
  article-title: A facile graft polymerization approach to N-doped TiO2 heterostructures with enhanced visible-light photocatalytic activity
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.05.070
– volume: 53
  start-page: 132
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0125
  article-title: Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.074
– volume: 870
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0130
  article-title: Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.159298
– volume: 27
  start-page: 222
  year: 2015
  ident: 10.1016/j.jcis.2021.11.180_b0270
  article-title: Properties of oriented strandboard bonded with pjenol-urea-formaldehyde resin
  publication-title: J. Trop. For. Sci.
– volume: 57
  start-page: 122
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0365
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705628
– volume: 234
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0300
  article-title: Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116440
– volume: 24
  start-page: 137
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0275
  article-title: Effect of template size of phenolic resin prepared by hydrothermal method on magnetic properties of ZnFe2O4 hollow spheres
  publication-title: Mater. Sci. Eng. powder metal
– volume: 121
  start-page: 168
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0370
  article-title: Novel visible-light-responsive black-TiO2/CoTiO3 Z-scheme heterojunction photocatalyst with efficient photocatalytic performance for the degradation of different organic dyes and tetracycline
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.04.009
– volume: 5
  start-page: 14610
  issue: 19
  year: 2015
  ident: 10.1016/j.jcis.2021.11.180_b0330
  article-title: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13734E
– volume: 2
  start-page: 2004
  issue: 5
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0215
  article-title: Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: A visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00183J
– volume: 276
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0305
  article-title: Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO2 for photocatalytic NO removal under visible light
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119362
– volume: 3
  start-page: 1516
  issue: 11
  year: 2013
  ident: 10.1016/j.jcis.2021.11.180_b0310
  article-title: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300294
– volume: 12
  start-page: 7257
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0120
  article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20767
– volume: 111
  start-page: 1010
  issue: 2
  year: 2007
  ident: 10.1016/j.jcis.2021.11.180_b0385
  article-title: An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp066156o
– volume: 601
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0040
  article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2020.117647
– volume: 29
  start-page: 1606793
  issue: 17
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0170
  article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 401
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0315
  article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126033
– volume: 222
  start-page: 88
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0285
  article-title: One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.09.070
– volume: 11
  start-page: 37927
  issue: 41
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0025
  article-title: Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12328
– volume: 2
  start-page: 1174
  issue: 4
  year: 2014
  ident: 10.1016/j.jcis.2021.11.180_b0180
  article-title: Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13841K
– volume: 52
  start-page: 264
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0035
  article-title: Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.045
– volume: 99
  start-page: 7189
  year: 1977
  ident: 10.1016/j.jcis.2021.11.180_b0110
  article-title: Photocatalysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 33
  issue: 7
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0505
  article-title: Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-Scheme heterojunction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007479
– volume: 11
  start-page: 331
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0520
  article-title: Comparing the photocatalytic properties of g-C3N4 treated by thermal decomposition, solvothermal and protonation
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.09.014
– volume: 530
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0445
  article-title: A three-layer photocatalyst carbon fibers/TiO2 seed/TiO2 nanorods with high photocatalytic degradation under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147289
– volume: 557
  start-page: 498
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0090
  article-title: Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.09.011
– volume: 5
  start-page: 4094
  issue: 7
  year: 2015
  ident: 10.1016/j.jcis.2021.11.180_b0345
  article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00444
– volume: 264
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0440
  article-title: Nitrogen-defective g-C3N4 with enhanced photocatalytic performance fabrication by destructing C=N-C bond via H2O2
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118424
– volume: 66
  start-page: 1228
  issue: 12
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0070
  article-title: Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.02.007
– volume: 3
  start-page: 11275
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0135
  article-title: Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02202
– volume: 7
  start-page: 117
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0150
  article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05332
– volume: 140
  start-page: 9434
  issue: 30
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0175
  article-title: Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– volume: 4
  start-page: 1267
  issue: 1
  year: 2016
  ident: 10.1016/j.jcis.2021.11.180_b0290
  article-title: Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.01.032
– volume: 561
  start-page: 257
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0460
  article-title: In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: Ultrahigh photocatalytic efficiency based on synergistic catalysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.11.122
– volume: 11
  start-page: 1052
  issue: 3
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0030
  article-title: Edge-rich black phosphorus for photocatalytic nitrogen fixation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03507
– volume: 5
  start-page: 5516
  issue: 15
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0015
  article-title: Electrocatalytic nitrogen reduction reaction under ambient condition: Current status, challenges, and perspectives
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00269D
– volume: 58
  start-page: 18903
  issue: 52
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0085
  article-title: Carbon-nanoplated CoS@ TiO2 nanofibrous membrane: an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912733
– volume: 3
  start-page: 1800337
  issue: 6
  year: 2019
  ident: 10.1016/j.jcis.2021.11.180_b0055
  article-title: Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge
  publication-title: Small Methods
  doi: 10.1002/smtd.201800337
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0420
  article-title: Tuning defects in oxides at room temperature by lithium reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03765-0
– volume: 56
  start-page: 3897
  issue: 14
  year: 2017
  ident: 10.1016/j.jcis.2021.11.180_b0480
  article-title: Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612635
– volume: 95
  issue: 26
  year: 2009
  ident: 10.1016/j.jcis.2021.11.180_b0295
  article-title: Oxygen vacancies in N doped anatase TiO2: Experiment and first principles calculations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3272272
– volume: 2020
  start-page: 2679
  issue: 28
  year: 2020
  ident: 10.1016/j.jcis.2021.11.180_b0475
  article-title: Metal-rich chalcogenides as sustainable electrocatalysts for oxygen evolution and reduction: State of the art and future perspectives
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.202000406
– volume: 144
  start-page: 468
  year: 2014
  ident: 10.1016/j.jcis.2021.11.180_b0200
  article-title: Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2013.07.047
– volume: 414
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0230
  article-title: Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128827
– volume: 5
  start-page: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0045
  article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00557A
– volume: 411
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0140
  article-title: Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128629
– volume: 275
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0450
  article-title: Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119236
– volume: 2
  issue: 6
  year: 2007
  ident: 10.1016/j.jcis.2021.11.180_b0360
  article-title: Origin of defect-related green emission from ZnO nanoparticles: Effect of surface modification
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-007-9064-6
– volume: 870
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0320
  article-title: Black single-crystal TiO2 nanosheet array films with oxygen vacancy on {001} facets for boosting photocatalytic CO2 reduction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.159400
– volume: 140
  start-page: 13387
  issue: 41
  year: 2018
  ident: 10.1016/j.jcis.2021.11.180_b0020
  article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08379
– volume: 260
  year: 2021
  ident: 10.1016/j.jcis.2021.11.180_b0265
  article-title: Resin microsphere templates for TiO2 hollow structure with uniform mesopores: Preparation and photocatalytic application
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.124158
SSID ssj0011559
Score 2.6266742
Snippet Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen...
Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and...
Photocatalytic fixation of nitrogen to ammonia (NH₃) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms absorption
adsorption
ammonia
Hollow microspheres
hot water treatment
microparticles
N-doping
nitrogen
nitrogen fixation
oxygen
Oxygen vacancies
phenolic resins
photocatalysis
photocatalysts
Photocatalytic nitrogen fixation
synergism
TiO2
titanium dioxide
zeta potential
Title N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation
URI https://dx.doi.org/10.1016/j.jcis.2021.11.180
https://www.proquest.com/docview/2609460689
https://www.proquest.com/docview/2636600739
Volume 609
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pBdCrOjxHBm3Rr0-_jGMpUmJcNvJUkTbEy27F1ul38230vbYeK7CC9tS-k5L28vJf83i-EXCdMJomyQ4OzEBIUGcSGYCIwuGI8Vj6kRFwDZIfeYOw8PLvPDdKva2EQVln5_tKna29dvelWo9mdpinW-MJs85F9xsT6T2T8dBwfrbzzuYZ5WHjsVsI8LAOlq8KZEuP1KlOk7GYWeI6OhdSQfy9Ov9y0XnvuDsh-FTTSXvlfh6ShsibZ6dd3tTXJ3jdawSMyGRqxroOio_SJUfBvk_yDviH0bo4sAmpOcfuVcoFlIFlB8-UK7Ii-c6nv6p1TiGQpEhlPVnT6khe53uRZQe8UPMAsR-EkXWqlHpPx3e2oPzCqWxUMaXteYQjJE5vbCUxkExWChHSOFfiJ4r4lIKMR8EE6nqdEEPqWo4RnxxDHCVf58IT2CdnK8kydEiokc5PQFYIx4UjXC2PhMhkryU3kdTNbxKqHM5IV5TjefDGJamzZa4QqiFAFkItEoIIWuVm3mZaEGxul3VpL0Q-ziWBF2NjuqlZpBKrCQxKeqXwBQh4kvJDVBeEmGRhJfcZ59s_-z8kuwzoKDWa7IFvFbKEuIbopRFubb5ts9-4fB8MvNYn8Bg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-QwDLYQHNg9IGB3tbyz0nJaFabp-8AB8dCwwOxlkLhlkzQVRUM7YspjLvwp_iB22iJAaA5IqLfWUSrbcezE_gzwO-M6y4yXOJInGKDoOHUUV7EjDZepiTAkkjZBthd2z_y_58H5FDy2tTCUVtnY_tqmW2vdvNluuLk9zHOq8cXVFhH6TIfqP9sO1sdmfIdx22jnaB-FvMn54UF_r-s0rQUc7YVh5SgtM096GWpzh_6KUNl8N44yIyNXoVuv8IP2w9CoOIlc36jQS9GZUYGJ8CEEJrT7Mz6aC2qbsPXwnFfi0j1fnVfiOvR7TaVOnVR2qXPCCOcumqotl7Ao398N3-wLdrM7nIe5xktluzUjFmDKFIswu9c2h1uEry9wDL_BoOektvCK9fN_nKFBHZR37Ipy_UYEW2BGjM57mVRUd1JUrLwfo-KyW6ltc-ARQ9eZEXLyYMyGF2VV2lOlMc7O0ORcl0Sc5fdWi77D2afw-gdMF2VhfgJTmgdZEijFufJ1ECapCrhOjZYdApLrLIHbslPoBuOcWm0MRJvMdilIBIJEgMGPQBEswZ_nMcMa4WMiddBKSbzSU4Fb0MRxv1qRChQV3crIwpQ3SBRihI1hZJxMokFO2kvV5Q_OvwGz3f7piTg56h2vwBdORRw2k24VpqvrG7OGrlWl1q0qM_j_2WvnCR24N4c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-doping+TiO2+hollow+microspheres+with+abundant+oxygen+vacancies+for+highly+photocatalytic+nitrogen+fixation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Chang&rft.au=Gu%2C+MengZhen&rft.au=Gao%2C+Mingming&rft.au=Liu%2C+KeNing&rft.date=2022-03-01&rft.issn=0021-9797&rft.volume=609+p.341-352&rft.spage=341&rft.epage=352&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon