N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation
Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1. Photocatalytic fi...
Saved in:
Published in | Journal of colloid and interface science Vol. 609; pp. 341 - 352 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design route for enhancing nitrogen reduction performance.
[Display omitted]
•N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1.
Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat−1h−1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat−1h−1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat−1h−1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance. |
---|---|
AbstractList | Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance. Photocatalytic fixation of nitrogen to ammonia (NH₃) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N₂ and the band position of TiO₂ are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO₂ hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcₐₜ⁻¹h⁻¹. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H₂O₂ treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcₐₜ⁻¹h⁻¹ after reducing oxygen vacancies by H₂O₂ treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcₐₜ⁻¹h⁻¹, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance. Design route for enhancing nitrogen reduction performance. [Display omitted] •N-doping extends the light absorption range to the visible light region.•Oxygen vacancies promote the absorption and activation of N2.•The high ammonia yield rate of N-doping TiO2 is 80.09 μmol gcat−1h−1. Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat−1h−1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat−1h−1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat−1h−1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance. |
Author | Zhang, MingYi Ren, YueMing Wei, Tong Feng, Jing Gu, MengZhen Gao, MingMing Cao, NaiWen Liu, KeNing Zhao, XinYu Li, Chang |
Author_xml | – sequence: 1 givenname: Chang surname: Li fullname: Li, Chang organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 2 givenname: MengZhen surname: Gu fullname: Gu, MengZhen organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 3 givenname: MingMing surname: Gao fullname: Gao, MingMing organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 4 givenname: KeNing surname: Liu fullname: Liu, KeNing organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 5 givenname: XinYu surname: Zhao fullname: Zhao, XinYu organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 6 givenname: NaiWen surname: Cao fullname: Cao, NaiWen organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 7 givenname: Jing surname: Feng fullname: Feng, Jing email: fengjing@hrbeu.edu.cn organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 8 givenname: YueMing surname: Ren fullname: Ren, YueMing organization: Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China – sequence: 9 givenname: Tong surname: Wei fullname: Wei, Tong email: weitong666@163.com organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China – sequence: 10 givenname: MingYi surname: Zhang fullname: Zhang, MingYi organization: Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China |
BookMark | eNqNkUFr3DAQhUVJoJu0f6AnHXvxZmSvZRt6KaFNCqG5pGchy-P1LFrJlbRJ9t9HzvaUQyga0OG9bwbeu2Bnzjtk7IuAtQAhr3brnaG4LqEUa5GnhQ9sJaCri0ZAdcZWkJWia7rmI7uIcQcgRF13K2Z_F4OfyW35A92XfPLW-ie-JxN8nCcMGPkTpYnr_uAG7RL3z8ctOv6ojXaGsjz6wCfaTvbI58knb3TS9pjIcEcp-MU80rNO5N0ndj5qG_Hzv_-S_fn54-H6tri7v_l1_f2uMJWUqeiNHitdjWVZA5Z6kFXdbETbjKgb0UMn-yyYjZTYt10jNtjLapA19DU2-XXVJft62jsH__eAMak9RYPWaof-EFUp8x2ApvofK3QbCbJdrOXJumQTA45qDrTX4agEqKUFtVNLC2ppQYk8LWSofQMZSq9hpKDJvo9-O6GYo3okDCrmwJ3BgQKapAZP7-EvgMim0w |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_278 crossref_primary_10_1016_j_cej_2023_147644 crossref_primary_10_1039_D2NJ06240B crossref_primary_10_1016_j_cattod_2023_02_011 crossref_primary_10_1016_j_molliq_2023_123556 crossref_primary_10_1142_S2010135X2450005X crossref_primary_10_1016_j_apsusc_2024_159424 crossref_primary_10_1021_acs_iecr_3c02054 crossref_primary_10_1002_asia_202200822 crossref_primary_10_1016_j_optmat_2023_114103 crossref_primary_10_1016_j_seppur_2022_123054 crossref_primary_10_1021_acs_energyfuels_2c01390 crossref_primary_10_1016_j_apsusc_2023_156471 crossref_primary_10_1111_jace_19018 crossref_primary_10_1016_j_seppur_2024_130349 crossref_primary_10_1016_j_jcis_2023_04_085 crossref_primary_10_1016_j_jece_2023_110797 crossref_primary_10_1016_j_jssc_2022_123810 crossref_primary_10_1016_j_cjche_2023_03_028 crossref_primary_10_1016_j_arabjc_2022_104397 crossref_primary_10_1016_S1872_5813_24_60468_8 crossref_primary_10_1016_j_solidstatesciences_2024_107726 crossref_primary_10_1016_j_actphy_2025_100071 crossref_primary_10_1039_D4TA00599F crossref_primary_10_1016_j_cej_2024_149583 crossref_primary_10_1016_j_mcat_2023_113471 crossref_primary_10_1002_slct_202403521 crossref_primary_10_1016_j_colsurfa_2022_130874 crossref_primary_10_1002_smll_202309500 crossref_primary_10_1016_j_cej_2023_142421 crossref_primary_10_1016_j_jallcom_2023_169607 crossref_primary_10_1039_D4QI03182B crossref_primary_10_5004_dwt_2023_29567 crossref_primary_10_3390_nitrogen5020023 crossref_primary_10_1016_j_mtchem_2024_102292 crossref_primary_10_1016_j_optmat_2023_113560 crossref_primary_10_1039_D3GC05006H crossref_primary_10_1021_acs_jpcc_4c01497 crossref_primary_10_1016_j_jece_2023_110887 crossref_primary_10_1016_j_ceramint_2023_04_141 crossref_primary_10_3390_ma16175810 crossref_primary_10_1021_acs_iecr_4c01391 crossref_primary_10_1016_j_chemphys_2023_111917 crossref_primary_10_1016_j_jcat_2024_115347 crossref_primary_10_1021_acs_inorgchem_4c04225 crossref_primary_10_1016_S1872_2067_24_60072_0 crossref_primary_10_3390_membranes15030090 crossref_primary_10_1002_adsu_202200450 crossref_primary_10_1021_acs_langmuir_4c03909 crossref_primary_10_1016_j_mtcomm_2025_111969 crossref_primary_10_1016_j_seppur_2024_128614 crossref_primary_10_3390_molecules28248013 crossref_primary_10_1016_j_ijhydene_2024_09_070 crossref_primary_10_1021_acsanm_4c00179 crossref_primary_10_1016_j_aca_2023_342047 crossref_primary_10_1016_j_jece_2024_112276 crossref_primary_10_1016_j_ccr_2022_214953 crossref_primary_10_1016_j_jcis_2024_02_130 crossref_primary_10_3390_molecules28217277 crossref_primary_10_3390_en15176248 crossref_primary_10_1016_j_rser_2022_112967 crossref_primary_10_1016_j_compscitech_2022_109657 crossref_primary_10_1016_j_jallcom_2025_178634 crossref_primary_10_1016_j_seppur_2024_129536 crossref_primary_10_1039_D3CY00675A crossref_primary_10_1021_acsaem_2c01674 crossref_primary_10_3390_w16060875 crossref_primary_10_1016_j_apsusc_2023_158403 crossref_primary_10_1021_acsanm_4c02400 crossref_primary_10_1021_acsaenm_4c00707 crossref_primary_10_1016_j_cej_2022_137030 crossref_primary_10_1021_acs_energyfuels_2c01083 crossref_primary_10_1016_j_seppur_2025_132501 crossref_primary_10_1016_j_jre_2023_09_016 crossref_primary_10_1002_gch2_202300185 crossref_primary_10_2139_ssrn_4141612 crossref_primary_10_3390_pr12091879 crossref_primary_10_1016_j_inoche_2023_111212 crossref_primary_10_1016_j_jallcom_2023_172822 crossref_primary_10_1016_j_jpowsour_2024_234621 crossref_primary_10_1002_smll_202303980 crossref_primary_10_1016_j_jcis_2024_06_204 crossref_primary_10_1039_D4NR02342K crossref_primary_10_1016_j_jphotochem_2024_116165 crossref_primary_10_1039_D2TA03977J crossref_primary_10_1016_j_jcis_2024_04_219 |
Cites_doi | 10.1002/smtd.201800352 10.1016/j.apsusc.2020.148257 10.1016/j.jhazmat.2020.123857 10.1016/S1381-1169(00)00362-9 10.1016/j.mattod.2019.03.002 10.1002/smll.201907091 10.1021/jacs.7b06634 10.1038/s41467-019-12994-w 10.1016/j.tsf.2017.01.043 10.1016/j.catcom.2019.105841 10.1016/j.apsusc.2017.04.055 10.1002/adfm.202008983 10.1016/j.apcatb.2020.119580 10.1016/j.jallcom.2020.158199 10.1021/ja207826q 10.1002/adma.201801369 10.1016/j.jcis.2019.12.057 10.1016/j.jcis.2020.11.011 10.1016/j.apcatb.2019.05.005 10.1016/j.apcatb.2019.118416 10.1016/j.apsusc.2019.145167 10.1021/acsanm.8b01528 10.1039/b004885m 10.1016/j.cattod.2018.11.043 10.1002/advs.201600343 10.1002/adfm.201902449 10.1016/j.jcis.2021.06.055 10.1016/j.jcis.2019.11.058 10.1016/j.cej.2021.133085 10.1016/j.apsusc.2020.146517 10.1016/j.ceramint.2021.03.265 10.1038/srep29902 10.1016/j.jcis.2021.06.108 10.1021/jacs.0c05097 10.1016/j.apsusc.2021.150680 10.1016/j.jcis.2020.11.064 10.1016/j.apsusc.2020.147658 10.1016/j.seppur.2021.119287 10.1016/j.apsusc.2012.12.048 10.1021/jacs.0c05050 10.1002/anie.201107681 10.1016/j.apcatb.2019.117781 10.1016/j.cej.2019.123275 10.1016/j.cej.2020.126389 10.1016/j.materresbull.2021.111291 10.1002/adfm.202003556 10.1021/acssuschemeng.7b01114 10.1016/j.apcatb.2019.117896 10.1016/j.matlet.2017.05.070 10.1016/j.jechem.2020.04.074 10.1016/j.jallcom.2021.159298 10.1002/anie.201705628 10.1016/j.ces.2021.116440 10.1016/j.jtice.2021.04.009 10.1039/C4RA13734E 10.1039/D0NA00183J 10.1016/j.seppur.2021.119362 10.1002/aenm.201300294 10.1021/acsami.9b20767 10.1021/jp066156o 10.1016/j.apcata.2020.117647 10.1002/adma.201606793 10.1016/j.cej.2020.126033 10.1016/j.apcatb.2017.09.070 10.1021/acsami.9b12328 10.1039/C3TA13841K 10.1016/j.nanoen.2018.07.045 10.1021/ja00464a015 10.1002/adma.202007479 10.1016/j.rinp.2018.09.014 10.1016/j.apsusc.2020.147289 10.1016/j.jcis.2019.09.011 10.1021/acscatal.5b00444 10.1016/j.seppur.2021.118424 10.1016/j.scib.2021.02.007 10.1021/acsaem.0c02202 10.1021/acssuschemeng.8b05332 10.1021/jacs.8b02076 10.1016/j.jece.2016.01.032 10.1016/j.jcis.2019.11.122 10.1021/acs.jpclett.9b03507 10.1039/D1QM00269D 10.1002/anie.201912733 10.1002/smtd.201800337 10.1038/s41467-018-03765-0 10.1002/anie.201612635 10.1063/1.3272272 10.1002/ejic.202000406 10.1016/j.apcatb.2013.07.047 10.1016/j.cej.2021.128827 10.1039/C7MH00557A 10.1016/j.cej.2021.128629 10.1016/j.seppur.2021.119236 10.1007/s11671-007-9064-6 10.1016/j.jallcom.2021.159400 10.1021/jacs.8b08379 10.1016/j.matchemphys.2020.124158 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.11.180 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 352 |
ExternalDocumentID | 10_1016_j_jcis_2021_11_180 S0021979721020993 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-bcaf3a3f2250e2ad63574187fea71b096b250c466eb89714eb63d650b5e7e7e93 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 10:36:03 EDT 2025 Thu Jul 10 18:32:52 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Tue Jul 01 01:19:15 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photocatalytic nitrogen fixation Oxygen vacancies N-doping Hollow microspheres TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-bcaf3a3f2250e2ad63574187fea71b096b250c466eb89714eb63d650b5e7e7e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2609460689 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636600739 proquest_miscellaneous_2609460689 crossref_primary_10_1016_j_jcis_2021_11_180 crossref_citationtrail_10_1016_j_jcis_2021_11_180 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_11_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mousavi, Ghasemi (b0370) 2021; 121 Liu, Li, Lu, Li, Wang, Wang, Zhang, Fan, Zhang (b0075) 2021; 603 Liu, Chen, Yu, Ding (b0085) 2019; 58 Wang, Gao, Zhao, Yan, Zhu (b0065) 2020; 16 Qin, Li, Lu, Meng, Ma, Yan, Meng (b0280) 2020; 384 Hirakawa, Hashimoto, Shiraishi, Hirai (b0165) 2017; 139 Wang, Feng, Liu, Wang, Hu, Hu, Chen, Xue (b0230) 2021; 414 Kordali, Kyriacou, Lambrou (b0050) 2000 Wan, Xu, Lv (b0005) 2019; 27 Liu, Geng, Hao, Liu, Yuan, Li (b0015) 2021; 5 Xia, Zhang, Murowchick, Liu, Chen (b0310) 2013; 3 Abdelhamid, Mahmoud, Kamal, Sanaa, Eraky (b0260) 2020; 817 Schrauzer, Guth (b0110) 1977; 99 Zhang, Hu, Zhang, Wang, Sun, Li, Qiao, Wang, Zhou (b0325) 2017; 5 Xiao, Wang, Lyu, Luo, Wang, Liu, Cheng, Wang (b0235) 2019; 31 Sun, Liang, Qian, Xu, Han, Tian (b0120) 2020; 12 Li, Chen, Tan, Li, Li, Li, Wang (b0025) 2019; 11 Feng, Gao, Zhang, Gu, Wang, Zeng, Ren (b0520) 2018; 11 Huang, Li, Wang, Dong, Chu, Zhang, Zhang (b0345) 2015; 5 Wang, Ji, Zhang, Sun, Duan (b0205) 2021; 47 Zhong, Wang, Dai, Yang, Zuo, Yao, Wu, Li (b0250) 2021 Li, Ti, Zhao, Zhang, Wu, He (b0130) 2021; 870 Liu, Liu, Sun, Wan, Fu, Fan (b0140) 2021; 411 Zhang, Jalil, Wu, Chen, Liu, Gao, Ye, Qi, Ju, Wang, Wu (b0175) 2018; 140 Zhao, Zhang, Zhu, Zhang, Tang, Tan, Wang (b0200) 2014; 144 Liu, Chen, Du, Ai, Lo, Wang, Chen, Xing, Wang, Pan (b0010) 2021; 31 Kong, Li, Chen, Tian, Fang, Zheng, Zhao (b0185) 2011; 133 Wang, Ge, Ran, Yi (b0275) 2019; 24 Han, Choi, Hong, Wu, Soo, Jung, Qiu, Sun (b0380) 2019; 257 Chen, Li, Kong, Ong, Zhao (b0045) 2018; 5 Dong, Feng, Fan, Pi, Hu, Han, Liu, Sun, Sun (b0330) 2015; 5 Wan, Mao, Chen (b0355) 2021; 403 Zeng, Yin, Gao, Wang, Feng, Ren, Wei, Fan (b0460) 2020; 561 Chen, Wang, Chai, Zhang, Zhu (b0505) 2021; 33 Li, Li, Ai, Jia, Zhang (b0365) 2018; 57 Wang, Zhu, Zhang, Liu (b0385) 2007; 111 Gao, Li, Luo, Luo, Zhang, Huang, Luo (b0190) 2021; 585 Xu, Wang, Dai, Wang, Lu, Zhang, Chen, Song (b0265) 2021; 260 Li, Zhou, Wang, Guo, Chen, Low, Long, Liu, Ding, Wu, Xiong (b0115) 2020; 142 Bian, Wen, Wang, Yang, Chu, Yu (b0030) 2020; 11 Gao, Feng, He, Zeng, Wang, Ren, Wei (b0225) 2020; 507 Han, Liu, Ma, Cui, Xie, Wang, Wu, Gao, Xu, Sun (b0035) 2018; 52 Wang, Feng, Zhang, Zeng, Gao, Lv, Wei, Ren, Fan (b0435) 2020; 561 Gao, Feng, Zhang, Gu, Wang, Zeng, Lv, Ren, Wei, Fan (b0515) 2018; 1 Ding, Sun, Liu, Sun, Meng, Zheng (b0210) 2021; 276 Wang, Jia, Pan, Xu, Liu, Cui, Guo, Sun (b0150) 2019; 7 Nakamura, Negishi, Kutsuna, Ihara, Sugihara, Takeuchi (b0350) 2000; 161 Ou, Xu, Wen, Lin, Ge, Tang, Liang, Yang, Huang, Zu, Yu (b0420) 2018; 9 Zhu, Chen, Wang, Liao, Dong, Chee, Wang, Dong, Ajayan, Gao, Shen, Ye (b0485) 2020; 30 Ying, Chen, Zhang, Peng, Li (b0095) 2019; 254 Rumaiz, Woicik, Cockayne, Lin, Jaffari, Shah (b0295) 2009; 95 Zhang, Xu, Lv, Bai, Liao, Zhai, Zhang, Chen (b0160) 2020; 264 Mansingh, Das, Behera, Subudhi, Sultana, Parida (b0215) 2020; 2 Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (b0060) 2019; 3 Zhang, Xue, Shen, Jia, Gao, Liu, Jia (b0320) 2021; 870 Wang, Ren, Ou, Xu, Yang, Li, Zhang (b0070) 2021; 66 Wei, Li, Yan, Luo, Guo, Dai, Luo (b0285) 2018; 222 Yang, Nash, Anibal, Dunwell, Kattel, Stavitski, Attenkofer, Chen, Yan, Xu (b0020) 2018; 140 Vu, Quach, Do (b0240) 2021; 5 Craig, Coulter, Dolan, Soriano-López, Mates-Torres, Schmitt, García-Melchor (b0470) 2019; 10 Stegemann, Moraes, Duarte, Massi (b0400) 2017; 625 Vesali-Kermani, Habibi-Yangjeh, Diarmand-Khalilabad, Ghosh (b0105) 2020; 563 Guan, Wang, Zhang, Liu, Xu, Wang, Zhao, Feng, Shang, Sun (b0145) 2021; 282 Dolat, Moszyński, Guskos, Ohtani, Morawski (b0335) 2013; 266 Yao, Zhang, Huang, Du, Hong, Chen, Hu, Wang (b0040) 2020; 601 Nguyen, Mousavi, Ghasemi, Van Le, Delbari, Asl, Shokouhimehr, Mohammadi, Azizian-Kalandaragh, Namini (b0100) 2021; 587 Ji, Wu, Jia, Peng, Xiao, Liu, Liu, Fan, Han, Hao (b0410) 2021; 140 Lv, Liu, Zhu, Zhu (b0180) 2014; 2 Park, Kim, Kim, Kim (b0395) 2017; 202 Xi, Ouyang, Li, Ye, Ma, Su, Bai, Wang (b0415) 2012; 51 Zeng, Gao, Liu, Li, Cao, Zhao, Feng, Ren, Wei (b0455) 2021; 535 Huang, Dou, Li, Zhong, Li, Wang (b0195) 2021; 403 Zhang, Wang, Gao, Deng, Ding, Zhuo, Bao, Ji, Qiu, Wang (b0375) 2021; 567 Chen, Ren, Zhang, Cheng, Luo, Zhu, Ding, Wang (b0055) 2019; 3 Han, Yang, Liu, Zheng, Wang, Meng, Zhang, Fu, Chen (b0135) 2020; 3 Gong, Andelman, Neumark, O’Brien, Kuskovsky (b0360) 2007; 2 Wang, He, Chen, Du, Ostrikov, Huang, Wang (b0500) 2020; 32 Fei, Yu, Liu, Song, Xu, Mo, Liu, Deng, Ji, Cheng, Lei (b0090) 2019; 557 He, Yu, Lou (b0480) 2017; 56 Wang, Zhao, Gao, Cao, Liu, Li, Zhao, Ren, Feng, Wei (b0440) 2021; 264 Zhang, Hu, Liu, Yu, Zhang (b0465) 2017; 4 Zhu, Li, Lian, Wan, Huang, Zhang, Zhong (b0305) 2021; 276 Cao, Zhao, Gao, Li, Ding, Li, Liu, Du, Li, Feng, Ren (b0450) 2021; 275 Chu, Nan, Li, Guo, Tian, Liu (b0125) 2021; 53 Guskos, Typek, Guskos, Zolnierkiewicz, Berczynski, Dolat, Grzmil, Morawski (b0340) 2013; 11 Hu, Wang, Yao, Gao, Han, Zhang, Zhang, Xu, Song (b0495) 2019; 29 Bi, Du, Abul, Sun, Yu, Su, Bing she, Abdullah (b0300) 2021; 234 Bhatia, Dhir (b0290) 2016; 4 Xue, Jiang, Yuan, Yang, Hou, Cao, Feng, Wang (b0425) 2016; 6 Meng, Lv, Sun, Hong, Xing, Qiang, Chen, Jin (b0220) 2019; 256 Yin, Jin, Lu, Huang, Zhang, Peng, Xi, Yan (b0490) 2020; 142 Zhao, Zhang, Song, Wen, Cheng (b0155) 2020; 523 Oh, Kim (b0270) 2015; 27 Song, Wang, Li, Sun, Guan, Zhai, Gao, Li, Zhao, Sun (b0080) 2021; 602 Wu, Tan, Liu, Lei, Wang, Zhang (b0245) 2019; 335 Kovalevskiy, Selishchev, Svintsitskiy, Selishcheva, Berezin, Kozlov (b0390) 2020; 134 Cao, Gu, Gao, Li, Liu, Zhao, Feng, Ren, Wei (b0445) 2020; 530 Zhuang, Ge, Yang, Li, Jia, Yao, Zhu (b0170) 2017; 29 Zhao, Wang, Mao, Bao, Wang, Wang, Liu, Zheng, Dai, Cheng, Huang (b0255) 2022; 430 Li, Wang, An, Dong, Feng, Wei, Ren, Ma (b0510) 2021; 539 Zhang, Chen, Zhang, Yin, Yang (b0315) 2020; 401 Amin, Apfel, Amin, Apfel (b0475) 2020; 2020 Georgieva, Valova, Armyanov, Tatchev, Sotiropoulos, Avramova, Dimitrova, Hubin, Steenhaut (b0405) 2017; 413 Wang, Sun, Huo, Yan, Ma, Bu, Sun, Hua, Yang, Bi, Zhang (b0430) 2021; 856 Xue (10.1016/j.jcis.2021.11.180_b0425) 2016; 6 Wang (10.1016/j.jcis.2021.11.180_b0065) 2020; 16 Nguyen (10.1016/j.jcis.2021.11.180_b0100) 2021; 587 Mousavi (10.1016/j.jcis.2021.11.180_b0370) 2021; 121 Rumaiz (10.1016/j.jcis.2021.11.180_b0295) 2009; 95 Craig (10.1016/j.jcis.2021.11.180_b0470) 2019; 10 Huang (10.1016/j.jcis.2021.11.180_b0195) 2021; 403 Meng (10.1016/j.jcis.2021.11.180_b0220) 2019; 256 Gong (10.1016/j.jcis.2021.11.180_b0360) 2007; 2 Li (10.1016/j.jcis.2021.11.180_b0130) 2021; 870 Han (10.1016/j.jcis.2021.11.180_b0135) 2020; 3 Gao (10.1016/j.jcis.2021.11.180_b0225) 2020; 507 Han (10.1016/j.jcis.2021.11.180_b0035) 2018; 52 Gao (10.1016/j.jcis.2021.11.180_b0515) 2018; 1 Xi (10.1016/j.jcis.2021.11.180_b0415) 2012; 51 Zhang (10.1016/j.jcis.2021.11.180_b0320) 2021; 870 Zeng (10.1016/j.jcis.2021.11.180_b0460) 2020; 561 Zhao (10.1016/j.jcis.2021.11.180_b0155) 2020; 523 Bhatia (10.1016/j.jcis.2021.11.180_b0290) 2016; 4 Abdelhamid (10.1016/j.jcis.2021.11.180_b0260) 2020; 817 Yin (10.1016/j.jcis.2021.11.180_b0490) 2020; 142 Mansingh (10.1016/j.jcis.2021.11.180_b0215) 2020; 2 Zhang (10.1016/j.jcis.2021.11.180_b0465) 2017; 4 Wang (10.1016/j.jcis.2021.11.180_b0385) 2007; 111 Wang (10.1016/j.jcis.2021.11.180_b0435) 2020; 561 Zhao (10.1016/j.jcis.2021.11.180_b0255) 2022; 430 Bi (10.1016/j.jcis.2021.11.180_b0300) 2021; 234 Wang (10.1016/j.jcis.2021.11.180_b0500) 2020; 32 Amin (10.1016/j.jcis.2021.11.180_b0475) 2020; 2020 Yang (10.1016/j.jcis.2021.11.180_b0020) 2018; 140 Zhao (10.1016/j.jcis.2021.11.180_b0200) 2014; 144 Dong (10.1016/j.jcis.2021.11.180_b0330) 2015; 5 Liu (10.1016/j.jcis.2021.11.180_b0010) 2021; 31 Vu (10.1016/j.jcis.2021.11.180_b0240) 2021; 5 Wang (10.1016/j.jcis.2021.11.180_b0205) 2021; 47 Chen (10.1016/j.jcis.2021.11.180_b0045) 2018; 5 Kong (10.1016/j.jcis.2021.11.180_b0185) 2011; 133 Bian (10.1016/j.jcis.2021.11.180_b0030) 2020; 11 Liu (10.1016/j.jcis.2021.11.180_b0015) 2021; 5 Fei (10.1016/j.jcis.2021.11.180_b0090) 2019; 557 Wang (10.1016/j.jcis.2021.11.180_b0150) 2019; 7 Cao (10.1016/j.jcis.2021.11.180_b0450) 2021; 275 Chu (10.1016/j.jcis.2021.11.180_b0125) 2021; 53 Li (10.1016/j.jcis.2021.11.180_b0365) 2018; 57 Oh (10.1016/j.jcis.2021.11.180_b0270) 2015; 27 Ji (10.1016/j.jcis.2021.11.180_b0410) 2021; 140 Zhuang (10.1016/j.jcis.2021.11.180_b0170) 2017; 29 Zhong (10.1016/j.jcis.2021.11.180_b0250) 2021 Ou (10.1016/j.jcis.2021.11.180_b0420) 2018; 9 Feng (10.1016/j.jcis.2021.11.180_b0520) 2018; 11 Chen (10.1016/j.jcis.2021.11.180_b0505) 2021; 33 Kordali (10.1016/j.jcis.2021.11.180_b0050) 2000 Lv (10.1016/j.jcis.2021.11.180_b0180) 2014; 2 Li (10.1016/j.jcis.2021.11.180_b0115) 2020; 142 Dolat (10.1016/j.jcis.2021.11.180_b0335) 2013; 266 Zeng (10.1016/j.jcis.2021.11.180_b0455) 2021; 535 Song (10.1016/j.jcis.2021.11.180_b0080) 2021; 602 Guskos (10.1016/j.jcis.2021.11.180_b0340) 2013; 11 Wang (10.1016/j.jcis.2021.11.180_b0430) 2021; 856 Park (10.1016/j.jcis.2021.11.180_b0395) 2017; 202 Wang (10.1016/j.jcis.2021.11.180_b0230) 2021; 414 Guan (10.1016/j.jcis.2021.11.180_b0145) 2021; 282 Chen (10.1016/j.jcis.2021.11.180_b0055) 2019; 3 Vesali-Kermani (10.1016/j.jcis.2021.11.180_b0105) 2020; 563 Zhu (10.1016/j.jcis.2021.11.180_b0485) 2020; 30 Wang (10.1016/j.jcis.2021.11.180_b0070) 2021; 66 Cao (10.1016/j.jcis.2021.11.180_b0445) 2020; 530 Ding (10.1016/j.jcis.2021.11.180_b0210) 2021; 276 Hu (10.1016/j.jcis.2021.11.180_b0495) 2019; 29 Han (10.1016/j.jcis.2021.11.180_b0380) 2019; 257 Sun (10.1016/j.jcis.2021.11.180_b0120) 2020; 12 Li (10.1016/j.jcis.2021.11.180_b0510) 2021; 539 Wan (10.1016/j.jcis.2021.11.180_b0005) 2019; 27 Li (10.1016/j.jcis.2021.11.180_b0025) 2019; 11 Zhang (10.1016/j.jcis.2021.11.180_b0175) 2018; 140 Schrauzer (10.1016/j.jcis.2021.11.180_b0110) 1977; 99 Yao (10.1016/j.jcis.2021.11.180_b0040) 2020; 601 Xiao (10.1016/j.jcis.2021.11.180_b0235) 2019; 31 Huang (10.1016/j.jcis.2021.11.180_b0345) 2015; 5 Liu (10.1016/j.jcis.2021.11.180_b0075) 2021; 603 Wu (10.1016/j.jcis.2021.11.180_b0245) 2019; 335 Zhang (10.1016/j.jcis.2021.11.180_b0315) 2020; 401 Zhang (10.1016/j.jcis.2021.11.180_b0325) 2017; 5 Liu (10.1016/j.jcis.2021.11.180_b0085) 2019; 58 Nakamura (10.1016/j.jcis.2021.11.180_b0350) 2000; 161 Georgieva (10.1016/j.jcis.2021.11.180_b0405) 2017; 413 Xu (10.1016/j.jcis.2021.11.180_b0265) 2021; 260 Ying (10.1016/j.jcis.2021.11.180_b0095) 2019; 254 Kovalevskiy (10.1016/j.jcis.2021.11.180_b0390) 2020; 134 Xia (10.1016/j.jcis.2021.11.180_b0310) 2013; 3 Wang (10.1016/j.jcis.2021.11.180_b0275) 2019; 24 Zhang (10.1016/j.jcis.2021.11.180_b0375) 2021; 567 He (10.1016/j.jcis.2021.11.180_b0480) 2017; 56 Wei (10.1016/j.jcis.2021.11.180_b0285) 2018; 222 Stegemann (10.1016/j.jcis.2021.11.180_b0400) 2017; 625 Zhang (10.1016/j.jcis.2021.11.180_b0160) 2020; 264 Liu (10.1016/j.jcis.2021.11.180_b0140) 2021; 411 Ithisuphalap (10.1016/j.jcis.2021.11.180_b0060) 2019; 3 Zhu (10.1016/j.jcis.2021.11.180_b0305) 2021; 276 Qin (10.1016/j.jcis.2021.11.180_b0280) 2020; 384 Wan (10.1016/j.jcis.2021.11.180_b0355) 2021; 403 Gao (10.1016/j.jcis.2021.11.180_b0190) 2021; 585 Hirakawa (10.1016/j.jcis.2021.11.180_b0165) 2017; 139 Wang (10.1016/j.jcis.2021.11.180_b0440) 2021; 264 |
References_xml | – volume: 11 start-page: 1996 year: 2013 end-page: 2004 ident: b0340 article-title: Magnetic resonance study of annealed and rinsed N-doped TiO publication-title: Cent. Eur. J. Chem. – volume: 817 year: 2020 ident: b0260 article-title: Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity publication-title: J. Alloys Compd. – volume: 563 start-page: 81 year: 2020 end-page: 91 ident: b0105 article-title: Nitrogen photofixation ability of g-C publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 7257 year: 2020 end-page: 7269 ident: b0120 article-title: Sulfur vacancy-rich O-doped 1T-MoS publication-title: ACS Appl. Mater. Interfaces – volume: 95 year: 2009 ident: b0295 article-title: Oxygen vacancies in N doped anatase TiO publication-title: Appl. Phys. Lett. – volume: 411 year: 2021 ident: b0140 article-title: Novel phosphorus-doped Bi publication-title: Chem. Eng. J. – volume: 7 start-page: 117 year: 2019 end-page: 122 ident: b0150 article-title: Boron-doped TiO publication-title: ACS Sustainable Chem. Eng. – volume: 603 start-page: 17 year: 2021 end-page: 24 ident: b0075 article-title: Atomically dispersed Palladium-Ethylene Glycol-Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 1267 year: 2016 end-page: 1273 ident: b0290 article-title: Transition metal doped TiO publication-title: J. Environ. Chem. Eng. – volume: 275 year: 2021 ident: b0450 article-title: Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes publication-title: Sep. Purif. Technol. – volume: 260 year: 2021 ident: b0265 article-title: Resin microsphere templates for TiO publication-title: Mater. Chem. Phys. – volume: 52 start-page: 264 year: 2018 end-page: 270 ident: b0035 article-title: Ambient N publication-title: Nano Energy – volume: 3 start-page: 11275 year: 2020 end-page: 11284 ident: b0135 article-title: Effect of Zn vacancies in Zn publication-title: ACS Appl. Energy Mater. – volume: 602 start-page: 748 year: 2021 end-page: 755 ident: b0080 article-title: Defect density modulation of La publication-title: J. Colloid Interface Sci. – volume: 430 start-page: 133085 year: 2022 ident: b0255 article-title: Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO publication-title: Chem. Eng. J. – volume: 51 start-page: 2395 year: 2012 end-page: 2399 ident: b0415 article-title: Ultrathin W publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1800352 year: 2019 ident: b0060 article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis publication-title: Small Methods – volume: 870 year: 2021 ident: b0320 article-title: Black single-crystal TiO publication-title: J. Alloy. Compd. – volume: 856 year: 2021 ident: b0430 article-title: Porous Co publication-title: J. Alloy. Compd. – volume: 31 year: 2019 ident: b0235 article-title: Hollow nanostructures for photocatalysis: advantages and challenges publication-title: Adv. Mater. – volume: 535 year: 2021 ident: b0455 article-title: Boosting charge separation and surface defects for superb photocatalytic activity of magnesium oxide/graphene nanosheets publication-title: Appl. Surf. Sci. – volume: 4 start-page: 1600343 year: 2017 ident: b0465 article-title: Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphous-Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning publication-title: Adv. Sci. – volume: 58 start-page: 18903 year: 2019 end-page: 18907 ident: b0085 article-title: Carbon-nanoplated CoS@ TiO publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 19180 year: 2021 end-page: 19190 ident: b0205 article-title: TiO publication-title: Ceram. Int. – volume: 11 start-page: 37927 year: 2019 end-page: 37938 ident: b0025 article-title: Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions publication-title: ACS Appl. Mater. Interfaces – volume: 282 year: 2021 ident: b0145 article-title: Enhanced photocatalytic N publication-title: Appl. Catal. B: Environ. – volume: 140 start-page: 13387 year: 2018 end-page: 13391 ident: b0020 article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 205 year: 2000 end-page: 212 ident: b0350 article-title: Role of oxygen vacancy in the plasma-treated TiO publication-title: J. Mol. Catal. A: Chem. – volume: 401 year: 2020 ident: b0315 article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm publication-title: Chem. Eng. J. – volume: 5 start-page: 9 year: 2018 end-page: 27 ident: b0045 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. – volume: 66 start-page: 1228 year: 2021 end-page: 1252 ident: b0070 article-title: Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis publication-title: Sci. Bull. – volume: 587 start-page: 538 year: 2021 end-page: 549 ident: b0100 article-title: In situ preparation of g-C publication-title: J. Colloid Interface Sci. – volume: 27 start-page: 222 year: 2015 end-page: 226 ident: b0270 article-title: Properties of oriented strandboard bonded with pjenol-urea-formaldehyde resin publication-title: J. Trop. For. Sci. – volume: 32 year: 2020 ident: b0500 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO publication-title: Adv. Mater. – volume: 33 year: 2021 ident: b0505 article-title: Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C publication-title: Adv. Mater. – volume: 57 start-page: 122 year: 2018 end-page: 138 ident: b0365 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. – volume: 264 year: 2021 ident: b0440 article-title: Nitrogen-defective g-C publication-title: Sep. Purif. Technol. – volume: 5 start-page: 14610 year: 2015 end-page: 14630 ident: b0330 article-title: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review publication-title: RSC Adv. – volume: 266 start-page: 410 year: 2013 end-page: 419 ident: b0335 article-title: Preparation of photoactive nitrogen-doped rutile publication-title: Appl. Surf. Sci. – volume: 140 start-page: 9434 year: 2018 end-page: 9443 ident: b0175 article-title: Refining defect states in W publication-title: J. Am. Chem. Soc. – volume: 222 start-page: 88 year: 2018 end-page: 98 ident: b0285 article-title: One-step fabrication of g-C publication-title: Appl. Catal. B: Environ. – volume: 111 start-page: 1010 year: 2007 end-page: 1014 ident: b0385 article-title: An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue publication-title: J. Phys. Chem. C – volume: 2 start-page: 1174 year: 2014 end-page: 1182 ident: b0180 article-title: Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO publication-title: J. Mater. Chem. A – volume: 142 start-page: 12430 year: 2020 end-page: 12439 ident: b0115 article-title: Visible-light-driven nitrogen fixation catalyzed by Bi publication-title: J. Am. Chem. Soc. – year: 2021 ident: b0250 article-title: Upconversion hollow nanospheres CeF publication-title: J. Rare Earths – volume: 561 start-page: 793 year: 2020 end-page: 800 ident: b0435 article-title: Pt enhanced the photo-Fenton activity of ZnFe publication-title: J. Colloid Interface Sci. – volume: 16 start-page: 1907091 year: 2020 ident: b0065 article-title: Synergistically coupling black phosphorus quantum dots with MnO publication-title: Small – volume: 2 start-page: 2004 year: 2020 end-page: 2017 ident: b0215 article-title: Bandgap engineering via boron and sulphur doped carbon modified anatase TiO publication-title: Nanoscale Adv. – volume: 56 start-page: 3897 year: 2017 end-page: 3900 ident: b0480 article-title: Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 2008983 year: 2021 ident: b0010 article-title: Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition publication-title: Adv. Funct. Mater. – volume: 403 year: 2021 ident: b0195 article-title: Excellent visible light responsive photocatalytic behavior of N-doped TiO publication-title: J. Hazard. Mater. – volume: 384 year: 2020 ident: b0280 article-title: Nitrogen-doped hydrogenated TiO publication-title: Chem. Eng. J. – volume: 27 start-page: 69 year: 2019 end-page: 90 ident: b0005 article-title: Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions publication-title: Mater. Today – volume: 257 year: 2019 ident: b0380 article-title: Activated TiO publication-title: Appl. Catal. B: Environ. – volume: 539 year: 2021 ident: b0510 article-title: Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1052 year: 2020 end-page: 1058 ident: b0030 article-title: Edge-rich black phosphorus for photocatalytic nitrogen fixation publication-title: J. Phys. Chem. Lett. – volume: 144 start-page: 468 year: 2014 end-page: 477 ident: b0200 article-title: Enhanced nitrogen photofixation on Fe-doped TiO publication-title: Appl. Catal. B: Environ. – volume: 29 year: 2019 ident: b0495 article-title: Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-Site metal cation in NdNiO publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2528 year: 2021 end-page: 2536 ident: b0240 article-title: The construction of Ru-doped In publication-title: Energy Fuels – start-page: 1673 year: 2000 end-page: 1674 ident: b0050 article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell publication-title: Chem. Commun. – volume: 53 start-page: 132 year: 2021 end-page: 138 ident: b0125 article-title: Amorphous MoS publication-title: J. Energy Chem. – volume: 5 start-page: 4094 year: 2015 end-page: 4103 ident: b0345 article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO publication-title: ACS Catal. – volume: 9 start-page: 1 year: 2018 end-page: 9 ident: b0420 article-title: Tuning defects in oxides at room temperature by lithium reduction publication-title: Nat. Commun. – volume: 30 start-page: 2003556 year: 2020 ident: b0485 article-title: Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting publication-title: Adv. Funct. Mater. – volume: 403 year: 2021 ident: b0355 article-title: Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In publication-title: Chem. Eng. J. – volume: 414 year: 2021 ident: b0230 article-title: Bi publication-title: Chem. Eng. J. – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: b0470 article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential publication-title: Nat. Commun. – volume: 99 start-page: 7189 year: 1977 end-page: 7193 ident: b0110 article-title: Photocatalysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J. Am. Chem. Soc. – volume: 585 start-page: 20 year: 2021 end-page: 29 ident: b0190 article-title: In situ modification of cobalt on MXene/TiO publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 6894 year: 2017 end-page: 6901 ident: b0325 article-title: Ti publication-title: ACS Sustainable Chem. Eng. – volume: 202 start-page: 66 year: 2017 end-page: 69 ident: b0395 article-title: A facile graft polymerization approach to N-doped TiO publication-title: Mater. Lett. – volume: 2020 start-page: 2679 year: 2020 end-page: 2690 ident: b0475 article-title: Metal-rich chalcogenides as sustainable electrocatalysts for oxygen evolution and reduction: State of the art and future perspectives publication-title: Eur. J. Inorg. Chem. – volume: 121 start-page: 168 year: 2021 end-page: 183 ident: b0370 article-title: Novel visible-light-responsive black-TiO publication-title: J. Taiwan Inst. Chem. Eng. – volume: 140 year: 2021 ident: b0410 article-title: In-situ growth of TiO publication-title: Mater. Res. Bull. – volume: 264 year: 2020 ident: b0160 article-title: Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation publication-title: Appl. Catal. B: Environ. – volume: 2 year: 2007 ident: b0360 article-title: Origin of defect-related green emission from ZnO nanoparticles: Effect of surface modification publication-title: Nanoscale Res. Lett. – volume: 5 start-page: 5516 year: 2021 end-page: 5533 ident: b0015 article-title: Electrocatalytic nitrogen reduction reaction under ambient condition: Current status, challenges, and perspectives publication-title: Mater. Chem. Front. – volume: 1 start-page: 6733 year: 2018 end-page: 6741 ident: b0515 article-title: Wrinkled ultrathin graphitic C publication-title: ACS Appl. Nano Mater. – volume: 507 year: 2020 ident: b0225 article-title: Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe publication-title: Appl. Surf. Sci. – volume: 3 start-page: 1800337 year: 2019 ident: b0055 article-title: Advances in electrocatalytic N publication-title: Small Methods – volume: 139 start-page: 10929 year: 2017 end-page: 10936 ident: b0165 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1516 year: 2013 end-page: 1523 ident: b0310 article-title: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO publication-title: Adv. Energy Mater. – volume: 134 year: 2020 ident: b0390 article-title: Synergistic effect of polychromatic radiation on visible light activity of N doped TiO publication-title: Catal. Commun. – volume: 254 start-page: 351 year: 2019 end-page: 359 ident: b0095 article-title: Efficiently enhanced N publication-title: Appl. Catal. B: Environ. – volume: 530 year: 2020 ident: b0445 article-title: A three-layer photocatalyst carbon fibers/TiO publication-title: Appl. Surf. Sci. – volume: 601 year: 2020 ident: b0040 article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C publication-title: Appl. Catal. A – volume: 234 year: 2021 ident: b0300 article-title: Tuning oxygen vacancy content in TiO publication-title: Chem. Eng. Sci. – volume: 870 year: 2021 ident: b0130 article-title: Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C publication-title: J. Alloy. Compd. – volume: 625 start-page: 49 year: 2017 end-page: 55 ident: b0400 article-title: Thermal annealing effect on nitrogen-doped TiO publication-title: Thin Solid Films – volume: 413 start-page: 284 year: 2017 end-page: 291 ident: b0405 article-title: A simple preparation method and characterization of B and N co-doped TiO publication-title: Appl. Surf. Sci. – volume: 6 start-page: 1 year: 2016 end-page: 9 ident: b0425 article-title: Floating photocatalyst of B-N–TiO publication-title: Sci. Rep. – volume: 142 start-page: 18378 year: 2020 end-page: 18386 ident: b0490 article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media publication-title: J. Am. Chem. Soc. – volume: 276 year: 2021 ident: b0210 article-title: Ultrasonically synthesized N-TiO publication-title: Sep. Purif. Technol. – volume: 276 year: 2021 ident: b0305 article-title: Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO publication-title: Sep. Purif. Technol. – volume: 523 year: 2020 ident: b0155 article-title: Phosphorus cation substitution in TiO publication-title: Appl. Surf. Sci. – volume: 561 start-page: 257 year: 2020 end-page: 264 ident: b0460 article-title: In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: Ultrahigh photocatalytic efficiency based on synergistic catalysis publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 331 year: 2018 end-page: 334 ident: b0520 article-title: Comparing the photocatalytic properties of g-C publication-title: Results Phys. – volume: 133 start-page: 16414 year: 2011 end-page: 16417 ident: b0185 article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO publication-title: J. Am. Chem. Soc. – volume: 567 year: 2021 ident: b0375 article-title: Pd-Co alloy supported on TiO publication-title: Appl. Surf. Sci. – volume: 557 start-page: 498 year: 2019 end-page: 505 ident: b0090 article-title: Graphene quantum dots modified flower like Bi publication-title: J. Colloid Interface Sci. – volume: 24 start-page: 137 year: 2019 end-page: 146 ident: b0275 article-title: Effect of template size of phenolic resin prepared by hydrothermal method on magnetic properties of ZnFe publication-title: Mater. Sci. Eng. powder metal – volume: 29 start-page: 1606793 year: 2017 ident: b0170 article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv. Mater. – volume: 256 year: 2019 ident: b0220 article-title: High-efficiency Fe-Mediated Bi publication-title: Appl. Catal. B: Environ. – volume: 335 start-page: 214 year: 2019 end-page: 220 ident: b0245 article-title: TiO publication-title: Catal. Today – volume: 3 start-page: 1800352 issue: 6 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0060 article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis publication-title: Small Methods doi: 10.1002/smtd.201800352 – volume: 539 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0510 article-title: Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148257 – volume: 403 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0195 article-title: Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123857 – volume: 11 start-page: 1996 year: 2013 ident: 10.1016/j.jcis.2021.11.180_b0340 article-title: Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles publication-title: Cent. Eur. J. Chem. – volume: 161 start-page: 205 year: 2000 ident: 10.1016/j.jcis.2021.11.180_b0350 article-title: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00362-9 – volume: 27 start-page: 69 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0005 article-title: Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions publication-title: Mater. Today doi: 10.1016/j.mattod.2019.03.002 – volume: 16 start-page: 1907091 issue: 18 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0065 article-title: Synergistically coupling black phosphorus quantum dots with MnO2 nanosheets for efficient electrochemical nitrogen reduction under ambient conditions publication-title: Small doi: 10.1002/smll.201907091 – volume: 139 start-page: 10929 issue: 31 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0165 article-title: Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06634 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0470 article-title: Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential publication-title: Nat. Commun. doi: 10.1038/s41467-019-12994-w – volume: 625 start-page: 49 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0400 article-title: Thermal annealing effect on nitrogen-doped TiO2 thin films grown by high power impulse magnetron sputtering plasma power source publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.01.043 – volume: 134 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0390 article-title: Synergistic effect of polychromatic radiation on visible light activity of N doped TiO2 photocatalyst publication-title: Catal. Commun. doi: 10.1016/j.catcom.2019.105841 – volume: 413 start-page: 284 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0405 article-title: A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.055 – volume: 31 start-page: 2008983 issue: 11 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0010 article-title: Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008983 – volume: 282 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0145 article-title: Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119580 – volume: 856 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0430 article-title: Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.158199 – volume: 133 start-page: 16414 issue: 41 year: 2011 ident: 10.1016/j.jcis.2021.11.180_b0185 article-title: Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207826q – volume: 31 issue: 38 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0235 article-title: Hollow nanostructures for photocatalysis: advantages and challenges publication-title: Adv. Mater. doi: 10.1002/adma.201801369 – volume: 563 start-page: 81 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0105 article-title: Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.057 – volume: 587 start-page: 538 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0100 article-title: In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.011 – volume: 254 start-page: 351 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0095 article-title: Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.05.005 – volume: 32 issue: 26 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0500 article-title: In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes publication-title: Adv. Mater. – volume: 264 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0160 article-title: Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118416 – volume: 507 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0225 article-title: Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@ carbon microsphere/g-C3N4 with a hierarchical sandwich-structure publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.145167 – volume: 1 start-page: 6733 issue: 12 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0515 article-title: Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01528 – start-page: 1673 issue: 17 year: 2000 ident: 10.1016/j.jcis.2021.11.180_b0050 article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell publication-title: Chem. Commun. doi: 10.1039/b004885m – volume: 335 start-page: 214 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0245 article-title: TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen publication-title: Catal. Today doi: 10.1016/j.cattod.2018.11.043 – volume: 4 start-page: 1600343 issue: 3 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0465 article-title: Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphous-Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning publication-title: Adv. Sci. doi: 10.1002/advs.201600343 – volume: 29 issue: 30 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0495 article-title: Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-Site metal cation in NdNiO3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902449 – volume: 602 start-page: 748 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0080 article-title: Defect density modulation of La2TiO5: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.055 – volume: 561 start-page: 793 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0435 article-title: Pt enhanced the photo-Fenton activity of ZnFe2O4/α-Fe2O3 heterostructure synthesized via one-step hydrothermal method publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.11.058 – volume: 430 start-page: 133085 year: 2022 ident: 10.1016/j.jcis.2021.11.180_b0255 article-title: Li-intercalation boosted oxygen vacancies enable efficient electrochemical nitrogen reduction on ultrathin TiO2 nanosheets publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133085 – volume: 523 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0155 article-title: Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146517 – volume: 47 start-page: 19180 issue: 13 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0205 article-title: TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.03.265 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jcis.2021.11.180_b0425 article-title: Floating photocatalyst of B-N–TiO2/expanded perlite: A sol–gel synthesis with optimized mesoporous and high photocatalytic activity publication-title: Sci. Rep. doi: 10.1038/srep29902 – volume: 603 start-page: 17 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0075 article-title: Atomically dispersed Palladium-Ethylene Glycol-Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.108 – volume: 142 start-page: 12430 issue: 28 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0115 article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05097 – volume: 5 start-page: 2528 issue: 9 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0240 article-title: The construction of Ru-doped In2O3 hollow peanut-like structure for an enhanced photocatalytic nitrogen reduction under solar light irradiation, Sustain publication-title: Energy Fuels – volume: 567 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0375 article-title: Pd-Co alloy supported on TiO2 with oxygen vacancies for efficient N2 and O2 electrocatalytic reduction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150680 – volume: 585 start-page: 20 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0190 article-title: In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.064 – volume: 535 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0455 article-title: Boosting charge separation and surface defects for superb photocatalytic activity of magnesium oxide/graphene nanosheets publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147658 – volume: 276 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0210 article-title: Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119287 – volume: 266 start-page: 410 year: 2013 ident: 10.1016/j.jcis.2021.11.180_b0335 article-title: Preparation of photoactive nitrogen-doped rutile publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.12.048 – volume: 142 start-page: 18378 issue: 43 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0490 article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05050 – volume: 51 start-page: 2395 issue: 10 year: 2012 ident: 10.1016/j.jcis.2021.11.180_b0415 article-title: Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107681 – volume: 256 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0220 article-title: High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: reduced surface work function and ameliorated surface reaction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117781 – volume: 384 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0280 article-title: Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123275 – volume: 403 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0355 article-title: Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In2O3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126389 – year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0250 article-title: Upconversion hollow nanospheres CeF3 co-doped with Yb3+ and Tm3+ for photocatalytic nitrogen fixation publication-title: J. Rare Earths – volume: 140 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0410 article-title: In-situ growth of TiO2 phase junction nanorods with Ti3+ and oxygen vacancies to enhance photocatalytic activity publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2021.111291 – volume: 817 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0260 article-title: Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity publication-title: J. Alloys Compd. – volume: 30 start-page: 2003556 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0485 article-title: Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003556 – volume: 5 start-page: 6894 issue: 8 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0325 article-title: Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b01114 – volume: 257 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0380 article-title: Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117896 – volume: 202 start-page: 66 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0395 article-title: A facile graft polymerization approach to N-doped TiO2 heterostructures with enhanced visible-light photocatalytic activity publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.05.070 – volume: 53 start-page: 132 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0125 article-title: Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.074 – volume: 870 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0130 article-title: Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159298 – volume: 27 start-page: 222 year: 2015 ident: 10.1016/j.jcis.2021.11.180_b0270 article-title: Properties of oriented strandboard bonded with pjenol-urea-formaldehyde resin publication-title: J. Trop. For. Sci. – volume: 57 start-page: 122 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0365 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705628 – volume: 234 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0300 article-title: Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116440 – volume: 24 start-page: 137 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0275 article-title: Effect of template size of phenolic resin prepared by hydrothermal method on magnetic properties of ZnFe2O4 hollow spheres publication-title: Mater. Sci. Eng. powder metal – volume: 121 start-page: 168 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0370 article-title: Novel visible-light-responsive black-TiO2/CoTiO3 Z-scheme heterojunction photocatalyst with efficient photocatalytic performance for the degradation of different organic dyes and tetracycline publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.04.009 – volume: 5 start-page: 14610 issue: 19 year: 2015 ident: 10.1016/j.jcis.2021.11.180_b0330 article-title: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review publication-title: RSC Adv. doi: 10.1039/C4RA13734E – volume: 2 start-page: 2004 issue: 5 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0215 article-title: Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: A visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation publication-title: Nanoscale Adv. doi: 10.1039/D0NA00183J – volume: 276 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0305 article-title: Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO2 for photocatalytic NO removal under visible light publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119362 – volume: 3 start-page: 1516 issue: 11 year: 2013 ident: 10.1016/j.jcis.2021.11.180_b0310 article-title: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300294 – volume: 12 start-page: 7257 issue: 6 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0120 article-title: Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20767 – volume: 111 start-page: 1010 issue: 2 year: 2007 ident: 10.1016/j.jcis.2021.11.180_b0385 article-title: An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of methylene blue publication-title: J. Phys. Chem. C doi: 10.1021/jp066156o – volume: 601 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0040 article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2020.117647 – volume: 29 start-page: 1606793 issue: 17 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0170 article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 401 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0315 article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126033 – volume: 222 start-page: 88 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0285 article-title: One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.09.070 – volume: 11 start-page: 37927 issue: 41 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0025 article-title: Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12328 – volume: 2 start-page: 1174 issue: 4 year: 2014 ident: 10.1016/j.jcis.2021.11.180_b0180 article-title: Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13841K – volume: 52 start-page: 264 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0035 article-title: Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 99 start-page: 7189 year: 1977 ident: 10.1016/j.jcis.2021.11.180_b0110 article-title: Photocatalysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 33 issue: 7 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0505 article-title: Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-Scheme heterojunction publication-title: Adv. Mater. doi: 10.1002/adma.202007479 – volume: 11 start-page: 331 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0520 article-title: Comparing the photocatalytic properties of g-C3N4 treated by thermal decomposition, solvothermal and protonation publication-title: Results Phys. doi: 10.1016/j.rinp.2018.09.014 – volume: 530 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0445 article-title: A three-layer photocatalyst carbon fibers/TiO2 seed/TiO2 nanorods with high photocatalytic degradation under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147289 – volume: 557 start-page: 498 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0090 article-title: Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.09.011 – volume: 5 start-page: 4094 issue: 7 year: 2015 ident: 10.1016/j.jcis.2021.11.180_b0345 article-title: Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00444 – volume: 264 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0440 article-title: Nitrogen-defective g-C3N4 with enhanced photocatalytic performance fabrication by destructing C=N-C bond via H2O2 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118424 – volume: 66 start-page: 1228 issue: 12 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0070 article-title: Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.02.007 – volume: 3 start-page: 11275 issue: 11 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0135 article-title: Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02202 – volume: 7 start-page: 117 issue: 1 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0150 article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05332 – volume: 140 start-page: 9434 issue: 30 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0175 article-title: Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 4 start-page: 1267 issue: 1 year: 2016 ident: 10.1016/j.jcis.2021.11.180_b0290 article-title: Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.01.032 – volume: 561 start-page: 257 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0460 article-title: In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: Ultrahigh photocatalytic efficiency based on synergistic catalysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.11.122 – volume: 11 start-page: 1052 issue: 3 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0030 article-title: Edge-rich black phosphorus for photocatalytic nitrogen fixation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03507 – volume: 5 start-page: 5516 issue: 15 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0015 article-title: Electrocatalytic nitrogen reduction reaction under ambient condition: Current status, challenges, and perspectives publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00269D – volume: 58 start-page: 18903 issue: 52 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0085 article-title: Carbon-nanoplated CoS@ TiO2 nanofibrous membrane: an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912733 – volume: 3 start-page: 1800337 issue: 6 year: 2019 ident: 10.1016/j.jcis.2021.11.180_b0055 article-title: Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge publication-title: Small Methods doi: 10.1002/smtd.201800337 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0420 article-title: Tuning defects in oxides at room temperature by lithium reduction publication-title: Nat. Commun. doi: 10.1038/s41467-018-03765-0 – volume: 56 start-page: 3897 issue: 14 year: 2017 ident: 10.1016/j.jcis.2021.11.180_b0480 article-title: Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612635 – volume: 95 issue: 26 year: 2009 ident: 10.1016/j.jcis.2021.11.180_b0295 article-title: Oxygen vacancies in N doped anatase TiO2: Experiment and first principles calculations publication-title: Appl. Phys. Lett. doi: 10.1063/1.3272272 – volume: 2020 start-page: 2679 issue: 28 year: 2020 ident: 10.1016/j.jcis.2021.11.180_b0475 article-title: Metal-rich chalcogenides as sustainable electrocatalysts for oxygen evolution and reduction: State of the art and future perspectives publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.202000406 – volume: 144 start-page: 468 year: 2014 ident: 10.1016/j.jcis.2021.11.180_b0200 article-title: Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.07.047 – volume: 414 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0230 article-title: Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128827 – volume: 5 start-page: 9 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0045 article-title: Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects publication-title: Mater. Horiz. doi: 10.1039/C7MH00557A – volume: 411 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0140 article-title: Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128629 – volume: 275 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0450 article-title: Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119236 – volume: 2 issue: 6 year: 2007 ident: 10.1016/j.jcis.2021.11.180_b0360 article-title: Origin of defect-related green emission from ZnO nanoparticles: Effect of surface modification publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-007-9064-6 – volume: 870 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0320 article-title: Black single-crystal TiO2 nanosheet array films with oxygen vacancy on {001} facets for boosting photocatalytic CO2 reduction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159400 – volume: 140 start-page: 13387 issue: 41 year: 2018 ident: 10.1016/j.jcis.2021.11.180_b0020 article-title: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08379 – volume: 260 year: 2021 ident: 10.1016/j.jcis.2021.11.180_b0265 article-title: Resin microsphere templates for TiO2 hollow structure with uniform mesopores: Preparation and photocatalytic application publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.124158 |
SSID | ssj0011559 |
Score | 2.6266742 |
Snippet | Design route for enhancing nitrogen reduction performance.
[Display omitted]
•N-doping extends the light absorption range to the visible light region.•Oxygen... Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and... Photocatalytic fixation of nitrogen to ammonia (NH₃) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | absorption adsorption ammonia Hollow microspheres hot water treatment microparticles N-doping nitrogen nitrogen fixation oxygen Oxygen vacancies phenolic resins photocatalysis photocatalysts Photocatalytic nitrogen fixation synergism TiO2 titanium dioxide zeta potential |
Title | N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation |
URI | https://dx.doi.org/10.1016/j.jcis.2021.11.180 https://www.proquest.com/docview/2609460689 https://www.proquest.com/docview/2636600739 |
Volume | 609 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pBdCrOjxHBm3Rr0-_jGMpUmJcNvJUkTbEy27F1ul38230vbYeK7CC9tS-k5L28vJf83i-EXCdMJomyQ4OzEBIUGcSGYCIwuGI8Vj6kRFwDZIfeYOw8PLvPDdKva2EQVln5_tKna29dvelWo9mdpinW-MJs85F9xsT6T2T8dBwfrbzzuYZ5WHjsVsI8LAOlq8KZEuP1KlOk7GYWeI6OhdSQfy9Ov9y0XnvuDsh-FTTSXvlfh6ShsibZ6dd3tTXJ3jdawSMyGRqxroOio_SJUfBvk_yDviH0bo4sAmpOcfuVcoFlIFlB8-UK7Ii-c6nv6p1TiGQpEhlPVnT6khe53uRZQe8UPMAsR-EkXWqlHpPx3e2oPzCqWxUMaXteYQjJE5vbCUxkExWChHSOFfiJ4r4lIKMR8EE6nqdEEPqWo4RnxxDHCVf58IT2CdnK8kydEiokc5PQFYIx4UjXC2PhMhkryU3kdTNbxKqHM5IV5TjefDGJamzZa4QqiFAFkItEoIIWuVm3mZaEGxul3VpL0Q-ziWBF2NjuqlZpBKrCQxKeqXwBQh4kvJDVBeEmGRhJfcZ59s_-z8kuwzoKDWa7IFvFbKEuIbopRFubb5ts9-4fB8MvNYn8Bg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-QwDLYQHNg9IGB3tbyz0nJaFabp-8AB8dCwwOxlkLhlkzQVRUM7YspjLvwp_iB22iJAaA5IqLfWUSrbcezE_gzwO-M6y4yXOJInGKDoOHUUV7EjDZepiTAkkjZBthd2z_y_58H5FDy2tTCUVtnY_tqmW2vdvNluuLk9zHOq8cXVFhH6TIfqP9sO1sdmfIdx22jnaB-FvMn54UF_r-s0rQUc7YVh5SgtM096GWpzh_6KUNl8N44yIyNXoVuv8IP2w9CoOIlc36jQS9GZUYGJ8CEEJrT7Mz6aC2qbsPXwnFfi0j1fnVfiOvR7TaVOnVR2qXPCCOcumqotl7Ao398N3-wLdrM7nIe5xktluzUjFmDKFIswu9c2h1uEry9wDL_BoOektvCK9fN_nKFBHZR37Ipy_UYEW2BGjM57mVRUd1JUrLwfo-KyW6ltc-ARQ9eZEXLyYMyGF2VV2lOlMc7O0ORcl0Sc5fdWi77D2afw-gdMF2VhfgJTmgdZEijFufJ1ECapCrhOjZYdApLrLIHbslPoBuOcWm0MRJvMdilIBIJEgMGPQBEswZ_nMcMa4WMiddBKSbzSU4Fb0MRxv1qRChQV3crIwpQ3SBRihI1hZJxMokFO2kvV5Q_OvwGz3f7piTg56h2vwBdORRw2k24VpqvrG7OGrlWl1q0qM_j_2WvnCR24N4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-doping+TiO2+hollow+microspheres+with+abundant+oxygen+vacancies+for+highly+photocatalytic+nitrogen+fixation&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Chang&rft.au=Gu%2C+MengZhen&rft.au=Gao%2C+Mingming&rft.au=Liu%2C+KeNing&rft.date=2022-03-01&rft.issn=0021-9797&rft.volume=609+p.341-352&rft.spage=341&rft.epage=352&rft_id=info:doi/10.1016%2Fj.jcis.2021.11.180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |