Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst
[Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence,...
Saved in:
Published in | Journal of colloid and interface science Vol. 602; pp. 325 - 333 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm−2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm−2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications. |
---|---|
AbstractList | Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm-2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol-water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm-2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol-water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm-2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol-water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm-2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol-water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications. [Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm−2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm−2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications. Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H₂) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H₂. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo₂S₄/CC) as a bifunctional electrocatalyst to accelerate H₂ generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo₂S₄/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm⁻²). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo₂S₄/CC//CuCo₂S₄/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm⁻², 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H₂ and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H₂ production applications. |
Author | Sheng, Shuang Gao, Yinyi Wang, Guiling Cao, Dianxue Ye, Ke Zhu, Kai Yan, Jun |
Author_xml | – sequence: 1 givenname: Shuang surname: Sheng fullname: Sheng, Shuang – sequence: 2 givenname: Ke surname: Ye fullname: Ye, Ke email: yekehrbeu@163.com – sequence: 3 givenname: Yinyi surname: Gao fullname: Gao, Yinyi – sequence: 4 givenname: Kai surname: Zhu fullname: Zhu, Kai – sequence: 5 givenname: Jun surname: Yan fullname: Yan, Jun – sequence: 6 givenname: Guiling surname: Wang fullname: Wang, Guiling – sequence: 7 givenname: Dianxue surname: Cao fullname: Cao, Dianxue email: caodianxue@hrbeu.edu.cn |
BookMark | eNqNkc-OFCEQxolZE2fHfYE9cfTSLfQfeki8mI2uJpt40D0TGoppRgZaoDX9QL7n0o4nDxsvVEJ9v6rU912jKx88IHRLSU0JZW9P9UnZVDekoTVhNSH0BdpRwvtqoKS9QjtSOhUf-PAKXad0KgLa93yHfn-158Vl6SEsya14DCFl6494WnUMR_B4jkEvKtvgsfQaQ56kDw4v8zFKvSmXtL0ST_Y4ubUCY6yy4DOegnPhF_YA2kHl7HfAKswzxFJG6TJOizNWA5ap4KM1i_-zRzoMDlSOQcks3Zrya_TSSJfg5m_do8ePH77dfaoevtx_vnv_UKmWsVyNnI39CJpBT9mgOwNqpHxkfSsH0jSaGwo978yBANUw0kZprTvOZavKlxraPXpzmVuO_rFAyuJskwLnLv6Ipu8b0hHatf8h7dquO7TF_j06XKQqhpQiGKFsltulOUrrBCViC1GcxBai2EIUhImSUUGbf9A52rOM6_PQuwsExaqfFqJIWyAKtI3FVqGDfQ5_Atxsvec |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_143565 crossref_primary_10_1016_S1872_2067_23_64544_9 crossref_primary_10_1021_acsami_3c02943 crossref_primary_10_1016_j_ijhydene_2022_11_228 crossref_primary_10_1088_1361_6528_ac8f9b crossref_primary_10_1039_D3MA00685A crossref_primary_10_1039_D3SE00420A crossref_primary_10_1021_acsanm_4c06493 crossref_primary_10_1021_acsmaterialslett_4c01173 crossref_primary_10_1039_D2TA00632D crossref_primary_10_1016_j_cej_2023_145708 crossref_primary_10_1016_j_apsusc_2022_153759 crossref_primary_10_1016_j_jmst_2023_10_064 crossref_primary_10_1016_j_cartre_2022_100222 crossref_primary_10_1016_j_jssc_2022_123809 crossref_primary_10_1002_advs_202300841 crossref_primary_10_3390_met14080922 crossref_primary_10_1007_s12274_023_5939_9 crossref_primary_10_1039_D3NR00192J crossref_primary_10_1016_j_apsusc_2022_155659 crossref_primary_10_2139_ssrn_4111977 crossref_primary_10_1002_smtd_202400794 crossref_primary_10_1016_j_jcis_2023_08_005 crossref_primary_10_1039_D2RA04240A crossref_primary_10_1016_j_cej_2023_147512 crossref_primary_10_1016_j_ceramint_2024_05_095 crossref_primary_10_1016_j_mtchem_2024_101961 crossref_primary_10_1016_j_chemosphere_2024_143654 crossref_primary_10_1016_j_enconman_2024_119153 crossref_primary_10_1002_cnl2_116 crossref_primary_10_1016_j_snb_2022_133095 crossref_primary_10_1016_j_jiec_2024_04_031 crossref_primary_10_1007_s10562_024_04658_2 crossref_primary_10_1016_j_cej_2024_150981 crossref_primary_10_1021_acs_jpcc_4c05583 crossref_primary_10_1016_j_materresbull_2023_112302 crossref_primary_10_1016_j_cej_2025_159561 crossref_primary_10_1016_j_tsf_2023_140119 crossref_primary_10_1016_j_jcis_2022_12_104 crossref_primary_10_1016_j_apsusc_2024_160394 crossref_primary_10_1016_j_jallcom_2024_174567 crossref_primary_10_3390_batteries9070336 crossref_primary_10_1016_j_checat_2021_11_003 crossref_primary_10_1002_smll_202307725 crossref_primary_10_1016_j_jechem_2024_01_062 crossref_primary_10_1021_acs_energyfuels_3c00672 crossref_primary_10_1063_5_0146730 crossref_primary_10_2139_ssrn_4096128 crossref_primary_10_1016_j_fuel_2024_134179 crossref_primary_10_1016_j_surfin_2022_102173 crossref_primary_10_2139_ssrn_4145480 crossref_primary_10_1016_j_seppur_2025_132393 crossref_primary_10_1002_celc_202101018 crossref_primary_10_3390_molecules28052189 crossref_primary_10_1016_j_est_2024_111965 crossref_primary_10_1007_s00604_024_06299_z crossref_primary_10_1016_j_cej_2022_139126 crossref_primary_10_1016_j_surfin_2024_103866 crossref_primary_10_1021_acs_energyfuels_4c01798 crossref_primary_10_1021_acsami_4c10714 crossref_primary_10_1016_j_electacta_2022_141801 crossref_primary_10_1016_j_jallcom_2023_171243 crossref_primary_10_1016_j_cej_2024_152342 crossref_primary_10_1021_acsanm_1c04147 crossref_primary_10_1002_smll_202407845 crossref_primary_10_1016_j_jece_2022_108453 crossref_primary_10_1016_j_cej_2024_156904 crossref_primary_10_1016_j_seppur_2024_126504 crossref_primary_10_1021_acs_inorgchem_4c01109 crossref_primary_10_1103_PhysRevApplied_18_034003 crossref_primary_10_1016_j_jpowsour_2025_236353 crossref_primary_10_1021_acscatal_4c00209 crossref_primary_10_1016_j_bios_2023_115301 crossref_primary_10_1016_j_cej_2024_149736 crossref_primary_10_1016_j_electacta_2025_146024 crossref_primary_10_6023_A23120529 crossref_primary_10_1016_j_est_2024_111538 crossref_primary_10_1016_j_jwpe_2024_104820 crossref_primary_10_1016_S1872_2067_23_64446_8 crossref_primary_10_1021_acsomega_1c05844 crossref_primary_10_1016_j_jcis_2023_04_031 crossref_primary_10_1016_j_cej_2025_159949 crossref_primary_10_1016_j_carbon_2022_07_066 crossref_primary_10_1002_aenm_202204231 crossref_primary_10_1016_j_cej_2025_159624 crossref_primary_10_1016_j_susmat_2025_e01310 crossref_primary_10_1002_er_8097 crossref_primary_10_1016_j_ceramint_2023_05_201 crossref_primary_10_1016_j_jechem_2024_02_037 crossref_primary_10_1039_D4NJ03619K crossref_primary_10_1016_j_ces_2024_119937 crossref_primary_10_1039_D4NJ00361F crossref_primary_10_1002_smll_202304558 crossref_primary_10_1007_s40843_022_2076_y |
Cites_doi | 10.1021/acscatal.0c02301 10.1038/s41467-020-16237-1 10.1002/adfm.201909610 10.1016/j.apsusc.2020.147826 10.1016/j.jallcom.2020.155392 10.1016/j.cej.2020.124643 10.1016/j.cej.2020.126783 10.1021/acssuschemeng.8b02155 10.1002/smll.202001468 10.1039/c2ee02618j 10.1021/acsnano.0c00581 10.1016/j.apcatb.2020.119175 10.1016/j.apcatb.2020.119178 10.1016/j.nanoen.2016.04.024 10.1039/C9TA00391F 10.1039/C9TA00481E 10.1039/D0QI00289E 10.1039/D0TA05972B 10.1016/j.apcatb.2019.118109 10.1039/C8TA03741H 10.1126/science.aad4998 10.1039/C9TA06917H 10.1016/j.scib.2020.01.020 10.1021/acscatal.7b03319 10.1038/ncomms5036 10.1021/acscatal.7b01831 10.1021/jacs.7b13193 10.1016/j.apcatb.2019.118235 10.1016/j.cej.2019.122603 10.1039/C9TA03924D 10.1039/D0TA04944A 10.1002/anie.201908722 10.1002/anie.201916538 10.1021/jacs.6b07127 10.1002/adfm.202006484 10.1002/adma.201900528 10.1016/j.apcatb.2021.120342 10.1039/C9TA09782A 10.1038/s41467-019-14157-3 10.1021/acs.chemrev.7b00689 10.1002/aenm.201703585 10.1002/smll.201602970 10.1016/j.cej.2018.10.225 10.1039/C7CC07259G |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.06.001 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 333 |
ExternalDocumentID | 10_1016_j_jcis_2021_06_001 S0021979721008754 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c366t-b96b5bed6e5167d4fecb19b653a7022d9f1e594f80e1deb12cddd499a3c80ec73 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Tue Aug 05 11:07:02 EDT 2025 Fri Jul 11 13:51:21 EDT 2025 Tue Jul 01 01:19:06 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:43:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bifunctional electrocatalyst Hydrogen evolution reaction Ethanol oxidation reaction CuCo2S4/CC Hollow needle-like architecture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-b96b5bed6e5167d4fecb19b653a7022d9f1e594f80e1deb12cddd499a3c80ec73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2543448310 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2552040143 proquest_miscellaneous_2543448310 crossref_citationtrail_10_1016_j_jcis_2021_06_001 crossref_primary_10_1016_j_jcis_2021_06_001 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bigiani, Andreu, Maccato, Fois, Gasparotto, Sada, Tabacchi, Krishnan, Verbeeck, Morante, Barreca (b0125) 2020; 8 Xiang, Wu, Deng, Li, Chen, Hao, Guo, Luo, Fu (b0035) 2020; 30 Gao, Liu, Ma, Zhong, Song, Xu, Gan, Han, Niu (b0110) 2020; 261 Ye, Zhou, Shao, Lin, Gao, Ta, Si, Wang, Bao (b0195) 2020; 59 Liu, Xu, Zhao, Pan, Li, Hu, Fan, Wang, Zhao, Jin, Huber, Yu (b0085) 2020; 11 Laursen, Kegnæs, Dahl, Chorkendorff (b0220) 2012; 5 Zhang, Zou, Tao, Chen, Zhou, Liu, Zhou, Huang, Lin, Wang (b0115) 2019; 58 Sha, Ye, Wang, Shao, Zhu, Cheng, Yan, Wang, Cao (b0140) 2019; 359 Wang, Zhu, Wen, Wang, Xia, Li, Chen, Liu, Li, Wu, Zhai (b0060) 2019; 31 Wang, Gao, Hang, Zhu, Han, Li, Liao, Chen (b0080) 2018; 140 Zhao, Dai, Qin, Pei, Hu, Zheng (b0120) 2017; 13 Jin, Guo, Liu, Liu, Vasileff, Jiao, Zheng, Qiao (b0005) 2018; 118 Cang, Ye, Shao, Zhu, Yan, Wang, Cao (b0015) 2021; 405 Chauhan, Reddy, Gopinath, Deka (b0160) 2017; 7 Sha, Ye, Yin, Zhu, Cheng, Yan, Wang, Cao (b0180) 2020; 381 Zhao, Liu, Yin, Wu, Luo, Fu (b0040) 2019; 7 Zhu, Zhu, Bu, Shao, Li, Hu, Chen, Pao, Yang, Huang (b0055) 2020; 2004310 Dionigi, Zeng, Sinev, Merzdorf, Deshpande, Lopez, Kunze, Zegkinoglou, Sarodnik, Fan, Bergmann, Drnec, Araujo, Gliech, Teschner, Zhu, Li, Greeley, Cuenya, Strasser (b0020) 2020; 11 Hao, Wei, Yang, Sun, Song, Guo, Liu (b0155) 2021; 536 Ma, Hu, Chen, Zhu, Chen, Lv, Wang, Liang, Liu, Yan, Zhu, Tie, Jin, Liu (b0210) 2016; 24 Kang, Huang, Zhang, Zhang, Zhang, Liu, Ye, Luo, Gong, Wang, Zhou, Wu, Jun (b0190) 2020; 390 Chauhan, Soni, Karthik, Reddy, Gopinath, Deka (b0150) 2019; 7 Cui, Chen, Xiong, Sun, Liu, Geng (b0070) 2019; 7 Yang, Xie, Ren, Wang, Liu, Du, Asiri, Yao, Sun (b0165) 2017; 54 Sheng, Ye, Sha, Zhu, Gao, Yan, Wang, Cao (b0065) 2020; 7 Deng, Kang, Li, Xiang, Wang, Guo, Zhang, Fu, Luo (b0045) 2020; 8 You, Liu, Jiang, Sun (b0050) 2016; 138 Wu, Yu, Zhang, McElhenny, Luo, Karim, Chen, Ren (b0200) 2020; 31 Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O'Hare, Zhang (b0030) 2018; 8 Sha, Yin, Ye, Wang, Zhu, Cheng, Yan, Wang, Cao (b0225) 2019; 7 Shao, Liang, Chen, Song, Deng, Huo, Kang, Wang, Fu, Luo (b0175) 2020; 845 Chen, Lavacchi, Miller, Bevilacqua, Filippi, Innocenti, Marchionni, Oberhauser, Wang, Vizza (b0130) 2014; 5 Chen, Luo, Ding, Wang (b0230) 2018; 8 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (b0010) 2017; 355 Miao, Teng, Zhang, Guo, Chen, Zhou, Wang, Sun, Zhang (b0025) 2020; 263 Park, Gu, Kim (b0095) 2020; 14 Yang, Jiao, Yan, Xie, Wu, Dong, Guo, Tian, Fu (b0100) 2020; 2000455 Chen, Shi (b0090) 2018; 6 Deng, Chen, Yao, Wang, Li, Wei (b0105) 2020; 277 Czioska, Wang, Teng, Chen (b0145) 2018; 6 Ye, Liu, Song, Wang, Wang (b0170) 2021; 296 Zheng, Li, Ci, Cai, Ding, Zhang, Wen (b0075) 2020; 277 Wu, Sun, Li, Zhang, Zhang, Gu, Wang, Zhang (b0185) 2020; 16 Ye, Cao, Shao, Wang, Si, Ta, Xiao, Wang (b0205) 2020; 65 Shin, Kim, Kim, Shin, Kim, Song, Choi (b0215) 2020; 10 Sha, Liu, Ye, Zhu, Yan, Yin, Wang, Cao (b0135) 2020; 8 Jin (10.1016/j.jcis.2021.06.001_b0005) 2018; 118 Chen (10.1016/j.jcis.2021.06.001_b0130) 2014; 5 Zhu (10.1016/j.jcis.2021.06.001_b0055) 2020; 2004310 Ye (10.1016/j.jcis.2021.06.001_b0195) 2020; 59 Chauhan (10.1016/j.jcis.2021.06.001_b0160) 2017; 7 Chen (10.1016/j.jcis.2021.06.001_b0090) 2018; 6 Bigiani (10.1016/j.jcis.2021.06.001_b0125) 2020; 8 Czioska (10.1016/j.jcis.2021.06.001_b0145) 2018; 6 Wu (10.1016/j.jcis.2021.06.001_b0185) 2020; 16 Deng (10.1016/j.jcis.2021.06.001_b0105) 2020; 277 Shin (10.1016/j.jcis.2021.06.001_b0215) 2020; 10 Hao (10.1016/j.jcis.2021.06.001_b0155) 2021; 536 Wu (10.1016/j.jcis.2021.06.001_b0200) 2020; 31 Ye (10.1016/j.jcis.2021.06.001_b0170) 2021; 296 Park (10.1016/j.jcis.2021.06.001_b0095) 2020; 14 You (10.1016/j.jcis.2021.06.001_b0050) 2016; 138 Shao (10.1016/j.jcis.2021.06.001_b0175) 2020; 845 Cang (10.1016/j.jcis.2021.06.001_b0015) 2021; 405 Gao (10.1016/j.jcis.2021.06.001_b0110) 2020; 261 Wang (10.1016/j.jcis.2021.06.001_b0060) 2019; 31 Zhao (10.1016/j.jcis.2021.06.001_b0030) 2018; 8 Sha (10.1016/j.jcis.2021.06.001_b0225) 2019; 7 Zhao (10.1016/j.jcis.2021.06.001_b0120) 2017; 13 Yang (10.1016/j.jcis.2021.06.001_b0165) 2017; 54 Wang (10.1016/j.jcis.2021.06.001_b0080) 2018; 140 Yang (10.1016/j.jcis.2021.06.001_b0100) 2020; 2000455 Chauhan (10.1016/j.jcis.2021.06.001_b0150) 2019; 7 Ma (10.1016/j.jcis.2021.06.001_b0210) 2016; 24 Zhao (10.1016/j.jcis.2021.06.001_b0040) 2019; 7 Liu (10.1016/j.jcis.2021.06.001_b0085) 2020; 11 Seh (10.1016/j.jcis.2021.06.001_b0010) 2017; 355 Deng (10.1016/j.jcis.2021.06.001_b0045) 2020; 8 Cui (10.1016/j.jcis.2021.06.001_b0070) 2019; 7 Zhang (10.1016/j.jcis.2021.06.001_b0115) 2019; 58 Sha (10.1016/j.jcis.2021.06.001_b0180) 2020; 381 Sheng (10.1016/j.jcis.2021.06.001_b0065) 2020; 7 Sha (10.1016/j.jcis.2021.06.001_b0140) 2019; 359 Miao (10.1016/j.jcis.2021.06.001_b0025) 2020; 263 Zheng (10.1016/j.jcis.2021.06.001_b0075) 2020; 277 Chen (10.1016/j.jcis.2021.06.001_b0230) 2018; 8 Xiang (10.1016/j.jcis.2021.06.001_b0035) 2020; 30 Ye (10.1016/j.jcis.2021.06.001_b0205) 2020; 65 Dionigi (10.1016/j.jcis.2021.06.001_b0020) 2020; 11 Kang (10.1016/j.jcis.2021.06.001_b0190) 2020; 390 Laursen (10.1016/j.jcis.2021.06.001_b0220) 2012; 5 Sha (10.1016/j.jcis.2021.06.001_b0135) 2020; 8 |
References_xml | – volume: 118 start-page: 6337 year: 2018 end-page: 6408 ident: b0005 article-title: Emerging Two-Dimensional Nanomaterials for Electrocatalysis publication-title: Chem. Rev. – volume: 390 year: 2020 ident: b0190 article-title: Effect of Fluorine Doping and Sulfur Vacancies of CuCo publication-title: Chem. Eng. J. – volume: 30 start-page: 1909610 year: 2020 ident: b0035 article-title: Boosting H publication-title: Adv. Funct. Mater. – volume: 31 start-page: 2006484 year: 2020 ident: b0200 article-title: Heterogeneous Bimetallic Phosphide Ni publication-title: Adv. Funct. Mater. – volume: 7 start-page: 4498 year: 2020 end-page: 4506 ident: b0065 article-title: Rational Design of Co-S-P Nanosheet Arrays as Bifunctional Electrocatalysts for Both Ethanol Oxidation Reaction and Hydrogen Evolution Reaction publication-title: Inorg. Chem. Front. – volume: 14 start-page: 6812 year: 2020 end-page: 6822 ident: b0095 article-title: Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H publication-title: ACS Nano – volume: 13 start-page: 1602970 year: 2017 ident: b0120 article-title: Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol publication-title: Small – volume: 54 start-page: 78 year: 2017 end-page: 81 ident: b0165 article-title: Hierarchical CuCo publication-title: Chem. Commun. – volume: 845 year: 2020 ident: b0175 article-title: CuCo publication-title: J. Alloys Compd. – volume: 5 start-page: 4036 year: 2014 ident: b0130 article-title: Nanotechnology Makes Biomass Electrolysis More Energy Efficient Than Water Electrolysis publication-title: Nat. Commun. – volume: 2000455 year: 2020 ident: b0100 article-title: Interfacial Engineering of MoO publication-title: Adv. Mater. – volume: 263 year: 2020 ident: b0025 article-title: “Carbohydrate-Universal” Electrolyzer for Energy-saving Hydrogen Production with Co publication-title: Appl. Catal., B – volume: 8 start-page: 16902 year: 2020 end-page: 16907 ident: b0125 article-title: Engineering Au/MnO publication-title: J. Mater. Chem. A – volume: 8 start-page: 18055 year: 2020 end-page: 18063 ident: b0135 article-title: A Heterogeneous Interface on NiS@Ni publication-title: J. Mater. Chem. A – volume: 7 start-page: 16501 year: 2019 end-page: 16507 ident: b0070 article-title: Ultrastable and Efficient H publication-title: J. Mater. Chem. A – volume: 59 start-page: 4814 year: 2020 end-page: 4821 ident: b0195 article-title: In Situ Reconstruction of a Hierarchical Sn-Cu/SnO publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1703585 year: 2018 ident: b0030 article-title: Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation publication-title: Adv. Energy Mater. – volume: 277 year: 2020 ident: b0075 article-title: Three-Birds-with-One-Stone Electrolysis for Energy-Efficiency Production of Gluconate and Hydrogen publication-title: Appl. Catal., B – volume: 277 year: 2020 ident: b0105 article-title: Integrating H publication-title: Appl. Catal., B – volume: 5 start-page: 5577 year: 2012 ident: b0220 article-title: Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution publication-title: Energy Environ. Sci. – volume: 140 start-page: 6271 year: 2018 end-page: 6277 ident: b0080 article-title: Calixarene-Based Ni18 Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 13639 year: 2016 end-page: 13646 ident: b0050 article-title: A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 25878 year: 2019 end-page: 25886 ident: b0040 article-title: Carbon Nanofibers@NiSe Core/Sheath Nanostructures as Efficient Electrocatalysts for Integrating Highly Selective Methanol Conversion and Less-Energy Intensive Hydrogen Production publication-title: J. Mater. Chem. A – volume: 261 year: 2020 ident: b0110 article-title: NiSe@NiO publication-title: Appl. Catal., B – volume: 7 start-page: 5871 year: 2017 end-page: 5879 ident: b0160 article-title: Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction publication-title: ACS Catal. – volume: 16 start-page: 2001468 year: 2020 ident: b0185 article-title: CuCo publication-title: Small – volume: 355 year: 2017 ident: b0010 article-title: Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design publication-title: Science – volume: 381 year: 2020 ident: b0180 article-title: In Situ Grown 3D Hierarchical MnCo publication-title: Chem. Eng. J. – volume: 6 start-page: 13538 year: 2018 end-page: 13548 ident: b0090 article-title: Chemical-Assisted Hydrogen Electrocatalytic Evolution Reaction (CAHER) publication-title: J. Mater. Chem. A – volume: 359 start-page: 1652 year: 2019 end-page: 1658 ident: b0140 article-title: Rational Design of NiCo publication-title: Chem. Eng. J. – volume: 65 start-page: 711 year: 2020 end-page: 719 ident: b0205 article-title: Synergy Effects on Sn-Cu Alloy Catalyst for Efficient CO publication-title: Sci. Bull. – volume: 11 start-page: 265 year: 2020 ident: b0085 article-title: Efficient Electrochemical Production of Glucaric Acid and H publication-title: Nat. Commun. – volume: 296 year: 2021 ident: b0170 article-title: Tailoring the Interactions of Heterogeneous Ag publication-title: Appl. Catal. B-Environ. – volume: 10 start-page: 11665 year: 2020 end-page: 11673 ident: b0215 article-title: FexNi publication-title: ACS Catal. – volume: 2004310 year: 2020 ident: b0055 article-title: Single-Atom In-Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading publication-title: Adv. Funct. Mater. – volume: 536 year: 2021 ident: b0155 article-title: Self-Assembled CuCo publication-title: Appl. Surf. Sci. – volume: 24 start-page: 139 year: 2016 end-page: 147 ident: b0210 article-title: Self-Assembled Ultrathin NiCo publication-title: Nano Energy – volume: 58 start-page: 15895 year: 2019 end-page: 15903 ident: b0115 article-title: Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Identified Pathway by in Situ Sum Frequency Generation Vibrational Spectroscopy publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 6985 year: 2019 end-page: 6994 ident: b0150 article-title: Promising Visible-Light Driven Hydrogen Production from Water on A Highly Efficient CuCo publication-title: J. Mater. Chem. A – volume: 11 start-page: 2522 year: 2020 ident: b0020 article-title: In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides During Oxygen Evolution publication-title: Nat. Commun. – volume: 7 start-page: 9078 year: 2019 end-page: 9085 ident: b0225 article-title: The Construction of Self-Supported Thorny Leaf-Like Nickel-Cobalt Bimetal Phosphides as Efficient Bifunctional Electrocatalysts for Urea Electrolysis publication-title: J. Mater. Chem. A – volume: 8 start-page: 1138 year: 2020 end-page: 1146 ident: b0045 article-title: Coupling Efficient Biomass Upgrading with H publication-title: J. Mater. Chem. A – volume: 31 start-page: 1900528 year: 2019 ident: b0060 article-title: Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation publication-title: Adv. Mater. – volume: 6 start-page: 11877 year: 2018 end-page: 11883 ident: b0145 article-title: Hierarchically Structured CuCo publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 526 year: 2018 end-page: 530 ident: b0230 article-title: Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode publication-title: ACS Catal. – volume: 405 year: 2021 ident: b0015 article-title: A New Perylene-Based Tetracarboxylate as Anode and LiMn publication-title: Chem. Eng. J. – volume: 10 start-page: 11665 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0215 article-title: FexNi2-xP Alloy Nanocatalysts with Electron-Deficient Phosphorus Enhancing the Hydrogen Evolution Reaction in Acidic Media publication-title: ACS Catal. doi: 10.1021/acscatal.0c02301 – volume: 11 start-page: 2522 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0020 article-title: In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides During Oxygen Evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 30 start-page: 1909610 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0035 article-title: Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909610 – volume: 536 year: 2021 ident: 10.1016/j.jcis.2021.06.001_b0155 article-title: Self-Assembled CuCo2S4 Nanosheets with Rich Surface Co3+ as Efficient Electrocatalysts for Oxygen Evolution Reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147826 – volume: 845 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0175 article-title: CuCo2S4 Hollow Nanoneedle Arrays Supported on Ni Foam as Efficient Trifunctional Electrocatalysts for Overall Water Splitting and Al-Air Batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.155392 – volume: 2000455 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0100 article-title: Interfacial Engineering of MoO2-FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation publication-title: Adv. Mater. – volume: 390 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0190 article-title: Effect of Fluorine Doping and Sulfur Vacancies of CuCo2S4 on Its Electrochemical Performance in Supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124643 – volume: 405 year: 2021 ident: 10.1016/j.jcis.2021.06.001_b0015 article-title: A New Perylene-Based Tetracarboxylate as Anode and LiMn2O4 as Cathode in Aqueous Mg-Li Batteries with Excellent Capacity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126783 – volume: 6 start-page: 11877 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0145 article-title: Hierarchically Structured CuCo2S4 Nanowire Arrays as Efficient Bifunctional Electrocatalyst for Overall Water Splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02155 – volume: 16 start-page: 2001468 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0185 article-title: CuCo2S4-rGO Microflowers: First-Principle Calculation and Application in Energy Storage publication-title: Small doi: 10.1002/smll.202001468 – volume: 5 start-page: 5577 year: 2012 ident: 10.1016/j.jcis.2021.06.001_b0220 article-title: Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02618j – volume: 14 start-page: 6812 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0095 article-title: Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H2 Production: Architecture-Performance Relationship in Bifunctional Multilayer Electrodes publication-title: ACS Nano doi: 10.1021/acsnano.0c00581 – volume: 277 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0105 article-title: Integrating H2 Generation with Sewage Disposal by An Efficient Anti-Poisoning Bifunctional Electrocatalyst publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119175 – volume: 277 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0075 article-title: Three-Birds-with-One-Stone Electrolysis for Energy-Efficiency Production of Gluconate and Hydrogen publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119178 – volume: 24 start-page: 139 year: 2016 ident: 10.1016/j.jcis.2021.06.001_b0210 article-title: Self-Assembled Ultrathin NiCo2S4 Nanoflakes Grown on Ni Foam as High-Performance Flexible Electrodes for Hydrogen Evolution Reaction in Alkaline Solution publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.024 – volume: 7 start-page: 6985 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0150 article-title: Promising Visible-Light Driven Hydrogen Production from Water on A Highly Efficient CuCo2S4 Nanosheet Photocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00391F – volume: 7 start-page: 9078 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0225 article-title: The Construction of Self-Supported Thorny Leaf-Like Nickel-Cobalt Bimetal Phosphides as Efficient Bifunctional Electrocatalysts for Urea Electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00481E – volume: 7 start-page: 4498 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0065 article-title: Rational Design of Co-S-P Nanosheet Arrays as Bifunctional Electrocatalysts for Both Ethanol Oxidation Reaction and Hydrogen Evolution Reaction publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00289E – volume: 8 start-page: 16902 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0125 article-title: Engineering Au/MnO2 Hierarchical Nanoarchitectures for Ethanol Electrochemical Valorization publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05972B – volume: 263 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0025 article-title: “Carbohydrate-Universal” Electrolyzer for Energy-saving Hydrogen Production with Co3FePx@NF as Bifunctional Electrocatalysts publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118109 – volume: 6 start-page: 13538 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0090 article-title: Chemical-Assisted Hydrogen Electrocatalytic Evolution Reaction (CAHER) publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03741H – volume: 355 year: 2017 ident: 10.1016/j.jcis.2021.06.001_b0010 article-title: Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design publication-title: Science doi: 10.1126/science.aad4998 – volume: 8 start-page: 1138 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0045 article-title: Coupling Efficient Biomass Upgrading with H2 Production via Bifunctional CuxS@NiCo-LDH Core-Shell Nanoarray Electrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06917H – volume: 65 start-page: 711 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0205 article-title: Synergy Effects on Sn-Cu Alloy Catalyst for Efficient CO2 Electroreduction to Formate with High Mass Activity publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.020 – volume: 8 start-page: 526 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0230 article-title: Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode publication-title: ACS Catal. doi: 10.1021/acscatal.7b03319 – volume: 5 start-page: 4036 year: 2014 ident: 10.1016/j.jcis.2021.06.001_b0130 article-title: Nanotechnology Makes Biomass Electrolysis More Energy Efficient Than Water Electrolysis publication-title: Nat. Commun. doi: 10.1038/ncomms5036 – volume: 7 start-page: 5871 year: 2017 ident: 10.1016/j.jcis.2021.06.001_b0160 article-title: Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b01831 – volume: 2004310 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0055 article-title: Single-Atom In-Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading publication-title: Adv. Funct. Mater. – volume: 140 start-page: 6271 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0080 article-title: Calixarene-Based Ni18 Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13193 – volume: 261 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0110 article-title: NiSe@NiOx Core-Shell Nanowires as A Non-Precious Electrocatalyst for Upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118235 – volume: 381 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0180 article-title: In Situ Grown 3D Hierarchical MnCo2O4.5@Ni(OH)2 Nanosheet Arrays on Ni Foam for Efficient Electrocatalytic Urea Oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122603 – volume: 7 start-page: 16501 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0070 article-title: Ultrastable and Efficient H2 Production via Membrane-Free Hybrid Water Electrolysis over A Bifunctional Catalyst of Hierarchical Mo-Ni Alloy Nanoparticles publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03924D – volume: 8 start-page: 18055 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0135 article-title: A Heterogeneous Interface on NiS@Ni3S2/NiMoO4 Heterostructures for Efficient Urea Electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04944A – volume: 58 start-page: 15895 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0115 article-title: Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Identified Pathway by in Situ Sum Frequency Generation Vibrational Spectroscopy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908722 – volume: 59 start-page: 4814 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0195 article-title: In Situ Reconstruction of a Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916538 – volume: 138 start-page: 13639 year: 2016 ident: 10.1016/j.jcis.2021.06.001_b0050 article-title: A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07127 – volume: 31 start-page: 2006484 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0200 article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – volume: 31 start-page: 1900528 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0060 article-title: Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201900528 – volume: 296 year: 2021 ident: 10.1016/j.jcis.2021.06.001_b0170 article-title: Tailoring the Interactions of Heterogeneous Ag2S/Ag Interface for Efficient CO2 Electroreduction publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120342 – volume: 7 start-page: 25878 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0040 article-title: Carbon Nanofibers@NiSe Core/Sheath Nanostructures as Efficient Electrocatalysts for Integrating Highly Selective Methanol Conversion and Less-Energy Intensive Hydrogen Production publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09782A – volume: 11 start-page: 265 year: 2020 ident: 10.1016/j.jcis.2021.06.001_b0085 article-title: Efficient Electrochemical Production of Glucaric Acid and H2 via Glucose Electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-14157-3 – volume: 118 start-page: 6337 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0005 article-title: Emerging Two-Dimensional Nanomaterials for Electrocatalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00689 – volume: 8 start-page: 1703585 year: 2018 ident: 10.1016/j.jcis.2021.06.001_b0030 article-title: Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 13 start-page: 1602970 year: 2017 ident: 10.1016/j.jcis.2021.06.001_b0120 article-title: Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol publication-title: Small doi: 10.1002/smll.201602970 – volume: 359 start-page: 1652 year: 2019 ident: 10.1016/j.jcis.2021.06.001_b0140 article-title: Rational Design of NiCo2S4 Nanowire Arrays on Nickle Foam as Highly Efficient and Durable Electrocatalysts Toward Urea Electrooxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.225 – volume: 54 start-page: 78 year: 2017 ident: 10.1016/j.jcis.2021.06.001_b0165 article-title: Hierarchical CuCo2S4 Nanoarrays for High-Efficient and Durable Water Oxidation Electrocatalysis publication-title: Chem. Commun. doi: 10.1039/C7CC07259G |
SSID | ssj0011559 |
Score | 2.6246808 |
Snippet | [Display omitted]
Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy... Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and... Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H₂) can be very promising to address current energy shortage and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 325 |
SubjectTerms | acetic acid Bifunctional electrocatalyst biomass carbon catalytic activity cobalt sulfide CuCo2S4/CC durability electric potential difference energy conservation ethanol Ethanol oxidation reaction Hollow needle-like architecture hydrogen Hydrogen evolution reaction hydrogen production oxidation oxygen production synergism thermodynamics value added |
Title | Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst |
URI | https://dx.doi.org/10.1016/j.jcis.2021.06.001 https://www.proquest.com/docview/2543448310 https://www.proquest.com/docview/2552040143 |
Volume | 602 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIUqiMxA25rRPbqY_VimoB0QtU6s3ya0uKlUS7WaG99N_wP5mJkwqQ2AOnKJEtR5nJPOxvviHkLfh4G2wMzJU6MLCSmp06p1kVhNCisNJpLBT-fKHml-LjlbzaIbOpFgZhlaPtzzZ9sNbjk-Pxax53dY01vvC3Vcg-M9CyIyeoEBVq-dHtHcyD47FbhnlwhqPHwpmM8brxNVJ2F_won0n8yzn9ZaYH33P-mDwag0Z6lt_rCdmJzR65P5t6te2Rh7_RCj4lP7_UiBO0TYS0Pm0oBNIrRDfTb5uwbEFjaJd5XkEm1DaBRtw_bxNdd9fLAVNPEQ5_TS1FNuO0YXEgmgD_RMFYpvYHhbVCiizV3yP1bdfFJVycTT1drdOiDpHaFUx3NfrNvN1Ix447w4bRZtU_I5fn77_O5mxsx8B8qVTPnFZOuhhUlFyBLBfRO66dkqWtIBIIesGj1GJxehJ5ABdQ-BACJFS29PDIV-Vzstu0TXxBqLWlcMWJ8xESTCej5UiMpxTErhpsiNgnfJKD8SNXObbMSGYCpd0YlJ1B2ZmMzNsn7-7mdJmpY-toOYnX_KFvBlzJ1nlvJl0wIGM8XcnSNMgqALkuhMvbxsgCrCbEqC__c_0D8gDvsBqSy1dkt1-u42sIi3p3OOj9Ibl39uHT_OIXwzARqA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORQOCAqo5dNIcEJu6yTO1gcOqFBt6ceFVurN2PFsSYmSaJNVlQv_hl_AH2QmTipAYg9IPUVK4iTK2G_G9ps3jL1GH2-9BS9crL1AlNRi1zktJj5JdBJZ5TQlCh-fpNOz5NO5Ol9hP8dcGKJVDtgfML1H6-HM9vA3t-s8pxxfHG0TUp_pZdmTgVl5CN0Vztuadwcf0Mhvomj_4-neVAylBUQWp2krnE6dcuBTUDLF75pB5qR2qYrtBL2a1zMJSiez3R2QHuEsyrz3ODmwcYanskmMz73FbicIF1Q2Yev7Na9E0j5f4JVIQZ83ZOoEUtlllpNGeCS3wibIv7zhX36hd3b799m9IUrl78OPeMBWoFxna3tjcbh1dvc3HcOH7MfnnIiJtoRq0RQdx8i9ITo1_9r5eYVdlNdBWBY7Abel50AL9lXBF_XFvCfxc-LfX3DLST656AT0yhboEDmic1FdcXyXL0AU-TfgWVXXMMeDs0XLm0Uxyz1w22Bzl5OjDuubfCjx069QdU37iJ3diJEes9WyKmGDcWvjxEU7LgOc0ToFVpISX5pisKwRtJJNJkc7mGwQR6caHYUZWXCXhmxnyHYmUAE32dvrNnWQBll6txrNa_7o4AZ919J2r8a-YNDGtJ0TrGlIxgAn1xifL7tHRQjTGBQ_-c_3v2Rr09PjI3N0cHL4lN2hK5SKKdUzttrOF_AcY7LWvejHAGdfbnrQ_QLXOU8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneously+boosting+hydrogen+production+and+ethanol+upgrading+using+a+highly-efficient+hollow+needle-like+copper+cobalt+sulfide+as+a+bifunctional+electrocatalyst&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sheng%2C+Shuang&rft.au=Ye%2C+Ke&rft.au=Gao%2C+Yinyi&rft.au=Zhu%2C+Kai&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=602&rft.spage=325&rft.epage=333&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.001&rft.externalDocID=S0021979721008754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |