Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst

[Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence,...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 602; pp. 325 - 333
Main Authors Sheng, Shuang, Ye, Ke, Gao, Yinyi, Zhu, Kai, Yan, Jun, Wang, Guiling, Cao, Dianxue
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm−2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm−2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.
AbstractList Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm-2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol-water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm-2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol-water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm-2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol-water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm-2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol-water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.
[Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm−2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm−2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.
Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H₂) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H₂. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo₂S₄/CC) as a bifunctional electrocatalyst to accelerate H₂ generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo₂S₄/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm⁻²). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo₂S₄/CC//CuCo₂S₄/CC ethanol–water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm⁻², 150 mV less than that used for ordinary water splitting. This shows that the ethanol–water electrolyser elaborated here holds encouraging potential in the energy-saving production of H₂ and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H₂ production applications.
Author Sheng, Shuang
Gao, Yinyi
Wang, Guiling
Cao, Dianxue
Ye, Ke
Zhu, Kai
Yan, Jun
Author_xml – sequence: 1
  givenname: Shuang
  surname: Sheng
  fullname: Sheng, Shuang
– sequence: 2
  givenname: Ke
  surname: Ye
  fullname: Ye, Ke
  email: yekehrbeu@163.com
– sequence: 3
  givenname: Yinyi
  surname: Gao
  fullname: Gao, Yinyi
– sequence: 4
  givenname: Kai
  surname: Zhu
  fullname: Zhu, Kai
– sequence: 5
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
– sequence: 6
  givenname: Guiling
  surname: Wang
  fullname: Wang, Guiling
– sequence: 7
  givenname: Dianxue
  surname: Cao
  fullname: Cao, Dianxue
  email: caodianxue@hrbeu.edu.cn
BookMark eNqNkc-OFCEQxolZE2fHfYE9cfTSLfQfeki8mI2uJpt40D0TGoppRgZaoDX9QL7n0o4nDxsvVEJ9v6rU912jKx88IHRLSU0JZW9P9UnZVDekoTVhNSH0BdpRwvtqoKS9QjtSOhUf-PAKXad0KgLa93yHfn-158Vl6SEsya14DCFl6494WnUMR_B4jkEvKtvgsfQaQ56kDw4v8zFKvSmXtL0ST_Y4ubUCY6yy4DOegnPhF_YA2kHl7HfAKswzxFJG6TJOizNWA5ap4KM1i_-zRzoMDlSOQcks3Zrya_TSSJfg5m_do8ePH77dfaoevtx_vnv_UKmWsVyNnI39CJpBT9mgOwNqpHxkfSsH0jSaGwo978yBANUw0kZprTvOZavKlxraPXpzmVuO_rFAyuJskwLnLv6Ipu8b0hHatf8h7dquO7TF_j06XKQqhpQiGKFsltulOUrrBCViC1GcxBai2EIUhImSUUGbf9A52rOM6_PQuwsExaqfFqJIWyAKtI3FVqGDfQ5_Atxsvec
CitedBy_id crossref_primary_10_1016_j_cej_2023_143565
crossref_primary_10_1016_S1872_2067_23_64544_9
crossref_primary_10_1021_acsami_3c02943
crossref_primary_10_1016_j_ijhydene_2022_11_228
crossref_primary_10_1088_1361_6528_ac8f9b
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_1039_D3SE00420A
crossref_primary_10_1021_acsanm_4c06493
crossref_primary_10_1021_acsmaterialslett_4c01173
crossref_primary_10_1039_D2TA00632D
crossref_primary_10_1016_j_cej_2023_145708
crossref_primary_10_1016_j_apsusc_2022_153759
crossref_primary_10_1016_j_jmst_2023_10_064
crossref_primary_10_1016_j_cartre_2022_100222
crossref_primary_10_1016_j_jssc_2022_123809
crossref_primary_10_1002_advs_202300841
crossref_primary_10_3390_met14080922
crossref_primary_10_1007_s12274_023_5939_9
crossref_primary_10_1039_D3NR00192J
crossref_primary_10_1016_j_apsusc_2022_155659
crossref_primary_10_2139_ssrn_4111977
crossref_primary_10_1002_smtd_202400794
crossref_primary_10_1016_j_jcis_2023_08_005
crossref_primary_10_1039_D2RA04240A
crossref_primary_10_1016_j_cej_2023_147512
crossref_primary_10_1016_j_ceramint_2024_05_095
crossref_primary_10_1016_j_mtchem_2024_101961
crossref_primary_10_1016_j_chemosphere_2024_143654
crossref_primary_10_1016_j_enconman_2024_119153
crossref_primary_10_1002_cnl2_116
crossref_primary_10_1016_j_snb_2022_133095
crossref_primary_10_1016_j_jiec_2024_04_031
crossref_primary_10_1007_s10562_024_04658_2
crossref_primary_10_1016_j_cej_2024_150981
crossref_primary_10_1021_acs_jpcc_4c05583
crossref_primary_10_1016_j_materresbull_2023_112302
crossref_primary_10_1016_j_cej_2025_159561
crossref_primary_10_1016_j_tsf_2023_140119
crossref_primary_10_1016_j_jcis_2022_12_104
crossref_primary_10_1016_j_apsusc_2024_160394
crossref_primary_10_1016_j_jallcom_2024_174567
crossref_primary_10_3390_batteries9070336
crossref_primary_10_1016_j_checat_2021_11_003
crossref_primary_10_1002_smll_202307725
crossref_primary_10_1016_j_jechem_2024_01_062
crossref_primary_10_1021_acs_energyfuels_3c00672
crossref_primary_10_1063_5_0146730
crossref_primary_10_2139_ssrn_4096128
crossref_primary_10_1016_j_fuel_2024_134179
crossref_primary_10_1016_j_surfin_2022_102173
crossref_primary_10_2139_ssrn_4145480
crossref_primary_10_1016_j_seppur_2025_132393
crossref_primary_10_1002_celc_202101018
crossref_primary_10_3390_molecules28052189
crossref_primary_10_1016_j_est_2024_111965
crossref_primary_10_1007_s00604_024_06299_z
crossref_primary_10_1016_j_cej_2022_139126
crossref_primary_10_1016_j_surfin_2024_103866
crossref_primary_10_1021_acs_energyfuels_4c01798
crossref_primary_10_1021_acsami_4c10714
crossref_primary_10_1016_j_electacta_2022_141801
crossref_primary_10_1016_j_jallcom_2023_171243
crossref_primary_10_1016_j_cej_2024_152342
crossref_primary_10_1021_acsanm_1c04147
crossref_primary_10_1002_smll_202407845
crossref_primary_10_1016_j_jece_2022_108453
crossref_primary_10_1016_j_cej_2024_156904
crossref_primary_10_1016_j_seppur_2024_126504
crossref_primary_10_1021_acs_inorgchem_4c01109
crossref_primary_10_1103_PhysRevApplied_18_034003
crossref_primary_10_1016_j_jpowsour_2025_236353
crossref_primary_10_1021_acscatal_4c00209
crossref_primary_10_1016_j_bios_2023_115301
crossref_primary_10_1016_j_cej_2024_149736
crossref_primary_10_1016_j_electacta_2025_146024
crossref_primary_10_6023_A23120529
crossref_primary_10_1016_j_est_2024_111538
crossref_primary_10_1016_j_jwpe_2024_104820
crossref_primary_10_1016_S1872_2067_23_64446_8
crossref_primary_10_1021_acsomega_1c05844
crossref_primary_10_1016_j_jcis_2023_04_031
crossref_primary_10_1016_j_cej_2025_159949
crossref_primary_10_1016_j_carbon_2022_07_066
crossref_primary_10_1002_aenm_202204231
crossref_primary_10_1016_j_cej_2025_159624
crossref_primary_10_1016_j_susmat_2025_e01310
crossref_primary_10_1002_er_8097
crossref_primary_10_1016_j_ceramint_2023_05_201
crossref_primary_10_1016_j_jechem_2024_02_037
crossref_primary_10_1039_D4NJ03619K
crossref_primary_10_1016_j_ces_2024_119937
crossref_primary_10_1039_D4NJ00361F
crossref_primary_10_1002_smll_202304558
crossref_primary_10_1007_s40843_022_2076_y
Cites_doi 10.1021/acscatal.0c02301
10.1038/s41467-020-16237-1
10.1002/adfm.201909610
10.1016/j.apsusc.2020.147826
10.1016/j.jallcom.2020.155392
10.1016/j.cej.2020.124643
10.1016/j.cej.2020.126783
10.1021/acssuschemeng.8b02155
10.1002/smll.202001468
10.1039/c2ee02618j
10.1021/acsnano.0c00581
10.1016/j.apcatb.2020.119175
10.1016/j.apcatb.2020.119178
10.1016/j.nanoen.2016.04.024
10.1039/C9TA00391F
10.1039/C9TA00481E
10.1039/D0QI00289E
10.1039/D0TA05972B
10.1016/j.apcatb.2019.118109
10.1039/C8TA03741H
10.1126/science.aad4998
10.1039/C9TA06917H
10.1016/j.scib.2020.01.020
10.1021/acscatal.7b03319
10.1038/ncomms5036
10.1021/acscatal.7b01831
10.1021/jacs.7b13193
10.1016/j.apcatb.2019.118235
10.1016/j.cej.2019.122603
10.1039/C9TA03924D
10.1039/D0TA04944A
10.1002/anie.201908722
10.1002/anie.201916538
10.1021/jacs.6b07127
10.1002/adfm.202006484
10.1002/adma.201900528
10.1016/j.apcatb.2021.120342
10.1039/C9TA09782A
10.1038/s41467-019-14157-3
10.1021/acs.chemrev.7b00689
10.1002/aenm.201703585
10.1002/smll.201602970
10.1016/j.cej.2018.10.225
10.1039/C7CC07259G
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.06.001
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 333
ExternalDocumentID 10_1016_j_jcis_2021_06_001
S0021979721008754
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c366t-b96b5bed6e5167d4fecb19b653a7022d9f1e594f80e1deb12cddd499a3c80ec73
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Tue Aug 05 11:07:02 EDT 2025
Fri Jul 11 13:51:21 EDT 2025
Tue Jul 01 01:19:06 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:43:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bifunctional electrocatalyst
Hydrogen evolution reaction
Ethanol oxidation reaction
CuCo2S4/CC
Hollow needle-like architecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-b96b5bed6e5167d4fecb19b653a7022d9f1e594f80e1deb12cddd499a3c80ec73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2543448310
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2552040143
proquest_miscellaneous_2543448310
crossref_citationtrail_10_1016_j_jcis_2021_06_001
crossref_primary_10_1016_j_jcis_2021_06_001
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bigiani, Andreu, Maccato, Fois, Gasparotto, Sada, Tabacchi, Krishnan, Verbeeck, Morante, Barreca (b0125) 2020; 8
Xiang, Wu, Deng, Li, Chen, Hao, Guo, Luo, Fu (b0035) 2020; 30
Gao, Liu, Ma, Zhong, Song, Xu, Gan, Han, Niu (b0110) 2020; 261
Ye, Zhou, Shao, Lin, Gao, Ta, Si, Wang, Bao (b0195) 2020; 59
Liu, Xu, Zhao, Pan, Li, Hu, Fan, Wang, Zhao, Jin, Huber, Yu (b0085) 2020; 11
Laursen, Kegnæs, Dahl, Chorkendorff (b0220) 2012; 5
Zhang, Zou, Tao, Chen, Zhou, Liu, Zhou, Huang, Lin, Wang (b0115) 2019; 58
Sha, Ye, Wang, Shao, Zhu, Cheng, Yan, Wang, Cao (b0140) 2019; 359
Wang, Zhu, Wen, Wang, Xia, Li, Chen, Liu, Li, Wu, Zhai (b0060) 2019; 31
Wang, Gao, Hang, Zhu, Han, Li, Liao, Chen (b0080) 2018; 140
Zhao, Dai, Qin, Pei, Hu, Zheng (b0120) 2017; 13
Jin, Guo, Liu, Liu, Vasileff, Jiao, Zheng, Qiao (b0005) 2018; 118
Cang, Ye, Shao, Zhu, Yan, Wang, Cao (b0015) 2021; 405
Chauhan, Reddy, Gopinath, Deka (b0160) 2017; 7
Sha, Ye, Yin, Zhu, Cheng, Yan, Wang, Cao (b0180) 2020; 381
Zhao, Liu, Yin, Wu, Luo, Fu (b0040) 2019; 7
Zhu, Zhu, Bu, Shao, Li, Hu, Chen, Pao, Yang, Huang (b0055) 2020; 2004310
Dionigi, Zeng, Sinev, Merzdorf, Deshpande, Lopez, Kunze, Zegkinoglou, Sarodnik, Fan, Bergmann, Drnec, Araujo, Gliech, Teschner, Zhu, Li, Greeley, Cuenya, Strasser (b0020) 2020; 11
Hao, Wei, Yang, Sun, Song, Guo, Liu (b0155) 2021; 536
Ma, Hu, Chen, Zhu, Chen, Lv, Wang, Liang, Liu, Yan, Zhu, Tie, Jin, Liu (b0210) 2016; 24
Kang, Huang, Zhang, Zhang, Zhang, Liu, Ye, Luo, Gong, Wang, Zhou, Wu, Jun (b0190) 2020; 390
Chauhan, Soni, Karthik, Reddy, Gopinath, Deka (b0150) 2019; 7
Cui, Chen, Xiong, Sun, Liu, Geng (b0070) 2019; 7
Yang, Xie, Ren, Wang, Liu, Du, Asiri, Yao, Sun (b0165) 2017; 54
Sheng, Ye, Sha, Zhu, Gao, Yan, Wang, Cao (b0065) 2020; 7
Deng, Kang, Li, Xiang, Wang, Guo, Zhang, Fu, Luo (b0045) 2020; 8
You, Liu, Jiang, Sun (b0050) 2016; 138
Wu, Yu, Zhang, McElhenny, Luo, Karim, Chen, Ren (b0200) 2020; 31
Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O'Hare, Zhang (b0030) 2018; 8
Sha, Yin, Ye, Wang, Zhu, Cheng, Yan, Wang, Cao (b0225) 2019; 7
Shao, Liang, Chen, Song, Deng, Huo, Kang, Wang, Fu, Luo (b0175) 2020; 845
Chen, Lavacchi, Miller, Bevilacqua, Filippi, Innocenti, Marchionni, Oberhauser, Wang, Vizza (b0130) 2014; 5
Chen, Luo, Ding, Wang (b0230) 2018; 8
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (b0010) 2017; 355
Miao, Teng, Zhang, Guo, Chen, Zhou, Wang, Sun, Zhang (b0025) 2020; 263
Park, Gu, Kim (b0095) 2020; 14
Yang, Jiao, Yan, Xie, Wu, Dong, Guo, Tian, Fu (b0100) 2020; 2000455
Chen, Shi (b0090) 2018; 6
Deng, Chen, Yao, Wang, Li, Wei (b0105) 2020; 277
Czioska, Wang, Teng, Chen (b0145) 2018; 6
Ye, Liu, Song, Wang, Wang (b0170) 2021; 296
Zheng, Li, Ci, Cai, Ding, Zhang, Wen (b0075) 2020; 277
Wu, Sun, Li, Zhang, Zhang, Gu, Wang, Zhang (b0185) 2020; 16
Ye, Cao, Shao, Wang, Si, Ta, Xiao, Wang (b0205) 2020; 65
Shin, Kim, Kim, Shin, Kim, Song, Choi (b0215) 2020; 10
Sha, Liu, Ye, Zhu, Yan, Yin, Wang, Cao (b0135) 2020; 8
Jin (10.1016/j.jcis.2021.06.001_b0005) 2018; 118
Chen (10.1016/j.jcis.2021.06.001_b0130) 2014; 5
Zhu (10.1016/j.jcis.2021.06.001_b0055) 2020; 2004310
Ye (10.1016/j.jcis.2021.06.001_b0195) 2020; 59
Chauhan (10.1016/j.jcis.2021.06.001_b0160) 2017; 7
Chen (10.1016/j.jcis.2021.06.001_b0090) 2018; 6
Bigiani (10.1016/j.jcis.2021.06.001_b0125) 2020; 8
Czioska (10.1016/j.jcis.2021.06.001_b0145) 2018; 6
Wu (10.1016/j.jcis.2021.06.001_b0185) 2020; 16
Deng (10.1016/j.jcis.2021.06.001_b0105) 2020; 277
Shin (10.1016/j.jcis.2021.06.001_b0215) 2020; 10
Hao (10.1016/j.jcis.2021.06.001_b0155) 2021; 536
Wu (10.1016/j.jcis.2021.06.001_b0200) 2020; 31
Ye (10.1016/j.jcis.2021.06.001_b0170) 2021; 296
Park (10.1016/j.jcis.2021.06.001_b0095) 2020; 14
You (10.1016/j.jcis.2021.06.001_b0050) 2016; 138
Shao (10.1016/j.jcis.2021.06.001_b0175) 2020; 845
Cang (10.1016/j.jcis.2021.06.001_b0015) 2021; 405
Gao (10.1016/j.jcis.2021.06.001_b0110) 2020; 261
Wang (10.1016/j.jcis.2021.06.001_b0060) 2019; 31
Zhao (10.1016/j.jcis.2021.06.001_b0030) 2018; 8
Sha (10.1016/j.jcis.2021.06.001_b0225) 2019; 7
Zhao (10.1016/j.jcis.2021.06.001_b0120) 2017; 13
Yang (10.1016/j.jcis.2021.06.001_b0165) 2017; 54
Wang (10.1016/j.jcis.2021.06.001_b0080) 2018; 140
Yang (10.1016/j.jcis.2021.06.001_b0100) 2020; 2000455
Chauhan (10.1016/j.jcis.2021.06.001_b0150) 2019; 7
Ma (10.1016/j.jcis.2021.06.001_b0210) 2016; 24
Zhao (10.1016/j.jcis.2021.06.001_b0040) 2019; 7
Liu (10.1016/j.jcis.2021.06.001_b0085) 2020; 11
Seh (10.1016/j.jcis.2021.06.001_b0010) 2017; 355
Deng (10.1016/j.jcis.2021.06.001_b0045) 2020; 8
Cui (10.1016/j.jcis.2021.06.001_b0070) 2019; 7
Zhang (10.1016/j.jcis.2021.06.001_b0115) 2019; 58
Sha (10.1016/j.jcis.2021.06.001_b0180) 2020; 381
Sheng (10.1016/j.jcis.2021.06.001_b0065) 2020; 7
Sha (10.1016/j.jcis.2021.06.001_b0140) 2019; 359
Miao (10.1016/j.jcis.2021.06.001_b0025) 2020; 263
Zheng (10.1016/j.jcis.2021.06.001_b0075) 2020; 277
Chen (10.1016/j.jcis.2021.06.001_b0230) 2018; 8
Xiang (10.1016/j.jcis.2021.06.001_b0035) 2020; 30
Ye (10.1016/j.jcis.2021.06.001_b0205) 2020; 65
Dionigi (10.1016/j.jcis.2021.06.001_b0020) 2020; 11
Kang (10.1016/j.jcis.2021.06.001_b0190) 2020; 390
Laursen (10.1016/j.jcis.2021.06.001_b0220) 2012; 5
Sha (10.1016/j.jcis.2021.06.001_b0135) 2020; 8
References_xml – volume: 118
  start-page: 6337
  year: 2018
  end-page: 6408
  ident: b0005
  article-title: Emerging Two-Dimensional Nanomaterials for Electrocatalysis
  publication-title: Chem. Rev.
– volume: 390
  year: 2020
  ident: b0190
  article-title: Effect of Fluorine Doping and Sulfur Vacancies of CuCo
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 1909610
  year: 2020
  ident: b0035
  article-title: Boosting H
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 2006484
  year: 2020
  ident: b0200
  article-title: Heterogeneous Bimetallic Phosphide Ni
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 4498
  year: 2020
  end-page: 4506
  ident: b0065
  article-title: Rational Design of Co-S-P Nanosheet Arrays as Bifunctional Electrocatalysts for Both Ethanol Oxidation Reaction and Hydrogen Evolution Reaction
  publication-title: Inorg. Chem. Front.
– volume: 14
  start-page: 6812
  year: 2020
  end-page: 6822
  ident: b0095
  article-title: Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H
  publication-title: ACS Nano
– volume: 13
  start-page: 1602970
  year: 2017
  ident: b0120
  article-title: Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol
  publication-title: Small
– volume: 54
  start-page: 78
  year: 2017
  end-page: 81
  ident: b0165
  article-title: Hierarchical CuCo
  publication-title: Chem. Commun.
– volume: 845
  year: 2020
  ident: b0175
  article-title: CuCo
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 4036
  year: 2014
  ident: b0130
  article-title: Nanotechnology Makes Biomass Electrolysis More Energy Efficient Than Water Electrolysis
  publication-title: Nat. Commun.
– volume: 2000455
  year: 2020
  ident: b0100
  article-title: Interfacial Engineering of MoO
  publication-title: Adv. Mater.
– volume: 263
  year: 2020
  ident: b0025
  article-title: “Carbohydrate-Universal” Electrolyzer for Energy-saving Hydrogen Production with Co
  publication-title: Appl. Catal., B
– volume: 8
  start-page: 16902
  year: 2020
  end-page: 16907
  ident: b0125
  article-title: Engineering Au/MnO
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 18055
  year: 2020
  end-page: 18063
  ident: b0135
  article-title: A Heterogeneous Interface on NiS@Ni
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 16501
  year: 2019
  end-page: 16507
  ident: b0070
  article-title: Ultrastable and Efficient H
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 4814
  year: 2020
  end-page: 4821
  ident: b0195
  article-title: In Situ Reconstruction of a Hierarchical Sn-Cu/SnO
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1703585
  year: 2018
  ident: b0030
  article-title: Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation
  publication-title: Adv. Energy Mater.
– volume: 277
  year: 2020
  ident: b0075
  article-title: Three-Birds-with-One-Stone Electrolysis for Energy-Efficiency Production of Gluconate and Hydrogen
  publication-title: Appl. Catal., B
– volume: 277
  year: 2020
  ident: b0105
  article-title: Integrating H
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 5577
  year: 2012
  ident: b0220
  article-title: Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 6271
  year: 2018
  end-page: 6277
  ident: b0080
  article-title: Calixarene-Based Ni18 Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 13639
  year: 2016
  end-page: 13646
  ident: b0050
  article-title: A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 25878
  year: 2019
  end-page: 25886
  ident: b0040
  article-title: Carbon Nanofibers@NiSe Core/Sheath Nanostructures as Efficient Electrocatalysts for Integrating Highly Selective Methanol Conversion and Less-Energy Intensive Hydrogen Production
  publication-title: J. Mater. Chem. A
– volume: 261
  year: 2020
  ident: b0110
  article-title: NiSe@NiO
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 5871
  year: 2017
  end-page: 5879
  ident: b0160
  article-title: Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction
  publication-title: ACS Catal.
– volume: 16
  start-page: 2001468
  year: 2020
  ident: b0185
  article-title: CuCo
  publication-title: Small
– volume: 355
  year: 2017
  ident: b0010
  article-title: Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design
  publication-title: Science
– volume: 381
  year: 2020
  ident: b0180
  article-title: In Situ Grown 3D Hierarchical MnCo
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 13538
  year: 2018
  end-page: 13548
  ident: b0090
  article-title: Chemical-Assisted Hydrogen Electrocatalytic Evolution Reaction (CAHER)
  publication-title: J. Mater. Chem. A
– volume: 359
  start-page: 1652
  year: 2019
  end-page: 1658
  ident: b0140
  article-title: Rational Design of NiCo
  publication-title: Chem. Eng. J.
– volume: 65
  start-page: 711
  year: 2020
  end-page: 719
  ident: b0205
  article-title: Synergy Effects on Sn-Cu Alloy Catalyst for Efficient CO
  publication-title: Sci. Bull.
– volume: 11
  start-page: 265
  year: 2020
  ident: b0085
  article-title: Efficient Electrochemical Production of Glucaric Acid and H
  publication-title: Nat. Commun.
– volume: 296
  year: 2021
  ident: b0170
  article-title: Tailoring the Interactions of Heterogeneous Ag
  publication-title: Appl. Catal. B-Environ.
– volume: 10
  start-page: 11665
  year: 2020
  end-page: 11673
  ident: b0215
  article-title: FexNi
  publication-title: ACS Catal.
– volume: 2004310
  year: 2020
  ident: b0055
  article-title: Single-Atom In-Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading
  publication-title: Adv. Funct. Mater.
– volume: 536
  year: 2021
  ident: b0155
  article-title: Self-Assembled CuCo
  publication-title: Appl. Surf. Sci.
– volume: 24
  start-page: 139
  year: 2016
  end-page: 147
  ident: b0210
  article-title: Self-Assembled Ultrathin NiCo
  publication-title: Nano Energy
– volume: 58
  start-page: 15895
  year: 2019
  end-page: 15903
  ident: b0115
  article-title: Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Identified Pathway by in Situ Sum Frequency Generation Vibrational Spectroscopy
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 6985
  year: 2019
  end-page: 6994
  ident: b0150
  article-title: Promising Visible-Light Driven Hydrogen Production from Water on A Highly Efficient CuCo
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 2522
  year: 2020
  ident: b0020
  article-title: In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides During Oxygen Evolution
  publication-title: Nat. Commun.
– volume: 7
  start-page: 9078
  year: 2019
  end-page: 9085
  ident: b0225
  article-title: The Construction of Self-Supported Thorny Leaf-Like Nickel-Cobalt Bimetal Phosphides as Efficient Bifunctional Electrocatalysts for Urea Electrolysis
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1138
  year: 2020
  end-page: 1146
  ident: b0045
  article-title: Coupling Efficient Biomass Upgrading with H
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 1900528
  year: 2019
  ident: b0060
  article-title: Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation
  publication-title: Adv. Mater.
– volume: 6
  start-page: 11877
  year: 2018
  end-page: 11883
  ident: b0145
  article-title: Hierarchically Structured CuCo
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 526
  year: 2018
  end-page: 530
  ident: b0230
  article-title: Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode
  publication-title: ACS Catal.
– volume: 405
  year: 2021
  ident: b0015
  article-title: A New Perylene-Based Tetracarboxylate as Anode and LiMn
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 11665
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0215
  article-title: FexNi2-xP Alloy Nanocatalysts with Electron-Deficient Phosphorus Enhancing the Hydrogen Evolution Reaction in Acidic Media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02301
– volume: 11
  start-page: 2522
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0020
  article-title: In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides During Oxygen Evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 30
  start-page: 1909610
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0035
  article-title: Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909610
– volume: 536
  year: 2021
  ident: 10.1016/j.jcis.2021.06.001_b0155
  article-title: Self-Assembled CuCo2S4 Nanosheets with Rich Surface Co3+ as Efficient Electrocatalysts for Oxygen Evolution Reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147826
– volume: 845
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0175
  article-title: CuCo2S4 Hollow Nanoneedle Arrays Supported on Ni Foam as Efficient Trifunctional Electrocatalysts for Overall Water Splitting and Al-Air Batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.155392
– volume: 2000455
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0100
  article-title: Interfacial Engineering of MoO2-FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation
  publication-title: Adv. Mater.
– volume: 390
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0190
  article-title: Effect of Fluorine Doping and Sulfur Vacancies of CuCo2S4 on Its Electrochemical Performance in Supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124643
– volume: 405
  year: 2021
  ident: 10.1016/j.jcis.2021.06.001_b0015
  article-title: A New Perylene-Based Tetracarboxylate as Anode and LiMn2O4 as Cathode in Aqueous Mg-Li Batteries with Excellent Capacity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126783
– volume: 6
  start-page: 11877
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0145
  article-title: Hierarchically Structured CuCo2S4 Nanowire Arrays as Efficient Bifunctional Electrocatalyst for Overall Water Splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02155
– volume: 16
  start-page: 2001468
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0185
  article-title: CuCo2S4-rGO Microflowers: First-Principle Calculation and Application in Energy Storage
  publication-title: Small
  doi: 10.1002/smll.202001468
– volume: 5
  start-page: 5577
  year: 2012
  ident: 10.1016/j.jcis.2021.06.001_b0220
  article-title: Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02618j
– volume: 14
  start-page: 6812
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0095
  article-title: Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H2 Production: Architecture-Performance Relationship in Bifunctional Multilayer Electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00581
– volume: 277
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0105
  article-title: Integrating H2 Generation with Sewage Disposal by An Efficient Anti-Poisoning Bifunctional Electrocatalyst
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119175
– volume: 277
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0075
  article-title: Three-Birds-with-One-Stone Electrolysis for Energy-Efficiency Production of Gluconate and Hydrogen
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119178
– volume: 24
  start-page: 139
  year: 2016
  ident: 10.1016/j.jcis.2021.06.001_b0210
  article-title: Self-Assembled Ultrathin NiCo2S4 Nanoflakes Grown on Ni Foam as High-Performance Flexible Electrodes for Hydrogen Evolution Reaction in Alkaline Solution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.024
– volume: 7
  start-page: 6985
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0150
  article-title: Promising Visible-Light Driven Hydrogen Production from Water on A Highly Efficient CuCo2S4 Nanosheet Photocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00391F
– volume: 7
  start-page: 9078
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0225
  article-title: The Construction of Self-Supported Thorny Leaf-Like Nickel-Cobalt Bimetal Phosphides as Efficient Bifunctional Electrocatalysts for Urea Electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00481E
– volume: 7
  start-page: 4498
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0065
  article-title: Rational Design of Co-S-P Nanosheet Arrays as Bifunctional Electrocatalysts for Both Ethanol Oxidation Reaction and Hydrogen Evolution Reaction
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00289E
– volume: 8
  start-page: 16902
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0125
  article-title: Engineering Au/MnO2 Hierarchical Nanoarchitectures for Ethanol Electrochemical Valorization
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05972B
– volume: 263
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0025
  article-title: “Carbohydrate-Universal” Electrolyzer for Energy-saving Hydrogen Production with Co3FePx@NF as Bifunctional Electrocatalysts
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118109
– volume: 6
  start-page: 13538
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0090
  article-title: Chemical-Assisted Hydrogen Electrocatalytic Evolution Reaction (CAHER)
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03741H
– volume: 355
  year: 2017
  ident: 10.1016/j.jcis.2021.06.001_b0010
  article-title: Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 8
  start-page: 1138
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0045
  article-title: Coupling Efficient Biomass Upgrading with H2 Production via Bifunctional CuxS@NiCo-LDH Core-Shell Nanoarray Electrocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06917H
– volume: 65
  start-page: 711
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0205
  article-title: Synergy Effects on Sn-Cu Alloy Catalyst for Efficient CO2 Electroreduction to Formate with High Mass Activity
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.020
– volume: 8
  start-page: 526
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0230
  article-title: Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03319
– volume: 5
  start-page: 4036
  year: 2014
  ident: 10.1016/j.jcis.2021.06.001_b0130
  article-title: Nanotechnology Makes Biomass Electrolysis More Energy Efficient Than Water Electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5036
– volume: 7
  start-page: 5871
  year: 2017
  ident: 10.1016/j.jcis.2021.06.001_b0160
  article-title: Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01831
– volume: 2004310
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0055
  article-title: Single-Atom In-Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 6271
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0080
  article-title: Calixarene-Based Ni18 Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13193
– volume: 261
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0110
  article-title: NiSe@NiOx Core-Shell Nanowires as A Non-Precious Electrocatalyst for Upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118235
– volume: 381
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0180
  article-title: In Situ Grown 3D Hierarchical MnCo2O4.5@Ni(OH)2 Nanosheet Arrays on Ni Foam for Efficient Electrocatalytic Urea Oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122603
– volume: 7
  start-page: 16501
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0070
  article-title: Ultrastable and Efficient H2 Production via Membrane-Free Hybrid Water Electrolysis over A Bifunctional Catalyst of Hierarchical Mo-Ni Alloy Nanoparticles
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03924D
– volume: 8
  start-page: 18055
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0135
  article-title: A Heterogeneous Interface on NiS@Ni3S2/NiMoO4 Heterostructures for Efficient Urea Electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04944A
– volume: 58
  start-page: 15895
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0115
  article-title: Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Identified Pathway by in Situ Sum Frequency Generation Vibrational Spectroscopy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908722
– volume: 59
  start-page: 4814
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0195
  article-title: In Situ Reconstruction of a Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916538
– volume: 138
  start-page: 13639
  year: 2016
  ident: 10.1016/j.jcis.2021.06.001_b0050
  article-title: A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07127
– volume: 31
  start-page: 2006484
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0200
  article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006484
– volume: 31
  start-page: 1900528
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0060
  article-title: Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900528
– volume: 296
  year: 2021
  ident: 10.1016/j.jcis.2021.06.001_b0170
  article-title: Tailoring the Interactions of Heterogeneous Ag2S/Ag Interface for Efficient CO2 Electroreduction
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120342
– volume: 7
  start-page: 25878
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0040
  article-title: Carbon Nanofibers@NiSe Core/Sheath Nanostructures as Efficient Electrocatalysts for Integrating Highly Selective Methanol Conversion and Less-Energy Intensive Hydrogen Production
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09782A
– volume: 11
  start-page: 265
  year: 2020
  ident: 10.1016/j.jcis.2021.06.001_b0085
  article-title: Efficient Electrochemical Production of Glucaric Acid and H2 via Glucose Electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14157-3
– volume: 118
  start-page: 6337
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0005
  article-title: Emerging Two-Dimensional Nanomaterials for Electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00689
– volume: 8
  start-page: 1703585
  year: 2018
  ident: 10.1016/j.jcis.2021.06.001_b0030
  article-title: Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 13
  start-page: 1602970
  year: 2017
  ident: 10.1016/j.jcis.2021.06.001_b0120
  article-title: Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol
  publication-title: Small
  doi: 10.1002/smll.201602970
– volume: 359
  start-page: 1652
  year: 2019
  ident: 10.1016/j.jcis.2021.06.001_b0140
  article-title: Rational Design of NiCo2S4 Nanowire Arrays on Nickle Foam as Highly Efficient and Durable Electrocatalysts Toward Urea Electrooxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.225
– volume: 54
  start-page: 78
  year: 2017
  ident: 10.1016/j.jcis.2021.06.001_b0165
  article-title: Hierarchical CuCo2S4 Nanoarrays for High-Efficient and Durable Water Oxidation Electrocatalysis
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07259G
SSID ssj0011559
Score 2.6246808
Snippet [Display omitted] Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy...
Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and...
Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H₂) can be very promising to address current energy shortage and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms acetic acid
Bifunctional electrocatalyst
biomass
carbon
catalytic activity
cobalt sulfide
CuCo2S4/CC
durability
electric potential difference
energy conservation
ethanol
Ethanol oxidation reaction
Hollow needle-like architecture
hydrogen
Hydrogen evolution reaction
hydrogen production
oxidation
oxygen production
synergism
thermodynamics
value added
Title Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst
URI https://dx.doi.org/10.1016/j.jcis.2021.06.001
https://www.proquest.com/docview/2543448310
https://www.proquest.com/docview/2552040143
Volume 602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOCAqIUqiMxA25rRPbqY_VimoB0QtU6s3ya0uKlUS7WaG99N_wP5mJkwqQ2AOnKJEtR5nJPOxvviHkLfh4G2wMzJU6MLCSmp06p1kVhNCisNJpLBT-fKHml-LjlbzaIbOpFgZhlaPtzzZ9sNbjk-Pxax53dY01vvC3Vcg-M9CyIyeoEBVq-dHtHcyD47FbhnlwhqPHwpmM8brxNVJ2F_won0n8yzn9ZaYH33P-mDwag0Z6lt_rCdmJzR65P5t6te2Rh7_RCj4lP7_UiBO0TYS0Pm0oBNIrRDfTb5uwbEFjaJd5XkEm1DaBRtw_bxNdd9fLAVNPEQ5_TS1FNuO0YXEgmgD_RMFYpvYHhbVCiizV3yP1bdfFJVycTT1drdOiDpHaFUx3NfrNvN1Ix447w4bRZtU_I5fn77_O5mxsx8B8qVTPnFZOuhhUlFyBLBfRO66dkqWtIBIIesGj1GJxehJ5ABdQ-BACJFS29PDIV-Vzstu0TXxBqLWlcMWJ8xESTCej5UiMpxTErhpsiNgnfJKD8SNXObbMSGYCpd0YlJ1B2ZmMzNsn7-7mdJmpY-toOYnX_KFvBlzJ1nlvJl0wIGM8XcnSNMgqALkuhMvbxsgCrCbEqC__c_0D8gDvsBqSy1dkt1-u42sIi3p3OOj9Ibl39uHT_OIXwzARqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKORQOCAqo5dNIcEJu6yTO1gcOqFBt6ceFVurN2PFsSYmSaJNVlQv_hl_AH2QmTipAYg9IPUVK4iTK2G_G9ps3jL1GH2-9BS9crL1AlNRi1zktJj5JdBJZ5TQlCh-fpNOz5NO5Ol9hP8dcGKJVDtgfML1H6-HM9vA3t-s8pxxfHG0TUp_pZdmTgVl5CN0Vztuadwcf0Mhvomj_4-neVAylBUQWp2krnE6dcuBTUDLF75pB5qR2qYrtBL2a1zMJSiez3R2QHuEsyrz3ODmwcYanskmMz73FbicIF1Q2Yev7Na9E0j5f4JVIQZ83ZOoEUtlllpNGeCS3wibIv7zhX36hd3b799m9IUrl78OPeMBWoFxna3tjcbh1dvc3HcOH7MfnnIiJtoRq0RQdx8i9ITo1_9r5eYVdlNdBWBY7Abel50AL9lXBF_XFvCfxc-LfX3DLST656AT0yhboEDmic1FdcXyXL0AU-TfgWVXXMMeDs0XLm0Uxyz1w22Bzl5OjDuubfCjx069QdU37iJ3diJEes9WyKmGDcWvjxEU7LgOc0ToFVpISX5pisKwRtJJNJkc7mGwQR6caHYUZWXCXhmxnyHYmUAE32dvrNnWQBll6txrNa_7o4AZ919J2r8a-YNDGtJ0TrGlIxgAn1xifL7tHRQjTGBQ_-c_3v2Rr09PjI3N0cHL4lN2hK5SKKdUzttrOF_AcY7LWvejHAGdfbnrQ_QLXOU8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneously+boosting+hydrogen+production+and+ethanol+upgrading+using+a+highly-efficient+hollow+needle-like+copper+cobalt+sulfide+as+a+bifunctional+electrocatalyst&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sheng%2C+Shuang&rft.au=Ye%2C+Ke&rft.au=Gao%2C+Yinyi&rft.au=Zhu%2C+Kai&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=602&rft.spage=325&rft.epage=333&rft_id=info:doi/10.1016%2Fj.jcis.2021.06.001&rft.externalDocID=S0021979721008754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon