Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions
Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural n...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 5; p. 1025 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural network (ANN) models with bio-inspired metaheuristic optimization algorithms such as a genetic algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and monarch butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the Mazandaran Province of northern Iran. In total, 1595 composite surficial soil samples were collected, and 64 environmental covariates derived from terrain, climatic, remotely sensed, and categorical datasets were used as predictors. Models were tested using a repeated 10-fold nested cross-validation approach. The results indicate that the hybridized ANN methods were far superior to the reference approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the MBO-ANN approach was consistently determined to be the best approach and yielded the lowest error and uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% for clay, 10% for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil types, geology maps, rainfall, and temperature were the most important predictors of PSFs, followed by the terrain and remotely sensed data. This study demonstrates the effectiveness of bio-inspired algorithms for improving ANN models. The outputs of this study will support and inform sustainable soil management practices, agro-ecological modeling, and hydrological modeling for the Mazandaran Province of Iran. |
---|---|
AbstractList | Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural network (ANN) models with bio-inspired metaheuristic optimization algorithms such as a genetic algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and monarch butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the Mazandaran Province of northern Iran. In total, 1595 composite surficial soil samples were collected, and 64 environmental covariates derived from terrain, climatic, remotely sensed, and categorical datasets were used as predictors. Models were tested using a repeated 10-fold nested cross-validation approach. The results indicate that the hybridized ANN methods were far superior to the reference approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the MBO-ANN approach was consistently determined to be the best approach and yielded the lowest error and uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% for clay, 10% for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil types, geology maps, rainfall, and temperature were the most important predictors of PSFs, followed by the terrain and remotely sensed data. This study demonstrates the effectiveness of bio-inspired algorithms for improving ANN models. The outputs of this study will support and inform sustainable soil management practices, agro-ecological modeling, and hydrological modeling for the Mazandaran Province of Iran. |
Author | Mosavi, Amir Cherati, Ali Scholten, Thomas Heung, Brandon Taghizadeh-Mehrjardi, Ruhollah Emadi, Mostafa |
Author_xml | – sequence: 1 givenname: Ruhollah orcidid: 0000-0002-4620-6624 surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 2 givenname: Mostafa surname: Emadi fullname: Emadi, Mostafa – sequence: 3 givenname: Ali surname: Cherati fullname: Cherati, Ali – sequence: 4 givenname: Brandon surname: Heung fullname: Heung, Brandon – sequence: 5 givenname: Amir orcidid: 0000-0003-4842-0613 surname: Mosavi fullname: Mosavi, Amir – sequence: 6 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptUV1PFTEQbQwmIvLiL-gjMVntx3Z3y9sVBW6C-gA-N7PdFgaW7dp2o_gH-NuWeyEY47zM5PSckzmd12RnCpMj5C1n76XU7ENMXDLFmVAvyK5grahqocXOX_Mrsp_SNSslJdes3iX3HzFU6ynNGN1AT-_6iAP-hoxhosHTVczo0SKM9Ktb4qblnyHepEO6muhqnke0W7YPkX6BecbpkuYrR8_nghfBJ0w5Yr88WZ4HHOmF-5WX6OhxBPvwkN6Qlx7G5PYf-x75fvz54ui0Ovt2sj5anVVWNk2u-o61NdSa171SvWZ88JL5kqYRDKCvnW461pSkAEq0WnUF7LXoddf5wVkt98h66zsEuDZzxFuIdyYAmg0Q4qWBktmOzjjrQWmmdQ2y7poWWiXAaW9hUL6VvHgdbL3mGH4sLmVzi8m6cYTJhSUZoRTXrdacFSrbUm0MKUXnjcW8-bccAUfDmXk4oXk-YZG8-0fytO1_yH8AJFmfBw |
CitedBy_id | crossref_primary_10_1139_cjss_2022_0031 crossref_primary_10_3389_frsen_2024_1461537 crossref_primary_10_1016_j_ijbiomac_2022_12_017 crossref_primary_10_57005_ab_2022_1_4 crossref_primary_10_3390_land12051056 crossref_primary_10_3390_rs16224304 crossref_primary_10_3390_rs15163987 crossref_primary_10_3390_rs13091844 crossref_primary_10_3390_rs14235909 crossref_primary_10_3390_land12010032 crossref_primary_10_1002_jpln_202200239 crossref_primary_10_3390_electronics10212689 crossref_primary_10_3390_su14073989 crossref_primary_10_1007_s11831_022_09748_1 crossref_primary_10_3390_agriengineering5010004 crossref_primary_10_3390_ma15072673 crossref_primary_10_1007_s11831_022_09857_x crossref_primary_10_3390_rs15184491 crossref_primary_10_3390_app13010014 crossref_primary_10_1007_s12145_023_01005_8 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_1016_j_still_2023_105681 crossref_primary_10_3390_su14031183 crossref_primary_10_3390_agriculture14081230 crossref_primary_10_3390_f14030590 crossref_primary_10_3390_agronomy12112613 crossref_primary_10_1038_s41598_024_69464_7 crossref_primary_10_3390_rs13214439 crossref_primary_10_1080_01431161_2022_2147037 crossref_primary_10_1111_sum_12833 crossref_primary_10_1016_j_geoderma_2023_116649 crossref_primary_10_1155_2022_1708350 crossref_primary_10_1007_s42106_023_00266_z crossref_primary_10_1016_j_geodrs_2022_e00584 crossref_primary_10_3390_math10162825 crossref_primary_10_1016_j_clema_2021_100006 crossref_primary_10_1080_10106049_2022_2138565 |
Cites_doi | 10.1080/00103620802358870 10.1016/j.catena.2019.104149 10.1016/j.geoderma.2019.06.044 10.1111/j.0006-341X.2000.01030.x 10.1049/htl.2017.0059 10.1016/j.catena.2019.104315 10.1016/j.measurement.2020.107576 10.1016/j.ecolind.2011.10.006 10.1371/journal.pone.0125814 10.1007/s11356-020-07868-4 10.1002/joc.5086 10.2136/sssaj2014.05.0202 10.1016/j.gsf.2014.10.003 10.1007/s00521-016-2359-8 10.1029/2019SW002215 10.1016/j.geoderma.2020.114214 10.1080/02626667.2017.1414218 10.1007/978-3-642-12538-6_6 10.3390/rs11131520 10.1016/j.energy.2014.05.006 10.1016/j.geodrs.2016.11.003 10.1080/03650340.2015.1065607 10.1016/j.still.2019.06.006 10.1007/978-1-4020-8592-5_1 10.1016/j.scitotenv.2016.07.066 10.1016/j.geoderma.2019.05.012 10.3390/app9245534 10.1002/2017SW001608 10.1097/SS.0000000000000180 10.1016/j.catena.2017.10.002 10.1109/FSKD.2012.6233947 10.1007/s10533-010-9506-6 10.4018/IJSIR.2019010101 10.1109/ACCESS.2020.2964584 10.1016/j.geoderma.2012.02.002 10.1007/s11368-019-02544-8 10.1016/j.quaint.2010.10.022 10.1016/j.rse.2018.09.015 10.1016/S0038-0717(02)00274-2 10.1016/j.scitotenv.2019.06.500 10.1016/j.agwat.2004.09.038 10.1016/j.rse.2003.11.008 10.2136/sssaj2012.0275 10.1029/2002WR001426 10.1080/00380768.2013.802643 10.1016/j.geoderma.2016.02.021 10.1016/j.jhydrol.2017.01.029 10.1016/j.geoderma.2018.03.007 10.1016/j.compag.2017.11.037 10.1007/s12517-020-5134-1 10.3390/w11010062 10.1016/j.scitotenv.2017.09.262 10.1080/03650340.2010.507194 10.2136/sssaj2006-0049 10.1016/j.catena.2016.01.001 10.1155/2014/809495 10.2136/sssaj1999.634807x 10.1016/j.applthermaleng.2019.114569 10.3390/rs11050565 10.1023/A:1012250107121 10.1080/01431161.2018.1528018 10.4236/ojss.2019.99010 10.1016/j.geoderma.2013.06.009 10.1016/j.compag.2020.105217 10.1111/ejss.12382 10.1016/j.geoderma.2015.11.014 10.1007/s00521-015-1923-y 10.1016/j.compag.2008.07.008 10.3390/rs13010132 10.4018/978-1-7998-3222-5.ch004 10.3390/soilsystems3040065 10.1080/01431160310001654923 10.1016/j.jenvman.2007.06.022 10.1371/journal.pone.0129977 10.1016/S0016-7061(03)00223-4 10.1346/CCMN.2017.064074 10.3390/app11031286 10.1016/S0016-7061(01)00074-X 10.1007/978-1-4020-8592-5_16 10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5 10.3390/w12113015 10.1007/978-0-585-33173-7_5 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs13051025 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ecfa590994a34867a752ae9fcad5f731 10_3390_rs13051025 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-b8074a4914b55b901df30f033620aab4e96806292aa527958aabb92b988fdec93 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:27:07 EDT 2025 Fri Jul 11 03:18:13 EDT 2025 Tue Jul 01 01:58:32 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-b8074a4914b55b901df30f033620aab4e96806292aa527958aabb92b988fdec93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4842-0613 0000-0002-4620-6624 0000-0002-4875-2602 |
OpenAccessLink | https://doaj.org/article/ecfa590994a34867a752ae9fcad5f731 |
PQID | 2551979910 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ecfa590994a34867a752ae9fcad5f731 proquest_miscellaneous_2551979910 crossref_citationtrail_10_3390_rs13051025 crossref_primary_10_3390_rs13051025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Taghavifar (ref_29) 2014; 71 Vaughan (ref_8) 2019; 354 Shirani (ref_90) 2020; 187 Moayedi (ref_32) 2020; 156 Khan (ref_50) 2005; 77 ref_56 Sadeghi (ref_69) 2018; 63 Nabipour (ref_28) 2020; 8 Dong (ref_64) 2020; 165 ref_52 Nield (ref_51) 2007; 71 Xu (ref_9) 2020; 20 Mutanga (ref_45) 2004; 25 Karegowda (ref_54) 2010; 2 ref_59 Ghiri (ref_6) 2012; 58 Zhao (ref_17) 2009; 65 Wu (ref_19) 2018; 144 Wang (ref_22) 2020; 365 Stepanova (ref_57) 2019; 17 ref_61 Liu (ref_31) 2019; 689 Wang (ref_13) 2017; 546 Roozitalab (ref_7) 2008; 39 ref_25 Hitziger (ref_67) 2014; 2014 ref_68 Nwachokor (ref_73) 2010; 6 (ref_36) 1926; 2 Hall (ref_55) 2000; 56 Wang (ref_4) 2003; 35 Khormali (ref_39) 2012; 179 ref_63 ref_62 Morgan (ref_2) 1998; 23 Mulder (ref_88) 2016; 573 Vaheddoost (ref_27) 2020; 27 Akbarimoghaddam (ref_15) 2018; 160 Khanbabakhani (ref_21) 2020; 13 Walvoort (ref_14) 2001; 33 McBratney (ref_42) 2003; 117 Sarangi (ref_60) 2009; 5 ref_35 ref_34 ref_78 ref_33 ref_77 ref_76 ref_75 ref_74 Adhikari (ref_85) 2013; 77 Gasmi (ref_87) 2019; 40 Khormali (ref_71) 2011; 234 Shahriari (ref_79) 2019; 182 Kome (ref_1) 2019; 9 Liao (ref_81) 2013; 59 Ding (ref_20) 2020; 169 Dogan (ref_49) 2009; 90 Mohamad (ref_91) 2017; 28 Gholizadeh (ref_82) 2018; 218 Bishop (ref_84) 2001; 103 Bhering (ref_83) 2016; 139 Bockheim (ref_10) 2013; 209 Gee (ref_40) 1986; 5 Gallant (ref_43) 2003; 39 Devikanniga (ref_65) 2018; 5 Akpa (ref_72) 2016; 271 Emadi (ref_38) 2012; 2 Zhang (ref_58) 2016; 7 Wang (ref_66) 2019; 31 Vega (ref_70) 2017; 15 Emadi (ref_37) 2016; 62 Minasny (ref_11) 2019; 194 ref_47 ref_46 Lagacherie (ref_80) 2014; 232 Muzzamal (ref_86) 2018; 66 ref_89 Abeyrathna (ref_92) 2019; 10 Toomanian (ref_16) 2016; 67 Gerakis (ref_41) 1999; 63 Termeh (ref_30) 2018; 615 Koseva (ref_5) 2010; 101 Xiao (ref_48) 2004; 89 Poggio (ref_3) 2017; 9 Akpa (ref_24) 2014; 78 Fick (ref_53) 2017; 37 Wadoux (ref_12) 2019; 351 Greve (ref_23) 2012; 18 Wang (ref_44) 2018; 324 Heung (ref_26) 2016; 265 Song (ref_18) 2016; 181 |
References_xml | – volume: 39 start-page: 2721 year: 2008 ident: ref_7 article-title: Potassium availability as related to clay mineralogy and rates of potassium application publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620802358870 – volume: 182 start-page: 104149 year: 2019 ident: ref_79 article-title: Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran publication-title: Catena doi: 10.1016/j.catena.2019.104149 – volume: 354 start-page: 113841 year: 2019 ident: ref_8 article-title: Clay and climate are poor predictors of regional-scale soil carbon storage in the US Caribbean publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.044 – volume: 56 start-page: 1030 year: 2000 ident: ref_55 article-title: Zero-inflated Poisson and binomial regression with random effects: A case study publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.01030.x – volume: 5 start-page: 70 year: 2018 ident: ref_65 article-title: Classification of osteoporosis by artificial neural network based on monarch butterfly optimisation algorithm publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2017.0059 – volume: 187 start-page: 104315 year: 2020 ident: ref_90 article-title: Prediction of soil wind erodibility using a hybrid Genetic algorithm–Artificial neural network method publication-title: Catena doi: 10.1016/j.catena.2019.104315 – volume: 156 start-page: 107576 year: 2020 ident: ref_32 article-title: Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength publication-title: Measurement doi: 10.1016/j.measurement.2020.107576 – ident: ref_68 – volume: 18 start-page: 1 year: 2012 ident: ref_23 article-title: Quantifying the ability of environmental parameters to predict soil texture fractions using regression-tree model with GIS and LIDAR data: The case study of Denmark publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2011.10.006 – ident: ref_89 doi: 10.1371/journal.pone.0125814 – volume: 27 start-page: 13131 year: 2020 ident: ref_27 article-title: Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-07868-4 – volume: 37 start-page: 4302 year: 2017 ident: ref_53 article-title: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 78 start-page: 1953 year: 2014 ident: ref_24 article-title: Digital mapping of soil particle-size fractions for Nigeria publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2014.05.0202 – volume: 7 start-page: 45 year: 2016 ident: ref_58 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geosci. Front. doi: 10.1016/j.gsf.2014.10.003 – volume: 28 start-page: 393 year: 2017 ident: ref_91 article-title: An optimized ANN model based on genetic algorithm for predicting ripping production publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2359-8 – ident: ref_61 – volume: 17 start-page: 1487 year: 2019 ident: ref_57 article-title: D st Index Forecast Based on Ground-Level Data Aided by Bio-Inspired Algorithms publication-title: Space Weather doi: 10.1029/2019SW002215 – volume: 365 start-page: 114214 year: 2020 ident: ref_22 article-title: Comparison of additive and isometric log-ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114214 – volume: 63 start-page: 312 year: 2018 ident: ref_69 article-title: Comparing grain size distribution of sediment and original soil under raindrop detachment and raindrop-induced and flow transport mechanism publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2017.1414218 – ident: ref_63 doi: 10.1007/978-3-642-12538-6_6 – ident: ref_77 doi: 10.3390/rs11131520 – volume: 71 start-page: 656 year: 2014 ident: ref_29 article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.006 – volume: 9 start-page: 5 year: 2017 ident: ref_3 article-title: 3D mapping of soil texture in Scotland publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2016.11.003 – volume: 5 start-page: 109 year: 2009 ident: ref_60 article-title: Short term load forecasting using neuro genetic hybrid approach: Results analysis with different network architectures publication-title: J. Theor. Appl. Inf. Technol. – volume: 62 start-page: 502 year: 2016 ident: ref_37 article-title: Geostatistics-based spatial distribution of soil moisture and temperature regime classes in Mazandaran province, northern Iran publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2015.1065607 – volume: 194 start-page: 104289 year: 2019 ident: ref_11 article-title: Some practical aspects of predicting texture data in digital soil mapping publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.06.006 – ident: ref_56 – ident: ref_78 doi: 10.1007/978-1-4020-8592-5_1 – volume: 573 start-page: 1352 year: 2016 ident: ref_88 article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.066 – volume: 351 start-page: 59 year: 2019 ident: ref_12 article-title: Using deep learning for multivariate mapping of soil with quantified un-certainty publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.012 – ident: ref_62 doi: 10.3390/app9245534 – volume: 15 start-page: 1068 year: 2017 ident: ref_70 article-title: Forecasting the Dst index using a swarm-optimized neural network publication-title: Space Weather doi: 10.1002/2017SW001608 – volume: 181 start-page: 435 year: 2016 ident: ref_18 article-title: Estimation of Soil Texture at a Regional Scale Using Local Soil-Landscape Models publication-title: Soil Sci. doi: 10.1097/SS.0000000000000180 – volume: 6 start-page: 14 year: 2010 ident: ref_73 article-title: Variability in selected soil physic-chemical properties of five soils formed on different parent materials in southeastern Nigeria publication-title: Res. J. Agric. Biol. Sci – volume: 160 start-page: 275 year: 2018 ident: ref_15 article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran) publication-title: Catena doi: 10.1016/j.catena.2017.10.002 – ident: ref_76 doi: 10.1109/FSKD.2012.6233947 – volume: 101 start-page: 183 year: 2010 ident: ref_5 article-title: Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model publication-title: Biogeochemistry doi: 10.1007/s10533-010-9506-6 – volume: 10 start-page: 1 year: 2019 ident: ref_92 article-title: Hybrid particle swarm optimization with genetic algorithm to train artificial neural networks for short-term load forecasting publication-title: Int. J. Swarm Intell. Res. (IJSIR) doi: 10.4018/IJSIR.2019010101 – volume: 8 start-page: 15210 year: 2020 ident: ref_28 article-title: Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964584 – volume: 179 start-page: 113 year: 2012 ident: ref_39 article-title: Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2012.02.002 – volume: 20 start-page: 1824 year: 2020 ident: ref_9 article-title: Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China publication-title: J. Soils Sediments doi: 10.1007/s11368-019-02544-8 – volume: 234 start-page: 109 year: 2011 ident: ref_71 article-title: Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran publication-title: Quat. Int. doi: 10.1016/j.quaint.2010.10.022 – volume: 218 start-page: 89 year: 2018 ident: ref_82 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – volume: 35 start-page: 273 year: 2003 ident: ref_4 article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00274-2 – volume: 689 start-page: 734 year: 2019 ident: ref_31 article-title: Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.500 – volume: 77 start-page: 96 year: 2005 ident: ref_50 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2004.09.038 – volume: 89 start-page: 519 year: 2004 ident: ref_48 article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.008 – volume: 77 start-page: 860 year: 2013 ident: ref_85 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0275 – volume: 39 start-page: 1347 year: 2003 ident: ref_43 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 59 start-page: 488 year: 2013 ident: ref_81 article-title: Spatial estimation of surface soil texture using remote sensing data publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2013.802643 – volume: 271 start-page: 202 year: 2016 ident: ref_72 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.021 – volume: 232 start-page: 479 year: 2014 ident: ref_80 article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment publication-title: Geoderma – volume: 546 start-page: 526 year: 2017 ident: ref_13 article-title: Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.01.029 – volume: 324 start-page: 56 year: 2018 ident: ref_44 article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.007 – volume: 144 start-page: 86 year: 2018 ident: ref_19 article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.11.037 – volume: 13 start-page: 1 year: 2020 ident: ref_21 article-title: The possibility of preparing soil texture class map by artificial neural networks, inverse distance weighting, and geostatistical methods in Gavoshan dam basin, Kurdistan Province, Iran publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-5134-1 – ident: ref_47 doi: 10.3390/w11010062 – volume: 615 start-page: 438 year: 2018 ident: ref_30 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 58 start-page: 335 year: 2012 ident: ref_6 article-title: Factors affecting potassium fixation in calcareous soils of southern Iran publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2010.507194 – volume: 71 start-page: 245 year: 2007 ident: ref_51 article-title: Digitally mapping gypsic and natric soil areas using Landsat ETM data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006-0049 – volume: 139 start-page: 232 year: 2016 ident: ref_83 article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions publication-title: Catena doi: 10.1016/j.catena.2016.01.001 – volume: 2014 start-page: 809495 year: 2014 ident: ref_67 article-title: Comparison of three supervised learning methods for digital soil mapping: Application to a complex terrain in the Ecuadorian Andes publication-title: Appl. Environ. Soil Sci. doi: 10.1155/2014/809495 – volume: 2 start-page: 449 year: 1926 ident: ref_36 article-title: Une nouvelle function climatologique: L’indice d’aridité publication-title: Meteorologie – volume: 63 start-page: 807 year: 1999 ident: ref_41 article-title: A computer program for soil textural classification publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.634807x – volume: 165 start-page: 114569 year: 2020 ident: ref_64 article-title: Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114569 – ident: ref_75 doi: 10.3390/rs11050565 – volume: 33 start-page: 951 year: 2001 ident: ref_14 article-title: Compositional kriging: A spatial interpolation method for compositional data publication-title: Math. Geol. doi: 10.1023/A:1012250107121 – volume: 40 start-page: 1506 year: 2019 ident: ref_87 article-title: Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1528018 – volume: 9 start-page: 155 year: 2019 ident: ref_1 article-title: Influence of Clay Minerals on Some Soil Fertility Attributes: A Review publication-title: Open J. Soil Sci. doi: 10.4236/ojss.2019.99010 – volume: 209 start-page: 153 year: 2013 ident: ref_10 article-title: Distribution and classification of soils with clay-enriched horizons in the USA publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.009 – volume: 169 start-page: 105217 year: 2020 ident: ref_20 article-title: Model prediction of depth-specific soil texture distributions with artificial neural network: A case study in Yunfu, a typical area of Udults Zone, South China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105217 – volume: 67 start-page: 707 year: 2016 ident: ref_16 article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central I ran publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12382 – volume: 5 start-page: 383 year: 1986 ident: ref_40 article-title: Particle-size analysis publication-title: Methods Soil Anal. – volume: 2 start-page: 143 year: 2012 ident: ref_38 article-title: Changes in soil inorganic phosphorous pools along a precipitation gradient in northern Iran publication-title: Int. J. For. Soil Eros. (IJFSE) – volume: 265 start-page: 62 year: 2016 ident: ref_26 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – volume: 31 start-page: 1995 year: 2019 ident: ref_66 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1923-y – volume: 65 start-page: 36 year: 2009 ident: ref_17 article-title: Predict soil texture distributions using an artificial neural network model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.07.008 – ident: ref_35 doi: 10.3390/rs13010132 – ident: ref_59 doi: 10.4018/978-1-7998-3222-5.ch004 – ident: ref_25 doi: 10.3390/soilsystems3040065 – volume: 25 start-page: 3999 year: 2004 ident: ref_45 article-title: Narrow band vegetation indices overcome the saturation problem in biomass estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001654923 – volume: 90 start-page: 2138 year: 2009 ident: ref_49 article-title: Identification and mapping of submerged plants in a shallow lake using quickbird satellite data publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2007.06.022 – ident: ref_74 doi: 10.1371/journal.pone.0129977 – volume: 117 start-page: 3 year: 2003 ident: ref_42 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 66 start-page: 9 year: 2018 ident: ref_86 article-title: Mapping soil particle-size fractions using additive log-ratio (ALR) and isometric log-ratio (ILR) transformations and proximally sensed ancillary data publication-title: Clays Clay Miner. doi: 10.1346/CCMN.2017.064074 – ident: ref_33 doi: 10.3390/app11031286 – volume: 103 start-page: 149 year: 2001 ident: ref_84 article-title: A comparison of prediction methods for the creation of field-extent soil property maps publication-title: Geoderma doi: 10.1016/S0016-7061(01)00074-X – ident: ref_52 doi: 10.1007/978-1-4020-8592-5_16 – volume: 23 start-page: 527 year: 1998 ident: ref_2 article-title: The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments publication-title: Earth Surf. Process. Landf. J. Br. Geomorphol. Group doi: 10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5 – ident: ref_34 doi: 10.3390/w12113015 – ident: ref_46 doi: 10.1007/978-0-585-33173-7_5 – volume: 2 start-page: 271 year: 2010 ident: ref_54 article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection publication-title: Int. J. Inf. Technol. Knowl. Manag. |
SSID | ssj0000331904 |
Score | 2.4476328 |
Snippet | Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1025 |
SubjectTerms | agroecology algorithms artificial intelligence Chiroptera clay Danaus plexippus data collection evolutionary algorithms hybrid machine learning hybridization Iran landscapes neural networks particle size particle size fractions rain remote sensing sand silt soil management soil texture spatial distribution sub-humid regions temperature uncertainty |
Title | Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions |
URI | https://www.proquest.com/docview/2551979910 https://doaj.org/article/ecfa590994a34867a752ae9fcad5f731 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoHNpL1VKqbmlXRvTCISLxI1n3tlvYbisWIR4St2gc24CEErSPA7-Av82ME2ClVuqlJ0uWnUSeyTw8M98w9q1y4NFODYnKXJGoQtrEeAkJBOcU4WNBvNCfHueTC_X7Ul-utPqinLAWHrg9uH1fBdAG7RgFktDhoNACvAkVOB2KWEEtUOetOFNRBktkrVS1eKQS_fr92RylNTIg9cRe0UARqP8PORyVy_gde9tZhXzYfs17tubrTfa6a1B-ff-BPYxumuRXTWFx7_jknuqsugpK3oS4sYWC4IS2EYeY3j3_zoc1H75EqTkaqXwKhMpwxdH449STmPYdEIJu1_yKHnnW3NzycxTdy5nn41lb_zDfYhfjw_Mfk6TroZBUMs8XiSWwG1AmU1Zri8rfBZkGPJ5cpABWeZMP0lwYAaBFYfQAJ60RFqkUnK-M_MjW66b2nxiX4EANgtAefbbgMnBVLqtgs8Knzumsx_aezrWsOoBx6nNxW6KjQTQoX2jQY7vPa-9aWI2_rhoReZ5XEBR2nEAGKTsGKf_FID2280TcEn8diodA7ZvlvERvKqOoZpZ-_h8v2mZvBCW8xAS1L2x9MVv6r2ixLGyfvRqMf_bZxvBgenSG4-jw-OS0H1n2EXYF8I8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Hybridization+of+Artificial+Neural+Networks%3A+An+Application+for+Mapping+the+Spatial+Distribution+of+Soil+Texture+Fractions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Emadi%2C+Mostafa&rft.au=Cherati%2C+Ali&rft.au=Heung%2C+Brandon&rft.date=2021-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=5&rft.spage=1025&rft_id=info:doi/10.3390%2Frs13051025&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13051025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |