Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions

Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural n...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 5; p. 1025
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Emadi, Mostafa, Cherati, Ali, Heung, Brandon, Mosavi, Amir, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural network (ANN) models with bio-inspired metaheuristic optimization algorithms such as a genetic algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and monarch butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the Mazandaran Province of northern Iran. In total, 1595 composite surficial soil samples were collected, and 64 environmental covariates derived from terrain, climatic, remotely sensed, and categorical datasets were used as predictors. Models were tested using a repeated 10-fold nested cross-validation approach. The results indicate that the hybridized ANN methods were far superior to the reference approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the MBO-ANN approach was consistently determined to be the best approach and yielded the lowest error and uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% for clay, 10% for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil types, geology maps, rainfall, and temperature were the most important predictors of PSFs, followed by the terrain and remotely sensed data. This study demonstrates the effectiveness of bio-inspired algorithms for improving ANN models. The outputs of this study will support and inform sustainable soil management practices, agro-ecological modeling, and hydrological modeling for the Mazandaran Province of Iran.
AbstractList Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of soil; furthermore, reliable spatial predictions of PSFs are crucial for agro-ecological modeling. Here, series of hybridized artificial neural network (ANN) models with bio-inspired metaheuristic optimization algorithms such as a genetic algorithm (GA-ANN), particle swarm optimization (PSO-ANN), bat (BAT-ANN), and monarch butterfly optimization (MBO-ANN) algorithms, were built for predicting PSFs for the Mazandaran Province of northern Iran. In total, 1595 composite surficial soil samples were collected, and 64 environmental covariates derived from terrain, climatic, remotely sensed, and categorical datasets were used as predictors. Models were tested using a repeated 10-fold nested cross-validation approach. The results indicate that the hybridized ANN methods were far superior to the reference approach using ANN with a backpropagation training algorithm (BP-ANN). Furthermore, the MBO-ANN approach was consistently determined to be the best approach and yielded the lowest error and uncertainty. The MBO-ANN model improved the predictions in terms of RMSE by 20% for clay, 10% for silt, and 24% for sand when compared to BP-ANN. The physiographical units, soil types, geology maps, rainfall, and temperature were the most important predictors of PSFs, followed by the terrain and remotely sensed data. This study demonstrates the effectiveness of bio-inspired algorithms for improving ANN models. The outputs of this study will support and inform sustainable soil management practices, agro-ecological modeling, and hydrological modeling for the Mazandaran Province of Iran.
Author Mosavi, Amir
Cherati, Ali
Scholten, Thomas
Heung, Brandon
Taghizadeh-Mehrjardi, Ruhollah
Emadi, Mostafa
Author_xml – sequence: 1
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 2
  givenname: Mostafa
  surname: Emadi
  fullname: Emadi, Mostafa
– sequence: 3
  givenname: Ali
  surname: Cherati
  fullname: Cherati, Ali
– sequence: 4
  givenname: Brandon
  surname: Heung
  fullname: Heung, Brandon
– sequence: 5
  givenname: Amir
  orcidid: 0000-0003-4842-0613
  surname: Mosavi
  fullname: Mosavi, Amir
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptUV1PFTEQbQwmIvLiL-gjMVntx3Z3y9sVBW6C-gA-N7PdFgaW7dp2o_gH-NuWeyEY47zM5PSckzmd12RnCpMj5C1n76XU7ENMXDLFmVAvyK5grahqocXOX_Mrsp_SNSslJdes3iX3HzFU6ynNGN1AT-_6iAP-hoxhosHTVczo0SKM9Ktb4qblnyHepEO6muhqnke0W7YPkX6BecbpkuYrR8_nghfBJ0w5Yr88WZ4HHOmF-5WX6OhxBPvwkN6Qlx7G5PYf-x75fvz54ui0Ovt2sj5anVVWNk2u-o61NdSa171SvWZ88JL5kqYRDKCvnW461pSkAEq0WnUF7LXoddf5wVkt98h66zsEuDZzxFuIdyYAmg0Q4qWBktmOzjjrQWmmdQ2y7poWWiXAaW9hUL6VvHgdbL3mGH4sLmVzi8m6cYTJhSUZoRTXrdacFSrbUm0MKUXnjcW8-bccAUfDmXk4oXk-YZG8-0fytO1_yH8AJFmfBw
CitedBy_id crossref_primary_10_1139_cjss_2022_0031
crossref_primary_10_3389_frsen_2024_1461537
crossref_primary_10_1016_j_ijbiomac_2022_12_017
crossref_primary_10_57005_ab_2022_1_4
crossref_primary_10_3390_land12051056
crossref_primary_10_3390_rs16224304
crossref_primary_10_3390_rs15163987
crossref_primary_10_3390_rs13091844
crossref_primary_10_3390_rs14235909
crossref_primary_10_3390_land12010032
crossref_primary_10_1002_jpln_202200239
crossref_primary_10_3390_electronics10212689
crossref_primary_10_3390_su14073989
crossref_primary_10_1007_s11831_022_09748_1
crossref_primary_10_3390_agriengineering5010004
crossref_primary_10_3390_ma15072673
crossref_primary_10_1007_s11831_022_09857_x
crossref_primary_10_3390_rs15184491
crossref_primary_10_3390_app13010014
crossref_primary_10_1007_s12145_023_01005_8
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_1016_j_still_2023_105681
crossref_primary_10_3390_su14031183
crossref_primary_10_3390_agriculture14081230
crossref_primary_10_3390_f14030590
crossref_primary_10_3390_agronomy12112613
crossref_primary_10_1038_s41598_024_69464_7
crossref_primary_10_3390_rs13214439
crossref_primary_10_1080_01431161_2022_2147037
crossref_primary_10_1111_sum_12833
crossref_primary_10_1016_j_geoderma_2023_116649
crossref_primary_10_1155_2022_1708350
crossref_primary_10_1007_s42106_023_00266_z
crossref_primary_10_1016_j_geodrs_2022_e00584
crossref_primary_10_3390_math10162825
crossref_primary_10_1016_j_clema_2021_100006
crossref_primary_10_1080_10106049_2022_2138565
Cites_doi 10.1080/00103620802358870
10.1016/j.catena.2019.104149
10.1016/j.geoderma.2019.06.044
10.1111/j.0006-341X.2000.01030.x
10.1049/htl.2017.0059
10.1016/j.catena.2019.104315
10.1016/j.measurement.2020.107576
10.1016/j.ecolind.2011.10.006
10.1371/journal.pone.0125814
10.1007/s11356-020-07868-4
10.1002/joc.5086
10.2136/sssaj2014.05.0202
10.1016/j.gsf.2014.10.003
10.1007/s00521-016-2359-8
10.1029/2019SW002215
10.1016/j.geoderma.2020.114214
10.1080/02626667.2017.1414218
10.1007/978-3-642-12538-6_6
10.3390/rs11131520
10.1016/j.energy.2014.05.006
10.1016/j.geodrs.2016.11.003
10.1080/03650340.2015.1065607
10.1016/j.still.2019.06.006
10.1007/978-1-4020-8592-5_1
10.1016/j.scitotenv.2016.07.066
10.1016/j.geoderma.2019.05.012
10.3390/app9245534
10.1002/2017SW001608
10.1097/SS.0000000000000180
10.1016/j.catena.2017.10.002
10.1109/FSKD.2012.6233947
10.1007/s10533-010-9506-6
10.4018/IJSIR.2019010101
10.1109/ACCESS.2020.2964584
10.1016/j.geoderma.2012.02.002
10.1007/s11368-019-02544-8
10.1016/j.quaint.2010.10.022
10.1016/j.rse.2018.09.015
10.1016/S0038-0717(02)00274-2
10.1016/j.scitotenv.2019.06.500
10.1016/j.agwat.2004.09.038
10.1016/j.rse.2003.11.008
10.2136/sssaj2012.0275
10.1029/2002WR001426
10.1080/00380768.2013.802643
10.1016/j.geoderma.2016.02.021
10.1016/j.jhydrol.2017.01.029
10.1016/j.geoderma.2018.03.007
10.1016/j.compag.2017.11.037
10.1007/s12517-020-5134-1
10.3390/w11010062
10.1016/j.scitotenv.2017.09.262
10.1080/03650340.2010.507194
10.2136/sssaj2006-0049
10.1016/j.catena.2016.01.001
10.1155/2014/809495
10.2136/sssaj1999.634807x
10.1016/j.applthermaleng.2019.114569
10.3390/rs11050565
10.1023/A:1012250107121
10.1080/01431161.2018.1528018
10.4236/ojss.2019.99010
10.1016/j.geoderma.2013.06.009
10.1016/j.compag.2020.105217
10.1111/ejss.12382
10.1016/j.geoderma.2015.11.014
10.1007/s00521-015-1923-y
10.1016/j.compag.2008.07.008
10.3390/rs13010132
10.4018/978-1-7998-3222-5.ch004
10.3390/soilsystems3040065
10.1080/01431160310001654923
10.1016/j.jenvman.2007.06.022
10.1371/journal.pone.0129977
10.1016/S0016-7061(03)00223-4
10.1346/CCMN.2017.064074
10.3390/app11031286
10.1016/S0016-7061(01)00074-X
10.1007/978-1-4020-8592-5_16
10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
10.3390/w12113015
10.1007/978-0-585-33173-7_5
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs13051025
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ecfa590994a34867a752ae9fcad5f731
10_3390_rs13051025
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-b8074a4914b55b901df30f033620aab4e96806292aa527958aabb92b988fdec93
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:27:07 EDT 2025
Fri Jul 11 03:18:13 EDT 2025
Tue Jul 01 01:58:32 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-b8074a4914b55b901df30f033620aab4e96806292aa527958aabb92b988fdec93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4842-0613
0000-0002-4620-6624
0000-0002-4875-2602
OpenAccessLink https://doaj.org/article/ecfa590994a34867a752ae9fcad5f731
PQID 2551979910
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_ecfa590994a34867a752ae9fcad5f731
proquest_miscellaneous_2551979910
crossref_citationtrail_10_3390_rs13051025
crossref_primary_10_3390_rs13051025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Taghavifar (ref_29) 2014; 71
Vaughan (ref_8) 2019; 354
Shirani (ref_90) 2020; 187
Moayedi (ref_32) 2020; 156
Khan (ref_50) 2005; 77
ref_56
Sadeghi (ref_69) 2018; 63
Nabipour (ref_28) 2020; 8
Dong (ref_64) 2020; 165
ref_52
Nield (ref_51) 2007; 71
Xu (ref_9) 2020; 20
Mutanga (ref_45) 2004; 25
Karegowda (ref_54) 2010; 2
ref_59
Ghiri (ref_6) 2012; 58
Zhao (ref_17) 2009; 65
Wu (ref_19) 2018; 144
Wang (ref_22) 2020; 365
Stepanova (ref_57) 2019; 17
ref_61
Liu (ref_31) 2019; 689
Wang (ref_13) 2017; 546
Roozitalab (ref_7) 2008; 39
ref_25
Hitziger (ref_67) 2014; 2014
ref_68
Nwachokor (ref_73) 2010; 6
(ref_36) 1926; 2
Hall (ref_55) 2000; 56
Wang (ref_4) 2003; 35
Khormali (ref_39) 2012; 179
ref_63
ref_62
Morgan (ref_2) 1998; 23
Mulder (ref_88) 2016; 573
Vaheddoost (ref_27) 2020; 27
Akbarimoghaddam (ref_15) 2018; 160
Khanbabakhani (ref_21) 2020; 13
Walvoort (ref_14) 2001; 33
McBratney (ref_42) 2003; 117
Sarangi (ref_60) 2009; 5
ref_35
ref_34
ref_78
ref_33
ref_77
ref_76
ref_75
ref_74
Adhikari (ref_85) 2013; 77
Gasmi (ref_87) 2019; 40
Khormali (ref_71) 2011; 234
Shahriari (ref_79) 2019; 182
Kome (ref_1) 2019; 9
Liao (ref_81) 2013; 59
Ding (ref_20) 2020; 169
Dogan (ref_49) 2009; 90
Mohamad (ref_91) 2017; 28
Gholizadeh (ref_82) 2018; 218
Bishop (ref_84) 2001; 103
Bhering (ref_83) 2016; 139
Bockheim (ref_10) 2013; 209
Gee (ref_40) 1986; 5
Gallant (ref_43) 2003; 39
Devikanniga (ref_65) 2018; 5
Akpa (ref_72) 2016; 271
Emadi (ref_38) 2012; 2
Zhang (ref_58) 2016; 7
Wang (ref_66) 2019; 31
Vega (ref_70) 2017; 15
Emadi (ref_37) 2016; 62
Minasny (ref_11) 2019; 194
ref_47
ref_46
Lagacherie (ref_80) 2014; 232
Muzzamal (ref_86) 2018; 66
ref_89
Abeyrathna (ref_92) 2019; 10
Toomanian (ref_16) 2016; 67
Gerakis (ref_41) 1999; 63
Termeh (ref_30) 2018; 615
Koseva (ref_5) 2010; 101
Xiao (ref_48) 2004; 89
Poggio (ref_3) 2017; 9
Akpa (ref_24) 2014; 78
Fick (ref_53) 2017; 37
Wadoux (ref_12) 2019; 351
Greve (ref_23) 2012; 18
Wang (ref_44) 2018; 324
Heung (ref_26) 2016; 265
Song (ref_18) 2016; 181
References_xml – volume: 39
  start-page: 2721
  year: 2008
  ident: ref_7
  article-title: Potassium availability as related to clay mineralogy and rates of potassium application
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620802358870
– volume: 182
  start-page: 104149
  year: 2019
  ident: ref_79
  article-title: Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104149
– volume: 354
  start-page: 113841
  year: 2019
  ident: ref_8
  article-title: Clay and climate are poor predictors of regional-scale soil carbon storage in the US Caribbean
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.044
– volume: 56
  start-page: 1030
  year: 2000
  ident: ref_55
  article-title: Zero-inflated Poisson and binomial regression with random effects: A case study
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.01030.x
– volume: 5
  start-page: 70
  year: 2018
  ident: ref_65
  article-title: Classification of osteoporosis by artificial neural network based on monarch butterfly optimisation algorithm
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2017.0059
– volume: 187
  start-page: 104315
  year: 2020
  ident: ref_90
  article-title: Prediction of soil wind erodibility using a hybrid Genetic algorithm–Artificial neural network method
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104315
– volume: 156
  start-page: 107576
  year: 2020
  ident: ref_32
  article-title: Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107576
– ident: ref_68
– volume: 18
  start-page: 1
  year: 2012
  ident: ref_23
  article-title: Quantifying the ability of environmental parameters to predict soil texture fractions using regression-tree model with GIS and LIDAR data: The case study of Denmark
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2011.10.006
– ident: ref_89
  doi: 10.1371/journal.pone.0125814
– volume: 27
  start-page: 13131
  year: 2020
  ident: ref_27
  article-title: Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-07868-4
– volume: 37
  start-page: 4302
  year: 2017
  ident: ref_53
  article-title: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 78
  start-page: 1953
  year: 2014
  ident: ref_24
  article-title: Digital mapping of soil particle-size fractions for Nigeria
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2014.05.0202
– volume: 7
  start-page: 45
  year: 2016
  ident: ref_58
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2014.10.003
– volume: 28
  start-page: 393
  year: 2017
  ident: ref_91
  article-title: An optimized ANN model based on genetic algorithm for predicting ripping production
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2359-8
– ident: ref_61
– volume: 17
  start-page: 1487
  year: 2019
  ident: ref_57
  article-title: D st Index Forecast Based on Ground-Level Data Aided by Bio-Inspired Algorithms
  publication-title: Space Weather
  doi: 10.1029/2019SW002215
– volume: 365
  start-page: 114214
  year: 2020
  ident: ref_22
  article-title: Comparison of additive and isometric log-ratio transformations combined with machine learning and regression kriging models for mapping soil particle size fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114214
– volume: 63
  start-page: 312
  year: 2018
  ident: ref_69
  article-title: Comparing grain size distribution of sediment and original soil under raindrop detachment and raindrop-induced and flow transport mechanism
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2017.1414218
– ident: ref_63
  doi: 10.1007/978-3-642-12538-6_6
– ident: ref_77
  doi: 10.3390/rs11131520
– volume: 71
  start-page: 656
  year: 2014
  ident: ref_29
  article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.006
– volume: 9
  start-page: 5
  year: 2017
  ident: ref_3
  article-title: 3D mapping of soil texture in Scotland
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2016.11.003
– volume: 5
  start-page: 109
  year: 2009
  ident: ref_60
  article-title: Short term load forecasting using neuro genetic hybrid approach: Results analysis with different network architectures
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 62
  start-page: 502
  year: 2016
  ident: ref_37
  article-title: Geostatistics-based spatial distribution of soil moisture and temperature regime classes in Mazandaran province, northern Iran
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2015.1065607
– volume: 194
  start-page: 104289
  year: 2019
  ident: ref_11
  article-title: Some practical aspects of predicting texture data in digital soil mapping
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.06.006
– ident: ref_56
– ident: ref_78
  doi: 10.1007/978-1-4020-8592-5_1
– volume: 573
  start-page: 1352
  year: 2016
  ident: ref_88
  article-title: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.066
– volume: 351
  start-page: 59
  year: 2019
  ident: ref_12
  article-title: Using deep learning for multivariate mapping of soil with quantified un-certainty
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.012
– ident: ref_62
  doi: 10.3390/app9245534
– volume: 15
  start-page: 1068
  year: 2017
  ident: ref_70
  article-title: Forecasting the Dst index using a swarm-optimized neural network
  publication-title: Space Weather
  doi: 10.1002/2017SW001608
– volume: 181
  start-page: 435
  year: 2016
  ident: ref_18
  article-title: Estimation of Soil Texture at a Regional Scale Using Local Soil-Landscape Models
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000180
– volume: 6
  start-page: 14
  year: 2010
  ident: ref_73
  article-title: Variability in selected soil physic-chemical properties of five soils formed on different parent materials in southeastern Nigeria
  publication-title: Res. J. Agric. Biol. Sci
– volume: 160
  start-page: 275
  year: 2018
  ident: ref_15
  article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.002
– ident: ref_76
  doi: 10.1109/FSKD.2012.6233947
– volume: 101
  start-page: 183
  year: 2010
  ident: ref_5
  article-title: Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9506-6
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_92
  article-title: Hybrid particle swarm optimization with genetic algorithm to train artificial neural networks for short-term load forecasting
  publication-title: Int. J. Swarm Intell. Res. (IJSIR)
  doi: 10.4018/IJSIR.2019010101
– volume: 8
  start-page: 15210
  year: 2020
  ident: ref_28
  article-title: Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964584
– volume: 179
  start-page: 113
  year: 2012
  ident: ref_39
  article-title: Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.02.002
– volume: 20
  start-page: 1824
  year: 2020
  ident: ref_9
  article-title: Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-019-02544-8
– volume: 234
  start-page: 109
  year: 2011
  ident: ref_71
  article-title: Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2010.10.022
– volume: 218
  start-page: 89
  year: 2018
  ident: ref_82
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– volume: 35
  start-page: 273
  year: 2003
  ident: ref_4
  article-title: Relationships of soil respiration to microbial biomass, substrate availability and clay content
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00274-2
– volume: 689
  start-page: 734
  year: 2019
  ident: ref_31
  article-title: Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.500
– volume: 77
  start-page: 96
  year: 2005
  ident: ref_50
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.09.038
– volume: 89
  start-page: 519
  year: 2004
  ident: ref_48
  article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.008
– volume: 77
  start-page: 860
  year: 2013
  ident: ref_85
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0275
– volume: 39
  start-page: 1347
  year: 2003
  ident: ref_43
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 59
  start-page: 488
  year: 2013
  ident: ref_81
  article-title: Spatial estimation of surface soil texture using remote sensing data
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2013.802643
– volume: 271
  start-page: 202
  year: 2016
  ident: ref_72
  article-title: Total soil organic carbon and carbon sequestration potential in Nigeria
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.02.021
– volume: 232
  start-page: 479
  year: 2014
  ident: ref_80
  article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment
  publication-title: Geoderma
– volume: 546
  start-page: 526
  year: 2017
  ident: ref_13
  article-title: Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.01.029
– volume: 324
  start-page: 56
  year: 2018
  ident: ref_44
  article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.007
– volume: 144
  start-page: 86
  year: 2018
  ident: ref_19
  article-title: A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.11.037
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_21
  article-title: The possibility of preparing soil texture class map by artificial neural networks, inverse distance weighting, and geostatistical methods in Gavoshan dam basin, Kurdistan Province, Iran
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-5134-1
– ident: ref_47
  doi: 10.3390/w11010062
– volume: 615
  start-page: 438
  year: 2018
  ident: ref_30
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 58
  start-page: 335
  year: 2012
  ident: ref_6
  article-title: Factors affecting potassium fixation in calcareous soils of southern Iran
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2010.507194
– volume: 71
  start-page: 245
  year: 2007
  ident: ref_51
  article-title: Digitally mapping gypsic and natric soil areas using Landsat ETM data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006-0049
– volume: 139
  start-page: 232
  year: 2016
  ident: ref_83
  article-title: Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions
  publication-title: Catena
  doi: 10.1016/j.catena.2016.01.001
– volume: 2014
  start-page: 809495
  year: 2014
  ident: ref_67
  article-title: Comparison of three supervised learning methods for digital soil mapping: Application to a complex terrain in the Ecuadorian Andes
  publication-title: Appl. Environ. Soil Sci.
  doi: 10.1155/2014/809495
– volume: 2
  start-page: 449
  year: 1926
  ident: ref_36
  article-title: Une nouvelle function climatologique: L’indice d’aridité
  publication-title: Meteorologie
– volume: 63
  start-page: 807
  year: 1999
  ident: ref_41
  article-title: A computer program for soil textural classification
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.634807x
– volume: 165
  start-page: 114569
  year: 2020
  ident: ref_64
  article-title: Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114569
– ident: ref_75
  doi: 10.3390/rs11050565
– volume: 33
  start-page: 951
  year: 2001
  ident: ref_14
  article-title: Compositional kriging: A spatial interpolation method for compositional data
  publication-title: Math. Geol.
  doi: 10.1023/A:1012250107121
– volume: 40
  start-page: 1506
  year: 2019
  ident: ref_87
  article-title: Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1528018
– volume: 9
  start-page: 155
  year: 2019
  ident: ref_1
  article-title: Influence of Clay Minerals on Some Soil Fertility Attributes: A Review
  publication-title: Open J. Soil Sci.
  doi: 10.4236/ojss.2019.99010
– volume: 209
  start-page: 153
  year: 2013
  ident: ref_10
  article-title: Distribution and classification of soils with clay-enriched horizons in the USA
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.009
– volume: 169
  start-page: 105217
  year: 2020
  ident: ref_20
  article-title: Model prediction of depth-specific soil texture distributions with artificial neural network: A case study in Yunfu, a typical area of Udults Zone, South China
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105217
– volume: 67
  start-page: 707
  year: 2016
  ident: ref_16
  article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central I ran
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12382
– volume: 5
  start-page: 383
  year: 1986
  ident: ref_40
  article-title: Particle-size analysis
  publication-title: Methods Soil Anal.
– volume: 2
  start-page: 143
  year: 2012
  ident: ref_38
  article-title: Changes in soil inorganic phosphorous pools along a precipitation gradient in northern Iran
  publication-title: Int. J. For. Soil Eros. (IJFSE)
– volume: 265
  start-page: 62
  year: 2016
  ident: ref_26
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– volume: 31
  start-page: 1995
  year: 2019
  ident: ref_66
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 65
  start-page: 36
  year: 2009
  ident: ref_17
  article-title: Predict soil texture distributions using an artificial neural network model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.07.008
– ident: ref_35
  doi: 10.3390/rs13010132
– ident: ref_59
  doi: 10.4018/978-1-7998-3222-5.ch004
– ident: ref_25
  doi: 10.3390/soilsystems3040065
– volume: 25
  start-page: 3999
  year: 2004
  ident: ref_45
  article-title: Narrow band vegetation indices overcome the saturation problem in biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001654923
– volume: 90
  start-page: 2138
  year: 2009
  ident: ref_49
  article-title: Identification and mapping of submerged plants in a shallow lake using quickbird satellite data
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2007.06.022
– ident: ref_74
  doi: 10.1371/journal.pone.0129977
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_42
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 66
  start-page: 9
  year: 2018
  ident: ref_86
  article-title: Mapping soil particle-size fractions using additive log-ratio (ALR) and isometric log-ratio (ILR) transformations and proximally sensed ancillary data
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2017.064074
– ident: ref_33
  doi: 10.3390/app11031286
– volume: 103
  start-page: 149
  year: 2001
  ident: ref_84
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00074-X
– ident: ref_52
  doi: 10.1007/978-1-4020-8592-5_16
– volume: 23
  start-page: 527
  year: 1998
  ident: ref_2
  article-title: The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments
  publication-title: Earth Surf. Process. Landf. J. Br. Geomorphol. Group
  doi: 10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
– ident: ref_34
  doi: 10.3390/w12113015
– ident: ref_46
  doi: 10.1007/978-0-585-33173-7_5
– volume: 2
  start-page: 271
  year: 2010
  ident: ref_54
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: Int. J. Inf. Technol. Knowl. Manag.
SSID ssj0000331904
Score 2.4476328
Snippet Soil texture and particle size fractions (PSFs) are a critical characteristic of soil that influences most physical, chemical, and biological properties of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1025
SubjectTerms agroecology
algorithms
artificial intelligence
Chiroptera
clay
Danaus plexippus
data collection
evolutionary algorithms
hybrid machine learning
hybridization
Iran
landscapes
neural networks
particle size
particle size fractions
rain
remote sensing
sand
silt
soil management
soil texture
spatial distribution
sub-humid regions
temperature
uncertainty
Title Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions
URI https://www.proquest.com/docview/2551979910
https://doaj.org/article/ecfa590994a34867a752ae9fcad5f731
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoHNpL1VKqbmlXRvTCISLxI1n3tlvYbisWIR4St2gc24CEErSPA7-Av82ME2ClVuqlJ0uWnUSeyTw8M98w9q1y4NFODYnKXJGoQtrEeAkJBOcU4WNBvNCfHueTC_X7Ul-utPqinLAWHrg9uH1fBdAG7RgFktDhoNACvAkVOB2KWEEtUOetOFNRBktkrVS1eKQS_fr92RylNTIg9cRe0UARqP8PORyVy_gde9tZhXzYfs17tubrTfa6a1B-ff-BPYxumuRXTWFx7_jknuqsugpK3oS4sYWC4IS2EYeY3j3_zoc1H75EqTkaqXwKhMpwxdH449STmPYdEIJu1_yKHnnW3NzycxTdy5nn41lb_zDfYhfjw_Mfk6TroZBUMs8XiSWwG1AmU1Zri8rfBZkGPJ5cpABWeZMP0lwYAaBFYfQAJ60RFqkUnK-M_MjW66b2nxiX4EANgtAefbbgMnBVLqtgs8Knzumsx_aezrWsOoBx6nNxW6KjQTQoX2jQY7vPa-9aWI2_rhoReZ5XEBR2nEAGKTsGKf_FID2280TcEn8diodA7ZvlvERvKqOoZpZ-_h8v2mZvBCW8xAS1L2x9MVv6r2ixLGyfvRqMf_bZxvBgenSG4-jw-OS0H1n2EXYF8I8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Hybridization+of+Artificial+Neural+Networks%3A+An+Application+for+Mapping+the+Spatial+Distribution+of+Soil+Texture+Fractions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Emadi%2C+Mostafa&rft.au=Cherati%2C+Ali&rft.au=Heung%2C+Brandon&rft.date=2021-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=5&rft.spage=1025&rft_id=info:doi/10.3390%2Frs13051025&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13051025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon