Unsupervised Haze Removal for High-Resolution Optical Remote-Sensing Images Based on Improved Generative Adversarial Networks
One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images....
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 24; p. 4162 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
19.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images. The proposed method, based on cycle generative adversarial networks, is called the edge-sharpening cycle-consistent adversarial network (ES-CCGAN). Most importantly, unlike existing methods, this approach does not require prior information; the training data are unsupervised, which mitigates the pressure of preparing the training data set. To enhance the ability to extract ground-object information, the generative network replaces a residual neural network (ResNet) with a dense convolutional network (DenseNet). The edge-sharpening loss function of the deep-learning model is designed to recover clear ground-object edges and obtain more detailed information from hazy images. In the high-frequency information extraction model, this study re-trained the Visual Geometry Group (VGG) network using remote-sensing images. Experimental results reveal that the proposed method can recover different kinds of scenes from hazy images successfully and obtain excellent color consistency. Moreover, the ability of the proposed method to obtain clear edges and rich texture feature information makes it superior to the existing methods. |
---|---|
AbstractList | One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images. The proposed method, based on cycle generative adversarial networks, is called the edge-sharpening cycle-consistent adversarial network (ES-CCGAN). Most importantly, unlike existing methods, this approach does not require prior information; the training data are unsupervised, which mitigates the pressure of preparing the training data set. To enhance the ability to extract ground-object information, the generative network replaces a residual neural network (ResNet) with a dense convolutional network (DenseNet). The edge-sharpening loss function of the deep-learning model is designed to recover clear ground-object edges and obtain more detailed information from hazy images. In the high-frequency information extraction model, this study re-trained the Visual Geometry Group (VGG) network using remote-sensing images. Experimental results reveal that the proposed method can recover different kinds of scenes from hazy images successfully and obtain excellent color consistency. Moreover, the ability of the proposed method to obtain clear edges and rich texture feature information makes it superior to the existing methods. |
Author | Xu, Yongyang Xie, Mingyu Wu, Liang Xie, Zhong Hu, Anna Qiu, Qinjun |
Author_xml | – sequence: 1 givenname: Anna surname: Hu fullname: Hu, Anna – sequence: 2 givenname: Zhong surname: Xie fullname: Xie, Zhong – sequence: 3 givenname: Yongyang orcidid: 0000-0001-7421-4915 surname: Xu fullname: Xu, Yongyang – sequence: 4 givenname: Mingyu surname: Xie fullname: Xie, Mingyu – sequence: 5 givenname: Liang orcidid: 0000-0002-1304-6353 surname: Wu fullname: Wu, Liang – sequence: 6 givenname: Qinjun surname: Qiu fullname: Qiu, Qinjun |
BookMark | eNptkU9LJDEQxYMo6KoXP0EfReg1_7qnc1RZnQFZwV3PoSZdGaPdnTHJtLjgdzfjrOwi5pIi-b1XealvZHvwAxJyxOh3IRQ9DZFxLiWr-RbZ43TCS8kV3_6v3iWHMT7QvIRgiso98no3xNUSw-gitsUU_mBxi70foSusD8XULe7LW4y-WyXnh-JmmZzJd2smYfkLh-iGRTHrYYGxOIe1ScZm_TL4MddXOGCA5EYsztoRQ4TgsvwnpmcfHuMB2bHQRTz8u--Tu8sfvy-m5fXN1ezi7Lo0oq5TOa9VDtg2pp5YZqQyiluLDECAEY2A1lhEjgLmooaGguWtYJbjHKp6wqwR-2S28W09POhlcD2EF-3B6fcDHxYaQk7WoTZKClpR3swnQspK5GaWgaU1UlYxhdnreOOVIz6tMCbdu2iw62BAv4qaV4wxJVlDM0o3qAk-xoBWG5dg_ZEpgOs0o3o9OP1vcFly8kny8dov4DfJ7Zx1 |
CitedBy_id | crossref_primary_10_1109_LGRS_2022_3167476 crossref_primary_10_2174_0123520965275894231130114411 crossref_primary_10_1109_ACCESS_2022_3186004 crossref_primary_10_3390_rs13081602 crossref_primary_10_1109_TGRS_2024_3394399 crossref_primary_10_1109_ACCESS_2023_3247967 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_3390_rs13132506 crossref_primary_10_1142_S0218126624501378 crossref_primary_10_3390_jimaging7120251 crossref_primary_10_56294_dm2023276 crossref_primary_10_1109_TGRS_2021_3135975 crossref_primary_10_1007_s11063_023_11301_5 crossref_primary_10_1051_e3sconf_202343001027 crossref_primary_10_3390_s21103370 crossref_primary_10_1007_s42979_024_03571_0 crossref_primary_10_3390_su15118888 crossref_primary_10_1109_ACCESS_2023_3346273 crossref_primary_10_1109_TGRS_2024_3441631 crossref_primary_10_1109_TGRS_2023_3277699 crossref_primary_10_1371_journal_pone_0254664 crossref_primary_10_1007_s12145_022_00798_4 crossref_primary_10_3390_rs14010157 crossref_primary_10_3390_rs15164112 crossref_primary_10_1016_j_engappai_2024_108861 |
Cites_doi | 10.1145/3072959.3073659 10.1016/j.rse.2018.11.032 10.1109/CVPR.2017.19 10.1016/j.isprsjprs.2019.09.002 10.1109/ICCV.2017.481 10.1109/83.826787 10.1109/TIP.2006.877312 10.1109/TPAMI.2003.1201821 10.1364/JOSAA.18.002460 10.3390/rs10091461 10.1109/CVPR.2008.4587643 10.1016/j.isprsjprs.2019.05.003 10.1109/CVPR.2018.00854 10.1109/TIP.2016.2598681 10.1109/CVPR.2018.00577 10.1111/tgis.12514 10.1016/j.isprsjprs.2019.01.011 10.1016/j.isprsjprs.2019.09.003 10.1109/TIP.2006.887736 10.1109/83.841534 10.3390/rs10010144 10.1109/TIP.2004.834662 10.1109/CVPR.2016.90 10.1016/j.rse.2019.03.039 10.1109/CVPR.2018.00343 10.1016/j.rse.2019.04.032 10.1109/ICCV.2017.244 10.1109/IGARSS.2018.8519033 10.3103/S8756699014060089 10.1109/CVPR.2017.434 10.1145/325165.325247 10.1016/j.cities.2020.102612 10.1016/S1047-3203(03)00045-2 10.1016/j.isprsjprs.2019.09.016 10.1109/BigData.2018.8622477 10.1007/978-3-030-11021-5_5 10.1364/JOSA.61.000001 10.1109/83.660994 10.1016/j.isprsjprs.2019.09.018 10.1038/scientificamerican1277-108 10.1016/j.isprsjprs.2019.04.015 10.1109/CVPR.2017.243 10.1016/j.sigpro.2015.05.005 10.1109/CVPRW.2017.197 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3390/rs12244162 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c94305028b7344539c9f1af06e01519e 10_3390_rs12244162 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7S9 L.6 PQGLB PUEGO |
ID | FETCH-LOGICAL-c366t-b69339d8c67f1c49c92ffe1aa3ac383adcfee2e3ab36a80af2d31f2eba5671fc3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:22:32 EDT 2025 Fri Jul 11 08:09:53 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Tue Jul 01 01:58:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-b69339d8c67f1c49c92ffe1aa3ac383adcfee2e3ab36a80af2d31f2eba5671fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7421-4915 0000-0002-1304-6353 |
OpenAccessLink | https://doaj.org/article/c94305028b7344539c9f1af06e01519e |
PQID | 2511194180 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c94305028b7344539c9f1af06e01519e proquest_miscellaneous_2511194180 crossref_citationtrail_10_3390_rs12244162 crossref_primary_10_3390_rs12244162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201219 |
PublicationDateYYYYMMDD | 2020-12-19 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201219 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Li (ref_20) 2011; 32 ref_58 Elad (ref_12) 2003; 14 Ma (ref_28) 2019; 152 Meylan (ref_13) 2006; 15 Oakley (ref_14) 1998; 7 ref_52 ref_51 Tan (ref_15) 2001; 18 He (ref_22) 2010; 33 Cai (ref_60) 2016; 25 Land (ref_8) 1971; 61 ref_59 ref_61 Oakley (ref_19) 2007; 16 Polesel (ref_11) 2000; 9 Du (ref_25) 2019; 158 ref_24 ref_23 ref_21 Belega (ref_57) 2015; 117 Nayar (ref_16) 2002; Volume 2 Murasev (ref_55) 2014; 50 Zhang (ref_3) 2004; Volume 4 Narasimhan (ref_17) 2003; 25 Ienco (ref_27) 2019; 158 Lysaker (ref_56) 2004; 13 ref_36 ref_35 ref_33 Zhang (ref_29) 2019; 157 ref_32 Jeppesen (ref_42) 2019; 229 ref_31 Interdonato (ref_26) 2019; 149 ref_30 Li (ref_6) 2019; 153 ref_39 ref_38 ref_37 Land (ref_9) 1977; 237 Xu (ref_2) 2019; 23 He (ref_1) 2020; 99 Engin (ref_48) 2018; Volume 3 Xie (ref_5) 2011; Volume 1 Stark (ref_10) 2000; 9 Anantrasirichai (ref_43) 2019; 230 ref_47 ref_46 ref_45 Shwartz (ref_18) 2006; Volume 2 Zhong (ref_41) 2019; 221 ref_44 Chen (ref_7) 2019; 157 ref_40 Fitzgibbon (ref_53) 2014; Volume 7578 Iizuka (ref_34) 2017; 36 Perlin (ref_54) 1985; 19 Yang (ref_4) 2009; 45 ref_49 |
References_xml | – volume: 36 start-page: 107 year: 2017 ident: ref_34 article-title: Globally and locally consistent image completion publication-title: ACM Trans. Graph. doi: 10.1145/3072959.3073659 – ident: ref_49 – ident: ref_32 – volume: 221 start-page: 430 year: 2019 ident: ref_41 article-title: Deep learning based multi-temporal crop classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.032 – ident: ref_50 doi: 10.1109/CVPR.2017.19 – volume: Volume 4 start-page: 2436 year: 2004 ident: ref_3 article-title: Change detection of earthquake damaged buildings on remote sensing image and its application in seismic disaster assessment publication-title: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003 – volume: 157 start-page: 59 year: 2019 ident: ref_29 article-title: Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.002 – ident: ref_52 doi: 10.1109/ICCV.2017.481 – volume: 9 start-page: 505 year: 2000 ident: ref_11 article-title: Image enhancement via adaptive unsharp masking publication-title: IEEE Trans. Image Process. doi: 10.1109/83.826787 – volume: 15 start-page: 2820 year: 2006 ident: ref_13 article-title: High dynamic range image rendering with a retinex-based adaptive filter publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.877312 – volume: 25 start-page: 713 year: 2003 ident: ref_17 article-title: Contrast restoration of weather degraded images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1201821 – volume: 18 start-page: 2460 year: 2001 ident: ref_15 article-title: Physics-based approach to color image enhancement in poor visibility conditions publication-title: JOSA A doi: 10.1364/JOSAA.18.002460 – ident: ref_23 – ident: ref_30 doi: 10.3390/rs10091461 – ident: ref_21 doi: 10.1109/CVPR.2008.4587643 – ident: ref_58 – volume: Volume 7578 start-page: 430 year: 2014 ident: ref_53 article-title: Semantic segmentation with second-order pooling publication-title: European Conference on Computer Vision – volume: Volume 3 start-page: 825 year: 2018 ident: ref_48 article-title: Cycle-dehaze: Enhanced cyclegan for single image dehazing publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 153 start-page: 137 year: 2019 ident: ref_6 article-title: Thin cloud removal with residual symmetrical concatenation network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.05.003 – volume: Volume 1 start-page: 848 year: 2011 ident: ref_5 article-title: Improved single image dehazing using dark channel prior and multi-scale retinex publication-title: 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010 – ident: ref_36 doi: 10.1109/CVPR.2018.00854 – volume: 25 start-page: 5187 year: 2016 ident: ref_60 article-title: Dehazenet: An end-to-end system for single image haze removal publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2598681 – volume: 45 start-page: 204 year: 2009 ident: ref_4 article-title: Automatic image navigation method for remote sensing satellite publication-title: Comput. Eng. Appl. – volume: 32 start-page: 4129 year: 2011 ident: ref_20 article-title: Fast single image defogging algorithm publication-title: Comput. Eng. Des. – ident: ref_35 doi: 10.1109/CVPR.2018.00577 – volume: 23 start-page: 224 year: 2019 ident: ref_2 article-title: Multilane roads extracted from the OpenStreetMap urban road network using random forests publication-title: Transit. GIS. doi: 10.1111/tgis.12514 – volume: 149 start-page: 91 year: 2019 ident: ref_26 article-title: DuPLO: A DUal view Point deep Learning architecture for time series classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.01.011 – volume: 157 start-page: 93 year: 2019 ident: ref_7 article-title: Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.003 – volume: 16 start-page: 511 year: 2007 ident: ref_19 article-title: Correction of simple contrast loss in color images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.887736 – volume: 9 start-page: 889 year: 2000 ident: ref_10 article-title: Adaptive image contrast enhancement using generalizations of histogram equalization publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841534 – ident: ref_31 doi: 10.3390/rs10010144 – ident: ref_59 – volume: 13 start-page: 1345 year: 2004 ident: ref_56 article-title: Noise removal using smoothed normals and surface fitting publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.834662 – ident: ref_45 doi: 10.1109/CVPR.2016.90 – volume: 229 start-page: 247 year: 2019 ident: ref_42 article-title: A cloud detection algorithm for satellite imagery based on deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.039 – ident: ref_61 doi: 10.1109/CVPR.2018.00343 – ident: ref_24 – volume: 230 start-page: 111179 year: 2019 ident: ref_43 article-title: A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.032 – ident: ref_44 doi: 10.1109/ICCV.2017.244 – ident: ref_40 – ident: ref_37 – ident: ref_47 doi: 10.1109/IGARSS.2018.8519033 – volume: 50 start-page: 598 year: 2014 ident: ref_55 article-title: Interpolated estimation of noise in an airborne electromagnetic system for mineral exploration publication-title: Optoelectron. Instrum. Data Process. doi: 10.3103/S8756699014060089 – ident: ref_33 doi: 10.1109/CVPR.2017.434 – volume: 19 start-page: 287 year: 1985 ident: ref_54 article-title: An image synthesizer publication-title: ACM Siggraph Comput. Graph. doi: 10.1145/325165.325247 – volume: 99 start-page: 102612 year: 2020 ident: ref_1 article-title: Discovering the joint influence of urban facilities on crime occurrence using spatial co-location pattern mining publication-title: Cities. doi: 10.1016/j.cities.2020.102612 – volume: 14 start-page: 369 year: 2003 ident: ref_12 article-title: Reduced complexity retinex algorithm via the variational approach publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/S1047-3203(03)00045-2 – volume: 158 start-page: 11 year: 2019 ident: ref_27 article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 – ident: ref_38 doi: 10.1109/BigData.2018.8622477 – volume: 33 start-page: 2341 year: 2010 ident: ref_22 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_39 doi: 10.1007/978-3-030-11021-5_5 – volume: 61 start-page: 1 year: 1971 ident: ref_8 article-title: Lightness and retinex theory publication-title: JOSA doi: 10.1364/JOSA.61.000001 – volume: 7 start-page: 167 year: 1998 ident: ref_14 article-title: Improving image quality in poor visibility conditions using a physical model for contrast degradation publication-title: IEEE Trans. Image Process. doi: 10.1109/83.660994 – volume: Volume 2 start-page: 1984 year: 2006 ident: ref_18 article-title: Blind haze separation publication-title: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006 – volume: 158 start-page: 63 year: 2019 ident: ref_25 article-title: Multi-modal deep learning for landform recognition publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.018 – volume: 237 start-page: 108 year: 1977 ident: ref_9 article-title: The retinex theory of color vision publication-title: Sci. Am. doi: 10.1038/scientificamerican1277-108 – volume: 152 start-page: 166 year: 2019 ident: ref_28 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: Volume 2 start-page: 820 year: 2002 ident: ref_16 article-title: Vision in bad weather publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999 – ident: ref_51 doi: 10.1109/CVPR.2017.243 – volume: 117 start-page: 115 year: 2015 ident: ref_57 article-title: Frequency estimation by two- or three-point interpolated Fourier algorithms based on cosine windows publication-title: Signal. Process. doi: 10.1016/j.sigpro.2015.05.005 – ident: ref_46 doi: 10.1109/CVPRW.2017.197 |
SSID | ssj0000331904 |
Score | 2.391857 |
Snippet | One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4162 |
SubjectTerms | accuracy color CycleGAN (cycle generative adversarial networks) data collection deep learning dehazing extraction geometry image interpretation information information recovery pressure remote sensing remote-sensing image texture weather |
Title | Unsupervised Haze Removal for High-Resolution Optical Remote-Sensing Images Based on Improved Generative Adversarial Networks |
URI | https://www.proquest.com/docview/2511194180 https://doaj.org/article/c94305028b7344539c9f1af06e01519e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ALogXEFrpyBRcOVmM78W6O3bbbbQULalmpt8h2xnBos6tm9wAS_50ZO32gIvXCKVE0ymP8eR725BvGPhTKmRC8FSG4HBMUo0WZGS-0weDWS41mM7J9Ts1klp9eFBf3Wn1RTViiB06K2_PED16gF3QDneeFLn0ZpA2ZAXRksgSyvujz7iVT0QZrhFaWJz5SjXn93nVLe0gYfqi_PFAk6n9gh6NzGb9gz7uokO-nt9lka9Bssaddg_IfP1-y37OmXS1oXrdQ84n9BfwMruYIE45RJ6dqDUEr8QlH_MsiLlFHmSWIc6pSb77zkyu0Hi0fWboJiqUVBTxP5NNk-Xjs0NxawiWfphrx9hWbjY--HUxE1zlBeG3MUjhT4kfXQ28GQfocdaZCAGmtth5TUlv7AKBAW6eNHWY2qFrLoMDZwgxk8Po1W2_mDbxhXOkSlFM1_RNEVPtO4rBryIyyGB7o0GMfb7RZ-Y5WnLpbXFaYXpDmqzvN99j7W9lFItP4p9SIBuVWggiw4wWERdXBonoMFj22ezOkFU4Y2gWxDcxXbUU5lSxzOcy2_8eD3rJnilJwqYQs37H15fUKdjBOWbo-ezIcH_fZxv7h50_neBwdTb-e9SNQ_wAKEupx |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Haze+Removal+for+High-Resolution+Optical+Remote-Sensing+Images+Based+on+Improved+Generative+Adversarial+Networks&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Anna+Hu&rft.au=Zhong+Xie&rft.au=Yongyang+Xu&rft.au=Mingyu+Xie&rft.date=2020-12-19&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft.spage=4162&rft_id=info:doi/10.3390%2Frs12244162&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c94305028b7344539c9f1af06e01519e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |