Unsupervised Haze Removal for High-Resolution Optical Remote-Sensing Images Based on Improved Generative Adversarial Networks

One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images....

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 24; p. 4162
Main Authors Hu, Anna, Xie, Zhong, Xu, Yongyang, Xie, Mingyu, Wu, Liang, Qiu, Qinjun
Format Journal Article
LanguageEnglish
Published MDPI AG 19.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images. The proposed method, based on cycle generative adversarial networks, is called the edge-sharpening cycle-consistent adversarial network (ES-CCGAN). Most importantly, unlike existing methods, this approach does not require prior information; the training data are unsupervised, which mitigates the pressure of preparing the training data set. To enhance the ability to extract ground-object information, the generative network replaces a residual neural network (ResNet) with a dense convolutional network (DenseNet). The edge-sharpening loss function of the deep-learning model is designed to recover clear ground-object edges and obtain more detailed information from hazy images. In the high-frequency information extraction model, this study re-trained the Visual Geometry Group (VGG) network using remote-sensing images. Experimental results reveal that the proposed method can recover different kinds of scenes from hazy images successfully and obtain excellent color consistency. Moreover, the ability of the proposed method to obtain clear edges and rich texture feature information makes it superior to the existing methods.
AbstractList One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images. The proposed method, based on cycle generative adversarial networks, is called the edge-sharpening cycle-consistent adversarial network (ES-CCGAN). Most importantly, unlike existing methods, this approach does not require prior information; the training data are unsupervised, which mitigates the pressure of preparing the training data set. To enhance the ability to extract ground-object information, the generative network replaces a residual neural network (ResNet) with a dense convolutional network (DenseNet). The edge-sharpening loss function of the deep-learning model is designed to recover clear ground-object edges and obtain more detailed information from hazy images. In the high-frequency information extraction model, this study re-trained the Visual Geometry Group (VGG) network using remote-sensing images. Experimental results reveal that the proposed method can recover different kinds of scenes from hazy images successfully and obtain excellent color consistency. Moreover, the ability of the proposed method to obtain clear edges and rich texture feature information makes it superior to the existing methods.
Author Xu, Yongyang
Xie, Mingyu
Wu, Liang
Xie, Zhong
Hu, Anna
Qiu, Qinjun
Author_xml – sequence: 1
  givenname: Anna
  surname: Hu
  fullname: Hu, Anna
– sequence: 2
  givenname: Zhong
  surname: Xie
  fullname: Xie, Zhong
– sequence: 3
  givenname: Yongyang
  orcidid: 0000-0001-7421-4915
  surname: Xu
  fullname: Xu, Yongyang
– sequence: 4
  givenname: Mingyu
  surname: Xie
  fullname: Xie, Mingyu
– sequence: 5
  givenname: Liang
  orcidid: 0000-0002-1304-6353
  surname: Wu
  fullname: Wu, Liang
– sequence: 6
  givenname: Qinjun
  surname: Qiu
  fullname: Qiu, Qinjun
BookMark eNptkU9LJDEQxYMo6KoXP0EfReg1_7qnc1RZnQFZwV3PoSZdGaPdnTHJtLjgdzfjrOwi5pIi-b1XealvZHvwAxJyxOh3IRQ9DZFxLiWr-RbZ43TCS8kV3_6v3iWHMT7QvIRgiso98no3xNUSw-gitsUU_mBxi70foSusD8XULe7LW4y-WyXnh-JmmZzJd2smYfkLh-iGRTHrYYGxOIe1ScZm_TL4MddXOGCA5EYsztoRQ4TgsvwnpmcfHuMB2bHQRTz8u--Tu8sfvy-m5fXN1ezi7Lo0oq5TOa9VDtg2pp5YZqQyiluLDECAEY2A1lhEjgLmooaGguWtYJbjHKp6wqwR-2S28W09POhlcD2EF-3B6fcDHxYaQk7WoTZKClpR3swnQspK5GaWgaU1UlYxhdnreOOVIz6tMCbdu2iw62BAv4qaV4wxJVlDM0o3qAk-xoBWG5dg_ZEpgOs0o3o9OP1vcFly8kny8dov4DfJ7Zx1
CitedBy_id crossref_primary_10_1109_LGRS_2022_3167476
crossref_primary_10_2174_0123520965275894231130114411
crossref_primary_10_1109_ACCESS_2022_3186004
crossref_primary_10_3390_rs13081602
crossref_primary_10_1109_TGRS_2024_3394399
crossref_primary_10_1109_ACCESS_2023_3247967
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_3390_rs13132506
crossref_primary_10_1142_S0218126624501378
crossref_primary_10_3390_jimaging7120251
crossref_primary_10_56294_dm2023276
crossref_primary_10_1109_TGRS_2021_3135975
crossref_primary_10_1007_s11063_023_11301_5
crossref_primary_10_1051_e3sconf_202343001027
crossref_primary_10_3390_s21103370
crossref_primary_10_1007_s42979_024_03571_0
crossref_primary_10_3390_su15118888
crossref_primary_10_1109_ACCESS_2023_3346273
crossref_primary_10_1109_TGRS_2024_3441631
crossref_primary_10_1109_TGRS_2023_3277699
crossref_primary_10_1371_journal_pone_0254664
crossref_primary_10_1007_s12145_022_00798_4
crossref_primary_10_3390_rs14010157
crossref_primary_10_3390_rs15164112
crossref_primary_10_1016_j_engappai_2024_108861
Cites_doi 10.1145/3072959.3073659
10.1016/j.rse.2018.11.032
10.1109/CVPR.2017.19
10.1016/j.isprsjprs.2019.09.002
10.1109/ICCV.2017.481
10.1109/83.826787
10.1109/TIP.2006.877312
10.1109/TPAMI.2003.1201821
10.1364/JOSAA.18.002460
10.3390/rs10091461
10.1109/CVPR.2008.4587643
10.1016/j.isprsjprs.2019.05.003
10.1109/CVPR.2018.00854
10.1109/TIP.2016.2598681
10.1109/CVPR.2018.00577
10.1111/tgis.12514
10.1016/j.isprsjprs.2019.01.011
10.1016/j.isprsjprs.2019.09.003
10.1109/TIP.2006.887736
10.1109/83.841534
10.3390/rs10010144
10.1109/TIP.2004.834662
10.1109/CVPR.2016.90
10.1016/j.rse.2019.03.039
10.1109/CVPR.2018.00343
10.1016/j.rse.2019.04.032
10.1109/ICCV.2017.244
10.1109/IGARSS.2018.8519033
10.3103/S8756699014060089
10.1109/CVPR.2017.434
10.1145/325165.325247
10.1016/j.cities.2020.102612
10.1016/S1047-3203(03)00045-2
10.1016/j.isprsjprs.2019.09.016
10.1109/BigData.2018.8622477
10.1007/978-3-030-11021-5_5
10.1364/JOSA.61.000001
10.1109/83.660994
10.1016/j.isprsjprs.2019.09.018
10.1038/scientificamerican1277-108
10.1016/j.isprsjprs.2019.04.015
10.1109/CVPR.2017.243
10.1016/j.sigpro.2015.05.005
10.1109/CVPRW.2017.197
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3390/rs12244162
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c94305028b7344539c9f1af06e01519e
10_3390_rs12244162
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7S9
L.6
PQGLB
PUEGO
ID FETCH-LOGICAL-c366t-b69339d8c67f1c49c92ffe1aa3ac383adcfee2e3ab36a80af2d31f2eba5671fc3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:22:32 EDT 2025
Fri Jul 11 08:09:53 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Tue Jul 01 01:58:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-b69339d8c67f1c49c92ffe1aa3ac383adcfee2e3ab36a80af2d31f2eba5671fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7421-4915
0000-0002-1304-6353
OpenAccessLink https://doaj.org/article/c94305028b7344539c9f1af06e01519e
PQID 2511194180
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_c94305028b7344539c9f1af06e01519e
proquest_miscellaneous_2511194180
crossref_citationtrail_10_3390_rs12244162
crossref_primary_10_3390_rs12244162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201219
PublicationDateYYYYMMDD 2020-12-19
PublicationDate_xml – month: 12
  year: 2020
  text: 20201219
  day: 19
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Li (ref_20) 2011; 32
ref_58
Elad (ref_12) 2003; 14
Ma (ref_28) 2019; 152
Meylan (ref_13) 2006; 15
Oakley (ref_14) 1998; 7
ref_52
ref_51
Tan (ref_15) 2001; 18
He (ref_22) 2010; 33
Cai (ref_60) 2016; 25
Land (ref_8) 1971; 61
ref_59
ref_61
Oakley (ref_19) 2007; 16
Polesel (ref_11) 2000; 9
Du (ref_25) 2019; 158
ref_24
ref_23
ref_21
Belega (ref_57) 2015; 117
Nayar (ref_16) 2002; Volume 2
Murasev (ref_55) 2014; 50
Zhang (ref_3) 2004; Volume 4
Narasimhan (ref_17) 2003; 25
Ienco (ref_27) 2019; 158
Lysaker (ref_56) 2004; 13
ref_36
ref_35
ref_33
Zhang (ref_29) 2019; 157
ref_32
Jeppesen (ref_42) 2019; 229
ref_31
Interdonato (ref_26) 2019; 149
ref_30
Li (ref_6) 2019; 153
ref_39
ref_38
ref_37
Land (ref_9) 1977; 237
Xu (ref_2) 2019; 23
He (ref_1) 2020; 99
Engin (ref_48) 2018; Volume 3
Xie (ref_5) 2011; Volume 1
Stark (ref_10) 2000; 9
Anantrasirichai (ref_43) 2019; 230
ref_47
ref_46
ref_45
Shwartz (ref_18) 2006; Volume 2
Zhong (ref_41) 2019; 221
ref_44
Chen (ref_7) 2019; 157
ref_40
Fitzgibbon (ref_53) 2014; Volume 7578
Iizuka (ref_34) 2017; 36
Perlin (ref_54) 1985; 19
Yang (ref_4) 2009; 45
ref_49
References_xml – volume: 36
  start-page: 107
  year: 2017
  ident: ref_34
  article-title: Globally and locally consistent image completion
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073659
– ident: ref_49
– ident: ref_32
– volume: 221
  start-page: 430
  year: 2019
  ident: ref_41
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– ident: ref_50
  doi: 10.1109/CVPR.2017.19
– volume: Volume 4
  start-page: 2436
  year: 2004
  ident: ref_3
  article-title: Change detection of earthquake damaged buildings on remote sensing image and its application in seismic disaster assessment
  publication-title: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003
– volume: 157
  start-page: 59
  year: 2019
  ident: ref_29
  article-title: Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.002
– ident: ref_52
  doi: 10.1109/ICCV.2017.481
– volume: 9
  start-page: 505
  year: 2000
  ident: ref_11
  article-title: Image enhancement via adaptive unsharp masking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.826787
– volume: 15
  start-page: 2820
  year: 2006
  ident: ref_13
  article-title: High dynamic range image rendering with a retinex-based adaptive filter
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.877312
– volume: 25
  start-page: 713
  year: 2003
  ident: ref_17
  article-title: Contrast restoration of weather degraded images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1201821
– volume: 18
  start-page: 2460
  year: 2001
  ident: ref_15
  article-title: Physics-based approach to color image enhancement in poor visibility conditions
  publication-title: JOSA A
  doi: 10.1364/JOSAA.18.002460
– ident: ref_23
– ident: ref_30
  doi: 10.3390/rs10091461
– ident: ref_21
  doi: 10.1109/CVPR.2008.4587643
– ident: ref_58
– volume: Volume 7578
  start-page: 430
  year: 2014
  ident: ref_53
  article-title: Semantic segmentation with second-order pooling
  publication-title: European Conference on Computer Vision
– volume: Volume 3
  start-page: 825
  year: 2018
  ident: ref_48
  article-title: Cycle-dehaze: Enhanced cyclegan for single image dehazing
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 153
  start-page: 137
  year: 2019
  ident: ref_6
  article-title: Thin cloud removal with residual symmetrical concatenation network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.05.003
– volume: Volume 1
  start-page: 848
  year: 2011
  ident: ref_5
  article-title: Improved single image dehazing using dark channel prior and multi-scale retinex
  publication-title: 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010
– ident: ref_36
  doi: 10.1109/CVPR.2018.00854
– volume: 25
  start-page: 5187
  year: 2016
  ident: ref_60
  article-title: Dehazenet: An end-to-end system for single image haze removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– volume: 45
  start-page: 204
  year: 2009
  ident: ref_4
  article-title: Automatic image navigation method for remote sensing satellite
  publication-title: Comput. Eng. Appl.
– volume: 32
  start-page: 4129
  year: 2011
  ident: ref_20
  article-title: Fast single image defogging algorithm
  publication-title: Comput. Eng. Des.
– ident: ref_35
  doi: 10.1109/CVPR.2018.00577
– volume: 23
  start-page: 224
  year: 2019
  ident: ref_2
  article-title: Multilane roads extracted from the OpenStreetMap urban road network using random forests
  publication-title: Transit. GIS.
  doi: 10.1111/tgis.12514
– volume: 149
  start-page: 91
  year: 2019
  ident: ref_26
  article-title: DuPLO: A DUal view Point deep Learning architecture for time series classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.011
– volume: 157
  start-page: 93
  year: 2019
  ident: ref_7
  article-title: Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.003
– volume: 16
  start-page: 511
  year: 2007
  ident: ref_19
  article-title: Correction of simple contrast loss in color images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.887736
– volume: 9
  start-page: 889
  year: 2000
  ident: ref_10
  article-title: Adaptive image contrast enhancement using generalizations of histogram equalization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841534
– ident: ref_31
  doi: 10.3390/rs10010144
– ident: ref_59
– volume: 13
  start-page: 1345
  year: 2004
  ident: ref_56
  article-title: Noise removal using smoothed normals and surface fitting
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.834662
– ident: ref_45
  doi: 10.1109/CVPR.2016.90
– volume: 229
  start-page: 247
  year: 2019
  ident: ref_42
  article-title: A cloud detection algorithm for satellite imagery based on deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.039
– ident: ref_61
  doi: 10.1109/CVPR.2018.00343
– ident: ref_24
– volume: 230
  start-page: 111179
  year: 2019
  ident: ref_43
  article-title: A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.032
– ident: ref_44
  doi: 10.1109/ICCV.2017.244
– ident: ref_40
– ident: ref_37
– ident: ref_47
  doi: 10.1109/IGARSS.2018.8519033
– volume: 50
  start-page: 598
  year: 2014
  ident: ref_55
  article-title: Interpolated estimation of noise in an airborne electromagnetic system for mineral exploration
  publication-title: Optoelectron. Instrum. Data Process.
  doi: 10.3103/S8756699014060089
– ident: ref_33
  doi: 10.1109/CVPR.2017.434
– volume: 19
  start-page: 287
  year: 1985
  ident: ref_54
  article-title: An image synthesizer
  publication-title: ACM Siggraph Comput. Graph.
  doi: 10.1145/325165.325247
– volume: 99
  start-page: 102612
  year: 2020
  ident: ref_1
  article-title: Discovering the joint influence of urban facilities on crime occurrence using spatial co-location pattern mining
  publication-title: Cities.
  doi: 10.1016/j.cities.2020.102612
– volume: 14
  start-page: 369
  year: 2003
  ident: ref_12
  article-title: Reduced complexity retinex algorithm via the variational approach
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/S1047-3203(03)00045-2
– volume: 158
  start-page: 11
  year: 2019
  ident: ref_27
  article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
– ident: ref_38
  doi: 10.1109/BigData.2018.8622477
– volume: 33
  start-page: 2341
  year: 2010
  ident: ref_22
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_39
  doi: 10.1007/978-3-030-11021-5_5
– volume: 61
  start-page: 1
  year: 1971
  ident: ref_8
  article-title: Lightness and retinex theory
  publication-title: JOSA
  doi: 10.1364/JOSA.61.000001
– volume: 7
  start-page: 167
  year: 1998
  ident: ref_14
  article-title: Improving image quality in poor visibility conditions using a physical model for contrast degradation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.660994
– volume: Volume 2
  start-page: 1984
  year: 2006
  ident: ref_18
  article-title: Blind haze separation
  publication-title: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006
– volume: 158
  start-page: 63
  year: 2019
  ident: ref_25
  article-title: Multi-modal deep learning for landform recognition
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.018
– volume: 237
  start-page: 108
  year: 1977
  ident: ref_9
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– volume: 152
  start-page: 166
  year: 2019
  ident: ref_28
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: Volume 2
  start-page: 820
  year: 2002
  ident: ref_16
  article-title: Vision in bad weather
  publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999
– ident: ref_51
  doi: 10.1109/CVPR.2017.243
– volume: 117
  start-page: 115
  year: 2015
  ident: ref_57
  article-title: Frequency estimation by two- or three-point interpolated Fourier algorithms based on cosine windows
  publication-title: Signal. Process.
  doi: 10.1016/j.sigpro.2015.05.005
– ident: ref_46
  doi: 10.1109/CVPRW.2017.197
SSID ssj0000331904
Score 2.391857
Snippet One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4162
SubjectTerms accuracy
color
CycleGAN (cycle generative adversarial networks)
data collection
deep learning
dehazing
extraction
geometry
image interpretation
information
information recovery
pressure
remote sensing
remote-sensing image
texture
weather
Title Unsupervised Haze Removal for High-Resolution Optical Remote-Sensing Images Based on Improved Generative Adversarial Networks
URI https://www.proquest.com/docview/2511194180
https://doaj.org/article/c94305028b7344539c9f1af06e01519e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ALogXEFrpyBRcOVmM78W6O3bbbbQULalmpt8h2xnBos6tm9wAS_50ZO32gIvXCKVE0ymP8eR725BvGPhTKmRC8FSG4HBMUo0WZGS-0weDWS41mM7J9Ts1klp9eFBf3Wn1RTViiB06K2_PED16gF3QDneeFLn0ZpA2ZAXRksgSyvujz7iVT0QZrhFaWJz5SjXn93nVLe0gYfqi_PFAk6n9gh6NzGb9gz7uokO-nt9lka9Bssaddg_IfP1-y37OmXS1oXrdQ84n9BfwMruYIE45RJ6dqDUEr8QlH_MsiLlFHmSWIc6pSb77zkyu0Hi0fWboJiqUVBTxP5NNk-Xjs0NxawiWfphrx9hWbjY--HUxE1zlBeG3MUjhT4kfXQ28GQfocdaZCAGmtth5TUlv7AKBAW6eNHWY2qFrLoMDZwgxk8Po1W2_mDbxhXOkSlFM1_RNEVPtO4rBryIyyGB7o0GMfb7RZ-Y5WnLpbXFaYXpDmqzvN99j7W9lFItP4p9SIBuVWggiw4wWERdXBonoMFj22ezOkFU4Y2gWxDcxXbUU5lSxzOcy2_8eD3rJnilJwqYQs37H15fUKdjBOWbo-ezIcH_fZxv7h50_neBwdTb-e9SNQ_wAKEupx
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Haze+Removal+for+High-Resolution+Optical+Remote-Sensing+Images+Based+on+Improved+Generative+Adversarial+Networks&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Anna+Hu&rft.au=Zhong+Xie&rft.au=Yongyang+Xu&rft.au=Mingyu+Xie&rft.date=2020-12-19&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=24&rft.spage=4162&rft_id=info:doi/10.3390%2Frs12244162&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c94305028b7344539c9f1af06e01519e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon