Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting

[Display omitted] •The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The elec...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 605; pp. 888 - 896
Main Authors Chen, Meng-Ting, Duan, Jiao-Jiao, Feng, Jiu-Ju, Mei, Li-Ping, Jiao, Yang, Zhang, Lu, Wang, Ai-Jun
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2021.07.101

Cover

Loading…
Abstract [Display omitted] •The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The electrocatalyst exhibited excellent OER, HER, and overall water splitting activity in the alkaline solutions. To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm−2 towards the OER and 73 mV at 10 mA cm−2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm−2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.
AbstractList [Display omitted] •The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The electrocatalyst exhibited excellent OER, HER, and overall water splitting activity in the alkaline solutions. To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm−2 towards the OER and 73 mV at 10 mA cm−2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm−2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.
To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni₂P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni₂P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni₂P/NF showed the low overpotentials of 226 mV at 30 mA cm⁻² towards the OER and 73 mV at 10 mA cm⁻² for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm⁻². The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.
To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm-2 towards the OER and 73 mV at 10 mA cm-2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm-2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm-2 towards the OER and 73 mV at 10 mA cm-2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm-2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.
Author Chen, Meng-Ting
Zhang, Lu
Wang, Ai-Jun
Jiao, Yang
Duan, Jiao-Jiao
Feng, Jiu-Ju
Mei, Li-Ping
Author_xml – sequence: 1
  givenname: Meng-Ting
  surname: Chen
  fullname: Chen, Meng-Ting
– sequence: 2
  givenname: Jiao-Jiao
  surname: Duan
  fullname: Duan, Jiao-Jiao
– sequence: 3
  givenname: Jiu-Ju
  surname: Feng
  fullname: Feng, Jiu-Ju
– sequence: 4
  givenname: Li-Ping
  surname: Mei
  fullname: Mei, Li-Ping
– sequence: 5
  givenname: Yang
  surname: Jiao
  fullname: Jiao, Yang
– sequence: 6
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
– sequence: 7
  givenname: Ai-Jun
  surname: Wang
  fullname: Wang, Ai-Jun
  email: ajwang@zjnu.cn
BookMark eNqNkcFu1DAQhi3USmwLL8DJRw5kGSdrO5G4oIrSShVwKGfLccbUi9cOtlO0L8Ez19Fy4lBxsjT-vtHo_y_IWYgBCXnDYMuAiff77d64vG2hZVuQ6-wF2TAYeCMZdGdkA_WnGeQgX5KLnPcAjHE-bMif2xTDO5oe4uSWQ2PiFGec6BfXfqNBh5gfEEumOiV9zDQv8xxTqUAMNDjzEz21UR-orkigaK0zDkOho7NLMMXFoD1Fj6akaHTR_phLNRKNj5i09_S3Lphonr0rxYUfr8i51T7j67_vJfl-_en-6qa5-_r59urjXWM6IUozst0k-tGi7aSUQgOfhBW9NjuLvZgE6zrWAu-gXsQmzoYRxpH3cgd26LmW3SV5e9o7p_hrwVzUwWWD3uuAccmqFZ3gsGP8P1AuAPggZFvR_oSaFHNOaJVxRa8plKSdVwzU2pbaq7UttbalQK6zqrb_qHNyB52Oz0sfThLWqB4dJpXX-A1OLtXI1RTdc_oTkiyzMQ
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_165934
crossref_primary_10_1016_j_jcis_2021_12_119
crossref_primary_10_1002_er_7639
crossref_primary_10_1021_acsanm_3c05193
crossref_primary_10_1039_D2NR05964A
crossref_primary_10_1016_j_enconman_2024_119227
crossref_primary_10_1016_j_jallcom_2023_169699
crossref_primary_10_1002_smll_202310666
crossref_primary_10_1002_adsu_202400465
crossref_primary_10_1007_s11581_023_05269_4
crossref_primary_10_1007_s11581_021_04290_9
crossref_primary_10_1039_D2NJ05473F
crossref_primary_10_1016_j_jallcom_2024_174896
crossref_primary_10_1016_j_cej_2022_136833
crossref_primary_10_1142_S1793604722510146
crossref_primary_10_1016_j_est_2023_107885
crossref_primary_10_1016_j_ijhydene_2022_10_065
crossref_primary_10_1016_j_flatc_2023_100499
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1039_D3DT00935A
crossref_primary_10_1016_j_mtsust_2023_100413
crossref_primary_10_1016_j_colcom_2023_100727
crossref_primary_10_1021_acs_langmuir_3c00971
crossref_primary_10_1016_j_ijhydene_2023_04_182
crossref_primary_10_1039_D2QM00964A
crossref_primary_10_1016_j_ccr_2024_215722
crossref_primary_10_1016_j_jallcom_2022_165757
crossref_primary_10_1016_j_jallcom_2025_179044
crossref_primary_10_1016_j_jtice_2021_104182
crossref_primary_10_1016_j_ijhydene_2023_07_267
crossref_primary_10_1016_j_ccr_2022_214952
crossref_primary_10_1016_j_inoche_2022_109614
crossref_primary_10_1016_j_mcat_2023_113327
crossref_primary_10_1039_D2RA00447J
crossref_primary_10_1002_ente_202301504
crossref_primary_10_1016_j_compositesb_2023_110601
crossref_primary_10_1016_j_cej_2021_134274
crossref_primary_10_1016_j_surfin_2024_105728
crossref_primary_10_1016_j_apcatb_2022_121430
crossref_primary_10_1016_j_apsusc_2022_154905
crossref_primary_10_1002_er_7971
crossref_primary_10_1039_D4QI01127A
crossref_primary_10_1016_j_jelechem_2022_116681
crossref_primary_10_1016_j_flatc_2022_100439
crossref_primary_10_3390_nano13050827
crossref_primary_10_1016_j_jmrt_2021_11_077
crossref_primary_10_1016_j_jcis_2021_09_121
crossref_primary_10_1039_D3DT00448A
crossref_primary_10_1016_j_apcatb_2024_124295
crossref_primary_10_1021_acs_inorgchem_3c00703
crossref_primary_10_3390_nano14080698
crossref_primary_10_1007_s10853_025_10604_3
crossref_primary_10_1016_j_cej_2022_137790
crossref_primary_10_1039_D2CE00886F
crossref_primary_10_1016_j_diamond_2025_112070
crossref_primary_10_1016_j_jcis_2024_04_179
crossref_primary_10_1016_j_mtcomm_2023_105478
crossref_primary_10_1039_D3TA04720B
crossref_primary_10_1016_j_apmt_2022_101502
crossref_primary_10_1021_acsanm_1c03128
crossref_primary_10_1016_j_apcatb_2022_121667
crossref_primary_10_1016_j_ijhydene_2023_01_212
crossref_primary_10_1016_j_ijhydene_2022_08_045
crossref_primary_10_1016_j_jcis_2024_09_110
crossref_primary_10_1016_j_apcatb_2024_124698
crossref_primary_10_1016_j_jelechem_2024_118899
crossref_primary_10_1016_j_jallcom_2022_167914
crossref_primary_10_1002_tcr_202200244
crossref_primary_10_1016_j_electacta_2023_142191
crossref_primary_10_1016_j_jallcom_2022_168206
crossref_primary_10_1039_D3DT03636G
crossref_primary_10_1016_j_jcis_2024_04_040
crossref_primary_10_1016_j_ijhydene_2022_11_227
crossref_primary_10_1016_j_jallcom_2022_166665
crossref_primary_10_1016_j_jcis_2022_06_166
crossref_primary_10_1016_j_jcis_2024_08_050
crossref_primary_10_1016_j_jcis_2021_10_144
crossref_primary_10_1016_j_jcis_2022_08_055
crossref_primary_10_1016_j_est_2024_111303
crossref_primary_10_1016_j_flatc_2022_100334
crossref_primary_10_1016_j_jcis_2023_09_144
crossref_primary_10_1002_cssc_202400162
crossref_primary_10_1016_j_cej_2021_133643
crossref_primary_10_1002_tcr_202300013
crossref_primary_10_1021_acssuschemeng_4c00479
crossref_primary_10_1002_cctc_202300562
crossref_primary_10_1016_j_cej_2021_132953
crossref_primary_10_1016_j_electacta_2021_139337
crossref_primary_10_1016_j_ijhydene_2023_11_297
crossref_primary_10_1021_acsanm_4c00481
crossref_primary_10_1007_s12209_024_00389_y
crossref_primary_10_1016_j_apcatb_2024_124072
crossref_primary_10_1016_j_ijhydene_2023_09_084
crossref_primary_10_1016_j_ces_2024_120100
crossref_primary_10_1039_D3DT01814H
crossref_primary_10_1021_acsanm_2c04942
crossref_primary_10_1021_acsanm_3c01222
crossref_primary_10_1021_acs_inorgchem_2c03529
crossref_primary_10_1021_acs_jpcc_2c03819
crossref_primary_10_1016_j_ijhydene_2023_04_147
crossref_primary_10_1016_j_jcis_2023_09_156
crossref_primary_10_1021_acsanm_2c03218
crossref_primary_10_1016_j_jcis_2024_12_143
crossref_primary_10_1016_j_jallcom_2024_173752
crossref_primary_10_1002_cctc_202101933
crossref_primary_10_1002_er_8198
crossref_primary_10_1016_j_cej_2021_132301
crossref_primary_10_1016_j_jcis_2025_01_077
crossref_primary_10_1021_acs_energyfuels_2c00729
crossref_primary_10_1016_j_jcis_2022_05_110
crossref_primary_10_1016_j_jtice_2021_10_018
crossref_primary_10_1016_j_jcis_2025_01_070
crossref_primary_10_1016_j_jelechem_2023_117648
crossref_primary_10_1002_pssr_202200287
crossref_primary_10_1002_slct_202103472
crossref_primary_10_1016_j_mtchem_2023_101432
crossref_primary_10_1021_acsanm_4c05305
crossref_primary_10_1016_j_cclet_2022_03_071
crossref_primary_10_1002_smll_202301294
crossref_primary_10_3390_nano12203633
crossref_primary_10_2139_ssrn_4191189
crossref_primary_10_1016_j_ijhydene_2023_03_085
crossref_primary_10_1016_j_cej_2022_135281
crossref_primary_10_1021_acs_inorgchem_2c02666
crossref_primary_10_1007_s11581_022_04824_9
crossref_primary_10_1016_j_ijhydene_2023_11_127
crossref_primary_10_1039_D1NJ03934B
crossref_primary_10_1007_s10800_023_02025_4
crossref_primary_10_1149_1945_7111_acf527
crossref_primary_10_1016_j_jcis_2022_10_041
crossref_primary_10_1002_er_7416
crossref_primary_10_1016_j_jallcom_2024_176375
crossref_primary_10_1088_1361_6463_ac3037
crossref_primary_10_1016_j_matre_2021_100075
crossref_primary_10_1016_j_jcis_2021_08_144
crossref_primary_10_1021_acsanm_4c05952
crossref_primary_10_1021_acssuschemeng_2c05673
crossref_primary_10_1016_j_jcis_2022_03_149
crossref_primary_10_1016_j_cej_2021_134188
crossref_primary_10_1016_j_flatc_2022_100368
crossref_primary_10_1039_D2DT02312A
crossref_primary_10_1016_j_jcis_2022_02_066
crossref_primary_10_1016_j_envpol_2023_122835
crossref_primary_10_1039_D2NR07150A
crossref_primary_10_1016_j_jelechem_2021_115928
crossref_primary_10_1016_j_jcis_2021_11_101
crossref_primary_10_1016_j_jcis_2022_05_133
crossref_primary_10_1016_j_apcatb_2021_120996
crossref_primary_10_1016_j_jallcom_2024_173894
Cites_doi 10.1016/j.jcis.2019.11.039
10.1039/C8TA10856K
10.1039/C6TA06496E
10.1039/C9NR01735F
10.1002/adfm.201702513
10.1039/C7TA04893A
10.1039/C9TA09239K
10.1039/C9CE01094G
10.1016/j.ijhydene.2019.05.157
10.1021/acssuschemeng.7b04743
10.1039/C6TA05604K
10.1016/j.jelechem.2019.113795
10.1016/j.cattod.2019.04.019
10.1007/s40820-019-0289-6
10.1039/C4CS00448E
10.1016/j.ijhydene.2019.12.155
10.1039/C8TA07162D
10.1016/j.jallcom.2020.154210
10.1016/j.apcatb.2020.119327
10.1021/acssuschemeng.9b01355
10.1016/j.jcis.2020.02.073
10.1016/j.jcis.2020.12.062
10.1016/j.apcatb.2019.01.045
10.1007/s12274-018-2226-2
10.1002/smll.201703257
10.1002/adfm.201910498
10.1142/S1793292020500241
10.1016/j.apcatb.2019.118376
10.1021/jacs.7b03507
10.1039/C7TA07956G
10.1039/C6TA10509B
10.1021/acsaem.0c01538
10.1016/j.electacta.2020.137567
10.1016/j.jcis.2019.01.096
10.1016/j.jechem.2020.07.005
10.1016/j.apsusc.2020.146918
10.1021/acs.inorgchem.0c00959
10.1039/C7TA10977F
10.1016/j.cej.2020.124525
10.1021/acsami.8b00986
10.1016/j.apsusc.2020.147950
10.1021/acsami.9b15208
10.1016/j.jcis.2020.06.124
10.1039/C9TA07289F
10.1039/C9TA01088B
10.1002/smll.201907468
10.1002/adma.201705045
10.1021/acs.nanolett.6b03803
10.1016/j.jcis.2020.08.005
10.1016/j.electacta.2020.137080
10.1021/acs.nanolett.9b03460
10.1016/j.nanoen.2016.04.006
10.1039/C8TA11072G
10.1021/acs.chemmater.6b02610
10.1039/C5CS00434A
10.1039/C8TA08223E
10.1016/j.electacta.2017.05.015
10.1039/C8TA02492H
10.1039/C4NR03371J
10.1002/adfm.202100614
10.1002/adma.201704574
10.1016/j.apcatb.2020.118880
10.1002/adfm.201505626
10.1016/j.jcis.2020.12.011
10.1016/j.electacta.2020.137536
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2021.07.101
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 896
ExternalDocumentID 10_1016_j_jcis_2021_07_101
S002197972101153X
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-b14d68bfef37776a05d6f68ac4fe86d6133120530eff1d519b0bb58740f985a73
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 04:10:20 EDT 2025
Fri Jul 11 15:07:27 EDT 2025
Tue Jul 01 01:19:08 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Fri Feb 23 02:38:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bifunctional electrocatalyst
Electrocatalysis
Hydrogen evolution reaction
Oxygen evolution reaction
Overall water splitting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-b14d68bfef37776a05d6f68ac4fe86d6133120530eff1d519b0bb58740f985a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2560059672
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2636504157
proquest_miscellaneous_2560059672
crossref_citationtrail_10_1016_j_jcis_2021_07_101
crossref_primary_10_1016_j_jcis_2021_07_101
elsevier_sciencedirect_doi_10_1016_j_jcis_2021_07_101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jiang, Liu, Zeng, Ai (b0025) 2017; 5
Chen, Ma, Liu, Li, Su, Davey, Qiao (b0250) 2016; 26
Xiao, Zhang, Li (b0065) 2017; 242
Han, Zhang, Duan, Wang, Zhang, Huang, Feng (b0175) 2020; 45
Tang, Jiang, Niu, Liu, Luo, Chen, Jin, Gao, Wan, Hu (b0240) 2017; 139
Yan, Sun, Hu, Ning, Zhong, Zhang, Hu (b0190) 2019; 541
Wang, Sun, Yu, Liu, Wang, Jiang, Xie (b0140) 2019; 7
Babu, Huang, Anandhababu, Wang, Si, Wu, Li, Wang, Yao (b0115) 2019; 7
Yang, Li, Lu, Sun, Liu (b0245) 2014; 6
Lv, Hu, Chen, Ren, Liu, Yuan (b0160) 2019; 7
Ma, Yang, Chen, Yuan (b0290) 2019; 12
Zhang, Duan, Mei, Feng, Yuan, Wang (b0305) 2020; 580
Duan, Zhang, Feng, Zhang, Zhang, Wang (b0135) 2021; 581
Ming, Liang, Shi, Xu, Mei, Wang (b0255) 2016; 4
Zou, Wang, Huang, Wu, Gao (b0325) 2019; 7
Niu, Lin, Chen, Feng, Zhang, Wang (b0165) 2021; 536
Ahn, Manthiram (b0315) 2017; 5
Diao, Qin, Zhao, Shi, Liu, He, Ma, Li, He (b0015) 2018; 6
Cheng, Zhang, Lv, Shao, Wang, Wang (b0040) 2019; 15
Du, Ma, Li (b0145) 2020; 16
Yan, Wei, Wu, Yang, Zhu, Cheng, Ye, Zhu, Yan, Cao, Wang, Pan (b0110) 2018; 6
Shen, Wang, Qian, Chen, Jiang, Luo, Yin (b0130) 2020; 278
Tang, Xie, Wang, Du, Asiri, Luo, Sun (b0180) 2016; 4
Huang, Sun, Zhang, Zou, Yan, Cong, Lei, Dai, Guo, Lu, Li, Xiong (b0210) 2018; 30
Liu, Tao, Dan, Hai, Gong (b0220) 2019; 21
Zhang, Xiao, Xie, Liang, Chen, Tang (b0295) 2016; 28
Huang, Gong, Xu, Qin, Ma, Yang, Wang, Ma, Mu, Li (b0100) 2020; 569
Feng, Wang, Huang, Dong, Ji, Li, Cao, Feng, Jin, Wang (b0185) 2020; 390
Chen, Fu, Jin, Zang, Liu, Zhang, Huang, Kou, Wang, Zhou, Mai (b0280) 2021; 55
Zhang, Zhu, Wu, Stavitski, Lui, Kim, Liu, Huang, Luan, Zhou, Jiang, Huang, Hu, Wang, Francisco (b0095) 2020; 20
Hsieh, Huang, Chen, Lu (b0170) 2020; 267
Zhao, Shen, Wang, Hocking, Li, Rong, Dastafkan, Su, Zhao (b0225) 2021; 31
Lin, Yan, Li, Si, Wang, Qi, Cao, Zhong, Fei, Feng (b0310) 2019; 11
Lim, Oh, Lim, Shim, Baeck (b0085) 2020; 361
He, Xu, Tang, Qian, Liu, Hao, Su (b0195) 2019; 7
Liu, Sun, Zhang, Wang, Wang, Wu, Zhang, Zhao (b0275) 2018; 6
Zhang, Chen, Zhao, Liang, Sun, Liu, Ji, Yan, Zhang (b0055) 2020; 561
Cao, You, Wei, Huang, Fan, Shi, Yang, Zhang (b0060) 2020; 59
Duan, Han, Zhang, Feng, Zhang, Zhang, Wang (b0125) 2021; 588
Li, Wang, Hu, Li, Du, Han, Xu (b0215) 2020; 30
Li, Li, Zhao, Li, Zeng, Yao, Chen (b0090) 2019; 7
Luo, Wang, Tan, Zhang, Lu (b0260) 2018; 10
Shah, Shen, Yuan, Ji, Yue, Zhu, Zhou, Xu, Zhu, Chen (b0265) 2020; 527
Zhang, Duan, Feng, Mei, Zhang, Wang (b0155) 2021; 587
Zhang, Jiang, Liu, Qiu, Zhang, Yuan (b0045) 2019; 44
Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Li, Zong, Yan (b0300) 2018; 14
Zhao, Jia, Wu, Li, Chen, Jin, Yin, Chen (b0200) 2020; 270
Wang, Qi, Chen, Li, Li, Wang, Liang (b0285) 2020; 12
Wu, Wang, Huang, Gao (b0320) 2018; 6
Li, Sirisomboonchai, Yoshida, An, Hao, Abudula, Guan (b0150) 2018; 6
Jin, Zhou, Wang, Li, Chen, Dong, Yu, Liang, Qu, Dong, Xie, Zhang (b0010) 2020; 858
Liang, Gandi, Anjum, Wang, Schwingenschlögl, Alshareef (b0070) 2016; 16
Xu, Du, Liu, Yu, Teng, Cheng, Chen, Wu (b0270) 2020; 826
Yang, Guo, Huang, Xi, Gao, Su, Wang, Cao, Dong (b0035) 2017; 29
Kang, Sheng, Xie, Ye, Chen, Fu, Du, Sun, Wong (b0235) 2018; 6
Zhang, Hu, Cheng, Nartey, Zhang (b0050) 2021; 367
Shi, Zhang (b0005) 2016; 45
Qi, Wang, Wang, Liu, Zhao, Yang (b0105) 2019; 11
Li, Zhang, Jiang, Zhang, He, Sun (b0120) 2017; 27
Xu, Qiu, Wei, Liu, Yuan, Wang, Tsiakaras (b0080) 2020; 355
Mai, Cui, Zhang, Zhang, Li, Tian, Hu (b0030) 2020; 3
Zhang, Ge, Zhao, Liu, Wang, Fan, Li (b0075) 2021; 367
Xu, Qi, Wang (b0205) 2019; 246
Xu, Wu, Shi, Zhang, Zhang (b0230) 2016; 24
Zou, Zhang (b0020) 2015; 44
Zhang (10.1016/j.jcis.2021.07.101_b0295) 2016; 28
Zou (10.1016/j.jcis.2021.07.101_b0020) 2015; 44
Babu (10.1016/j.jcis.2021.07.101_b0115) 2019; 7
Yang (10.1016/j.jcis.2021.07.101_b0245) 2014; 6
Ahn (10.1016/j.jcis.2021.07.101_b0315) 2017; 5
Tang (10.1016/j.jcis.2021.07.101_b0240) 2017; 139
Huang (10.1016/j.jcis.2021.07.101_b0100) 2020; 569
Shah (10.1016/j.jcis.2021.07.101_b0265) 2020; 527
Wang (10.1016/j.jcis.2021.07.101_b0285) 2020; 12
Huang (10.1016/j.jcis.2021.07.101_b0210) 2018; 30
Ma (10.1016/j.jcis.2021.07.101_b0290) 2019; 12
Zhang (10.1016/j.jcis.2021.07.101_b0050) 2021; 367
Zhao (10.1016/j.jcis.2021.07.101_b0225) 2021; 31
Dinh (10.1016/j.jcis.2021.07.101_b0300) 2018; 14
Xu (10.1016/j.jcis.2021.07.101_b0230) 2016; 24
Liu (10.1016/j.jcis.2021.07.101_b0275) 2018; 6
Zhang (10.1016/j.jcis.2021.07.101_b0055) 2020; 561
Du (10.1016/j.jcis.2021.07.101_b0145) 2020; 16
Xu (10.1016/j.jcis.2021.07.101_b0270) 2020; 826
Yan (10.1016/j.jcis.2021.07.101_b0110) 2018; 6
Luo (10.1016/j.jcis.2021.07.101_b0260) 2018; 10
Li (10.1016/j.jcis.2021.07.101_b0150) 2018; 6
Tang (10.1016/j.jcis.2021.07.101_b0180) 2016; 4
Xiao (10.1016/j.jcis.2021.07.101_b0065) 2017; 242
Zhao (10.1016/j.jcis.2021.07.101_b0200) 2020; 270
Zou (10.1016/j.jcis.2021.07.101_b0325) 2019; 7
Yang (10.1016/j.jcis.2021.07.101_b0035) 2017; 29
Jin (10.1016/j.jcis.2021.07.101_b0010) 2020; 858
Zhang (10.1016/j.jcis.2021.07.101_b0155) 2021; 587
Kang (10.1016/j.jcis.2021.07.101_b0235) 2018; 6
Chen (10.1016/j.jcis.2021.07.101_b0250) 2016; 26
Duan (10.1016/j.jcis.2021.07.101_b0135) 2021; 581
Cao (10.1016/j.jcis.2021.07.101_b0060) 2020; 59
Liu (10.1016/j.jcis.2021.07.101_b0220) 2019; 21
Zhang (10.1016/j.jcis.2021.07.101_b0075) 2021; 367
Duan (10.1016/j.jcis.2021.07.101_b0125) 2021; 588
Chen (10.1016/j.jcis.2021.07.101_b0280) 2021; 55
Qi (10.1016/j.jcis.2021.07.101_b0105) 2019; 11
Shen (10.1016/j.jcis.2021.07.101_b0130) 2020; 278
Wu (10.1016/j.jcis.2021.07.101_b0320) 2018; 6
Diao (10.1016/j.jcis.2021.07.101_b0015) 2018; 6
Li (10.1016/j.jcis.2021.07.101_b0215) 2020; 30
Liang (10.1016/j.jcis.2021.07.101_b0070) 2016; 16
Li (10.1016/j.jcis.2021.07.101_b0120) 2017; 27
Jiang (10.1016/j.jcis.2021.07.101_b0025) 2017; 5
Lin (10.1016/j.jcis.2021.07.101_b0310) 2019; 11
Li (10.1016/j.jcis.2021.07.101_b0090) 2019; 7
Zhang (10.1016/j.jcis.2021.07.101_b0045) 2019; 44
Mai (10.1016/j.jcis.2021.07.101_b0030) 2020; 3
Hsieh (10.1016/j.jcis.2021.07.101_b0170) 2020; 267
Zhang (10.1016/j.jcis.2021.07.101_b0305) 2020; 580
Yan (10.1016/j.jcis.2021.07.101_b0190) 2019; 541
Feng (10.1016/j.jcis.2021.07.101_b0185) 2020; 390
Xu (10.1016/j.jcis.2021.07.101_b0205) 2019; 246
Lv (10.1016/j.jcis.2021.07.101_b0160) 2019; 7
Lim (10.1016/j.jcis.2021.07.101_b0085) 2020; 361
Xu (10.1016/j.jcis.2021.07.101_b0080) 2020; 355
Niu (10.1016/j.jcis.2021.07.101_b0165) 2021; 536
Shi (10.1016/j.jcis.2021.07.101_b0005) 2016; 45
Zhang (10.1016/j.jcis.2021.07.101_b0095) 2020; 20
Wang (10.1016/j.jcis.2021.07.101_b0140) 2019; 7
He (10.1016/j.jcis.2021.07.101_b0195) 2019; 7
Ming (10.1016/j.jcis.2021.07.101_b0255) 2016; 4
Cheng (10.1016/j.jcis.2021.07.101_b0040) 2019; 15
Han (10.1016/j.jcis.2021.07.101_b0175) 2020; 45
References_xml – volume: 30
  start-page: 1910498
  year: 2020
  ident: b0215
  article-title: Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1907468
  year: 2020
  ident: b0145
  article-title: In situ growth of CoP
  publication-title: Small
– volume: 11
  start-page: 55
  year: 2019
  ident: b0310
  article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting
  publication-title: Nano-Micro Lett.
– volume: 11
  start-page: 10595
  year: 2019
  end-page: 10602
  ident: b0105
  article-title: Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution
  publication-title: Nanoscale
– volume: 246
  start-page: 72
  year: 2019
  end-page: 81
  ident: b0205
  article-title: In situ derived Ni
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 2496
  year: 2017
  end-page: 2503
  ident: b0315
  article-title: Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 242
  start-page: 260
  year: 2017
  end-page: 267
  ident: b0065
  article-title: Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 16929
  year: 2017
  end-page: 16935
  ident: b0025
  article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 103
  year: 2016
  end-page: 110
  ident: b0230
  article-title: Ni
  publication-title: Nano Energy
– volume: 7
  start-page: 12770
  year: 2019
  end-page: 12778
  ident: b0160
  article-title: Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni
  publication-title: ACS Sustainable Chem. Eng.
– volume: 826
  year: 2020
  ident: b0270
  article-title: Three-dimensional (3D) hierarchical coral-like Mn-doped Ni
  publication-title: J. Alloys Compd.
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: b0020
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 367
  year: 2021
  ident: b0050
  article-title: Double metal-organic frameworks derived Fe-Co-Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting
  publication-title: Electrochim. Acta
– volume: 541
  start-page: 279
  year: 2019
  end-page: 286
  ident: b0190
  article-title: Facile in-situ growth of Ni
  publication-title: J. Colloid Interface Sci.
– volume: 580
  start-page: 99
  year: 2020
  end-page: 107
  ident: b0305
  article-title: Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 6054
  year: 2018
  end-page: 6064
  ident: b0015
  article-title: “Ethanol-water exchange” nanobubbles templated hierarchical hollow β-Mo
  publication-title: J. Mater. Chem. A
– volume: 367
  year: 2021
  ident: b0075
  article-title: NiMn
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 2518
  year: 2019
  end-page: 2523
  ident: b0140
  article-title: Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 19201
  year: 2018
  end-page: 19209
  ident: b0275
  article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)
  publication-title: J. Mater. Chem. A
– volume: 527
  year: 2020
  ident: b0265
  article-title: One step in-situ synthesis of Ni
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 6110
  year: 2020
  end-page: 6119
  ident: b0175
  article-title: Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction
  publication-title: Int. J. Hydrogen Energ.
– volume: 7
  start-page: 24964
  year: 2019
  end-page: 24972
  ident: b0195
  article-title: Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn-air battery
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 167
  year: 2018
  end-page: 178
  ident: b0320
  article-title: A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 278
  year: 2020
  ident: b0130
  article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density
  publication-title: Appl. Catal. B Environ.
– volume: 44
  start-page: 17900
  year: 2019
  end-page: 17908
  ident: b0045
  article-title: Ni
  publication-title: Int. J. Hydrogen Energ.
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: b0005
  article-title: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 858
  year: 2020
  ident: b0010
  article-title: 3D porous and self-supporting Ni foam@graphene@Ni
  publication-title: J. Electroanal. Chem.
– volume: 12
  start-page: 4385
  year: 2020
  end-page: 4395
  ident: b0285
  article-title: Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mat. Inter.
– volume: 4
  start-page: 12407
  year: 2016
  end-page: 12410
  ident: b0180
  article-title: A Ni
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 10
  year: 2021
  end-page: 16
  ident: b0280
  article-title: In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution
  publication-title: J. Energy. Chem
– volume: 6
  start-page: 9640
  year: 2018
  end-page: 9648
  ident: b0110
  article-title: Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting
  publication-title: ACS Sustainable Chem. Eng.
– volume: 27
  start-page: 1702513
  year: 2017
  ident: b0120
  article-title: 3D self-supported Fe-doped Ni
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 8075
  year: 2020
  end-page: 8085
  ident: b0030
  article-title: CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting
  publication-title: ACS Appl. Energy Mater.
– volume: 581
  start-page: 774
  year: 2021
  end-page: 782
  ident: b0135
  article-title: Facile synthesis of nanoflower-like phosphorus-doped Ni
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 10064
  year: 2018
  end-page: 10073
  ident: b0235
  article-title: Tubular Cu(OH)
  publication-title: J. Mater. Chem. A
– volume: 390
  year: 2020
  ident: b0185
  article-title: Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis
  publication-title: Chem. Eng. J.
– volume: 536
  year: 2021
  ident: b0165
  article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
– volume: 569
  start-page: 140
  year: 2020
  end-page: 149
  ident: b0100
  article-title: Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 29
  start-page: 1704574
  year: 2017
  ident: b0035
  article-title: Vertical growth of 2D amorphous FePO
  publication-title: Adv. Mater.
– volume: 270
  year: 2020
  ident: b0200
  article-title: Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 20658
  year: 2019
  end-page: 20666
  ident: b0090
  article-title: Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 361
  year: 2020
  ident: b0085
  article-title: Fe-doped Ni
  publication-title: Electrochim. Acta
– volume: 588
  start-page: 248
  year: 2021
  end-page: 256
  ident: b0125
  article-title: Iron, manganese co-doped Ni
  publication-title: J. Colloid Interface Sci.
– volume: 355
  start-page: 815
  year: 2020
  end-page: 821
  ident: b0080
  article-title: Efficient overall water splitting over Mn doped Ni
  publication-title: Catal. Today
– volume: 26
  start-page: 3314
  year: 2016
  end-page: 3323
  ident: b0250
  article-title: Efficient and stable bifunctional electrocatalysts Ni/Ni
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 15148
  year: 2016
  end-page: 15155
  ident: b0255
  article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1703257
  year: 2018
  ident: b0300
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
– volume: 7
  start-page: 8376
  year: 2019
  end-page: 8383
  ident: b0115
  article-title: Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 375
  year: 2019
  end-page: 380
  ident: b0290
  article-title: Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes
  publication-title: Nano Res.
– volume: 15
  start-page: 2050024
  year: 2019
  ident: b0040
  article-title: Surface phosphation of 3D NiCo
  publication-title: Nano
– volume: 6
  start-page: 19221
  year: 2018
  end-page: 19230
  ident: b0150
  article-title: Bifunctional CoNi/CoFe
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  ident: b0070
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
– volume: 30
  start-page: 1705045
  year: 2018
  ident: b0210
  article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation
  publication-title: Adv. Mater.
– volume: 587
  start-page: 141
  year: 2021
  end-page: 149
  ident: b0155
  article-title: Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 20
  start-page: 136
  year: 2020
  end-page: 144
  ident: b0095
  article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting
  publication-title: Nano Lett.
– volume: 6
  start-page: 11789
  year: 2014
  end-page: 11794
  ident: b0245
  article-title: Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction
  publication-title: Nanoscale
– volume: 21
  start-page: 6080
  year: 2019
  end-page: 6092
  ident: b0220
  article-title: F or V-induced activation of (Co, Ni)
  publication-title: CrystEngComm
– volume: 7
  start-page: 2233
  year: 2019
  end-page: 2241
  ident: b0325
  article-title: An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  ident: b0240
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 561
  start-page: 638
  year: 2020
  end-page: 646
  ident: b0055
  article-title: Self-growth Ni
  publication-title: J. Colloid Interface Sci.
– volume: 59
  start-page: 8522
  year: 2020
  end-page: 8531
  ident: b0060
  article-title: CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem.
– volume: 267
  year: 2020
  ident: b0170
  article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities
  publication-title: Appl. Catal. B Environ.
– volume: 31
  start-page: 2100614
  year: 2021
  ident: b0225
  article-title: In situ reconstruction of V-doped Ni
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 8231
  year: 2018
  end-page: 8237
  ident: b0260
  article-title: Self-template synthesis of Co-Se-S-O hierarchical nanotubes as efficient electrocatalysts for oxygen evolution under alkaline and neutral conditions
  publication-title: ACS Appl. Mat. Inter.
– volume: 28
  start-page: 6934
  year: 2016
  end-page: 6941
  ident: b0295
  article-title: Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting
  publication-title: Chem. Mater.
– volume: 561
  start-page: 638
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0055
  article-title: Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.11.039
– volume: 7
  start-page: 2518
  issue: 6
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0140
  article-title: Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10856K
– volume: 4
  start-page: 15148
  issue: 39
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0255
  article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06496E
– volume: 11
  start-page: 10595
  issue: 22
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0105
  article-title: Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution
  publication-title: Nanoscale
  doi: 10.1039/C9NR01735F
– volume: 27
  start-page: 1702513
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0120
  article-title: 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702513
– volume: 5
  start-page: 16929
  issue: 32
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0025
  article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04893A
– volume: 7
  start-page: 24964
  issue: 43
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0195
  article-title: Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn-air battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09239K
– volume: 21
  start-page: 6080
  issue: 40
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0220
  article-title: F or V-induced activation of (Co, Ni)2P during electrocatalysis for efficient hydrogen evolution reaction
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01094G
– volume: 44
  start-page: 17900
  issue: 33
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0045
  article-title: Ni3S2-MoSx nanorods grown on Ni foam as high-efficient electrocatalysts for overall water splitting
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.05.157
– volume: 6
  start-page: 9640
  issue: 8
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0110
  article-title: Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04743
– volume: 4
  start-page: 12407
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0180
  article-title: A Ni2P nanosheet array integrated on 3D Ni foam: An efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05604K
– volume: 858
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0010
  article-title: 3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.113795
– volume: 355
  start-page: 815
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0080
  article-title: Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.04.019
– volume: 11
  start-page: 55
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0310
  article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0289-6
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  ident: 10.1016/j.jcis.2021.07.101_b0020
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 45
  start-page: 6110
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0175
  article-title: Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.12.155
– volume: 6
  start-page: 19201
  issue: 39
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0275
  article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07162D
– volume: 826
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0270
  article-title: Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154210
– volume: 278
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0130
  article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119327
– volume: 7
  start-page: 12770
  issue: 15
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0160
  article-title: Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at All pH values
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01355
– volume: 569
  start-page: 140
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0100
  article-title: Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.02.073
– volume: 588
  start-page: 248
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0125
  article-title: Iron, manganese co-doped Ni3S2 nanoflowers in situ assembled by ultrathin nanosheets as a robust electrocatalyst for oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.062
– volume: 246
  start-page: 72
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0205
  article-title: In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal-organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.045
– volume: 12
  start-page: 375
  issue: 2
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0290
  article-title: Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2226-2
– volume: 14
  start-page: 1703257
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0300
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201703257
– volume: 30
  start-page: 1910498
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0215
  article-title: Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910498
– volume: 15
  start-page: 2050024
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0040
  article-title: Surface phosphation of 3D NiCo2O4 nanowires grown on Ni foam as an efficient bifunctional catalyst for water splitting
  publication-title: Nano
  doi: 10.1142/S1793292020500241
– volume: 267
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0170
  article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118376
– volume: 139
  start-page: 8320
  issue: 24
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0240
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03507
– volume: 6
  start-page: 167
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0320
  article-title: A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07956G
– volume: 5
  start-page: 2496
  issue: 6
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0315
  article-title: Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10509B
– volume: 3
  start-page: 8075
  issue: 8
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0030
  article-title: CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01538
– volume: 367
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0075
  article-title: NiMn1.5PO4 thin layer supported on Ni foam as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137567
– volume: 541
  start-page: 279
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0190
  article-title: Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.01.096
– volume: 55
  start-page: 10
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0280
  article-title: In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution
  publication-title: J. Energy. Chem
  doi: 10.1016/j.jechem.2020.07.005
– volume: 527
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0265
  article-title: One step in-situ synthesis of Ni3S2/Fe2O3/N-doped carbon composites on Ni foam as an efficient electrocatalyst for overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146918
– volume: 59
  start-page: 8522
  issue: 12
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0060
  article-title: CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c00959
– volume: 6
  start-page: 6054
  issue: 14
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0015
  article-title: “Ethanol-water exchange” nanobubbles templated hierarchical hollow β-Mo2C/N-doped carbon composite nanospheres as an efficient hydrogen evolution electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10977F
– volume: 390
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0185
  article-title: Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124525
– volume: 10
  start-page: 8231
  issue: 9
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0260
  article-title: Self-template synthesis of Co-Se-S-O hierarchical nanotubes as efficient electrocatalysts for oxygen evolution under alkaline and neutral conditions
  publication-title: ACS Appl. Mat. Inter.
  doi: 10.1021/acsami.8b00986
– volume: 536
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0165
  article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147950
– volume: 12
  start-page: 4385
  issue: 4
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0285
  article-title: Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mat. Inter.
  doi: 10.1021/acsami.9b15208
– volume: 580
  start-page: 99
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0305
  article-title: Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.06.124
– volume: 7
  start-page: 20658
  issue: 36
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0090
  article-title: Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07289F
– volume: 7
  start-page: 8376
  issue: 14
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0115
  article-title: Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01088B
– volume: 16
  start-page: 1907468
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0145
  article-title: In situ growth of CoP3/carbon polyhedron/CoO/NF nanoarrays as binder-free anode for lithium-ion batteries with enhanced specific capacity
  publication-title: Small
  doi: 10.1002/smll.201907468
– volume: 30
  start-page: 1705045
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0210
  article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705045
– volume: 16
  start-page: 7718
  issue: 12
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0070
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 581
  start-page: 774
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0135
  article-title: Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.08.005
– volume: 361
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0085
  article-title: Fe-doped Ni3S2 nanoneedles directly grown on Ni foam as highly efficient bifunctional electrocatalysts for alkaline overall water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137080
– volume: 20
  start-page: 136
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0095
  article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03460
– volume: 24
  start-page: 103
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0230
  article-title: Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.006
– volume: 7
  start-page: 2233
  issue: 5
  year: 2019
  ident: 10.1016/j.jcis.2021.07.101_b0325
  article-title: An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11072G
– volume: 28
  start-page: 6934
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0295
  article-title: Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02610
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0005
  article-title: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 6
  start-page: 19221
  issue: 39
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0150
  article-title: Bifunctional CoNi/CoFe2O4 /Ni foam electrodes for efficient overall water splitting at a high current density
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08223E
– volume: 242
  start-page: 260
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0065
  article-title: Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.015
– volume: 6
  start-page: 10064
  year: 2018
  ident: 10.1016/j.jcis.2021.07.101_b0235
  article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co-Ni bimetallic carbonate hydroxide supported on Cu foam: A 3D hierarchical core-shell efficient electrocatalyst for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02492H
– volume: 6
  start-page: 11789
  issue: 20
  year: 2014
  ident: 10.1016/j.jcis.2021.07.101_b0245
  article-title: Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C4NR03371J
– volume: 31
  start-page: 2100614
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0225
  article-title: In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100614
– volume: 29
  start-page: 1704574
  year: 2017
  ident: 10.1016/j.jcis.2021.07.101_b0035
  article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: Outer and inner structural design for superior water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704574
– volume: 270
  year: 2020
  ident: 10.1016/j.jcis.2021.07.101_b0200
  article-title: Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118880
– volume: 26
  start-page: 3314
  issue: 19
  year: 2016
  ident: 10.1016/j.jcis.2021.07.101_b0250
  article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505626
– volume: 587
  start-page: 141
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0155
  article-title: Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.011
– volume: 367
  year: 2021
  ident: 10.1016/j.jcis.2021.07.101_b0050
  article-title: Double metal-organic frameworks derived Fe-Co-Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137536
SSID ssj0011559
Score 2.6642094
Snippet [Display omitted] •The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays...
To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 888
SubjectTerms anodes
Bifunctional electrocatalyst
cathodes
electric potential difference
Electrocatalysis
foams
Hydrogen evolution reaction
hydrogen production
nanosheets
nickel
Overall water splitting
Oxygen evolution reaction
oxygen production
prices
Title Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting
URI https://dx.doi.org/10.1016/j.jcis.2021.07.101
https://www.proquest.com/docview/2560059672
https://www.proquest.com/docview/2636504157
Volume 605
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5CPEQPolExPkIHvOmYefRrj2ExbBJYPBjY29BPMmHTs8zMIrn4E_zNVs0jqMgevA7VTDPVXfV1z1dfEfJBBj1jWRoSOHbxhOWsgDjIZoni1opgHcTNnuW7FItrdrniqz0yn2phkFY5xv4hpvfRenxyOn7N001VYY0v7DaJ6jMIa4oVVrAziav8848HmkeGv90GmkeWoPVYODNwvG5thZLdeYYCntnYGOYfyemvMN3nnvNn5OkIGunZMK_nZM_HQ3Iwn3q1HZInv8kKviA_L5o6fqLNTe2q7V1i4eS58Y4uq_wrjTrW7Y33XUt10-j7lrbbTS9u7mgdaaxgV69pqPUd1WASqe81JiA1UVNhEhzuDunYPqe__blvOxjRUGSD6vWafgf82tAW4G1Pqn5Jrs-_fJsvkrHvQmILIbrEZMwJZYIPhZRS6JQ7EYTSlgWvhAMAUGQ5bN4UZpA5gIAmNYZjb78wU1zL4hXZj3X0rwnVCk6p3PuQm4JZxjTXSulgg5JOhWCOSDZ98NKOouTYG2NdTuyz2xKdVKKTylTisyPy8WHMZpDk2GnNJz-WfyysEnLGznEnk9NLcCb-RtHR11swQpDIZ0LmO2xEAdAXwJF885_vf0se51hp0d_2vCP7XbP17wH_dOa4X-DH5NHZxdVi-QtO1weR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggytNI3CBqHn7tsVpR7dKy4tBKe4scx1ZTbZ1VkhXqn-hv7kziVIDQHrhaM4qVsWc-2zPfEPJZOj1lSewiOHbxiKUsAz_IppHixghnSvCbfZbvUswv2fcVX-2R2VgLg2mVwfcPPr331mHkOPzN401VYY0v7DaJ7DMIa7LVI7KP7FR8QvZPFmfz5cNjAr68DZkeSYQKoXZmSPO6NhWydqcJcngmoTfMP-LTX566Dz-nz8jTgBvpyTC152TP-kNyMBvbtR2SJ78xC74gd4um9l9pc1WX1fYmMnD43NiSLqv0J_Xa1-2VtV1LddPo25a2203Pb17S2lNfwcZeU1frG6pBxFPb00xAdKJFhXFwuD6koYNOfwF023ag0VBMCNXrNf0FELahLSDcPq_6Jbk8_XYxm0eh9UJkMiG6qEhYKVThrMuklELHvBROKG2Ys0qUgAGyJIX9G8MMkhJQYBEXBcf2fm6quJbZKzLxtbevCdUKDqrcWpcWGTOMaa6V0s44JUvlXHFEkvGH5ybwkmN7jHU-JqBd52ikHI2UxxLHjsiXB53NwMqxU5qPdsz_WFs5hI2dep9Go-dgTHxJ0d7WWxBCnMinQqY7ZEQG6BfwkXzzn9__SA7mFz_O8_PF8uwteZxi4UV_-fOOTLpma98DHOqKD2G53wNGJQpC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%2C+rhodium-codoped+Ni2P+nanosheets+arrays+supported+on+nickel+foam+as+an+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Chen%2C+Meng-Ting&rft.au=Duan%2C+Jiao-Jiao&rft.au=Feng%2C+Jiu-Ju&rft.au=Mei%2C+Li-Ping&rft.date=2022-01-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=605&rft.spage=888&rft_id=info:doi/10.1016%2Fj.jcis.2021.07.101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon