Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting
[Display omitted] •The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The elec...
Saved in:
Published in | Journal of colloid and interface science Vol. 605; pp. 888 - 896 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2021.07.101 |
Cover
Loading…
Abstract | [Display omitted]
•The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The electrocatalyst exhibited excellent OER, HER, and overall water splitting activity in the alkaline solutions.
To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm−2 towards the OER and 73 mV at 10 mA cm−2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm−2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices. |
---|---|
AbstractList | [Display omitted]
•The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays effectively enriched the active sites with easy accessibility.•Fe,Rh-codoping had great effects on the electrocatalytic performances.•The electrocatalyst exhibited excellent OER, HER, and overall water splitting activity in the alkaline solutions.
To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm−2 towards the OER and 73 mV at 10 mA cm−2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm−2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices. To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni₂P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni₂P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni₂P/NF showed the low overpotentials of 226 mV at 30 mA cm⁻² towards the OER and 73 mV at 10 mA cm⁻² for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm⁻². The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices. To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm-2 towards the OER and 73 mV at 10 mA cm-2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm-2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices.To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, Fe,Rh-codoped Ni2P nanosheets arrays were in situ anchored on three-dimension (3D) Ni foam under hydrothermal condition and successive phosphorization, denoted as Fe,Rh-Ni2P/NF for simplicity. The unique nanosheets arrays effectively enriched the active sites with easy accessibility. By virtue of the unique sheet-like arrays and 3D porous conductive substrate, the prepared Fe,Rh-Ni2P/NF showed the low overpotentials of 226 mV at 30 mA cm-2 towards the OER and 73 mV at 10 mA cm-2 for the HER. Moreover, the electrocatalyst effectively worked as anode and cathode for overall water splitting system, showing a small voltage of 1.62 V to drive a current density of 10 mA cm-2. The present work provides alternative option for fabricating advanced catalysts in electrocatalysis and energy devices. |
Author | Chen, Meng-Ting Zhang, Lu Wang, Ai-Jun Jiao, Yang Duan, Jiao-Jiao Feng, Jiu-Ju Mei, Li-Ping |
Author_xml | – sequence: 1 givenname: Meng-Ting surname: Chen fullname: Chen, Meng-Ting – sequence: 2 givenname: Jiao-Jiao surname: Duan fullname: Duan, Jiao-Jiao – sequence: 3 givenname: Jiu-Ju surname: Feng fullname: Feng, Jiu-Ju – sequence: 4 givenname: Li-Ping surname: Mei fullname: Mei, Li-Ping – sequence: 5 givenname: Yang surname: Jiao fullname: Jiao, Yang – sequence: 6 givenname: Lu surname: Zhang fullname: Zhang, Lu – sequence: 7 givenname: Ai-Jun surname: Wang fullname: Wang, Ai-Jun email: ajwang@zjnu.cn |
BookMark | eNqNkcFu1DAQhi3USmwLL8DJRw5kGSdrO5G4oIrSShVwKGfLccbUi9cOtlO0L8Ez19Fy4lBxsjT-vtHo_y_IWYgBCXnDYMuAiff77d64vG2hZVuQ6-wF2TAYeCMZdGdkA_WnGeQgX5KLnPcAjHE-bMif2xTDO5oe4uSWQ2PiFGec6BfXfqNBh5gfEEumOiV9zDQv8xxTqUAMNDjzEz21UR-orkigaK0zDkOho7NLMMXFoD1Fj6akaHTR_phLNRKNj5i09_S3Lphonr0rxYUfr8i51T7j67_vJfl-_en-6qa5-_r59urjXWM6IUozst0k-tGi7aSUQgOfhBW9NjuLvZgE6zrWAu-gXsQmzoYRxpH3cgd26LmW3SV5e9o7p_hrwVzUwWWD3uuAccmqFZ3gsGP8P1AuAPggZFvR_oSaFHNOaJVxRa8plKSdVwzU2pbaq7UttbalQK6zqrb_qHNyB52Oz0sfThLWqB4dJpXX-A1OLtXI1RTdc_oTkiyzMQ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165934 crossref_primary_10_1016_j_jcis_2021_12_119 crossref_primary_10_1002_er_7639 crossref_primary_10_1021_acsanm_3c05193 crossref_primary_10_1039_D2NR05964A crossref_primary_10_1016_j_enconman_2024_119227 crossref_primary_10_1016_j_jallcom_2023_169699 crossref_primary_10_1002_smll_202310666 crossref_primary_10_1002_adsu_202400465 crossref_primary_10_1007_s11581_023_05269_4 crossref_primary_10_1007_s11581_021_04290_9 crossref_primary_10_1039_D2NJ05473F crossref_primary_10_1016_j_jallcom_2024_174896 crossref_primary_10_1016_j_cej_2022_136833 crossref_primary_10_1142_S1793604722510146 crossref_primary_10_1016_j_est_2023_107885 crossref_primary_10_1016_j_ijhydene_2022_10_065 crossref_primary_10_1016_j_flatc_2023_100499 crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1039_D3DT00935A crossref_primary_10_1016_j_mtsust_2023_100413 crossref_primary_10_1016_j_colcom_2023_100727 crossref_primary_10_1021_acs_langmuir_3c00971 crossref_primary_10_1016_j_ijhydene_2023_04_182 crossref_primary_10_1039_D2QM00964A crossref_primary_10_1016_j_ccr_2024_215722 crossref_primary_10_1016_j_jallcom_2022_165757 crossref_primary_10_1016_j_jallcom_2025_179044 crossref_primary_10_1016_j_jtice_2021_104182 crossref_primary_10_1016_j_ijhydene_2023_07_267 crossref_primary_10_1016_j_ccr_2022_214952 crossref_primary_10_1016_j_inoche_2022_109614 crossref_primary_10_1016_j_mcat_2023_113327 crossref_primary_10_1039_D2RA00447J crossref_primary_10_1002_ente_202301504 crossref_primary_10_1016_j_compositesb_2023_110601 crossref_primary_10_1016_j_cej_2021_134274 crossref_primary_10_1016_j_surfin_2024_105728 crossref_primary_10_1016_j_apcatb_2022_121430 crossref_primary_10_1016_j_apsusc_2022_154905 crossref_primary_10_1002_er_7971 crossref_primary_10_1039_D4QI01127A crossref_primary_10_1016_j_jelechem_2022_116681 crossref_primary_10_1016_j_flatc_2022_100439 crossref_primary_10_3390_nano13050827 crossref_primary_10_1016_j_jmrt_2021_11_077 crossref_primary_10_1016_j_jcis_2021_09_121 crossref_primary_10_1039_D3DT00448A crossref_primary_10_1016_j_apcatb_2024_124295 crossref_primary_10_1021_acs_inorgchem_3c00703 crossref_primary_10_3390_nano14080698 crossref_primary_10_1007_s10853_025_10604_3 crossref_primary_10_1016_j_cej_2022_137790 crossref_primary_10_1039_D2CE00886F crossref_primary_10_1016_j_diamond_2025_112070 crossref_primary_10_1016_j_jcis_2024_04_179 crossref_primary_10_1016_j_mtcomm_2023_105478 crossref_primary_10_1039_D3TA04720B crossref_primary_10_1016_j_apmt_2022_101502 crossref_primary_10_1021_acsanm_1c03128 crossref_primary_10_1016_j_apcatb_2022_121667 crossref_primary_10_1016_j_ijhydene_2023_01_212 crossref_primary_10_1016_j_ijhydene_2022_08_045 crossref_primary_10_1016_j_jcis_2024_09_110 crossref_primary_10_1016_j_apcatb_2024_124698 crossref_primary_10_1016_j_jelechem_2024_118899 crossref_primary_10_1016_j_jallcom_2022_167914 crossref_primary_10_1002_tcr_202200244 crossref_primary_10_1016_j_electacta_2023_142191 crossref_primary_10_1016_j_jallcom_2022_168206 crossref_primary_10_1039_D3DT03636G crossref_primary_10_1016_j_jcis_2024_04_040 crossref_primary_10_1016_j_ijhydene_2022_11_227 crossref_primary_10_1016_j_jallcom_2022_166665 crossref_primary_10_1016_j_jcis_2022_06_166 crossref_primary_10_1016_j_jcis_2024_08_050 crossref_primary_10_1016_j_jcis_2021_10_144 crossref_primary_10_1016_j_jcis_2022_08_055 crossref_primary_10_1016_j_est_2024_111303 crossref_primary_10_1016_j_flatc_2022_100334 crossref_primary_10_1016_j_jcis_2023_09_144 crossref_primary_10_1002_cssc_202400162 crossref_primary_10_1016_j_cej_2021_133643 crossref_primary_10_1002_tcr_202300013 crossref_primary_10_1021_acssuschemeng_4c00479 crossref_primary_10_1002_cctc_202300562 crossref_primary_10_1016_j_cej_2021_132953 crossref_primary_10_1016_j_electacta_2021_139337 crossref_primary_10_1016_j_ijhydene_2023_11_297 crossref_primary_10_1021_acsanm_4c00481 crossref_primary_10_1007_s12209_024_00389_y crossref_primary_10_1016_j_apcatb_2024_124072 crossref_primary_10_1016_j_ijhydene_2023_09_084 crossref_primary_10_1016_j_ces_2024_120100 crossref_primary_10_1039_D3DT01814H crossref_primary_10_1021_acsanm_2c04942 crossref_primary_10_1021_acsanm_3c01222 crossref_primary_10_1021_acs_inorgchem_2c03529 crossref_primary_10_1021_acs_jpcc_2c03819 crossref_primary_10_1016_j_ijhydene_2023_04_147 crossref_primary_10_1016_j_jcis_2023_09_156 crossref_primary_10_1021_acsanm_2c03218 crossref_primary_10_1016_j_jcis_2024_12_143 crossref_primary_10_1016_j_jallcom_2024_173752 crossref_primary_10_1002_cctc_202101933 crossref_primary_10_1002_er_8198 crossref_primary_10_1016_j_cej_2021_132301 crossref_primary_10_1016_j_jcis_2025_01_077 crossref_primary_10_1021_acs_energyfuels_2c00729 crossref_primary_10_1016_j_jcis_2022_05_110 crossref_primary_10_1016_j_jtice_2021_10_018 crossref_primary_10_1016_j_jcis_2025_01_070 crossref_primary_10_1016_j_jelechem_2023_117648 crossref_primary_10_1002_pssr_202200287 crossref_primary_10_1002_slct_202103472 crossref_primary_10_1016_j_mtchem_2023_101432 crossref_primary_10_1021_acsanm_4c05305 crossref_primary_10_1016_j_cclet_2022_03_071 crossref_primary_10_1002_smll_202301294 crossref_primary_10_3390_nano12203633 crossref_primary_10_2139_ssrn_4191189 crossref_primary_10_1016_j_ijhydene_2023_03_085 crossref_primary_10_1016_j_cej_2022_135281 crossref_primary_10_1021_acs_inorgchem_2c02666 crossref_primary_10_1007_s11581_022_04824_9 crossref_primary_10_1016_j_ijhydene_2023_11_127 crossref_primary_10_1039_D1NJ03934B crossref_primary_10_1007_s10800_023_02025_4 crossref_primary_10_1149_1945_7111_acf527 crossref_primary_10_1016_j_jcis_2022_10_041 crossref_primary_10_1002_er_7416 crossref_primary_10_1016_j_jallcom_2024_176375 crossref_primary_10_1088_1361_6463_ac3037 crossref_primary_10_1016_j_matre_2021_100075 crossref_primary_10_1016_j_jcis_2021_08_144 crossref_primary_10_1021_acsanm_4c05952 crossref_primary_10_1021_acssuschemeng_2c05673 crossref_primary_10_1016_j_jcis_2022_03_149 crossref_primary_10_1016_j_cej_2021_134188 crossref_primary_10_1016_j_flatc_2022_100368 crossref_primary_10_1039_D2DT02312A crossref_primary_10_1016_j_jcis_2022_02_066 crossref_primary_10_1016_j_envpol_2023_122835 crossref_primary_10_1039_D2NR07150A crossref_primary_10_1016_j_jelechem_2021_115928 crossref_primary_10_1016_j_jcis_2021_11_101 crossref_primary_10_1016_j_jcis_2022_05_133 crossref_primary_10_1016_j_apcatb_2021_120996 crossref_primary_10_1016_j_jallcom_2024_173894 |
Cites_doi | 10.1016/j.jcis.2019.11.039 10.1039/C8TA10856K 10.1039/C6TA06496E 10.1039/C9NR01735F 10.1002/adfm.201702513 10.1039/C7TA04893A 10.1039/C9TA09239K 10.1039/C9CE01094G 10.1016/j.ijhydene.2019.05.157 10.1021/acssuschemeng.7b04743 10.1039/C6TA05604K 10.1016/j.jelechem.2019.113795 10.1016/j.cattod.2019.04.019 10.1007/s40820-019-0289-6 10.1039/C4CS00448E 10.1016/j.ijhydene.2019.12.155 10.1039/C8TA07162D 10.1016/j.jallcom.2020.154210 10.1016/j.apcatb.2020.119327 10.1021/acssuschemeng.9b01355 10.1016/j.jcis.2020.02.073 10.1016/j.jcis.2020.12.062 10.1016/j.apcatb.2019.01.045 10.1007/s12274-018-2226-2 10.1002/smll.201703257 10.1002/adfm.201910498 10.1142/S1793292020500241 10.1016/j.apcatb.2019.118376 10.1021/jacs.7b03507 10.1039/C7TA07956G 10.1039/C6TA10509B 10.1021/acsaem.0c01538 10.1016/j.electacta.2020.137567 10.1016/j.jcis.2019.01.096 10.1016/j.jechem.2020.07.005 10.1016/j.apsusc.2020.146918 10.1021/acs.inorgchem.0c00959 10.1039/C7TA10977F 10.1016/j.cej.2020.124525 10.1021/acsami.8b00986 10.1016/j.apsusc.2020.147950 10.1021/acsami.9b15208 10.1016/j.jcis.2020.06.124 10.1039/C9TA07289F 10.1039/C9TA01088B 10.1002/smll.201907468 10.1002/adma.201705045 10.1021/acs.nanolett.6b03803 10.1016/j.jcis.2020.08.005 10.1016/j.electacta.2020.137080 10.1021/acs.nanolett.9b03460 10.1016/j.nanoen.2016.04.006 10.1039/C8TA11072G 10.1021/acs.chemmater.6b02610 10.1039/C5CS00434A 10.1039/C8TA08223E 10.1016/j.electacta.2017.05.015 10.1039/C8TA02492H 10.1039/C4NR03371J 10.1002/adfm.202100614 10.1002/adma.201704574 10.1016/j.apcatb.2020.118880 10.1002/adfm.201505626 10.1016/j.jcis.2020.12.011 10.1016/j.electacta.2020.137536 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2021.07.101 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 896 |
ExternalDocumentID | 10_1016_j_jcis_2021_07_101 S002197972101153X |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-b14d68bfef37776a05d6f68ac4fe86d6133120530eff1d519b0bb58740f985a73 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 04:10:20 EDT 2025 Fri Jul 11 15:07:27 EDT 2025 Tue Jul 01 01:19:08 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Fri Feb 23 02:38:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bifunctional electrocatalyst Electrocatalysis Hydrogen evolution reaction Oxygen evolution reaction Overall water splitting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-b14d68bfef37776a05d6f68ac4fe86d6133120530eff1d519b0bb58740f985a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2560059672 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2636504157 proquest_miscellaneous_2560059672 crossref_citationtrail_10_1016_j_jcis_2021_07_101 crossref_primary_10_1016_j_jcis_2021_07_101 elsevier_sciencedirect_doi_10_1016_j_jcis_2021_07_101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Jiang, Liu, Zeng, Ai (b0025) 2017; 5 Chen, Ma, Liu, Li, Su, Davey, Qiao (b0250) 2016; 26 Xiao, Zhang, Li (b0065) 2017; 242 Han, Zhang, Duan, Wang, Zhang, Huang, Feng (b0175) 2020; 45 Tang, Jiang, Niu, Liu, Luo, Chen, Jin, Gao, Wan, Hu (b0240) 2017; 139 Yan, Sun, Hu, Ning, Zhong, Zhang, Hu (b0190) 2019; 541 Wang, Sun, Yu, Liu, Wang, Jiang, Xie (b0140) 2019; 7 Babu, Huang, Anandhababu, Wang, Si, Wu, Li, Wang, Yao (b0115) 2019; 7 Yang, Li, Lu, Sun, Liu (b0245) 2014; 6 Lv, Hu, Chen, Ren, Liu, Yuan (b0160) 2019; 7 Ma, Yang, Chen, Yuan (b0290) 2019; 12 Zhang, Duan, Mei, Feng, Yuan, Wang (b0305) 2020; 580 Duan, Zhang, Feng, Zhang, Zhang, Wang (b0135) 2021; 581 Ming, Liang, Shi, Xu, Mei, Wang (b0255) 2016; 4 Zou, Wang, Huang, Wu, Gao (b0325) 2019; 7 Niu, Lin, Chen, Feng, Zhang, Wang (b0165) 2021; 536 Ahn, Manthiram (b0315) 2017; 5 Diao, Qin, Zhao, Shi, Liu, He, Ma, Li, He (b0015) 2018; 6 Cheng, Zhang, Lv, Shao, Wang, Wang (b0040) 2019; 15 Du, Ma, Li (b0145) 2020; 16 Yan, Wei, Wu, Yang, Zhu, Cheng, Ye, Zhu, Yan, Cao, Wang, Pan (b0110) 2018; 6 Shen, Wang, Qian, Chen, Jiang, Luo, Yin (b0130) 2020; 278 Tang, Xie, Wang, Du, Asiri, Luo, Sun (b0180) 2016; 4 Huang, Sun, Zhang, Zou, Yan, Cong, Lei, Dai, Guo, Lu, Li, Xiong (b0210) 2018; 30 Liu, Tao, Dan, Hai, Gong (b0220) 2019; 21 Zhang, Xiao, Xie, Liang, Chen, Tang (b0295) 2016; 28 Huang, Gong, Xu, Qin, Ma, Yang, Wang, Ma, Mu, Li (b0100) 2020; 569 Feng, Wang, Huang, Dong, Ji, Li, Cao, Feng, Jin, Wang (b0185) 2020; 390 Chen, Fu, Jin, Zang, Liu, Zhang, Huang, Kou, Wang, Zhou, Mai (b0280) 2021; 55 Zhang, Zhu, Wu, Stavitski, Lui, Kim, Liu, Huang, Luan, Zhou, Jiang, Huang, Hu, Wang, Francisco (b0095) 2020; 20 Hsieh, Huang, Chen, Lu (b0170) 2020; 267 Zhao, Shen, Wang, Hocking, Li, Rong, Dastafkan, Su, Zhao (b0225) 2021; 31 Lin, Yan, Li, Si, Wang, Qi, Cao, Zhong, Fei, Feng (b0310) 2019; 11 Lim, Oh, Lim, Shim, Baeck (b0085) 2020; 361 He, Xu, Tang, Qian, Liu, Hao, Su (b0195) 2019; 7 Liu, Sun, Zhang, Wang, Wang, Wu, Zhang, Zhao (b0275) 2018; 6 Zhang, Chen, Zhao, Liang, Sun, Liu, Ji, Yan, Zhang (b0055) 2020; 561 Cao, You, Wei, Huang, Fan, Shi, Yang, Zhang (b0060) 2020; 59 Duan, Han, Zhang, Feng, Zhang, Zhang, Wang (b0125) 2021; 588 Li, Wang, Hu, Li, Du, Han, Xu (b0215) 2020; 30 Li, Li, Zhao, Li, Zeng, Yao, Chen (b0090) 2019; 7 Luo, Wang, Tan, Zhang, Lu (b0260) 2018; 10 Shah, Shen, Yuan, Ji, Yue, Zhu, Zhou, Xu, Zhu, Chen (b0265) 2020; 527 Zhang, Duan, Feng, Mei, Zhang, Wang (b0155) 2021; 587 Zhang, Jiang, Liu, Qiu, Zhang, Yuan (b0045) 2019; 44 Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Li, Zong, Yan (b0300) 2018; 14 Zhao, Jia, Wu, Li, Chen, Jin, Yin, Chen (b0200) 2020; 270 Wang, Qi, Chen, Li, Li, Wang, Liang (b0285) 2020; 12 Wu, Wang, Huang, Gao (b0320) 2018; 6 Li, Sirisomboonchai, Yoshida, An, Hao, Abudula, Guan (b0150) 2018; 6 Jin, Zhou, Wang, Li, Chen, Dong, Yu, Liang, Qu, Dong, Xie, Zhang (b0010) 2020; 858 Liang, Gandi, Anjum, Wang, Schwingenschlögl, Alshareef (b0070) 2016; 16 Xu, Du, Liu, Yu, Teng, Cheng, Chen, Wu (b0270) 2020; 826 Yang, Guo, Huang, Xi, Gao, Su, Wang, Cao, Dong (b0035) 2017; 29 Kang, Sheng, Xie, Ye, Chen, Fu, Du, Sun, Wong (b0235) 2018; 6 Zhang, Hu, Cheng, Nartey, Zhang (b0050) 2021; 367 Shi, Zhang (b0005) 2016; 45 Qi, Wang, Wang, Liu, Zhao, Yang (b0105) 2019; 11 Li, Zhang, Jiang, Zhang, He, Sun (b0120) 2017; 27 Xu, Qiu, Wei, Liu, Yuan, Wang, Tsiakaras (b0080) 2020; 355 Mai, Cui, Zhang, Zhang, Li, Tian, Hu (b0030) 2020; 3 Zhang, Ge, Zhao, Liu, Wang, Fan, Li (b0075) 2021; 367 Xu, Qi, Wang (b0205) 2019; 246 Xu, Wu, Shi, Zhang, Zhang (b0230) 2016; 24 Zou, Zhang (b0020) 2015; 44 Zhang (10.1016/j.jcis.2021.07.101_b0295) 2016; 28 Zou (10.1016/j.jcis.2021.07.101_b0020) 2015; 44 Babu (10.1016/j.jcis.2021.07.101_b0115) 2019; 7 Yang (10.1016/j.jcis.2021.07.101_b0245) 2014; 6 Ahn (10.1016/j.jcis.2021.07.101_b0315) 2017; 5 Tang (10.1016/j.jcis.2021.07.101_b0240) 2017; 139 Huang (10.1016/j.jcis.2021.07.101_b0100) 2020; 569 Shah (10.1016/j.jcis.2021.07.101_b0265) 2020; 527 Wang (10.1016/j.jcis.2021.07.101_b0285) 2020; 12 Huang (10.1016/j.jcis.2021.07.101_b0210) 2018; 30 Ma (10.1016/j.jcis.2021.07.101_b0290) 2019; 12 Zhang (10.1016/j.jcis.2021.07.101_b0050) 2021; 367 Zhao (10.1016/j.jcis.2021.07.101_b0225) 2021; 31 Dinh (10.1016/j.jcis.2021.07.101_b0300) 2018; 14 Xu (10.1016/j.jcis.2021.07.101_b0230) 2016; 24 Liu (10.1016/j.jcis.2021.07.101_b0275) 2018; 6 Zhang (10.1016/j.jcis.2021.07.101_b0055) 2020; 561 Du (10.1016/j.jcis.2021.07.101_b0145) 2020; 16 Xu (10.1016/j.jcis.2021.07.101_b0270) 2020; 826 Yan (10.1016/j.jcis.2021.07.101_b0110) 2018; 6 Luo (10.1016/j.jcis.2021.07.101_b0260) 2018; 10 Li (10.1016/j.jcis.2021.07.101_b0150) 2018; 6 Tang (10.1016/j.jcis.2021.07.101_b0180) 2016; 4 Xiao (10.1016/j.jcis.2021.07.101_b0065) 2017; 242 Zhao (10.1016/j.jcis.2021.07.101_b0200) 2020; 270 Zou (10.1016/j.jcis.2021.07.101_b0325) 2019; 7 Yang (10.1016/j.jcis.2021.07.101_b0035) 2017; 29 Jin (10.1016/j.jcis.2021.07.101_b0010) 2020; 858 Zhang (10.1016/j.jcis.2021.07.101_b0155) 2021; 587 Kang (10.1016/j.jcis.2021.07.101_b0235) 2018; 6 Chen (10.1016/j.jcis.2021.07.101_b0250) 2016; 26 Duan (10.1016/j.jcis.2021.07.101_b0135) 2021; 581 Cao (10.1016/j.jcis.2021.07.101_b0060) 2020; 59 Liu (10.1016/j.jcis.2021.07.101_b0220) 2019; 21 Zhang (10.1016/j.jcis.2021.07.101_b0075) 2021; 367 Duan (10.1016/j.jcis.2021.07.101_b0125) 2021; 588 Chen (10.1016/j.jcis.2021.07.101_b0280) 2021; 55 Qi (10.1016/j.jcis.2021.07.101_b0105) 2019; 11 Shen (10.1016/j.jcis.2021.07.101_b0130) 2020; 278 Wu (10.1016/j.jcis.2021.07.101_b0320) 2018; 6 Diao (10.1016/j.jcis.2021.07.101_b0015) 2018; 6 Li (10.1016/j.jcis.2021.07.101_b0215) 2020; 30 Liang (10.1016/j.jcis.2021.07.101_b0070) 2016; 16 Li (10.1016/j.jcis.2021.07.101_b0120) 2017; 27 Jiang (10.1016/j.jcis.2021.07.101_b0025) 2017; 5 Lin (10.1016/j.jcis.2021.07.101_b0310) 2019; 11 Li (10.1016/j.jcis.2021.07.101_b0090) 2019; 7 Zhang (10.1016/j.jcis.2021.07.101_b0045) 2019; 44 Mai (10.1016/j.jcis.2021.07.101_b0030) 2020; 3 Hsieh (10.1016/j.jcis.2021.07.101_b0170) 2020; 267 Zhang (10.1016/j.jcis.2021.07.101_b0305) 2020; 580 Yan (10.1016/j.jcis.2021.07.101_b0190) 2019; 541 Feng (10.1016/j.jcis.2021.07.101_b0185) 2020; 390 Xu (10.1016/j.jcis.2021.07.101_b0205) 2019; 246 Lv (10.1016/j.jcis.2021.07.101_b0160) 2019; 7 Lim (10.1016/j.jcis.2021.07.101_b0085) 2020; 361 Xu (10.1016/j.jcis.2021.07.101_b0080) 2020; 355 Niu (10.1016/j.jcis.2021.07.101_b0165) 2021; 536 Shi (10.1016/j.jcis.2021.07.101_b0005) 2016; 45 Zhang (10.1016/j.jcis.2021.07.101_b0095) 2020; 20 Wang (10.1016/j.jcis.2021.07.101_b0140) 2019; 7 He (10.1016/j.jcis.2021.07.101_b0195) 2019; 7 Ming (10.1016/j.jcis.2021.07.101_b0255) 2016; 4 Cheng (10.1016/j.jcis.2021.07.101_b0040) 2019; 15 Han (10.1016/j.jcis.2021.07.101_b0175) 2020; 45 |
References_xml | – volume: 30 start-page: 1910498 year: 2020 ident: b0215 article-title: Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1907468 year: 2020 ident: b0145 article-title: In situ growth of CoP publication-title: Small – volume: 11 start-page: 55 year: 2019 ident: b0310 article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting publication-title: Nano-Micro Lett. – volume: 11 start-page: 10595 year: 2019 end-page: 10602 ident: b0105 article-title: Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution publication-title: Nanoscale – volume: 246 start-page: 72 year: 2019 end-page: 81 ident: b0205 article-title: In situ derived Ni publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 2496 year: 2017 end-page: 2503 ident: b0315 article-title: Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A – volume: 242 start-page: 260 year: 2017 end-page: 267 ident: b0065 article-title: Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting publication-title: Electrochim. Acta – volume: 5 start-page: 16929 year: 2017 end-page: 16935 ident: b0025 article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: J. Mater. Chem. A – volume: 24 start-page: 103 year: 2016 end-page: 110 ident: b0230 article-title: Ni publication-title: Nano Energy – volume: 7 start-page: 12770 year: 2019 end-page: 12778 ident: b0160 article-title: Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni publication-title: ACS Sustainable Chem. Eng. – volume: 826 year: 2020 ident: b0270 article-title: Three-dimensional (3D) hierarchical coral-like Mn-doped Ni publication-title: J. Alloys Compd. – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: b0020 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 367 year: 2021 ident: b0050 article-title: Double metal-organic frameworks derived Fe-Co-Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting publication-title: Electrochim. Acta – volume: 541 start-page: 279 year: 2019 end-page: 286 ident: b0190 article-title: Facile in-situ growth of Ni publication-title: J. Colloid Interface Sci. – volume: 580 start-page: 99 year: 2020 end-page: 107 ident: b0305 article-title: Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 6054 year: 2018 end-page: 6064 ident: b0015 article-title: “Ethanol-water exchange” nanobubbles templated hierarchical hollow β-Mo publication-title: J. Mater. Chem. A – volume: 367 year: 2021 ident: b0075 article-title: NiMn publication-title: Electrochim. Acta – volume: 7 start-page: 2518 year: 2019 end-page: 2523 ident: b0140 article-title: Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting publication-title: J. Mater. Chem. A – volume: 6 start-page: 19201 year: 2018 end-page: 19209 ident: b0275 article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH) publication-title: J. Mater. Chem. A – volume: 527 year: 2020 ident: b0265 article-title: One step in-situ synthesis of Ni publication-title: Appl. Surf. Sci. – volume: 45 start-page: 6110 year: 2020 end-page: 6119 ident: b0175 article-title: Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction publication-title: Int. J. Hydrogen Energ. – volume: 7 start-page: 24964 year: 2019 end-page: 24972 ident: b0195 article-title: Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn-air battery publication-title: J. Mater. Chem. A – volume: 6 start-page: 167 year: 2018 end-page: 178 ident: b0320 article-title: A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting publication-title: J. Mater. Chem. A – volume: 278 year: 2020 ident: b0130 article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density publication-title: Appl. Catal. B Environ. – volume: 44 start-page: 17900 year: 2019 end-page: 17908 ident: b0045 article-title: Ni publication-title: Int. J. Hydrogen Energ. – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: b0005 article-title: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. – volume: 858 year: 2020 ident: b0010 article-title: 3D porous and self-supporting Ni foam@graphene@Ni publication-title: J. Electroanal. Chem. – volume: 12 start-page: 4385 year: 2020 end-page: 4395 ident: b0285 article-title: Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting publication-title: ACS Appl. Mat. Inter. – volume: 4 start-page: 12407 year: 2016 end-page: 12410 ident: b0180 article-title: A Ni publication-title: J. Mater. Chem. A – volume: 55 start-page: 10 year: 2021 end-page: 16 ident: b0280 article-title: In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution publication-title: J. Energy. Chem – volume: 6 start-page: 9640 year: 2018 end-page: 9648 ident: b0110 article-title: Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting publication-title: ACS Sustainable Chem. Eng. – volume: 27 start-page: 1702513 year: 2017 ident: b0120 article-title: 3D self-supported Fe-doped Ni publication-title: Adv. Funct. Mater. – volume: 3 start-page: 8075 year: 2020 end-page: 8085 ident: b0030 article-title: CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting publication-title: ACS Appl. Energy Mater. – volume: 581 start-page: 774 year: 2021 end-page: 782 ident: b0135 article-title: Facile synthesis of nanoflower-like phosphorus-doped Ni publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 10064 year: 2018 end-page: 10073 ident: b0235 article-title: Tubular Cu(OH) publication-title: J. Mater. Chem. A – volume: 390 year: 2020 ident: b0185 article-title: Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis publication-title: Chem. Eng. J. – volume: 536 year: 2021 ident: b0165 article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction publication-title: Appl. Surf. Sci. – volume: 569 start-page: 140 year: 2020 end-page: 149 ident: b0100 article-title: Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting publication-title: J. Colloid Interface Sci. – volume: 29 start-page: 1704574 year: 2017 ident: b0035 article-title: Vertical growth of 2D amorphous FePO publication-title: Adv. Mater. – volume: 270 year: 2020 ident: b0200 article-title: Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 20658 year: 2019 end-page: 20666 ident: b0090 article-title: Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting publication-title: J. Mater. Chem. A – volume: 361 year: 2020 ident: b0085 article-title: Fe-doped Ni publication-title: Electrochim. Acta – volume: 588 start-page: 248 year: 2021 end-page: 256 ident: b0125 article-title: Iron, manganese co-doped Ni publication-title: J. Colloid Interface Sci. – volume: 355 start-page: 815 year: 2020 end-page: 821 ident: b0080 article-title: Efficient overall water splitting over Mn doped Ni publication-title: Catal. Today – volume: 26 start-page: 3314 year: 2016 end-page: 3323 ident: b0250 article-title: Efficient and stable bifunctional electrocatalysts Ni/Ni publication-title: Adv. Funct. Mater. – volume: 4 start-page: 15148 year: 2016 end-page: 15155 ident: b0255 article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting publication-title: J. Mater. Chem. A – volume: 14 start-page: 1703257 year: 2018 ident: b0300 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small – volume: 7 start-page: 8376 year: 2019 end-page: 8383 ident: b0115 article-title: Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation publication-title: J. Mater. Chem. A – volume: 12 start-page: 375 year: 2019 end-page: 380 ident: b0290 article-title: Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes publication-title: Nano Res. – volume: 15 start-page: 2050024 year: 2019 ident: b0040 article-title: Surface phosphation of 3D NiCo publication-title: Nano – volume: 6 start-page: 19221 year: 2018 end-page: 19230 ident: b0150 article-title: Bifunctional CoNi/CoFe publication-title: J. Mater. Chem. A – volume: 16 start-page: 7718 year: 2016 end-page: 7725 ident: b0070 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. – volume: 30 start-page: 1705045 year: 2018 ident: b0210 article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation publication-title: Adv. Mater. – volume: 587 start-page: 141 year: 2021 end-page: 149 ident: b0155 article-title: Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 20 start-page: 136 year: 2020 end-page: 144 ident: b0095 article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting publication-title: Nano Lett. – volume: 6 start-page: 11789 year: 2014 end-page: 11794 ident: b0245 article-title: Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction publication-title: Nanoscale – volume: 21 start-page: 6080 year: 2019 end-page: 6092 ident: b0220 article-title: F or V-induced activation of (Co, Ni) publication-title: CrystEngComm – volume: 7 start-page: 2233 year: 2019 end-page: 2241 ident: b0325 article-title: An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting publication-title: J. Mater. Chem. A – volume: 139 start-page: 8320 year: 2017 end-page: 8328 ident: b0240 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J. Am. Chem. Soc. – volume: 561 start-page: 638 year: 2020 end-page: 646 ident: b0055 article-title: Self-growth Ni publication-title: J. Colloid Interface Sci. – volume: 59 start-page: 8522 year: 2020 end-page: 8531 ident: b0060 article-title: CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. – volume: 267 year: 2020 ident: b0170 article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities publication-title: Appl. Catal. B Environ. – volume: 31 start-page: 2100614 year: 2021 ident: b0225 article-title: In situ reconstruction of V-doped Ni publication-title: Adv. Funct. Mater. – volume: 10 start-page: 8231 year: 2018 end-page: 8237 ident: b0260 article-title: Self-template synthesis of Co-Se-S-O hierarchical nanotubes as efficient electrocatalysts for oxygen evolution under alkaline and neutral conditions publication-title: ACS Appl. Mat. Inter. – volume: 28 start-page: 6934 year: 2016 end-page: 6941 ident: b0295 article-title: Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting publication-title: Chem. Mater. – volume: 561 start-page: 638 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0055 article-title: Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.11.039 – volume: 7 start-page: 2518 issue: 6 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0140 article-title: Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10856K – volume: 4 start-page: 15148 issue: 39 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0255 article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06496E – volume: 11 start-page: 10595 issue: 22 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0105 article-title: Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution publication-title: Nanoscale doi: 10.1039/C9NR01735F – volume: 27 start-page: 1702513 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0120 article-title: 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702513 – volume: 5 start-page: 16929 issue: 32 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0025 article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04893A – volume: 7 start-page: 24964 issue: 43 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0195 article-title: Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn-air battery publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09239K – volume: 21 start-page: 6080 issue: 40 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0220 article-title: F or V-induced activation of (Co, Ni)2P during electrocatalysis for efficient hydrogen evolution reaction publication-title: CrystEngComm doi: 10.1039/C9CE01094G – volume: 44 start-page: 17900 issue: 33 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0045 article-title: Ni3S2-MoSx nanorods grown on Ni foam as high-efficient electrocatalysts for overall water splitting publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.05.157 – volume: 6 start-page: 9640 issue: 8 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0110 article-title: Self-supported FeNi-P nanosheets with thin amorphous layers for efficient electrocatalytic water splitting publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04743 – volume: 4 start-page: 12407 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0180 article-title: A Ni2P nanosheet array integrated on 3D Ni foam: An efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05604K – volume: 858 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0010 article-title: 3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113795 – volume: 355 start-page: 815 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0080 article-title: Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam publication-title: Catal. Today doi: 10.1016/j.cattod.2019.04.019 – volume: 11 start-page: 55 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0310 article-title: Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0289-6 – volume: 44 start-page: 5148 issue: 15 year: 2015 ident: 10.1016/j.jcis.2021.07.101_b0020 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 45 start-page: 6110 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0175 article-title: Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.12.155 – volume: 6 start-page: 19201 issue: 39 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0275 article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07162D – volume: 826 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0270 article-title: Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154210 – volume: 278 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0130 article-title: Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119327 – volume: 7 start-page: 12770 issue: 15 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0160 article-title: Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at All pH values publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01355 – volume: 569 start-page: 140 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0100 article-title: Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.073 – volume: 588 start-page: 248 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0125 article-title: Iron, manganese co-doped Ni3S2 nanoflowers in situ assembled by ultrathin nanosheets as a robust electrocatalyst for oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.062 – volume: 246 start-page: 72 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0205 article-title: In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal-organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.045 – volume: 12 start-page: 375 issue: 2 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0290 article-title: Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes publication-title: Nano Res. doi: 10.1007/s12274-018-2226-2 – volume: 14 start-page: 1703257 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0300 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small doi: 10.1002/smll.201703257 – volume: 30 start-page: 1910498 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0215 article-title: Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910498 – volume: 15 start-page: 2050024 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0040 article-title: Surface phosphation of 3D NiCo2O4 nanowires grown on Ni foam as an efficient bifunctional catalyst for water splitting publication-title: Nano doi: 10.1142/S1793292020500241 – volume: 267 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0170 article-title: NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118376 – volume: 139 start-page: 8320 issue: 24 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0240 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03507 – volume: 6 start-page: 167 issue: 1 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0320 article-title: A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07956G – volume: 5 start-page: 2496 issue: 6 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0315 article-title: Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10509B – volume: 3 start-page: 8075 issue: 8 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0030 article-title: CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01538 – volume: 367 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0075 article-title: NiMn1.5PO4 thin layer supported on Ni foam as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137567 – volume: 541 start-page: 279 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0190 article-title: Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.096 – volume: 55 start-page: 10 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0280 article-title: In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution publication-title: J. Energy. Chem doi: 10.1016/j.jechem.2020.07.005 – volume: 527 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0265 article-title: One step in-situ synthesis of Ni3S2/Fe2O3/N-doped carbon composites on Ni foam as an efficient electrocatalyst for overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146918 – volume: 59 start-page: 8522 issue: 12 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0060 article-title: CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00959 – volume: 6 start-page: 6054 issue: 14 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0015 article-title: “Ethanol-water exchange” nanobubbles templated hierarchical hollow β-Mo2C/N-doped carbon composite nanospheres as an efficient hydrogen evolution electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10977F – volume: 390 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0185 article-title: Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124525 – volume: 10 start-page: 8231 issue: 9 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0260 article-title: Self-template synthesis of Co-Se-S-O hierarchical nanotubes as efficient electrocatalysts for oxygen evolution under alkaline and neutral conditions publication-title: ACS Appl. Mat. Inter. doi: 10.1021/acsami.8b00986 – volume: 536 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0165 article-title: Hydrogel derived FeCo/FeCoP embedded in N, P-codoped 3D porous carbon framework as a highly efficient electrocatalyst for oxygen reduction reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147950 – volume: 12 start-page: 4385 issue: 4 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0285 article-title: Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting publication-title: ACS Appl. Mat. Inter. doi: 10.1021/acsami.9b15208 – volume: 580 start-page: 99 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0305 article-title: Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.124 – volume: 7 start-page: 20658 issue: 36 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0090 article-title: Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07289F – volume: 7 start-page: 8376 issue: 14 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0115 article-title: Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01088B – volume: 16 start-page: 1907468 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0145 article-title: In situ growth of CoP3/carbon polyhedron/CoO/NF nanoarrays as binder-free anode for lithium-ion batteries with enhanced specific capacity publication-title: Small doi: 10.1002/smll.201907468 – volume: 30 start-page: 1705045 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0210 article-title: A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201705045 – volume: 16 start-page: 7718 issue: 12 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0070 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 581 start-page: 774 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0135 article-title: Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.08.005 – volume: 361 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0085 article-title: Fe-doped Ni3S2 nanoneedles directly grown on Ni foam as highly efficient bifunctional electrocatalysts for alkaline overall water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137080 – volume: 20 start-page: 136 issue: 1 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0095 article-title: Integrating Rh species with NiFe-layered double hydroxide for overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03460 – volume: 24 start-page: 103 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0230 article-title: Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.006 – volume: 7 start-page: 2233 issue: 5 year: 2019 ident: 10.1016/j.jcis.2021.07.101_b0325 article-title: An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11072G – volume: 28 start-page: 6934 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0295 article-title: Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02610 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0005 article-title: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 6 start-page: 19221 issue: 39 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0150 article-title: Bifunctional CoNi/CoFe2O4 /Ni foam electrodes for efficient overall water splitting at a high current density publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08223E – volume: 242 start-page: 260 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0065 article-title: Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.015 – volume: 6 start-page: 10064 year: 2018 ident: 10.1016/j.jcis.2021.07.101_b0235 article-title: Tubular Cu(OH)2 arrays decorated with nanothorny Co-Ni bimetallic carbonate hydroxide supported on Cu foam: A 3D hierarchical core-shell efficient electrocatalyst for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02492H – volume: 6 start-page: 11789 issue: 20 year: 2014 ident: 10.1016/j.jcis.2021.07.101_b0245 article-title: Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C4NR03371J – volume: 31 start-page: 2100614 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0225 article-title: In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100614 – volume: 29 start-page: 1704574 year: 2017 ident: 10.1016/j.jcis.2021.07.101_b0035 article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: Outer and inner structural design for superior water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201704574 – volume: 270 year: 2020 ident: 10.1016/j.jcis.2021.07.101_b0200 article-title: Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118880 – volume: 26 start-page: 3314 issue: 19 year: 2016 ident: 10.1016/j.jcis.2021.07.101_b0250 article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505626 – volume: 587 start-page: 141 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0155 article-title: Walnut kernel-like iron-cobalt-nickel sulfide nanosheets directly grown on nickel foam: A binder-free electrocatalyst for high-efficiency oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.011 – volume: 367 year: 2021 ident: 10.1016/j.jcis.2021.07.101_b0050 article-title: Double metal-organic frameworks derived Fe-Co-Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137536 |
SSID | ssj0011559 |
Score | 2.6642094 |
Snippet | [Display omitted]
•The Fe,Rh-Ni2P/NF were synthesized via hydrothermal treatment and sequential low-temperature phosphorization.•The unique nanosheets arrays... To enhance the overall water splitting efficiency, it is widely attractive yet challenging to develop low price, abundance and efficient bifunctional... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 888 |
SubjectTerms | anodes Bifunctional electrocatalyst cathodes electric potential difference Electrocatalysis foams Hydrogen evolution reaction hydrogen production nanosheets nickel Overall water splitting Oxygen evolution reaction oxygen production prices |
Title | Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting |
URI | https://dx.doi.org/10.1016/j.jcis.2021.07.101 https://www.proquest.com/docview/2560059672 https://www.proquest.com/docview/2636504157 |
Volume | 605 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5CPEQPolExPkIHvOmYefRrj2ExbBJYPBjY29BPMmHTs8zMIrn4E_zNVs0jqMgevA7VTDPVXfV1z1dfEfJBBj1jWRoSOHbxhOWsgDjIZoni1opgHcTNnuW7FItrdrniqz0yn2phkFY5xv4hpvfRenxyOn7N001VYY0v7DaJ6jMIa4oVVrAziav8848HmkeGv90GmkeWoPVYODNwvG5thZLdeYYCntnYGOYfyemvMN3nnvNn5OkIGunZMK_nZM_HQ3Iwn3q1HZInv8kKviA_L5o6fqLNTe2q7V1i4eS58Y4uq_wrjTrW7Y33XUt10-j7lrbbTS9u7mgdaaxgV69pqPUd1WASqe81JiA1UVNhEhzuDunYPqe__blvOxjRUGSD6vWafgf82tAW4G1Pqn5Jrs-_fJsvkrHvQmILIbrEZMwJZYIPhZRS6JQ7EYTSlgWvhAMAUGQ5bN4UZpA5gIAmNYZjb78wU1zL4hXZj3X0rwnVCk6p3PuQm4JZxjTXSulgg5JOhWCOSDZ98NKOouTYG2NdTuyz2xKdVKKTylTisyPy8WHMZpDk2GnNJz-WfyysEnLGznEnk9NLcCb-RtHR11swQpDIZ0LmO2xEAdAXwJF885_vf0se51hp0d_2vCP7XbP17wH_dOa4X-DH5NHZxdVi-QtO1weR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9lA4ICggytNI3CBqHn7tsVpR7dKy4tBKe4scx1ZTbZ1VkhXqn-hv7kziVIDQHrhaM4qVsWc-2zPfEPJZOj1lSewiOHbxiKUsAz_IppHixghnSvCbfZbvUswv2fcVX-2R2VgLg2mVwfcPPr331mHkOPzN401VYY0v7DaJ7DMIa7LVI7KP7FR8QvZPFmfz5cNjAr68DZkeSYQKoXZmSPO6NhWydqcJcngmoTfMP-LTX566Dz-nz8jTgBvpyTC152TP-kNyMBvbtR2SJ78xC74gd4um9l9pc1WX1fYmMnD43NiSLqv0J_Xa1-2VtV1LddPo25a2203Pb17S2lNfwcZeU1frG6pBxFPb00xAdKJFhXFwuD6koYNOfwF023ag0VBMCNXrNf0FELahLSDcPq_6Jbk8_XYxm0eh9UJkMiG6qEhYKVThrMuklELHvBROKG2Ys0qUgAGyJIX9G8MMkhJQYBEXBcf2fm6quJbZKzLxtbevCdUKDqrcWpcWGTOMaa6V0s44JUvlXHFEkvGH5ybwkmN7jHU-JqBd52ikHI2UxxLHjsiXB53NwMqxU5qPdsz_WFs5hI2dep9Go-dgTHxJ0d7WWxBCnMinQqY7ZEQG6BfwkXzzn9__SA7mFz_O8_PF8uwteZxi4UV_-fOOTLpma98DHOqKD2G53wNGJQpC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%2C+rhodium-codoped+Ni2P+nanosheets+arrays+supported+on+nickel+foam+as+an+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Chen%2C+Meng-Ting&rft.au=Duan%2C+Jiao-Jiao&rft.au=Feng%2C+Jiu-Ju&rft.au=Mei%2C+Li-Ping&rft.date=2022-01-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=605&rft.spage=888&rft_id=info:doi/10.1016%2Fj.jcis.2021.07.101&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |