Digital twin and cloud-side-end collaboration for intelligent battery management system
•The architecture of network collaboration for future battery management is presented.•The digital twin model is used for management of the batteries in their entire life cycle.•Online learning and model updating are used to fix model parameters.•The key technologies of state estimation and battery...
Saved in:
Published in | Journal of manufacturing systems Vol. 62; pp. 124 - 134 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The architecture of network collaboration for future battery management is presented.•The digital twin model is used for management of the batteries in their entire life cycle.•Online learning and model updating are used to fix model parameters.•The key technologies of state estimation and battery equalization are introduced.
Nowadays the wave of digital economy has swept the world, and the competition in the field of battery management has become increasingly vigorous. The application of digital twin technology gives a new concept of networked management and service of lithium-ion batteries. In this paper, the digital twin technology and cloud-side-end collaboration for the future battery management system is discussed. A four layer networked architecture of cloud-side-end collaboration for battery management system is presented which breaks through the computing capacity and storage space limitations of the conventional battery management and enables high performance algorithms. The digital twin model of the battery is established, which enables refined and safety management of the batteries in their entire life cycle. Furthermore, the digital twin model and key technologies such as state estimation and cloud assisted equalization of the batteries are introduced. The results indicate that digital twin models are helpful for battery management and the full life cycle data are useful to build the upgrade route of the battery. |
---|---|
AbstractList | •The architecture of network collaboration for future battery management is presented.•The digital twin model is used for management of the batteries in their entire life cycle.•Online learning and model updating are used to fix model parameters.•The key technologies of state estimation and battery equalization are introduced.
Nowadays the wave of digital economy has swept the world, and the competition in the field of battery management has become increasingly vigorous. The application of digital twin technology gives a new concept of networked management and service of lithium-ion batteries. In this paper, the digital twin technology and cloud-side-end collaboration for the future battery management system is discussed. A four layer networked architecture of cloud-side-end collaboration for battery management system is presented which breaks through the computing capacity and storage space limitations of the conventional battery management and enables high performance algorithms. The digital twin model of the battery is established, which enables refined and safety management of the batteries in their entire life cycle. Furthermore, the digital twin model and key technologies such as state estimation and cloud assisted equalization of the batteries are introduced. The results indicate that digital twin models are helpful for battery management and the full life cycle data are useful to build the upgrade route of the battery. |
Author | Zhou, Caijie Chen, Zonghai Kang, Xu Wang, Yujie Xu, Ruilong |
Author_xml | – sequence: 1 givenname: Yujie orcidid: 0000-0001-5722-2673 surname: Wang fullname: Wang, Yujie email: wangyujie@ustc.edu.cn – sequence: 2 givenname: Ruilong surname: Xu fullname: Xu, Ruilong email: rlxu@mail.ustc.edu.cn – sequence: 3 givenname: Caijie surname: Zhou fullname: Zhou, Caijie email: cjzhou19@mail.ustc.edu.cn – sequence: 4 givenname: Xu surname: Kang fullname: Kang, Xu email: kangxu0829@mail.ustc.edu.cn – sequence: 5 givenname: Zonghai orcidid: 0000-0001-9312-9089 surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn |
BookMark | eNp9kM1KxDAUhbMYwZnRF3DVF2hN0jbNgBsZf2HAjeIyJOnNkJImkkSlb2_LuHLh6nAPfBfOt0ErHzwgdEVwRTBh10M1jGmqKKakIqTCmK3QGtOOl4zQ9hxtUhowJrTBdI3e7-zRZumK_G19IX1faBc--zLZHkpYzuCcVCHKbIMvTIiF9Rmcs0fwuVAyZ4hTMUovjzAuVZpShvECnRnpElz-5ha9Pdy_7p_Kw8vj8_72UOqasVwqrJqWm46DamvZKE653DXStIYYouu2Y7Q2tcKtpoRR0oDhTGtmOmgbtlO83iJ6-qtjSCmCER_RjjJOgmCx6BCDWHSIRYcgRMw6Zoj_gfTsYBmYo7Tuf_TmhMI86stCFElb8Bp6G0Fn0Qf7H_4DnFKBkA |
CitedBy_id | crossref_primary_10_1016_j_energy_2023_129460 crossref_primary_10_1016_j_ensm_2022_10_033 crossref_primary_10_1016_j_rcim_2024_102762 crossref_primary_10_1155_2022_9256401 crossref_primary_10_1016_j_jpowsour_2024_234781 crossref_primary_10_1016_j_energy_2023_129061 crossref_primary_10_2478_amns_2023_2_01248 crossref_primary_10_1109_MIE_2022_3216719 crossref_primary_10_1016_j_est_2025_115718 crossref_primary_10_1016_j_est_2023_107365 crossref_primary_10_1016_j_est_2024_114294 crossref_primary_10_3390_en16176318 crossref_primary_10_3390_batteries9020129 crossref_primary_10_3390_batteries9030181 crossref_primary_10_1002_er_7874 crossref_primary_10_3390_app12146981 crossref_primary_10_3390_batteries9030185 crossref_primary_10_1016_j_epsr_2024_110698 crossref_primary_10_3390_bdcc6040115 crossref_primary_10_1016_j_est_2022_105992 crossref_primary_10_1016_j_rser_2024_115241 crossref_primary_10_3390_s23073417 crossref_primary_10_1016_j_ijpvp_2025_105451 crossref_primary_10_1007_s42979_023_01976_x crossref_primary_10_1080_09540091_2022_2118675 crossref_primary_10_1155_2022_8924801 crossref_primary_10_1016_j_est_2024_113099 crossref_primary_10_1016_j_est_2024_113372 crossref_primary_10_1016_j_jmsy_2024_09_006 crossref_primary_10_1002_adts_202300125 crossref_primary_10_1002_ente_202200627 crossref_primary_10_1109_TITS_2024_3361807 crossref_primary_10_1109_JAS_2022_105599 crossref_primary_10_3390_batteries10070242 crossref_primary_10_1016_j_jechem_2023_02_019 crossref_primary_10_1016_j_apenergy_2022_119789 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_23919_CHAIN_2024_000004 crossref_primary_10_47836_pjst_32_2_20 crossref_primary_10_1016_j_energy_2025_134879 crossref_primary_10_1016_j_jpowsour_2023_233349 crossref_primary_10_3389_fenrg_2022_972486 crossref_primary_10_1109_ACCESS_2024_3446880 crossref_primary_10_1016_j_est_2022_105333 crossref_primary_10_1016_j_rser_2025_115604 crossref_primary_10_1021_acs_analchem_3c01936 crossref_primary_10_1016_j_rser_2022_112078 crossref_primary_10_1016_j_est_2024_112107 crossref_primary_10_1007_s10845_025_02567_8 crossref_primary_10_1016_j_apenergy_2023_122174 crossref_primary_10_1016_j_est_2024_111897 crossref_primary_10_1016_j_est_2023_110381 crossref_primary_10_1007_s00170_022_09613_2 crossref_primary_10_1007_s11664_024_11495_x crossref_primary_10_1016_j_jmsy_2023_01_009 crossref_primary_10_1016_j_geits_2023_100128 crossref_primary_10_1016_j_est_2023_106688 crossref_primary_10_1016_j_ensm_2024_103531 crossref_primary_10_1039_D2RA06004C crossref_primary_10_1109_ACCESS_2024_3408715 crossref_primary_10_1016_j_energy_2023_128971 crossref_primary_10_1016_j_jpowsour_2024_234464 crossref_primary_10_1016_j_energy_2023_127086 crossref_primary_10_3390_en18051198 crossref_primary_10_1007_s00202_024_02523_4 crossref_primary_10_1155_2022_8653547 crossref_primary_10_1109_OJCOMS_2022_3197811 crossref_primary_10_1016_j_aei_2024_102792 crossref_primary_10_1016_j_etran_2023_100260 crossref_primary_10_1002_prs_12575 crossref_primary_10_1016_j_est_2023_107203 crossref_primary_10_1016_j_rser_2023_113280 crossref_primary_10_1016_j_jpowsour_2024_235827 crossref_primary_10_1016_j_procir_2024_03_044 crossref_primary_10_1016_j_est_2023_108926 crossref_primary_10_1016_j_est_2022_106487 crossref_primary_10_1016_j_solener_2023_01_004 crossref_primary_10_1109_TTE_2024_3423469 crossref_primary_10_1039_D4SE01238K crossref_primary_10_1016_j_est_2024_111435 crossref_primary_10_1016_j_geits_2024_100162 crossref_primary_10_1109_TTE_2022_3226476 crossref_primary_10_1016_j_jechem_2025_02_030 crossref_primary_10_1177_09544070231210562 crossref_primary_10_1016_j_apenergy_2023_122237 crossref_primary_10_1016_j_ecmx_2025_100949 crossref_primary_10_1016_j_jmapro_2023_12_036 crossref_primary_10_1016_j_est_2023_109338 crossref_primary_10_3390_machines13030175 crossref_primary_10_1109_JAS_2022_105779 crossref_primary_10_1016_j_conengprac_2023_105451 crossref_primary_10_1016_j_est_2025_116186 crossref_primary_10_1155_2022_3699990 crossref_primary_10_1016_j_energy_2022_125088 crossref_primary_10_1109_ACCESS_2023_3349379 crossref_primary_10_1155_2022_6574042 crossref_primary_10_1007_s42979_023_01938_3 crossref_primary_10_23919_CHAIN_2024_100002 crossref_primary_10_1016_j_est_2024_112377 crossref_primary_10_1016_j_est_2024_114552 crossref_primary_10_1016_j_geits_2022_100014 crossref_primary_10_1002_cta_3500 crossref_primary_10_1109_ACCESS_2024_3490655 crossref_primary_10_23919_IEN_2022_0040 crossref_primary_10_3390_batteries8110219 crossref_primary_10_1016_j_est_2022_105769 crossref_primary_10_1016_j_jtte_2024_04_004 crossref_primary_10_1149_1945_7111_acf526 crossref_primary_10_1016_j_est_2022_106347 crossref_primary_10_34133_research_0071 crossref_primary_10_1016_j_ijpe_2024_109176 crossref_primary_10_1016_j_est_2024_112703 crossref_primary_10_1016_j_geits_2024_100181 crossref_primary_10_3390_jmse12081422 crossref_primary_10_1155_2022_8048646 crossref_primary_10_1149_1945_7111_ac8a1a crossref_primary_10_1149_1945_7111_acced5 crossref_primary_10_1002_cta_3339 crossref_primary_10_1109_ACCESS_2024_3393027 crossref_primary_10_1109_TEC_2023_3319331 crossref_primary_10_1016_j_scs_2024_105479 crossref_primary_10_1016_j_etran_2023_100295 crossref_primary_10_1109_ACCESS_2025_3531833 crossref_primary_10_1109_TPEL_2023_3288539 |
Cites_doi | 10.1016/j.rser.2021.110801 10.1007/s11432-020-3106-7 10.1016/j.jmsy.2020.07.018 10.1109/TIE.2020.3034855 10.1016/j.jmsy.2021.03.006 10.1016/j.apenergy.2014.08.081 10.1109/TPEL.2021.3049166 10.1016/j.jmsy.2021.03.019 10.1016/j.est.2020.101557 10.1016/j.enconman.2017.08.016 10.3390/en9110900 10.1016/j.jmsy.2021.05.011 10.1016/j.jpowsour.2017.11.019 10.1016/j.jclepro.2021.126044 10.1016/j.applthermaleng.2019.114421 10.1016/j.procir.2020.05.222 10.1016/j.jmsy.2019.10.001 10.1109/MIE.2020.3002486 10.1016/j.measurement.2018.09.007 10.1016/j.rser.2019.109334 10.1109/TVT.2019.2959720 10.1109/TIM.2020.2973850 10.1109/TIA.2020.3029755 10.1016/j.rser.2020.110480 10.1016/j.est.2020.101978 10.3390/en11010125 10.1016/j.rser.2020.110015 10.1016/j.apenergy.2015.04.062 10.1109/TII.2019.2935326 10.1016/j.apenergy.2015.01.127 10.1016/j.jmsy.2020.11.012 10.1016/j.apenergy.2019.114324 |
ContentType | Journal Article |
Copyright | 2021 The Society of Manufacturing Engineers |
Copyright_xml | – notice: 2021 The Society of Manufacturing Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmsy.2021.11.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 134 |
ExternalDocumentID | 10_1016_j_jmsy_2021_11_006 S0278612521002284 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 3EH 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8G5 8P~ 8R4 8R5 9JN 9M8 AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFKRA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BKOMP BLXMC BNPGV BPHCQ C1A CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN G-2 GBLVA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HVGLF HZ~ H~9 IHE J1W JJJVA K60 K6V K6~ K7- KOM L6V LY7 M0C M0F M2O M2P M41 M7S MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PTHSS Q2X Q38 R2- RIG ROL RPZ RWL S0X SDF SES SET SPC SPCBC SSH SST SSZ T5K TAE TN5 U5U WH7 WUQ ZHY ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION PHGZM |
ID | FETCH-LOGICAL-c366t-b0b458f78eb53a4b828a94af5f1f1c357623f3b05c216214ef86cc6f7e5469b83 |
IEDL.DBID | .~1 |
ISSN | 0278-6125 |
IngestDate | Tue Jul 01 00:55:36 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 Sun Apr 06 06:59:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cloud computing Battery management system Digital twin Internet of Things Distributed computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-b0b458f78eb53a4b828a94af5f1f1c357623f3b05c216214ef86cc6f7e5469b83 |
ORCID | 0000-0001-5722-2673 0000-0001-9312-9089 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_jmsy_2021_11_006 crossref_citationtrail_10_1016_j_jmsy_2021_11_006 elsevier_sciencedirect_doi_10_1016_j_jmsy_2021_11_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing systems |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jones, Hutcheson, Camba (bib0005) 2021; 60 Dai, Jiang, Hu, Lin, Wei, Pecht (bib0160) 2020; 138 Leng, Wang, Shen, Li, Liu, Chen (bib0030) 2021; 60 Hu, Feng, Liu, Zhang, Xie, Liu (bib0060) 2019; 114 Zhang, Jiang, Zhang, Liu, Wang, Loh (bib0165) 2016; 9 Wang, Zhang, Chen, Xie, Zhang (bib0080) 2015; 145 Liu, Li, Li, Shi, Wang, Chen (bib0140) 2020; 164 Lipu, Hannan, Karim, Hussain, Saad, Ayob (bib0135) 2021 Neto, da Silva, Deschamps, Lima (bib0040) 2021; 97 Grieves (bib0020) 2014; 1 Jia, Ma, Guo, Li (bib0085) 2021 Wang, Pan, Liu, Chen, Ling (bib0105) 2018; 374 Jiang, Jia, Guan (bib0075) 2022; 65 Wang, Chen (bib0065) 2020; 260 Xia, Qahouq (bib0130) 2020; 57 Glaessgen, Stargel (bib0025) 2012 He, Zhang, Xiong, Wang (bib0100) 2015; 151 Gao, Zhang, Guo, Zhu, Wiedemann, Wang (bib0145) 2019; 16 Kim, Makwana, Adhikaree, Vagdoda, Lee (bib0175) 2018; 11 Sun, Liu, Tang, Wang, Jiang, Tang (bib0150) 2021; 36 Wang, Tian, Chen, Liu (bib0090) 2019; 131 Ahwiadi, Wang (bib0125) 2020; 69 Ladj, Wang, Meski, Belkadi, Ritou, Cunha (bib0045) 2021; 58 Qi, Tao, Hu, Anwer, Liu, Wei (bib0010) 2021; 58 Bhatti, Mohan, Singh (bib0180) 2021; 141 Haus, Mercorelli (bib0115) 2019; 69 Han, Wik, Kersten, Dong, Zou (bib0155) 2020; 14 Li, Zhao (bib0170) 2021 Bhatti, Mohan, Singh (bib0050) 2021; 141 Dong, Han, Wang (bib0110) 2020; 68 Wang, Zhang, Chen (bib0095) 2014; 135 Wang, Tian, Sun, Wang, Xu, Li (bib0015) 2020; 131 Li, Rentemeister, Badeda, Jöst, Schulte, Sauer (bib0055) 2020; 30 Wang, Luo (bib0035) 2021; 58 Sassi, Errahimi, Najia (bib0120) 2020; 32 Liu, Wei, He (bib0070) 2017; 150 Wang (10.1016/j.jmsy.2021.11.006_bib0080) 2015; 145 Sun (10.1016/j.jmsy.2021.11.006_bib0150) 2021; 36 Jia (10.1016/j.jmsy.2021.11.006_bib0085) 2021 Xia (10.1016/j.jmsy.2021.11.006_bib0130) 2020; 57 Bhatti (10.1016/j.jmsy.2021.11.006_bib0050) 2021; 141 Wang (10.1016/j.jmsy.2021.11.006_bib0090) 2019; 131 He (10.1016/j.jmsy.2021.11.006_bib0100) 2015; 151 Li (10.1016/j.jmsy.2021.11.006_bib0170) 2021 Haus (10.1016/j.jmsy.2021.11.006_bib0115) 2019; 69 Ladj (10.1016/j.jmsy.2021.11.006_bib0045) 2021; 58 Wang (10.1016/j.jmsy.2021.11.006_bib0015) 2020; 131 Wang (10.1016/j.jmsy.2021.11.006_bib0095) 2014; 135 Lipu (10.1016/j.jmsy.2021.11.006_bib0135) 2021 Jones (10.1016/j.jmsy.2021.11.006_bib0005) 2021; 60 Grieves (10.1016/j.jmsy.2021.11.006_bib0020) 2014; 1 Glaessgen (10.1016/j.jmsy.2021.11.006_bib0025) 2012 Li (10.1016/j.jmsy.2021.11.006_bib0055) 2020; 30 Jiang (10.1016/j.jmsy.2021.11.006_bib0075) 2022; 65 Han (10.1016/j.jmsy.2021.11.006_bib0155) 2020; 14 Wang (10.1016/j.jmsy.2021.11.006_bib0035) 2021; 58 Gao (10.1016/j.jmsy.2021.11.006_bib0145) 2019; 16 Kim (10.1016/j.jmsy.2021.11.006_bib0175) 2018; 11 Liu (10.1016/j.jmsy.2021.11.006_bib0140) 2020; 164 Neto (10.1016/j.jmsy.2021.11.006_bib0040) 2021; 97 Wang (10.1016/j.jmsy.2021.11.006_bib0065) 2020; 260 Ahwiadi (10.1016/j.jmsy.2021.11.006_bib0125) 2020; 69 Dong (10.1016/j.jmsy.2021.11.006_bib0110) 2020; 68 Dai (10.1016/j.jmsy.2021.11.006_bib0160) 2020; 138 Zhang (10.1016/j.jmsy.2021.11.006_bib0165) 2016; 9 Bhatti (10.1016/j.jmsy.2021.11.006_bib0180) 2021; 141 Wang (10.1016/j.jmsy.2021.11.006_bib0105) 2018; 374 Sassi (10.1016/j.jmsy.2021.11.006_bib0120) 2020; 32 Hu (10.1016/j.jmsy.2021.11.006_bib0060) 2019; 114 Liu (10.1016/j.jmsy.2021.11.006_bib0070) 2017; 150 Leng (10.1016/j.jmsy.2021.11.006_bib0030) 2021; 60 Qi (10.1016/j.jmsy.2021.11.006_bib0010) 2021; 58 |
References_xml | – volume: 60 start-page: 119 year: 2021 end-page: 137 ident: bib0030 article-title: Digital twins-based smart manufacturing system design in Industry 4.0: a review publication-title: J Manuf Syst – volume: 36 start-page: 7853 year: 2021 end-page: 7865 ident: bib0150 article-title: A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm publication-title: IEEE Trans Power Electron – volume: 60 start-page: 936 year: 2021 end-page: 948 ident: bib0005 article-title: Past, present, and future barriers to digital transformation in manufacturing: a review publication-title: J Manuf Syst – volume: 114 start-page: 109334 year: 2019 ident: bib0060 article-title: State estimation for advanced battery management: key challenges and future trends publication-title: Renew Sustain Energy Rev – volume: 260 start-page: 114324 year: 2020 ident: bib0065 article-title: A framework for state-of-charge and remaining discharge time prediction using unscented particle filter publication-title: Appl Energy – volume: 138 start-page: 110480 year: 2020 ident: bib0160 article-title: Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends publication-title: Renew Sustain Energy Rev – year: 2012 ident: bib0025 article-title: The digital twin paradigm for future NASA and U.S. air force vehicles publication-title: Proceedings of 53rd structures, structural dynamics, and materials conference – volume: 151 start-page: 41 year: 2015 end-page: 48 ident: bib0100 article-title: A novel Gaussian model based battery state estimation approach: state-of-energy publication-title: Appl Energy – volume: 374 start-page: 12 year: 2018 end-page: 23 ident: bib0105 article-title: Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation publication-title: J Power Sources – volume: 141 start-page: 110801 year: 2021 ident: bib0050 article-title: Towards the future of smart electric vehicles: digital twin technology publication-title: Renew Sustain Energy Rev – year: 2021 ident: bib0170 article-title: Big data driven vehicle battery management method: a novel cyber-physical system perspective publication-title: J Energy Storage – volume: 68 start-page: 10949 year: 2020 end-page: 10958 ident: bib0110 article-title: Dynamic Bayesian network based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE Trans Ind Electron – start-page: 126044 year: 2021 ident: bib0135 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress, challenges and future outlook publication-title: J Clean Prod – volume: 30 start-page: 101557 year: 2020 ident: bib0055 article-title: Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation publication-title: J Energy Storage – volume: 9 start-page: 900 year: 2016 ident: bib0165 article-title: A generalized SOC-OCV model for lithium-ion batteries and the SOC estimation for LNMCO battery publication-title: Energies – volume: 131 start-page: 110015 year: 2020 ident: bib0015 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew Sustain Energy Rev – volume: 145 start-page: 36 year: 2015 end-page: 42 ident: bib0080 article-title: A novel active equalization method for lithium-ion batteries in electric vehicles publication-title: Appl Energy – volume: 32 start-page: 101978 year: 2020 ident: bib0120 article-title: State of charge estimation by multi-innovation unscented Kalman filter for vehicular applications publication-title: J Energy Storage – volume: 1 start-page: 1 year: 2014 end-page: 7 ident: bib0020 article-title: Digital twin: manufacturing excellence through virtual factory replication publication-title: White Paper – volume: 150 start-page: 304 year: 2017 end-page: 330 ident: bib0070 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers Manage – volume: 11 start-page: 125 year: 2018 ident: bib0175 article-title: Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems publication-title: Energies – volume: 69 start-page: 6756 year: 2020 end-page: 6765 ident: bib0125 article-title: An adaptive particle filter technique for system state estimation and prognosis publication-title: IEEE Trans Instrum Meas – volume: 164 start-page: 114421 year: 2020 ident: bib0140 article-title: Thermal characteristics of power battery pack with liquid-based thermal management publication-title: Appl Therm Eng – year: 2021 ident: bib0085 article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine publication-title: J Manuf Syst – volume: 58 start-page: 3 year: 2021 end-page: 21 ident: bib0010 article-title: Enabling technologies and tools for digital twin publication-title: J Manuf Syst – volume: 97 start-page: 178 year: 2021 end-page: 183 ident: bib0040 article-title: Digital twins in manufacturing: an assessment of key features publication-title: Proc CIRP – volume: 14 start-page: 20 year: 2020 end-page: 31 ident: bib0155 article-title: Next-generation battery management systems: dynamic reconfiguration publication-title: IEEE Ind Electron Mag – volume: 69 start-page: 1452 year: 2019 end-page: 1463 ident: bib0115 article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries publication-title: IEEE Trans Veh Technol – volume: 58 start-page: 168 year: 2021 end-page: 179 ident: bib0045 article-title: A knowledge-based Digital Shadow for machining industry in a digital twin perspective publication-title: J Manuf Syst Part B – volume: 57 start-page: 673 year: 2020 end-page: 684 ident: bib0130 article-title: State-of-charge balancing of lithium-ion batteries with state-of-health awareness capability publication-title: IEEE Trans Ind Appl – volume: 131 start-page: 443 year: 2019 end-page: 451 ident: bib0090 article-title: Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles publication-title: Measurement – volume: 65 start-page: 122201 year: 2022 ident: bib0075 article-title: On large action space in EV charging scheduling optimization publication-title: Sci China Inform Sci – volume: 16 start-page: 3417 year: 2019 end-page: 3429 ident: bib0145 article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery publication-title: IEEE Trans Ind Inform – volume: 141 start-page: 110801 year: 2021 ident: bib0180 article-title: Towards the future of smart electric vehicles: digital twin technology publication-title: Renew Sustain Energy Rev – volume: 58 start-page: 16 year: 2021 end-page: 32 ident: bib0035 article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing publication-title: J Manuf Syst – volume: 135 start-page: 81 year: 2014 end-page: 87 ident: bib0095 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries publication-title: Appl Energy – year: 2012 ident: 10.1016/j.jmsy.2021.11.006_bib0025 article-title: The digital twin paradigm for future NASA and U.S. air force vehicles – volume: 141 start-page: 110801 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0050 article-title: Towards the future of smart electric vehicles: digital twin technology publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110801 – volume: 65 start-page: 122201 year: 2022 ident: 10.1016/j.jmsy.2021.11.006_bib0075 article-title: On large action space in EV charging scheduling optimization publication-title: Sci China Inform Sci doi: 10.1007/s11432-020-3106-7 – volume: 58 start-page: 168 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0045 article-title: A knowledge-based Digital Shadow for machining industry in a digital twin perspective publication-title: J Manuf Syst Part B doi: 10.1016/j.jmsy.2020.07.018 – volume: 68 start-page: 10949 issue: 11 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0110 article-title: Dynamic Bayesian network based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.3034855 – volume: 60 start-page: 936 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0005 article-title: Past, present, and future barriers to digital transformation in manufacturing: a review publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.03.006 – volume: 135 start-page: 81 year: 2014 ident: 10.1016/j.jmsy.2021.11.006_bib0095 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.081 – volume: 36 start-page: 7853 issue: 7 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0150 article-title: A novel active equalization method for series-connected battery packs based on clustering analysis with genetic algorithm publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2021.3049166 – year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0085 article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.03.019 – volume: 30 start-page: 101557 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0055 article-title: Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation publication-title: J Energy Storage doi: 10.1016/j.est.2020.101557 – volume: 150 start-page: 304 year: 2017 ident: 10.1016/j.jmsy.2021.11.006_bib0070 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.08.016 – volume: 9 start-page: 900 issue: 11 year: 2016 ident: 10.1016/j.jmsy.2021.11.006_bib0165 article-title: A generalized SOC-OCV model for lithium-ion batteries and the SOC estimation for LNMCO battery publication-title: Energies doi: 10.3390/en9110900 – volume: 60 start-page: 119 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0030 article-title: Digital twins-based smart manufacturing system design in Industry 4.0: a review publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.05.011 – volume: 374 start-page: 12 year: 2018 ident: 10.1016/j.jmsy.2021.11.006_bib0105 article-title: Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.11.019 – start-page: 126044 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0135 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress, challenges and future outlook publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126044 – volume: 164 start-page: 114421 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0140 article-title: Thermal characteristics of power battery pack with liquid-based thermal management publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114421 – volume: 97 start-page: 178 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0040 article-title: Digital twins in manufacturing: an assessment of key features publication-title: Proc CIRP doi: 10.1016/j.procir.2020.05.222 – volume: 58 start-page: 3 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0010 article-title: Enabling technologies and tools for digital twin publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.10.001 – volume: 14 start-page: 20 issue: 4 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0155 article-title: Next-generation battery management systems: dynamic reconfiguration publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2020.3002486 – volume: 141 start-page: 110801 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0180 article-title: Towards the future of smart electric vehicles: digital twin technology publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110801 – volume: 131 start-page: 443 year: 2019 ident: 10.1016/j.jmsy.2021.11.006_bib0090 article-title: Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles publication-title: Measurement doi: 10.1016/j.measurement.2018.09.007 – volume: 114 start-page: 109334 year: 2019 ident: 10.1016/j.jmsy.2021.11.006_bib0060 article-title: State estimation for advanced battery management: key challenges and future trends publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109334 – volume: 69 start-page: 1452 issue: 2 year: 2019 ident: 10.1016/j.jmsy.2021.11.006_bib0115 article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2959720 – volume: 69 start-page: 6756 issue: 9 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0125 article-title: An adaptive particle filter technique for system state estimation and prognosis publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.2973850 – volume: 57 start-page: 673 issue: 1 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0130 article-title: State-of-charge balancing of lithium-ion batteries with state-of-health awareness capability publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.3029755 – volume: 138 start-page: 110480 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0160 article-title: Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110480 – volume: 32 start-page: 101978 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0120 article-title: State of charge estimation by multi-innovation unscented Kalman filter for vehicular applications publication-title: J Energy Storage doi: 10.1016/j.est.2020.101978 – volume: 11 start-page: 125 year: 2018 ident: 10.1016/j.jmsy.2021.11.006_bib0175 article-title: Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems publication-title: Energies doi: 10.3390/en11010125 – volume: 131 start-page: 110015 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0015 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110015 – volume: 151 start-page: 41 year: 2015 ident: 10.1016/j.jmsy.2021.11.006_bib0100 article-title: A novel Gaussian model based battery state estimation approach: state-of-energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.062 – volume: 16 start-page: 3417 issue: 5 year: 2019 ident: 10.1016/j.jmsy.2021.11.006_bib0145 article-title: Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2935326 – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.jmsy.2021.11.006_bib0020 article-title: Digital twin: manufacturing excellence through virtual factory replication publication-title: White Paper – volume: 145 start-page: 36 year: 2015 ident: 10.1016/j.jmsy.2021.11.006_bib0080 article-title: A novel active equalization method for lithium-ion batteries in electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.127 – volume: 58 start-page: 16 year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0035 article-title: A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.11.012 – volume: 260 start-page: 114324 year: 2020 ident: 10.1016/j.jmsy.2021.11.006_bib0065 article-title: A framework for state-of-charge and remaining discharge time prediction using unscented particle filter publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114324 – year: 2021 ident: 10.1016/j.jmsy.2021.11.006_bib0170 article-title: Big data driven vehicle battery management method: a novel cyber-physical system perspective publication-title: J Energy Storage |
SSID | ssj0012402 |
Score | 2.620866 |
Snippet | •The architecture of network collaboration for future battery management is presented.•The digital twin model is used for management of the batteries in their... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124 |
SubjectTerms | Battery management system Cloud computing Digital twin Distributed computing Internet of Things |
Title | Digital twin and cloud-side-end collaboration for intelligent battery management system |
URI | https://dx.doi.org/10.1016/j.jmsy.2021.11.006 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4muMAB8RTjMeXADXVbmrTLjtNgGiB2gYndqiZNUKetm6AT2oXfjt2XhoR24NgqVivHsv0l9mdCbrjWHMzAOhZigSMk-MEQoK2jIq0N5BPcMux3fh75w7F4nHiTGumXvTBYVln4_tynZ966eNMqtNlaxnHrBe_MMD67LCNxQU5QITpo5c3vqsyD4e1Bds4CaAlXF40zeY3XdP65BozosiYyeeLUo7-C00bAGRySgyJTpL38Z45IzSTHZH-DP_CEvN3F7zj0g6ZfcULDJKJ6tlhFDo7gdAw-bu4yhfyUxhUFZ0pVxq25pvOqBIbmxM6nZDy4f-0PnWJSgqO576eOaivhSduRRnk8FApgVNgVofUss0xzwBQut1y1Pe0y32XCWOlr7duO8QAeK8nPyE6ySMw5oW5omeoqWC2ZUICHdFsY2ZUqgi-5UVgnrFRRoAsacZxmMQvKerFpgGoNUK2ALwJQa53cVjLLnERj62qv1HzwyxQC8PJb5C7-KXdJ9lzsacjOVa7ITvqxMteQaaSqkZlSg-z2Hp6Gox9NqtPe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RRvPMCE0taPhHRgQDxUaGGhFd1C7NgoVRsQTVV14U_xBzknaVUkxIDUMZGdxJfT3X323XcAJ1wpjmpgHIO-wBE-2sEQoa0jI6U0xhPcUFvv_PDo1Vrivu225-BrXAtj0yoL25_b9MxaF3fKhTTL73FcfrJnZtY_M5qRuIgis7KuR0PEbf2Lu2v8yaeM3d40r2pO0VrAUdzzUkdWpHB9c-5r6fJQSMQdYVWExjXUUMUxCGfccFlxFaMeo0Ib31PKM-faRTwpfY7PnYdFgebCtk0ofU7ySqg9rsg2dhCe2c8rKnXypLJOrz9CUMpoyVKH2jZLv3nDKQ93uwarRWhKLvPVr8OcTjZgZYqwcBOer-NX22WEpMM4IWESEdV9G0SO7fnpaHs5rVYEA2ISTzg_UyIzMs8R6U1ybkjOJL0FrZnIbxsWkrdE7wBhoaGyKnG0T4VEAKYqQvtVX0b4JhaFu0DHIgpUwVtu22d0g3GCWiewYg2sWBHQBCjWXTibzHnPWTv-HO2OJR_80L0A3cof8_b-Oe8YlmrNh0bQuHus78MyswUV2abOASykHwN9iGFOKo8ytSLwMms9_gad0A8V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+twin+and+cloud-side-end+collaboration+for+intelligent+battery+management+system&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Wang%2C+Yujie&rft.au=Xu%2C+Ruilong&rft.au=Zhou%2C+Caijie&rft.au=Kang%2C+Xu&rft.date=2022-01-01&rft.issn=0278-6125&rft.volume=62&rft.spage=124&rft.epage=134&rft_id=info:doi/10.1016%2Fj.jmsy.2021.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmsy_2021_11_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon |