An asymmetrical-structure auto-encoder for unsupervised representation learning of skeleton sequences
Saved in:
Published in | Computer vision and image understanding Vol. 222; p. 103491 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.09.2022
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 103491 |
---|---|
Author | Komuro, Takashi Zhou, Jiaxin |
Author_xml | – sequence: 1 givenname: Jiaxin orcidid: 0000-0002-3008-5127 surname: Zhou fullname: Zhou, Jiaxin – sequence: 2 givenname: Takashi surname: Komuro fullname: Komuro, Takashi |
BookMark | eNp9kMtuwjAQRb2gUoH2B7ryD4R6nOAkS4T6kpC6adeWcSaVabDp2Ebi7xtEV12wmtEdnavRmbGJDx4ZewCxAAHqcbewR5cXUkg5BmXVwoRNQdR1UUIlb9ksxp0QAONhynDluYmn_R4TOWuGIibKNmVCbnIKBXobOiTeB-LZx3xAOrqIHSc8EEb0ySQXPB_QkHf-i4eex28cMI1hxJ88FmC8Yze9GSLe_805-3x--li_Fpv3l7f1alPYUqlUmA5lq_qu65ZCqEa01XYrxr0Gu6xkY5ZgJKJUtqpBWdk327YSsm5bqECIGss5ay69lkKMhL227vJgIuMGDUKfFemdPivSZ0X6omhE5T_0QG5v6HQN-gU_iHJ5 |
CitedBy_id | crossref_primary_10_1016_j_cviu_2024_104070 crossref_primary_10_1109_TMM_2023_3253048 crossref_primary_10_20965_jaciii_2024_p0255 crossref_primary_10_3169_mta_12_123 crossref_primary_10_1016_j_imavis_2023_104785 crossref_primary_10_1007_s00521_024_10956_y |
Cites_doi | 10.1145/2964284.2967191 10.1109/ICCV.2015.510 10.1609/aaai.v30i1.10451 10.1109/CVPR42600.2020.00059 10.1109/CVPR.2017.751 10.1109/CVPR.2016.115 10.1109/CVPR.2019.00413 10.1109/CVPR42600.2020.00965 10.1609/aaai.v33i01.33018545 10.1109/CVPR.2017.502 10.1109/TPAMI.2019.2894422 10.1109/TMM.2021.3057503 10.1109/CVPR.2014.339 10.1109/CVPR46437.2021.00471 10.1109/CVPR.2017.139 10.1109/ICCV.2017.115 10.1145/3474085.3475307 10.1109/TPAMI.2019.2896631 10.1109/CVPR.2017.486 10.1109/ICCV48922.2021.01317 10.1609/aaai.v32i1.11853 10.1109/CVPR.2013.365 10.1109/CVPR46437.2021.01398 10.1145/3394171.3413548 10.1109/CVPR.2017.497 10.1109/CVPR.2013.98 10.1016/j.patcog.2017.02.030 10.1109/CVPR.2014.223 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cviu.2022.103491 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
ExternalDocumentID | 10_1016_j_cviu_2022_103491 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADFGL ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CAG CITATION COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 XPP ZMT ~G- |
ID | FETCH-LOGICAL-c366t-ade296fddd50068094bb0d5071c5428a51a2ee26c4716c2f8b9402799141007e3 |
ISSN | 1077-3142 |
IngestDate | Thu Apr 24 22:52:38 EDT 2025 Tue Jul 01 04:32:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-ade296fddd50068094bb0d5071c5428a51a2ee26c4716c2f8b9402799141007e3 |
ORCID | 0000-0002-3008-5127 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cviu_2022_103491 crossref_primary_10_1016_j_cviu_2022_103491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2022 |
References | Li (10.1016/j.cviu.2022.103491_b14) 2021 Xu (10.1016/j.cviu.2022.103491_b44) 2021 10.1016/j.cviu.2022.103491_b17 Li (10.1016/j.cviu.2022.103491_b13) 2017 10.1016/j.cviu.2022.103491_b15 Fan (10.1016/j.cviu.2022.103491_b5) 2021 Zhang (10.1016/j.cviu.2022.103491_b46) 2019; 41 10.1016/j.cviu.2022.103491_b25 Liu (10.1016/j.cviu.2022.103491_b20) 2016 10.1016/j.cviu.2022.103491_b22 10.1016/j.cviu.2022.103491_b23 Zhu (10.1016/j.cviu.2022.103491_b48) 2022; 24 Wang (10.1016/j.cviu.2022.103491_b42) 2016 Simonyan (10.1016/j.cviu.2022.103491_b31) 2014; 27 Ranzato (10.1016/j.cviu.2022.103491_b29) 2014 Li (10.1016/j.cviu.2022.103491_b12) 2014 Misra (10.1016/j.cviu.2022.103491_b24) 2016 10.1016/j.cviu.2022.103491_b49 Evangelidis (10.1016/j.cviu.2022.103491_b4) 2014 10.1016/j.cviu.2022.103491_b10 Liu (10.1016/j.cviu.2022.103491_b18) 2019; 42 10.1016/j.cviu.2022.103491_b11 Fan (10.1016/j.cviu.2022.103491_b7) 2021 Pedregosa (10.1016/j.cviu.2022.103491_b27) 2011; 12 10.1016/j.cviu.2022.103491_b39 Rahmani (10.1016/j.cviu.2022.103491_b28) 2014 10.1016/j.cviu.2022.103491_b37 10.1016/j.cviu.2022.103491_b38 Loshchilov (10.1016/j.cviu.2022.103491_b21) 2019 10.1016/j.cviu.2022.103491_b8 10.1016/j.cviu.2022.103491_b9 10.1016/j.cviu.2022.103491_b43 10.1016/j.cviu.2022.103491_b40 10.1016/j.cviu.2022.103491_b41 Du (10.1016/j.cviu.2022.103491_b2) 2015 Srivastava (10.1016/j.cviu.2022.103491_b34) 2015 10.1016/j.cviu.2022.103491_b47 10.1016/j.cviu.2022.103491_b6 10.1016/j.cviu.2022.103491_b45 10.1016/j.cviu.2022.103491_b1 10.1016/j.cviu.2022.103491_b3 Smith (10.1016/j.cviu.2022.103491_b33) 2017 10.1016/j.cviu.2022.103491_b26 Li (10.1016/j.cviu.2022.103491_b16) 2018 10.1016/j.cviu.2022.103491_b32 10.1016/j.cviu.2022.103491_b30 10.1016/j.cviu.2022.103491_b35 10.1016/j.cviu.2022.103491_b36 Liu (10.1016/j.cviu.2022.103491_b19) 2017; 68 |
References_xml | – ident: 10.1016/j.cviu.2022.103491_b39 doi: 10.1145/2964284.2967191 – ident: 10.1016/j.cviu.2022.103491_b37 doi: 10.1109/ICCV.2015.510 – ident: 10.1016/j.cviu.2022.103491_b49 doi: 10.1609/aaai.v30i1.10451 – year: 2016 ident: 10.1016/j.cviu.2022.103491_b24 article-title: Shuffle and learn: unsupervised learning using temporal order verification – year: 2018 ident: 10.1016/j.cviu.2022.103491_b16 article-title: Unsupervised learning of view-invariant action representations – start-page: 1 year: 2021 ident: 10.1016/j.cviu.2022.103491_b5 article-title: Motion video-content: Towards unsupervised learning of motion representation from videos – start-page: 4513 year: 2014 ident: 10.1016/j.cviu.2022.103491_b4 article-title: Skeletal quads: Human action recognition using joint quadruples – ident: 10.1016/j.cviu.2022.103491_b41 doi: 10.1109/CVPR42600.2020.00059 – ident: 10.1016/j.cviu.2022.103491_b22 doi: 10.1109/CVPR.2017.751 – year: 2021 ident: 10.1016/j.cviu.2022.103491_b14 – ident: 10.1016/j.cviu.2022.103491_b30 doi: 10.1109/CVPR.2016.115 – ident: 10.1016/j.cviu.2022.103491_b38 doi: 10.1109/CVPR.2019.00413 – start-page: 464 year: 2017 ident: 10.1016/j.cviu.2022.103491_b33 article-title: Cyclical learning rates for training neural networks – ident: 10.1016/j.cviu.2022.103491_b35 doi: 10.1109/CVPR42600.2020.00965 – ident: 10.1016/j.cviu.2022.103491_b10 doi: 10.1609/aaai.v33i01.33018545 – volume: 27 start-page: 568 year: 2014 ident: 10.1016/j.cviu.2022.103491_b31 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Adv. Neural Inf. Process. Syst. – start-page: 579 year: 2015 ident: 10.1016/j.cviu.2022.103491_b2 article-title: Skeleton based action recognition with convolutional neural network – ident: 10.1016/j.cviu.2022.103491_b1 doi: 10.1109/CVPR.2017.502 – volume: 42 start-page: 494 year: 2019 ident: 10.1016/j.cviu.2022.103491_b18 article-title: Feature boosting network for 3d pose estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2894422 – volume: 24 start-page: 668 year: 2022 ident: 10.1016/j.cviu.2022.103491_b48 article-title: Temporal cross-layer correlation mining for action recognition publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3057503 – start-page: 34 year: 2021 ident: 10.1016/j.cviu.2022.103491_b44 article-title: Unsupervised motion representation learning with capsule autoencoders publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.cviu.2022.103491_b40 doi: 10.1109/CVPR.2014.339 – ident: 10.1016/j.cviu.2022.103491_b15 doi: 10.1109/CVPR46437.2021.00471 – start-page: 601 year: 2017 ident: 10.1016/j.cviu.2022.103491_b13 article-title: Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep cnn – ident: 10.1016/j.cviu.2022.103491_b26 doi: 10.1109/CVPR.2017.139 – start-page: 742 year: 2014 ident: 10.1016/j.cviu.2022.103491_b28 article-title: Hopc: Histogram of oriented principal components of 3d pointclouds for action recognition – ident: 10.1016/j.cviu.2022.103491_b11 doi: 10.1109/ICCV.2017.115 – ident: 10.1016/j.cviu.2022.103491_b36 doi: 10.1145/3474085.3475307 – start-page: 1 year: 2021 ident: 10.1016/j.cviu.2022.103491_b7 article-title: Deep hierarchical representation of point cloud videos via spatio-temporal decomposition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 1963 year: 2019 ident: 10.1016/j.cviu.2022.103491_b46 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2896631 – ident: 10.1016/j.cviu.2022.103491_b9 doi: 10.1109/CVPR.2017.486 – year: 2014 ident: 10.1016/j.cviu.2022.103491_b29 – ident: 10.1016/j.cviu.2022.103491_b45 doi: 10.1109/ICCV48922.2021.01317 – ident: 10.1016/j.cviu.2022.103491_b47 doi: 10.1609/aaai.v32i1.11853 – year: 2019 ident: 10.1016/j.cviu.2022.103491_b21 article-title: Decoupled weight decay regularization – start-page: 332 year: 2014 ident: 10.1016/j.cviu.2022.103491_b12 article-title: 3D human pose estimation from monocular images with deep convolutional neural network – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cviu.2022.103491_b27 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.cviu.2022.103491_b43 doi: 10.1109/CVPR.2013.365 – ident: 10.1016/j.cviu.2022.103491_b32 – ident: 10.1016/j.cviu.2022.103491_b6 doi: 10.1109/CVPR46437.2021.01398 – start-page: 843 year: 2015 ident: 10.1016/j.cviu.2022.103491_b34 article-title: Unsupervised learning of video representations using lstms – start-page: 20 year: 2016 ident: 10.1016/j.cviu.2022.103491_b42 article-title: Temporal segment networks: Towards good practices for deep action recognition – ident: 10.1016/j.cviu.2022.103491_b17 doi: 10.1145/3394171.3413548 – ident: 10.1016/j.cviu.2022.103491_b23 doi: 10.1109/CVPR.2017.497 – ident: 10.1016/j.cviu.2022.103491_b25 doi: 10.1109/CVPR.2013.98 – ident: 10.1016/j.cviu.2022.103491_b3 – start-page: 816 year: 2016 ident: 10.1016/j.cviu.2022.103491_b20 article-title: Spatio-temporal lstm with trust gates for 3d human action recognition – volume: 68 start-page: 346 year: 2017 ident: 10.1016/j.cviu.2022.103491_b19 article-title: Enhanced skeleton visualization for view invariant human action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.030 – ident: 10.1016/j.cviu.2022.103491_b8 doi: 10.1109/CVPR.2014.223 |
SSID | ssj0011491 |
Score | 2.416097 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 103491 |
Title | An asymmetrical-structure auto-encoder for unsupervised representation learning of skeleton sequences |
Volume | 222 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemkOfaQJSR9Bh9wWG1try_ZxKS2h0Jx2ITcjyRJskrUXvA5tD_3tnbEs27tsQ9KLMUIejOZjNCPNN0PIJTY1mgqdeEyDGiLYQ71UF7GXCpbGxmSZ4shG_nHNrxbR95v4Zmh31LJLNtJXv_fySv5HqzAGekWW7DM02wuFAXgH_cITNAzPJ-l4Vk5E_Wu1wq5YsNaeLQbbXgk0m8rDGpVYKgIzCZuybtZoF2qNfJX1wDoqXeeINvu5voN9CEtt9DnWY_fV9YCYWEq6vXlYYdpPMybJDKfRVdPCZCl-Lofr_mrVsWvm4g57OY1PHiBodalVzlgGCZ5xRlvWlFmacWcPQyx_E-411fbU4NZXD8vGR_H-MHm7LvbOftVnEboEtdscZeQoI7cyXpCXDMIGtHv-nz7lB0K_toNi_98dicrm--3-x8hRGXkc87fkdRcq0JnV-ztyoMtj8qYLG2hnlGsYclpxY8fkaFRm8j3Rs5Luxwkd44QCTugYJ3QbJ9ThhFaGOpzQHicnZPHt6_zLlde11_DUlPONJwrNMm6KoojbDixZJGVQYHygYghKRRwKpjXjCvwXrphJZRYFLIGAIsLUGj09JYdlVeozQgsdGBNjkazARDJJM5VIGYac6cQIw-U5Cd1a5qqrPY8tUO7zf-vwnEz6b9a28sojsz88a_ZH8moA9CdyCKuuP4NzuZEXLWL-AgBof4A |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+asymmetrical-structure+auto-encoder+for+unsupervised+representation+learning+of+skeleton+sequences&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Zhou%2C+Jiaxin&rft.au=Komuro%2C+Takashi&rft.date=2022-09-01&rft.issn=1077-3142&rft.volume=222&rft.spage=103491&rft_id=info:doi/10.1016%2Fj.cviu.2022.103491&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2022_103491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |