A DFT study of the acid–base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules
We have performed a comparative study of the acid–base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT+U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderat...
Saved in:
Published in | Surface science Vol. 652; pp. 163 - 171 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have performed a comparative study of the acid–base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT+U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderate adsorption energy (about −0.3eV) and in a positive shift of the CO stretching frequency (about +40cm−1), typical of Lewis acid sites, with no clear difference in the acidity between terraces or steps. For zirconia we found a similar CO binding energy as for titania, and a CO vibrational shift that depends on the location of the Zr cation: negligible on terraces, similar to TiO2 on steps. We conclude that the acidic properties are similar in the two oxide surfaces. Things are different for CO2 adsorption. On titania the interaction is weak and surface carbonates compete with physisorbed CO2, indicating a weak basic character. On the contrary, on zirconia three types of stable carbonates have been identified. Their vibrational frequencies are consistent with IR measurements reported in the literature. The most stable species forms on steps of the t-ZrO2 surface and consists of a CO32− unit which lies flat on the surface with the O atoms pointing towards three Zr ions. The species forms spontaneously by extraction of a lattice oxygen by an incoming CO2 molecule. The different reactivity points towards a much more pronounced basic character of zirconia compared to titania, at least if measured by CO2 adsorption.
[Display omitted]
•We performed a DFT study of the acid–base character of titania and zirconia surfaces.•We studied the adsorption of CO and CO2 as probe molecules for acidity and basicity.•CO is equally bound to flat and stepped TiO2 surfaces, but prefers steps on ZrO2.•CO2 is weakly bound to TiO2 and strongly bound to ZrO2, forming carbonates.•The two oxides exhibit comparable Lewis acidity, while ZrO2 is more basic. |
---|---|
AbstractList | We have performed a comparative study of the acid–base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT+U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderate adsorption energy (about −0.3eV) and in a positive shift of the CO stretching frequency (about +40cm−1), typical of Lewis acid sites, with no clear difference in the acidity between terraces or steps. For zirconia we found a similar CO binding energy as for titania, and a CO vibrational shift that depends on the location of the Zr cation: negligible on terraces, similar to TiO2 on steps. We conclude that the acidic properties are similar in the two oxide surfaces. Things are different for CO2 adsorption. On titania the interaction is weak and surface carbonates compete with physisorbed CO2, indicating a weak basic character. On the contrary, on zirconia three types of stable carbonates have been identified. Their vibrational frequencies are consistent with IR measurements reported in the literature. The most stable species forms on steps of the t-ZrO2 surface and consists of a CO32− unit which lies flat on the surface with the O atoms pointing towards three Zr ions. The species forms spontaneously by extraction of a lattice oxygen by an incoming CO2 molecule. The different reactivity points towards a much more pronounced basic character of zirconia compared to titania, at least if measured by CO2 adsorption.
[Display omitted]
•We performed a DFT study of the acid–base character of titania and zirconia surfaces.•We studied the adsorption of CO and CO2 as probe molecules for acidity and basicity.•CO is equally bound to flat and stepped TiO2 surfaces, but prefers steps on ZrO2.•CO2 is weakly bound to TiO2 and strongly bound to ZrO2, forming carbonates.•The two oxides exhibit comparable Lewis acidity, while ZrO2 is more basic. |
Author | Pacchioni, Gianfranco Chen, Hsin-Yi Tiffany Tosoni, Sergio |
Author_xml | – sequence: 1 givenname: Hsin-Yi Tiffany orcidid: 0000-0002-9651-3200 surname: Chen fullname: Chen, Hsin-Yi Tiffany – sequence: 2 givenname: Sergio orcidid: 0000-0001-5700-4086 surname: Tosoni fullname: Tosoni, Sergio email: sergio.tosoni@unimib.it – sequence: 3 givenname: Gianfranco surname: Pacchioni fullname: Pacchioni, Gianfranco |
BookMark | eNp9kL1OwzAQxy1UJNrCCzD5BRIcJ3UciaUKFJAqdSkLi2U7F3CVxpHtInXjHXhDngQHmBh6y33-Tnf_GZr0tgeErjOSZiRjN7vUH7xOaYxTQlNC-BmaZrysElou-ARNCcmrhBHKL9DM-x2JVlSLKTou8d1qi304NEdsWxzeAEttmq-PTyU94MHZAVww4Meu7GUYq1uzoTFpcIDg5KvtZYdfXKypI5aNt24IxvYjUW9-5urYi6sU4L3tQB868JfovJWdh6s_P0fPq_tt_ZisNw9P9XKd6JyxkEjNmJalaqHlFYdGQUZIpUpSFIyRtimLTOdU87bNtZQyB6iIKrXmijIoJeRzxH_3ame9d9AKbYIc74unm05kRIwSip0YJRSjhIJQESWMKP2HDs7spTuehm5_IYhPvRtwwmsDvYbGONBBNNacwr8BgvuPcw |
CitedBy_id | crossref_primary_10_1007_s10973_023_12007_5 crossref_primary_10_1021_acscatal_1c02041 crossref_primary_10_1016_j_jechem_2024_08_069 crossref_primary_10_1039_D1GC02430B crossref_primary_10_1016_j_commatsci_2018_12_011 crossref_primary_10_1039_D1SC03087F crossref_primary_10_31857_S2218117224040054 crossref_primary_10_1039_D1RE00290B crossref_primary_10_1016_j_apsusc_2021_149589 crossref_primary_10_1016_j_apsusc_2022_152627 crossref_primary_10_1021_jacs_1c03812 crossref_primary_10_1016_j_comptc_2023_114109 crossref_primary_10_1021_acs_jpcc_9b06500 crossref_primary_10_1098_rsos_211423 crossref_primary_10_1039_D1CP03845A crossref_primary_10_1016_j_jphotochem_2022_114212 crossref_primary_10_1021_acscatal_3c05669 crossref_primary_10_1021_acs_jpcc_1c03002 crossref_primary_10_1021_acs_jpcc_9b06162 crossref_primary_10_3390_s22103860 crossref_primary_10_1007_s11244_020_01328_6 crossref_primary_10_1016_j_jcat_2016_10_002 crossref_primary_10_1016_j_mcat_2023_112945 crossref_primary_10_1063_1_5142682 crossref_primary_10_1016_j_cej_2024_157568 crossref_primary_10_1016_j_cattod_2018_11_056 crossref_primary_10_1016_j_colsurfa_2024_133980 crossref_primary_10_1016_j_cej_2022_136965 crossref_primary_10_1021_acs_jpcc_9b00977 crossref_primary_10_2139_ssrn_4113024 crossref_primary_10_2139_ssrn_4125483 crossref_primary_10_1016_j_susc_2023_122336 crossref_primary_10_1007_s11708_023_0867_7 crossref_primary_10_1021_acscatal_7b03896 crossref_primary_10_1002_adma_202409322 crossref_primary_10_1007_s10562_018_2610_2 crossref_primary_10_1016_j_apsusc_2020_146926 crossref_primary_10_1016_j_physleta_2019_05_013 crossref_primary_10_1021_acs_jpcc_6b05685 crossref_primary_10_1016_j_mcat_2021_111942 crossref_primary_10_1002_cctc_201601486 crossref_primary_10_1016_j_jcat_2018_08_025 crossref_primary_10_1016_j_jcat_2023_115177 crossref_primary_10_1002_cphc_202200152 crossref_primary_10_1039_C7CY02541F crossref_primary_10_1016_j_jcat_2022_06_026 crossref_primary_10_1021_acs_jpca_7b09462 crossref_primary_10_1021_acs_jpcc_8b03488 crossref_primary_10_1002_cctc_201800246 crossref_primary_10_1016_j_jece_2021_106152 crossref_primary_10_1021_acscatal_0c03665 crossref_primary_10_1021_acscatal_0c04553 crossref_primary_10_1016_j_jece_2017_04_044 crossref_primary_10_1021_acscatal_0c01680 crossref_primary_10_1002_cctc_202300744 crossref_primary_10_1007_s13399_021_02296_x crossref_primary_10_1039_D1CY02214H crossref_primary_10_2139_ssrn_4174874 crossref_primary_10_1016_j_diamond_2023_110371 crossref_primary_10_1155_2018_9890785 crossref_primary_10_1002_cphc_201600284 crossref_primary_10_1016_j_mcat_2024_114125 crossref_primary_10_1039_D4SU00797B crossref_primary_10_1021_acs_jpcc_4c08199 crossref_primary_10_1002_cctc_201901878 crossref_primary_10_1016_j_mcat_2020_111108 crossref_primary_10_1134_S0023158424601980 crossref_primary_10_1016_j_jece_2022_107710 crossref_primary_10_1016_j_catcom_2023_106710 crossref_primary_10_1016_j_jallcom_2017_08_282 crossref_primary_10_1016_j_snb_2022_132868 crossref_primary_10_1039_C7CP05718K crossref_primary_10_1021_acs_jpca_4c01562 crossref_primary_10_1039_C9NR06078B crossref_primary_10_1063_1674_0068_cjcp1905108 crossref_primary_10_1039_C7CY01583F crossref_primary_10_1038_s41563_019_0349_9 crossref_primary_10_1021_acsami_0c07579 crossref_primary_10_1021_acssuschemeng_7b02295 crossref_primary_10_3390_molecules28041776 |
Cites_doi | 10.1016/S0360-0564(08)60315-6 10.1021/j100792a006 10.1016/S0167-5729(96)00007-6 10.1016/0013-4686(93)80008-N 10.1016/S0920-5861(03)00378-X 10.1016/S0926-860X(00)00641-4 10.1021/jp106579b 10.1021/ja954172l 10.1021/cr00035a006 10.1039/f19797501487 10.1016/0039-6028(92)90818-Q 10.1021/j100304a023 10.1016/0390-6035(82)90059-1 10.1016/S0009-2614(00)00246-3 10.1021/la001723z 10.1103/PhysRevB.57.1505 10.1016/S0166-1280(96)04696-9 10.1103/PhysRevB.58.8050 10.1016/0254-0584(91)90037-U 10.1021/jp803353v 10.1103/PhysRevB.44.943 10.1016/S0584-8539(87)80030-2 10.1016/j.molcata.2004.10.017 10.1103/PhysRevB.69.045402 10.1002/cphc.200400006 10.1021/cs400501h 10.1002/cphc.201500619 10.1103/PhysRevB.47.14075 10.1016/j.surfrep.2007.03.002 10.1016/S0040-6031(01)00613-X 10.1063/1.3638181 10.1063/1.1604966 10.1016/S0039-6028(00)00528-8 10.1021/la00030a017 10.1179/174328005X14267 10.2138/am.2009.3050 10.1021/j100379a041 10.1007/s00269-004-0418-7 10.1038/nmat1695 10.1021/la970856q 10.1016/S0039-6028(01)00986-4 10.1016/0927-0256(96)00008-0 10.1007/s10975-005-0015-x 10.1039/C5CY00330J 10.1103/PhysRevB.59.1758 10.1023/A:1015332727610 10.1021/ja9825534 10.1016/0039-6028(91)90691-K 10.1039/cs9962500061 10.1103/PhysRevB.63.155409 10.1039/b202330j 10.1103/PhysRevLett.77.3865 10.1021/cr950222t 10.4028/www.scientific.net/KEM.153-154.1 10.1103/RevModPhys.66.763 10.1103/PhysRevB.50.17953 10.1016/0039-6028(95)01057-2 10.1021/cm021269f 10.1021/cs500791w 10.1021/cr00035a013 10.1021/jp2017049 10.1021/jp507443k 10.1021/jp211171t 10.1002/qua.560420504 10.1063/1.4755786 10.1080/01614949408009466 10.1007/s10853-010-5113-0 10.1021/ja00101a038 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.susc.2016.02.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1879-2758 |
EndPage | 171 |
ExternalDocumentID | 10_1016_j_susc_2016_02_008 S0039602816000820 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYJJ ABFNM ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W KOM M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 TWZ VOH WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-ac66ca7bfef898edbe1009b7044660fd741c32c8ff3caaa3ee90b7cc8b26e7ae3 |
IEDL.DBID | .~1 |
ISSN | 0039-6028 |
IngestDate | Thu Jul 03 08:21:14 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:27:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO and CO2 adsorption Density functional theory Vibrational frequencies Acid–base properties Oxide surfaces |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-ac66ca7bfef898edbe1009b7044660fd741c32c8ff3caaa3ee90b7cc8b26e7ae3 |
ORCID | 0000-0002-9651-3200 0000-0001-5700-4086 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_susc_2016_02_008 crossref_primary_10_1016_j_susc_2016_02_008 elsevier_sciencedirect_doi_10_1016_j_susc_2016_02_008 |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Surface science |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mino, Ferrari, Lacivita, Spoto, Bordiga, Zecchina (bb0070) 2011; 115 Bolis, Magnacca, Cerrato, Morterra (bb0275) 2002; 19 Blyholder (bb0340) 1964; 68 Soave, Pacchioni (bb0045) 2000; 320 Freund, Roberts (bb0115) 1996; 25 Tosoni, Chen, Pacchioni (bb0285) 2015; 16 Melle-Franco, Pacchioni (bb0055) 2000; 461 Moreira, Illas, Martin (bb0325) 2002; B 65 Diebold, Ruzycki, Herman, Selloni (bb0215) 2003; 85 Rajadurai (bb0165) 1994; 36 Hadjiivanov, Klissurski (bb0205) 1996; 25 Ganduglia-Pirovano, Hofmann, Sauer (bb0260) 2007; 62 Dagotto (bb0320) 1994; 66 Zaki, Knözlngem (bb0020) 1987; 43 Kustov, Kazansky, Beran, Kubelkova, Jiru (bb0030) 1987; 91 Pacchioni, Ferrari, Bagus (bb0060) 1996; 350 Di Valentin, Locati, Pacchioni (bb0095) 2004; 5 Busca, Lorenzelli (bb0110) 1982; 7 Barteau (bb0170) 1996; 96 Ma, Yang, Wei, Li, Sun (bb0075) 2005; 227 Christensen, Carter (bb0245) 1998; 58 Pacchioni, Ricart, Illas (bb0090) 1994; 116 Rivero, Moreira, Illas (bb0330) 2010; B 81 Shimanouchi (bb0355) 1972 Damin, Dovesi, Zecchina, Ugliengo (bb0050) 2001; 479 Hofmann, Clark, Oppel, Hahndorf (bb0240) 2002; 4 Auroux, Gervasini (bb0280) 1990; 94 Kavan, Gratzel, Gilbert, Klemenz, Scheel (bb0210) 1996; 118 Herzberg (bb0345) 1950 Corma (bb0010) 1995; 95 Martra (bb0270) 2000; 200 M.E. Malyshev, E.A. Paukshtis, L.V. Malysheva, A.V. Toktarev, L.A. Vostrikova, Kinet. Catal. 46 100–106. Ferretto, Glisenti (bb0265) 2003; 15 Hanaor, Sorrell (bb0180) 2011; 46 Ghosh, Dhabal, Datta (bb0190) 2003; 94 Markovits, Fahmi, Minot (bb0100) 1996; 371 Linsebigler, Lu, Yates (bb0200) 1995; 95 Anisimov, Zaanen, Andersen (bb0310) 1991; 44 Prencipe, Pascale, Zicovich-Wilson, Saunders, Orlando, Dovesi (bb0365) 2004; 31 Kouva, Honkala, Lefferts, Kanervo (bb0080) 2015; 5 Pham, Sooknoi, Crossley, Resasco (bb0160) 2013; 3 Korhonen, Calatayud, Krause (bb0150) 2008; 112 Pacchioni (bb0155) 2014; 4 Kisi, Howard (bb0230) 1998; 153–154 Blöchl (bb0295) 1994; 50 Harrison, Thornton (bb0085) 1979; 1 75 Bachiller-Baeza, Rodriguez-Ramos, Guerrero-Ruiz (bb0145) 1998; 14 Bolis, Magnacca, Cerrato, Morterra (bb0360) 2001; 379 Cornu, Guesmi, Krafft, Lauron-Pernot (bb0135) 2012; 116 Pokrovski, Jung, Bell (bb0140) 2001; 17 Shukla, Seal (bb0235) 2005; 50 Augustynski (bb0195) 1993; 38 He, Zapol, Curtiss (bb0130) 2010; 114 Pacchioni, Minerva (bb0350) 1992; 275 Eichler, Kresse (bb0255) 2004; 69 Sorescu, Al-Saidi, Jordan (bb0125) 2011; 135 Lazzeri, Vittadini, Selloni (bb0220) 2001; 63 Bolis, Morterra, Fubini, Ugliengo, Garrone (bb0065) 1993; 9 Ramis, Busca, Lorenzelli (bb0105) 1991; 29 Pacchioni, Cogliandro, Bagus (bb0035) 1991; 255 Knöuzinger (bb0015) 1976; 25 Haase, Sauer (bb0250) 1998; 120 Dudarev, Botton, Savrasov, Humphreys, Sutton (bb0315) 1998; 57 Helmut (bb0005) 1976; 25 Mino, Spoto, Ferrari (bb0120) 2014; 118 Kresse, Furthmuller (bb0290) 1996; 6 Leger, Tomaszewski, Atouf, Pereira (bb0225) 1993; 47 Kresse, Joubert (bb0300) 1999; 59 Pacchioni, Cogliandro, Bagus (bb0040) 1992; 42 Huber, Dalnodar, Kausch, Kimeswenger, Probst (bb0370) 2012; 2 Perdew, Burke, Ernzerhof (bb0305) 1996; 77 Smith, Stevens, Liu, Li, Navrotsky, Boerio-Goates, Woodfield (bb0185) 2009; 94 Gong, Selloni, Batzill, Diebold (bb0335) 2006; 5 Tanabe, Misono, Hattori, Ono (bb0175) 1989 Zaki (10.1016/j.susc.2016.02.008_bb0020) 1987; 43 Hadjiivanov (10.1016/j.susc.2016.02.008_bb0205) 1996; 25 Kustov (10.1016/j.susc.2016.02.008_bb0030) 1987; 91 Di Valentin (10.1016/j.susc.2016.02.008_bb0095) 2004; 5 Tanabe (10.1016/j.susc.2016.02.008_bb0175) 1989 Kisi (10.1016/j.susc.2016.02.008_bb0230) 1998; 153–154 Cornu (10.1016/j.susc.2016.02.008_bb0135) 2012; 116 Anisimov (10.1016/j.susc.2016.02.008_bb0310) 1991; 44 Herzberg (10.1016/j.susc.2016.02.008_bb0345) 1950 Bolis (10.1016/j.susc.2016.02.008_bb0275) 2002; 19 Gong (10.1016/j.susc.2016.02.008_bb0335) 2006; 5 Lazzeri (10.1016/j.susc.2016.02.008_bb0220) 2001; 63 Pham (10.1016/j.susc.2016.02.008_bb0160) 2013; 3 Helmut (10.1016/j.susc.2016.02.008_bb0005) 1976; 25 Pacchioni (10.1016/j.susc.2016.02.008_bb0155) 2014; 4 Mino (10.1016/j.susc.2016.02.008_bb0070) 2011; 115 Bolis (10.1016/j.susc.2016.02.008_bb0360) 2001; 379 Corma (10.1016/j.susc.2016.02.008_bb0010) 1995; 95 Blöchl (10.1016/j.susc.2016.02.008_bb0295) 1994; 50 Huber (10.1016/j.susc.2016.02.008_bb0370) 2012; 2 Martra (10.1016/j.susc.2016.02.008_bb0270) 2000; 200 Prencipe (10.1016/j.susc.2016.02.008_bb0365) 2004; 31 Pacchioni (10.1016/j.susc.2016.02.008_bb0040) 1992; 42 Ma (10.1016/j.susc.2016.02.008_bb0075) 2005; 227 Sorescu (10.1016/j.susc.2016.02.008_bb0125) 2011; 135 Kresse (10.1016/j.susc.2016.02.008_bb0300) 1999; 59 10.1016/j.susc.2016.02.008_bb0025 Perdew (10.1016/j.susc.2016.02.008_bb0305) 1996; 77 Pokrovski (10.1016/j.susc.2016.02.008_bb0140) 2001; 17 Pacchioni (10.1016/j.susc.2016.02.008_bb0350) 1992; 275 Diebold (10.1016/j.susc.2016.02.008_bb0215) 2003; 85 Kavan (10.1016/j.susc.2016.02.008_bb0210) 1996; 118 Shimanouchi (10.1016/j.susc.2016.02.008_bb0355) 1972 Ramis (10.1016/j.susc.2016.02.008_bb0105) 1991; 29 Pacchioni (10.1016/j.susc.2016.02.008_bb0060) 1996; 350 Dudarev (10.1016/j.susc.2016.02.008_bb0315) 1998; 57 Bolis (10.1016/j.susc.2016.02.008_bb0065) 1993; 9 Shukla (10.1016/j.susc.2016.02.008_bb0235) 2005; 50 Kresse (10.1016/j.susc.2016.02.008_bb0290) 1996; 6 Markovits (10.1016/j.susc.2016.02.008_bb0100) 1996; 371 Hanaor (10.1016/j.susc.2016.02.008_bb0180) 2011; 46 Smith (10.1016/j.susc.2016.02.008_bb0185) 2009; 94 Christensen (10.1016/j.susc.2016.02.008_bb0245) 1998; 58 Bachiller-Baeza (10.1016/j.susc.2016.02.008_bb0145) 1998; 14 Rajadurai (10.1016/j.susc.2016.02.008_bb0165) 1994; 36 Ganduglia-Pirovano (10.1016/j.susc.2016.02.008_bb0260) 2007; 62 Tosoni (10.1016/j.susc.2016.02.008_bb0285) 2015; 16 Knöuzinger (10.1016/j.susc.2016.02.008_bb0015) 1976; 25 Barteau (10.1016/j.susc.2016.02.008_bb0170) 1996; 96 Blyholder (10.1016/j.susc.2016.02.008_bb0340) 1964; 68 Busca (10.1016/j.susc.2016.02.008_bb0110) 1982; 7 Pacchioni (10.1016/j.susc.2016.02.008_bb0035) 1991; 255 Freund (10.1016/j.susc.2016.02.008_bb0115) 1996; 25 Dagotto (10.1016/j.susc.2016.02.008_bb0320) 1994; 66 Augustynski (10.1016/j.susc.2016.02.008_bb0195) 1993; 38 Ferretto (10.1016/j.susc.2016.02.008_bb0265) 2003; 15 Korhonen (10.1016/j.susc.2016.02.008_bb0150) 2008; 112 Haase (10.1016/j.susc.2016.02.008_bb0250) 1998; 120 Leger (10.1016/j.susc.2016.02.008_bb0225) 1993; 47 Auroux (10.1016/j.susc.2016.02.008_bb0280) 1990; 94 Rivero (10.1016/j.susc.2016.02.008_bb0330) 2010; B 81 He (10.1016/j.susc.2016.02.008_bb0130) 2010; 114 Eichler (10.1016/j.susc.2016.02.008_bb0255) 2004; 69 Mino (10.1016/j.susc.2016.02.008_bb0120) 2014; 118 Linsebigler (10.1016/j.susc.2016.02.008_bb0200) 1995; 95 Soave (10.1016/j.susc.2016.02.008_bb0045) 2000; 320 Kouva (10.1016/j.susc.2016.02.008_bb0080) 2015; 5 Pacchioni (10.1016/j.susc.2016.02.008_bb0090) 1994; 116 Ghosh (10.1016/j.susc.2016.02.008_bb0190) 2003; 94 Damin (10.1016/j.susc.2016.02.008_bb0050) 2001; 479 Moreira (10.1016/j.susc.2016.02.008_bb0325) 2002; B 65 Hofmann (10.1016/j.susc.2016.02.008_bb0240) 2002; 4 Melle-Franco (10.1016/j.susc.2016.02.008_bb0055) 2000; 461 Harrison (10.1016/j.susc.2016.02.008_bb0085) 1979; 1 75 |
References_xml | – volume: 85 start-page: 93 year: 2003 ident: bb0215 publication-title: Catal. Today – volume: B 81 year: 2010 ident: bb0330 publication-title: Phys. Rev. – volume: 77 start-page: 3865 year: 1996 ident: bb0305 publication-title: Phys. Rev. Lett. – volume: 62 start-page: 219 year: 2007 ident: bb0260 publication-title: Surf. Sci. Rep. – volume: 115 start-page: 7694 year: 2011 ident: bb0070 publication-title: J. Phys. Chem. C – volume: 58 start-page: 8050 year: 1998 ident: bb0245 publication-title: Phys. Rev. B – volume: 59 start-page: 1758 year: 1999 ident: bb0300 publication-title: Phys. Rev. B – volume: 96 start-page: 1413 year: 1996 ident: bb0170 publication-title: Chem. Rev. – volume: 5 start-page: 665 year: 2006 ident: bb0335 publication-title: Nat. Mater. – volume: 16 start-page: 3642 year: 2015 ident: bb0285 publication-title: ChemPhysChem – volume: 31 start-page: 559 year: 2004 ident: bb0365 publication-title: Phys. Chem. Miner. – volume: 17 start-page: 4297 year: 2001 ident: bb0140 publication-title: Langmuir – volume: 25 start-page: 184 year: 1976 ident: bb0015 publication-title: Adv. Catal. – volume: 7 start-page: 89 year: 1982 ident: bb0110 publication-title: Mater. Chem. – volume: 118 start-page: 25016 year: 2014 ident: bb0120 publication-title: J. Phys. Chem. C – volume: 95 start-page: 735 year: 1995 ident: bb0200 publication-title: Chem. Rev. – volume: 379 start-page: 147 year: 2001 ident: bb0360 publication-title: Thermochim. Acta – volume: 1 75 start-page: 1487 year: 1979 ident: bb0085 publication-title: J. Chem. Soc. Faraday Trans. – volume: 3 start-page: 2456 year: 2013 ident: bb0160 publication-title: ACS Catal. – volume: 116 start-page: 6645 year: 2012 ident: bb0135 publication-title: J. Phys. Chem. C – volume: 43 start-page: 1455 year: 1987 ident: bb0020 publication-title: Spectrochim. Acta A – volume: 153–154 start-page: 1 year: 1998 ident: bb0230 publication-title: Key Eng. Mater. – volume: 19 start-page: 259 year: 2002 ident: bb0275 publication-title: Top. Catal. – volume: 114 start-page: 21474 year: 2010 ident: bb0130 publication-title: J. Phys. Chem. C – volume: 200 start-page: 275 year: 2000 ident: bb0270 publication-title: Appl. Catal. A Gen. – volume: 29 start-page: 425 year: 1991 ident: bb0105 publication-title: Mater. Chem. Phys. – volume: 95 start-page: 559 year: 1995 ident: bb0010 publication-title: Chem. Rev. – volume: 25 start-page: 184 year: 1976 ident: bb0005 publication-title: Adv. Catal. – volume: 9 start-page: 1521 year: 1993 ident: bb0065 publication-title: Langmuir – volume: 4 start-page: 3500 year: 2002 ident: bb0240 publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 855 year: 2011 ident: bb0180 publication-title: J. Mater. Sci. – volume: 135 start-page: 124701 year: 2011 ident: bb0125 publication-title: J. Chem. Phys. – volume: 4 start-page: 2874 year: 2014 ident: bb0155 publication-title: ACS Catal. – volume: 69 year: 2004 ident: bb0255 publication-title: Phys. Rev. B – volume: 116 start-page: 10152 year: 1994 ident: bb0090 publication-title: J. Am. Chem. Soc. – volume: 94 start-page: 236 year: 2009 ident: bb0185 publication-title: Am. Mineral. – volume: 63 start-page: 155409 year: 2001 ident: bb0220 publication-title: Phys. Rev. B – volume: 118 start-page: 6716 year: 1996 ident: bb0210 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 032180 year: 2012 ident: bb0370 publication-title: AIP Adv. – volume: 5 start-page: 3473 year: 2015 ident: bb0080 publication-title: Catal. Sci. Technol. – volume: 320 start-page: 345 year: 2000 ident: bb0045 publication-title: Chem. Phys. Lett. – volume: 6 start-page: 15 year: 1996 ident: bb0290 publication-title: Comput. Mater. Sci. – volume: 38 start-page: 43 year: 1993 ident: bb0195 publication-title: Electrochim. Acta – volume: 36 start-page: 385 year: 1994 ident: bb0165 publication-title: Catal. Rev. Sci. Eng. – volume: 350 start-page: 159 year: 1996 ident: bb0060 publication-title: Surf. Sci. – volume: 25 start-page: 225 year: 1996 ident: bb0115 publication-title: Surf. Sci. Rep. – volume: B 65 year: 2002 ident: bb0325 publication-title: Phys. Rev. – volume: 5 start-page: 642 year: 2004 ident: bb0095 publication-title: ChemPhysChem – volume: 120 start-page: 13503 year: 1998 ident: bb0250 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 45 year: 2005 ident: bb0235 publication-title: Int. Mater. Rev. – volume: 50 start-page: 17953 year: 1994 ident: bb0295 publication-title: Phys. Rev. B – year: 1989 ident: bb0175 article-title: New Solid Acids and Bases – volume: 14 start-page: 3556 year: 1998 ident: bb0145 publication-title: Langmuir – volume: 275 start-page: 450 year: 1992 ident: bb0350 publication-title: Surf. Sci. – volume: 371 start-page: 219 year: 1996 ident: bb0100 publication-title: J. Mol. Struct. (THEOCHEM) – volume: 94 start-page: 6371 year: 1990 ident: bb0280 publication-title: J. Phys. Chem. – volume: 25 start-page: 61 year: 1996 ident: bb0205 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 14075 year: 1993 ident: bb0225 publication-title: Phys. Rev. B – volume: 461 start-page: 54 year: 2000 ident: bb0055 publication-title: Surf. Sci. – year: 1950 ident: bb0345 article-title: Molecular Spectra and Molecular Structures – volume: 15 start-page: 1181 year: 2003 ident: bb0265 publication-title: Chem. Mater. – volume: 66 start-page: 763 year: 1994 ident: bb0320 publication-title: Rev. Mod. Phys. – volume: 42 start-page: 1115 year: 1992 ident: bb0040 publication-title: Int. J. Quantum Chem. – volume: 57 start-page: 1505 year: 1998 ident: bb0315 publication-title: Phys. Rev. B – volume: 68 start-page: 2772 year: 1964 ident: bb0340 publication-title: J. Phys. Chem. – volume: 91 start-page: 5247 year: 1987 ident: bb0030 publication-title: J. Phys. Chem. – volume: 112 start-page: 16096 year: 2008 ident: bb0150 publication-title: J. Phys. Chem. C – year: 1972 ident: bb0355 article-title: Tables of Molecular Vibrational Frequencies Consolidated, Volume I – reference: M.E. Malyshev, E.A. Paukshtis, L.V. Malysheva, A.V. Toktarev, L.A. Vostrikova, Kinet. Catal. 46 100–106. – volume: 255 start-page: 344 year: 1991 ident: bb0035 publication-title: Surf. Sci. – volume: 94 start-page: 4577 year: 2003 ident: bb0190 publication-title: J. Appl. Phys. – volume: 44 start-page: 943 year: 1991 ident: bb0310 publication-title: Phys. Rev. B – volume: 479 start-page: 255 year: 2001 ident: bb0050 publication-title: Surf. Sci. – volume: 227 start-page: 119 year: 2005 ident: bb0075 publication-title: J. Mol. Catal. A Chem. – volume: 25 start-page: 184 year: 1976 ident: 10.1016/j.susc.2016.02.008_bb0015 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60315-6 – volume: 68 start-page: 2772 year: 1964 ident: 10.1016/j.susc.2016.02.008_bb0340 publication-title: J. Phys. Chem. doi: 10.1021/j100792a006 – volume: 25 start-page: 225 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0115 publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(96)00007-6 – volume: 38 start-page: 43 year: 1993 ident: 10.1016/j.susc.2016.02.008_bb0195 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(93)80008-N – year: 1972 ident: 10.1016/j.susc.2016.02.008_bb0355 – volume: 85 start-page: 93 year: 2003 ident: 10.1016/j.susc.2016.02.008_bb0215 publication-title: Catal. Today doi: 10.1016/S0920-5861(03)00378-X – volume: B 65 year: 2002 ident: 10.1016/j.susc.2016.02.008_bb0325 publication-title: Phys. Rev. – volume: 200 start-page: 275 year: 2000 ident: 10.1016/j.susc.2016.02.008_bb0270 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(00)00641-4 – volume: 114 start-page: 21474 year: 2010 ident: 10.1016/j.susc.2016.02.008_bb0130 publication-title: J. Phys. Chem. C doi: 10.1021/jp106579b – volume: 118 start-page: 6716 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0210 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja954172l – volume: 95 start-page: 559 year: 1995 ident: 10.1016/j.susc.2016.02.008_bb0010 publication-title: Chem. Rev. doi: 10.1021/cr00035a006 – volume: 1 75 start-page: 1487 year: 1979 ident: 10.1016/j.susc.2016.02.008_bb0085 publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/f19797501487 – volume: 275 start-page: 450 year: 1992 ident: 10.1016/j.susc.2016.02.008_bb0350 publication-title: Surf. Sci. doi: 10.1016/0039-6028(92)90818-Q – volume: 91 start-page: 5247 year: 1987 ident: 10.1016/j.susc.2016.02.008_bb0030 publication-title: J. Phys. Chem. doi: 10.1021/j100304a023 – volume: 7 start-page: 89 year: 1982 ident: 10.1016/j.susc.2016.02.008_bb0110 publication-title: Mater. Chem. doi: 10.1016/0390-6035(82)90059-1 – volume: 320 start-page: 345 year: 2000 ident: 10.1016/j.susc.2016.02.008_bb0045 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00246-3 – volume: 17 start-page: 4297 year: 2001 ident: 10.1016/j.susc.2016.02.008_bb0140 publication-title: Langmuir doi: 10.1021/la001723z – volume: 57 start-page: 1505 year: 1998 ident: 10.1016/j.susc.2016.02.008_bb0315 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1505 – volume: 371 start-page: 219 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0100 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/S0166-1280(96)04696-9 – volume: 58 start-page: 8050 year: 1998 ident: 10.1016/j.susc.2016.02.008_bb0245 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.8050 – volume: 29 start-page: 425 year: 1991 ident: 10.1016/j.susc.2016.02.008_bb0105 publication-title: Mater. Chem. Phys. doi: 10.1016/0254-0584(91)90037-U – volume: 112 start-page: 16096 year: 2008 ident: 10.1016/j.susc.2016.02.008_bb0150 publication-title: J. Phys. Chem. C doi: 10.1021/jp803353v – volume: 44 start-page: 943 year: 1991 ident: 10.1016/j.susc.2016.02.008_bb0310 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.943 – volume: 43 start-page: 1455 year: 1987 ident: 10.1016/j.susc.2016.02.008_bb0020 publication-title: Spectrochim. Acta A doi: 10.1016/S0584-8539(87)80030-2 – volume: 227 start-page: 119 year: 2005 ident: 10.1016/j.susc.2016.02.008_bb0075 publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2004.10.017 – volume: 69 year: 2004 ident: 10.1016/j.susc.2016.02.008_bb0255 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.045402 – volume: 5 start-page: 642 year: 2004 ident: 10.1016/j.susc.2016.02.008_bb0095 publication-title: ChemPhysChem doi: 10.1002/cphc.200400006 – volume: 3 start-page: 2456 year: 2013 ident: 10.1016/j.susc.2016.02.008_bb0160 publication-title: ACS Catal. doi: 10.1021/cs400501h – volume: 16 start-page: 3642 year: 2015 ident: 10.1016/j.susc.2016.02.008_bb0285 publication-title: ChemPhysChem doi: 10.1002/cphc.201500619 – volume: 25 start-page: 184 year: 1976 ident: 10.1016/j.susc.2016.02.008_bb0005 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60315-6 – year: 1950 ident: 10.1016/j.susc.2016.02.008_bb0345 – volume: 47 start-page: 14075 year: 1993 ident: 10.1016/j.susc.2016.02.008_bb0225 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.14075 – volume: 62 start-page: 219 year: 2007 ident: 10.1016/j.susc.2016.02.008_bb0260 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2007.03.002 – volume: 379 start-page: 147 year: 2001 ident: 10.1016/j.susc.2016.02.008_bb0360 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(01)00613-X – volume: 135 start-page: 124701 year: 2011 ident: 10.1016/j.susc.2016.02.008_bb0125 publication-title: J. Chem. Phys. doi: 10.1063/1.3638181 – volume: 94 start-page: 4577 year: 2003 ident: 10.1016/j.susc.2016.02.008_bb0190 publication-title: J. Appl. Phys. doi: 10.1063/1.1604966 – volume: 461 start-page: 54 year: 2000 ident: 10.1016/j.susc.2016.02.008_bb0055 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(00)00528-8 – volume: 9 start-page: 1521 year: 1993 ident: 10.1016/j.susc.2016.02.008_bb0065 publication-title: Langmuir doi: 10.1021/la00030a017 – volume: 50 start-page: 45 year: 2005 ident: 10.1016/j.susc.2016.02.008_bb0235 publication-title: Int. Mater. Rev. doi: 10.1179/174328005X14267 – volume: 94 start-page: 236 year: 2009 ident: 10.1016/j.susc.2016.02.008_bb0185 publication-title: Am. Mineral. doi: 10.2138/am.2009.3050 – volume: 94 start-page: 6371 year: 1990 ident: 10.1016/j.susc.2016.02.008_bb0280 publication-title: J. Phys. Chem. doi: 10.1021/j100379a041 – volume: 31 start-page: 559 year: 2004 ident: 10.1016/j.susc.2016.02.008_bb0365 publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-004-0418-7 – volume: 5 start-page: 665 year: 2006 ident: 10.1016/j.susc.2016.02.008_bb0335 publication-title: Nat. Mater. doi: 10.1038/nmat1695 – volume: 14 start-page: 3556 year: 1998 ident: 10.1016/j.susc.2016.02.008_bb0145 publication-title: Langmuir doi: 10.1021/la970856q – volume: 479 start-page: 255 year: 2001 ident: 10.1016/j.susc.2016.02.008_bb0050 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)00986-4 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0290 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – ident: 10.1016/j.susc.2016.02.008_bb0025 doi: 10.1007/s10975-005-0015-x – volume: 5 start-page: 3473 year: 2015 ident: 10.1016/j.susc.2016.02.008_bb0080 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00330J – year: 1989 ident: 10.1016/j.susc.2016.02.008_bb0175 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.susc.2016.02.008_bb0300 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 19 start-page: 259 year: 2002 ident: 10.1016/j.susc.2016.02.008_bb0275 publication-title: Top. Catal. doi: 10.1023/A:1015332727610 – volume: 120 start-page: 13503 year: 1998 ident: 10.1016/j.susc.2016.02.008_bb0250 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9825534 – volume: 255 start-page: 344 year: 1991 ident: 10.1016/j.susc.2016.02.008_bb0035 publication-title: Surf. Sci. doi: 10.1016/0039-6028(91)90691-K – volume: 25 start-page: 61 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0205 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9962500061 – volume: 63 start-page: 155409 year: 2001 ident: 10.1016/j.susc.2016.02.008_bb0220 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.155409 – volume: 4 start-page: 3500 year: 2002 ident: 10.1016/j.susc.2016.02.008_bb0240 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b202330j – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0305 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 96 start-page: 1413 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0170 publication-title: Chem. Rev. doi: 10.1021/cr950222t – volume: 153–154 start-page: 1 year: 1998 ident: 10.1016/j.susc.2016.02.008_bb0230 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.153-154.1 – volume: 66 start-page: 763 year: 1994 ident: 10.1016/j.susc.2016.02.008_bb0320 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.763 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.susc.2016.02.008_bb0295 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 350 start-page: 159 year: 1996 ident: 10.1016/j.susc.2016.02.008_bb0060 publication-title: Surf. Sci. doi: 10.1016/0039-6028(95)01057-2 – volume: 15 start-page: 1181 year: 2003 ident: 10.1016/j.susc.2016.02.008_bb0265 publication-title: Chem. Mater. doi: 10.1021/cm021269f – volume: 4 start-page: 2874 year: 2014 ident: 10.1016/j.susc.2016.02.008_bb0155 publication-title: ACS Catal. doi: 10.1021/cs500791w – volume: 95 start-page: 735 year: 1995 ident: 10.1016/j.susc.2016.02.008_bb0200 publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – volume: 115 start-page: 7694 year: 2011 ident: 10.1016/j.susc.2016.02.008_bb0070 publication-title: J. Phys. Chem. C doi: 10.1021/jp2017049 – volume: 118 start-page: 25016 year: 2014 ident: 10.1016/j.susc.2016.02.008_bb0120 publication-title: J. Phys. Chem. C doi: 10.1021/jp507443k – volume: 116 start-page: 6645 year: 2012 ident: 10.1016/j.susc.2016.02.008_bb0135 publication-title: J. Phys. Chem. C doi: 10.1021/jp211171t – volume: 42 start-page: 1115 year: 1992 ident: 10.1016/j.susc.2016.02.008_bb0040 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560420504 – volume: 2 start-page: 032180 year: 2012 ident: 10.1016/j.susc.2016.02.008_bb0370 publication-title: AIP Adv. doi: 10.1063/1.4755786 – volume: 36 start-page: 385 year: 1994 ident: 10.1016/j.susc.2016.02.008_bb0165 publication-title: Catal. Rev. Sci. Eng. doi: 10.1080/01614949408009466 – volume: 46 start-page: 855 year: 2011 ident: 10.1016/j.susc.2016.02.008_bb0180 publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-5113-0 – volume: 116 start-page: 10152 year: 1994 ident: 10.1016/j.susc.2016.02.008_bb0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00101a038 – volume: B 81 year: 2010 ident: 10.1016/j.susc.2016.02.008_bb0330 publication-title: Phys. Rev. |
SSID | ssj0000495 |
Score | 2.4706697 |
Snippet | We have performed a comparative study of the acid–base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT+U... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Acid–base properties CO and CO2 adsorption Density functional theory Oxide surfaces Vibrational frequencies |
Title | A DFT study of the acid–base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules |
URI | https://dx.doi.org/10.1016/j.susc.2016.02.008 |
Volume | 652 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm8S2eWySY4mWqtheWiheln1FIpqWJB56Ef-D_9Bf4k428QHiwePuzkDY2cx8yc7Mh9ApUbbvSahYdqW0XFsKS3-rEMvVL1cYC64xKlQj347JaOZez715A0V1LQykVVa-3_j00ltXM91qN7vLJIEaX0fDbzvoExPIoILd9eGUn798pXloBGxYDJzQAumqcMbkeOXAJaZDIDF9O4Pfg9O3gDPcRlsVUsQD8zA7qKHSFtqIaoK2FlovszdFvotWA3wxnOKyVSxexFiDOsxEIt9f3yBK4SX8cc-gdSqsspQVMDtNJrYeSFyoImP3AMnxXabn-AozmS-y0puARjQp5SK9BgQ0Cj8ZUl2V76HZ8HIajayKU8ESDiGFxQQhgvk8VnEQBkpy1dcoi_vlvW4vlhpgCMcWQRw7gjHmKBX2uC9EwG2ifKacfdRMF6k6QFj4nOt4r0gILfNjjwehKm_1PEcErme3Ub_eTCqqhuPAe_FI68yyBwoGoGAA2rOpNkAbnX3qLE27jT-lvdpG9MehoToe_KF3-E-9I7QJI5PLd4yaRfasTjQmKXinPHQdtDa4uhmNPwA3TuDw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlQuCAqI8lN8gBMK3XUSJzlwqLastvTvspUqLsY_E7QIdldJENoL6jv0UXgjnoSZOCkgoR6QeoztiWKPM_M5mZkP4IVCmaWeM5YT76NEehfRWUVFCb1cReksYVTORj46VpPT5N1ZerYGP_pcGA6r7Gx_sOmtte5adrrV3FnOZpzjGxP8lvlQBUfWRVYe4OobndvqN_t7pOSXUo7fTkeTqKMWiFysVBMZp5QzmS2xzIscvcUhgQ2btb83B6UnP-ti6fKyjJ0xJkYsBjZzLrdSYWYwpvvegJs8I6ZNeP39d1wJQe5AmxAXET9el6kTgspqJi8jn6tCodD8397wDw83vgt3OmgqdsPs78EazjdhY9Qzwm3CrTZc1NX3YbUr9sZT0damFYtSEIoUxs38z_MLdotiyZ_4K67Vyr1mbhpunc5OJF140WBTmY98BhDvK2qzK2F8vaha88USo5N23Ij6mPEGxZfA4ov1Azi9lpV-COvzxRwfgXCZtQQwUBVco79MbV5g-xsxjV2epHILhv1iatdVOGeijc-6D2X7pFkBmhWgB1KTArbg1aXMMtT3uHJ02utI_7VLNTmgK-Qe_6fcc9iYTI8O9eH-8cETuM09IZDwKaw31Vd8RoCosdvtBhTw4bp3_C8euh9r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DFT+study+of+the+acid%E2%80%93base+properties+of+anatase+TiO2+and+tetragonal+ZrO2+by+adsorption+of+CO+and+CO2+probe+molecules&rft.jtitle=Surface+science&rft.au=Chen%2C+Hsin-Yi+Tiffany&rft.au=Tosoni%2C+Sergio&rft.au=Pacchioni%2C+Gianfranco&rft.date=2016-10-01&rft.issn=0039-6028&rft.volume=652&rft.spage=163&rft.epage=171&rft_id=info:doi/10.1016%2Fj.susc.2016.02.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_susc_2016_02_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-6028&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-6028&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-6028&client=summon |