Mechanically strong, stretchable and self-healable silicone elastomers with designed dynamic networks for exceptional self-adhesion under harsh conditions
Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial fields. However, the highly cross-linked networks cannot self-heal and usually show poor adhesion to other substrates, limiting their sustaina...
Saved in:
Published in | Advanced industrial and engineering polymer research Vol. 8; no. 3; pp. 422 - 432 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial fields. However, the highly cross-linked networks cannot self-heal and usually show poor adhesion to other substrates, limiting their sustainable applications in emerging fields. Developing self-adhesive organosilicon elastomers with high mechanical strength, superior stretchability, and exceptional self-healing performance remains a significant challenge. Herein, we propose a facile method to synthesize self-adhesive organosilicon elastomers with high mechanical strength, flexibility, and self-healing performance by designing dynamic networks. Specifically, multiple reversible physical and chemical bonds, such as disulfide bonds, hydrogen bonds, and Zn2+ coordination bonds, are integrated into the organosilicon chains via click reactions, carboxylic acid-amine condensation, and ionic coordination. The optimized organosilicon elastomers exhibit exceptional stretchability and mechanical properties, including an elongation at break of ∼5600 %, high strength (2.2 MPa), and toughness (54.38 MJ/m3), outperforming traditional organosilicon elastomers. Additionally, the as-prepared elastomers demonstrate remarkable self-healing ability, with 80–93 % healing efficiency at 25–60 oC, and excellent self-adhesion to various substrates (0.3–1.0 MPa on aluminum, steel, and wood). These properties are maintained under harsh conditions, including low temperature (−10 oC), saltwater, and organic solvents. Clearly, the organosilicon elastomers developed in this work hold significant potential as green and sustainable candidates for various self-adhesive applications.
[Display omitted] |
---|---|
AbstractList | Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial fields. However, the highly cross-linked networks cannot self-heal and usually show poor adhesion to other substrates, limiting their sustainable applications in emerging fields. Developing self-adhesive organosilicon elastomers with high mechanical strength, superior stretchability, and exceptional self-healing performance remains a significant challenge. Herein, we propose a facile method to synthesize self-adhesive organosilicon elastomers with high mechanical strength, flexibility, and self-healing performance by designing dynamic networks. Specifically, multiple reversible physical and chemical bonds, such as disulfide bonds, hydrogen bonds, and Zn2+ coordination bonds, are integrated into the organosilicon chains via click reactions, carboxylic acid-amine condensation, and ionic coordination. The optimized organosilicon elastomers exhibit exceptional stretchability and mechanical properties, including an elongation at break of ∼5600 %, high strength (2.2 MPa), and toughness (54.38 MJ/m3), outperforming traditional organosilicon elastomers. Additionally, the as-prepared elastomers demonstrate remarkable self-healing ability, with 80–93 % healing efficiency at 25–60 oC, and excellent self-adhesion to various substrates (0.3–1.0 MPa on aluminum, steel, and wood). These properties are maintained under harsh conditions, including low temperature (−10 oC), saltwater, and organic solvents. Clearly, the organosilicon elastomers developed in this work hold significant potential as green and sustainable candidates for various self-adhesive applications. Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial fields. However, the highly cross-linked networks cannot self-heal and usually show poor adhesion to other substrates, limiting their sustainable applications in emerging fields. Developing self-adhesive organosilicon elastomers with high mechanical strength, superior stretchability, and exceptional self-healing performance remains a significant challenge. Herein, we propose a facile method to synthesize self-adhesive organosilicon elastomers with high mechanical strength, flexibility, and self-healing performance by designing dynamic networks. Specifically, multiple reversible physical and chemical bonds, such as disulfide bonds, hydrogen bonds, and Zn2+ coordination bonds, are integrated into the organosilicon chains via click reactions, carboxylic acid-amine condensation, and ionic coordination. The optimized organosilicon elastomers exhibit exceptional stretchability and mechanical properties, including an elongation at break of ∼5600 %, high strength (2.2 MPa), and toughness (54.38 MJ/m3), outperforming traditional organosilicon elastomers. Additionally, the as-prepared elastomers demonstrate remarkable self-healing ability, with 80–93 % healing efficiency at 25–60 oC, and excellent self-adhesion to various substrates (0.3–1.0 MPa on aluminum, steel, and wood). These properties are maintained under harsh conditions, including low temperature (−10 oC), saltwater, and organic solvents. Clearly, the organosilicon elastomers developed in this work hold significant potential as green and sustainable candidates for various self-adhesive applications. [Display omitted] |
Author | Liu, Ji Cao, Cheng-Fei Li, Yu-Tong Qin, Yu-Qing Gong, Li-Xiu Li, Shi-Neng Tang, Long-Cheng Liu, Shuai-Chi Liu, Meng-Ying Zhang, Guo-Dong Li, Yang Yang, Ling |
Author_xml | – sequence: 1 givenname: Shuai-Chi surname: Liu fullname: Liu, Shuai-Chi organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 2 givenname: Yu-Tong surname: Li fullname: Li, Yu-Tong organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 3 givenname: Yu-Qing surname: Qin fullname: Qin, Yu-Qing organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 4 givenname: Ling surname: Yang fullname: Yang, Ling organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 5 givenname: Meng-Ying surname: Liu fullname: Liu, Meng-Ying organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 6 givenname: Ji surname: Liu fullname: Liu, Ji email: liuji@wynca.com organization: Academy for New Silicone-based Materials, Wynca Chemicals Group, Jiande, 311600, China – sequence: 7 givenname: Yang surname: Li fullname: Li, Yang organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 8 givenname: Cheng-Fei surname: Cao fullname: Cao, Cheng-Fei organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 9 givenname: Li-Xiu surname: Gong fullname: Gong, Li-Xiu organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 10 givenname: Shi-Neng surname: Li fullname: Li, Shi-Neng email: lisn@zafu.edu.cn organization: College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China – sequence: 11 givenname: Guo-Dong surname: Zhang fullname: Zhang, Guo-Dong organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China – sequence: 12 givenname: Long-Cheng orcidid: 0000-0002-2382-8850 surname: Tang fullname: Tang, Long-Cheng email: lctang@hznu.edu.cn organization: Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China |
BookMark | eNp9kU1uFDEQhVsokQghJ8jGB6AH_3S7PQsWKOInUhAbsrbKdvW0B489sg1hrpLT4plBiBVSSVV6qvepSu9VdxFTxK67ZXTFKJNvtyvwuM8rTvm4oq2oeNFd8XHg_UgHdfHP_LK7KWVLKeVqlEqJq-75C9oForcQwoGUmlPcvDl2rE03AQlERwqGuV8QwkkpPnjbbiAYoNS0w1zIk68LcVj8JqIj7hBh5y2JWJ9S_l7InDLBXxb31acI4QwEtzRDiuRHdJjJArkspIGdP26V193lDKHgzZ9-3T1-_PDt7nP_8PXT_d37h94KKWsPg-WT5UYNAygJas2lmZEaKa3jCkY1GdZ-nZSyTM3MMKBWMWRWgXSCT-K6uz9zXYKt3me_g3zQCbw-CSlvNOTqbUA9zBLXyqzl6NxAxWTEPKypRQA5IgfTWOLMsjmVknH-y2NUH9PSW31KSx_T0rQVFc317uzC9uZPj1kX6zFadD6jre0O_1__b8bjpRY |
Cites_doi | 10.1039/D0PY00235F 10.1016/j.compscitech.2022.109621 10.1021/acsapm.1c00236 10.1039/C7CC06126A 10.1021/acsapm.0c00941 10.1002/asia.201700541 10.1038/s41467-020-15949-8 10.1038/nchem.2492 10.1039/C8PY01352G 10.1021/accountsmr.2c00174 10.1021/acs.langmuir.1c02953 10.1038/nnano.2012.192 10.1039/D0TC04719H 10.1016/j.ccr.2021.214166 10.1016/j.seppur.2024.128485 10.1002/adma.202410650 10.1002/adma.201602332 10.1021/acsapm.3c02476 10.1039/C5TB02036K 10.1002/adfm.202413362 10.1038/s41467-024-53957-0 10.1002/adma.202306350 10.1002/wcms.1477 10.1002/adma.201706846 10.1002/marc.202400698 10.1007/s12274-021-3390-3 10.1016/j.jcis.2020.02.107 10.1016/j.cej.2020.124142 10.1016/j.compositesb.2025.112205 10.1002/pola.28450 10.1016/j.nanoen.2024.109500 10.1021/jacs.6b02428 10.1016/j.polymer.2016.12.006 10.1021/acs.macromol.3c02025 10.1016/j.eurpolymj.2018.09.021 10.1016/j.jcis.2020.03.125 10.1126/sciadv.abb4246 10.1002/marc.201600428 10.1016/j.compositesb.2021.109123 10.1039/C9TB00831D 10.1016/j.cej.2022.135156 10.1002/marc.202100519 10.1021/acsnano.4c04135 10.1007/s40843-023-2581-x 10.1016/j.compositesb.2022.109907 10.1002/smll.202406102 10.1038/nature08693 10.1021/ja01126a048 10.1016/j.cej.2019.123242 10.1002/minf.201600070 10.1016/j.cej.2024.152183 10.1016/j.cej.2022.134843 10.1002/adma.202300937 10.1021/acsnano.8b02479 10.1021/acs.iecr.8b05309 10.1038/s41528-024-00322-2 10.1039/D0QO01075H |
ContentType | Journal Article |
Copyright | 2025 Kingfa Scientific and Technological Co. Ltd. |
Copyright_xml | – notice: 2025 Kingfa Scientific and Technological Co. Ltd. |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aiepr.2025.05.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2542-5048 |
EndPage | 432 |
ExternalDocumentID | oai_doaj_org_article_4f6e98b965dd4037b3f490ceaa65e2ab 10_1016_j_aiepr_2025_05_003 S2542504825000181 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c366t-a4c27c2b844a86a8926bfe0b66cd28a587b1688788c18f1b1a0c81e1c8a6d3273 |
IEDL.DBID | DOA |
ISSN | 2542-5048 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Jul 24 02:13:06 EDT 2025 Sat Aug 16 17:01:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Mechanical flexibility Self-healing Dynamic networks Self-adhesion Silicone elastomer |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-a4c27c2b844a86a8926bfe0b66cd28a587b1688788c18f1b1a0c81e1c8a6d3273 |
ORCID | 0000-0002-2382-8850 |
OpenAccessLink | https://doaj.org/article/4f6e98b965dd4037b3f490ceaa65e2ab |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4f6e98b965dd4037b3f490ceaa65e2ab crossref_primary_10_1016_j_aiepr_2025_05_003 elsevier_sciencedirect_doi_10_1016_j_aiepr_2025_05_003 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Advanced industrial and engineering polymer research |
PublicationYear | 2025 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Wang, Bi, Liang, Lu, Liu, Liu, Jiang, Yu, Zhang, Peng, Dong, Xia (bib61) 2024; 124 Zhang, Song, Wang, Gao, Wu, Liu (bib32) 2020; 8 Chen, Liu, Wu, Peng, Wang, Nie, Zhao, Lv, Cao, Li, Zhang, Bae, Cao, Tang (bib47) 2024 Jiang, Shi, Zhang, Huang (bib6) 2022; 435 Xiong, Thangavel, Wang, Zhou, Lee (bib63) 2020; 6 Pan, Zheng, Feng, Shen, Hu, Cao, Zhang, Gao, Song, Shi (bib5) 2025; 353 Xiang, Rong, Zhang (bib52) 2017; 108 Wang, Lu, Sun, Yu, Xia (bib56) 2019; 7 Fatona, Moran-Mirabal, Brook (bib31) 2019; 10 Sun (bib58) 2024; 36 Li, Wang, Keplinger, Zou, Jin, Sun, Zheng, Cao, Lissel, Linder, You, Bao (bib38) 2016; 8 Yang, Du, Li (bib24) 2020; 2 Chen, Wu, Liu, Li, Guan, Cao, Zhang, Tuten, Gao, Shi, Song, Tang (bib7) 2025; 35 Zhu, Lu, Xu, Lai, Li, Zeng, Wu, Liu (bib10) 2024; 40 Jung, Lee, Kim, Lee, Chong, You, Kang (bib16) 2024; 15 Yang, Hu, Qin, Cao, Li, Gong, Zhang, Gao, Song, Tang (bib28) 2025; 295 Mei, Jia, Lai, Sun, Li, Wu, Cao, You, Bao (bib22) 2016; 37 Sun, Pu, Liu, Yu, Du, Zhai, Hu, Wang (bib48) 2018; 12 Yang, Zhang, Chen, Lai, Li, Zeng (bib14) 2024; 6 Li, Wu, Huang, Yao, Hou, Teng, Cai, Wu (bib45) 2024; 136 Tee, Wang, Allen, Bao (bib37) 2012; 7 Davidson, Newman (bib40) 1952; 74 Cai, Yan, Wang, Ge, Liang, Chen, Zou, Zhou (bib41) 2022; 436 Wu, Peng, Xiong, Hou, Cai, Wang, Zhao, Wu (bib21) 2023; 66 Liu, Liu, Lu, Xu, Yao (bib42) 2018; 57 Liu, Hong, Huang, Zhang, Xu, Chen, Xiang, Liu (bib33) 2020; 387 Shi, Zhang, Chen, Qian, Huang, Jiang (bib17) 2024; 34 Kang, Son, Wang, Liu, Lopez, Kim, Young Oh, Katsumata, Mun, Lee, Jin, Bao, Tok (bib39) 2018; 30 Peng, Gu, Wu, Xie, Wu (bib20) 2023; 4 Huang, Yang, Niu, Wu, Fan, Dai, He, Bai (bib23) 2022; 228 Glavatskikh, Madzhidov, Solov’ev, Marcou, Horvath, Varnek (bib27) 2016; 35 Huang, Cai, Xue, Ge, Zhao, Yu (bib43) 2021; 14 Karas, Wu, Das, Wu (bib26) 2020; 10 Yang, Li, Zhang, Lai, Zeng (bib9) 2020; 570 Yang, Li, Mou, Chen, Lai, Ding, Zeng (bib13) 2023; 56 Zhang, Cheng, Xu, Gao, Zhu, Jiang (bib44) 2021; 31 Köhler, Gutacker, Mejía (bib3) 2020; 7 Guo, Li, Qiao, Lei, Ju, Zhang, Zhang, Fu, Wu (bib19) 2025 Li, Yu, Zhao, Zhang, Yang, Zhao, Huang (bib54) 2018; 108 Li, Pan, Yang, Wu, Wu, Song, Li, Zhang (bib8) 2025; 46 Li, Liu, Shen, Zhang, Gong, Zhao, Song, Gao, Tang (bib34) 2022; 238 Liu, Liang, Huang, Hu, Yang (bib50) 2017; 53 Feng, Yu, Hu, Zuo, Li, Sun, Ning, Tian, Zhang (bib29) 2019; 58 Xu, Li, Liu, Wang, Sun, Hu, Wang, Chen, Wang, Yao, Fu (bib46) 2023; 35 Guo, Han, Zhao, Yang, Zhang (bib59) 2020; 11 Li, Lu, Ji, Xue, Zhao, Zhao, Jia, Wang, Wang, Zheng, Jiang (bib15) 2024; 36 Yu, Zuo, Xu, Ning, Yu, Zhang, Tian (bib35) 2021; 3 Bai, Yan, Feng, Zheng (bib55) 2021; 223 Kathan, Kovaříček, Jurissek, Senf, Dallmann, Thünemann, Hecht (bib51) 2016; 55 Yang, Pan, Ma, Lou, Li, Li (bib1) 2020; 11 Wang, Klein, Mejía (bib30) 2017; 12 Lu, Chen, Sun, Deng, Mei, Xu, Wu, Xiao, Yue, Han (bib62) 2024; 8 Zuo, Liang, Yin, Gou, Lin (bib11) 2021; 447 Zhao, Xu, Luo, Wu, Xia (bib57) 2016; 4 Zhao, Wang, Xie, Wang, Wang, Zhang, Li, Feng (bib18) 2021; 42 Wang, Mynar, Yoshida, Lee, Lee, Okuro, Kinbara, Aida (bib36) 2010; 463 Zhao, Yin, Jiang, Guo, Qu, Huang (bib49) 2020; 573 Sun, Liu, Liu, Yu, Ning, Tian, Zhang (bib64) 2020; 384 Rao, Chortos, Pfattner, Lissel, Chiu, Feig, Xu, Kurosawa, Gu, Wang, He, Chung, Bao (bib65) 2016; 138 Kang, Song, Nathan Wang, Liu, Lopez, Kim, Young Oh, Latsumata, Mun, Lee, Jin, Tok, Bao (bib25) 2018; 30 Lu, Feng (bib2) 2017; 55 Lai, Mei, Jia, Li, You, Bao (bib53) 2016; 28 Chen, Wen, Yue (bib60) 2022; 38 Wu, Wu, Chen, Peng, Guan, Li, Cao, Zhang, Gao, Song, Shi (bib12) 2024; 492 Qu, Xia, Li, Cao, Zhang, Castignolles, Bae, Song, Gao (bib4) 2024; 18 Fatona (10.1016/j.aiepr.2025.05.003_bib31) 2019; 10 Wu (10.1016/j.aiepr.2025.05.003_bib12) 2024; 492 Lu (10.1016/j.aiepr.2025.05.003_bib2) 2017; 55 Liu (10.1016/j.aiepr.2025.05.003_bib33) 2020; 387 Yang (10.1016/j.aiepr.2025.05.003_bib28) 2025; 295 Zhao (10.1016/j.aiepr.2025.05.003_bib49) 2020; 573 Zhao (10.1016/j.aiepr.2025.05.003_bib18) 2021; 42 Kang (10.1016/j.aiepr.2025.05.003_bib25) 2018; 30 Lu (10.1016/j.aiepr.2025.05.003_bib62) 2024; 8 Chen (10.1016/j.aiepr.2025.05.003_bib7) 2025; 35 Zhang (10.1016/j.aiepr.2025.05.003_bib32) 2020; 8 Zhao (10.1016/j.aiepr.2025.05.003_bib57) 2016; 4 Lai (10.1016/j.aiepr.2025.05.003_bib53) 2016; 28 Kathan (10.1016/j.aiepr.2025.05.003_bib51) 2016; 55 Li (10.1016/j.aiepr.2025.05.003_bib34) 2022; 238 Tee (10.1016/j.aiepr.2025.05.003_bib37) 2012; 7 Guo (10.1016/j.aiepr.2025.05.003_bib19) 2025 Cai (10.1016/j.aiepr.2025.05.003_bib41) 2022; 436 Li (10.1016/j.aiepr.2025.05.003_bib54) 2018; 108 Qu (10.1016/j.aiepr.2025.05.003_bib4) 2024; 18 Li (10.1016/j.aiepr.2025.05.003_bib8) 2025; 46 Sun (10.1016/j.aiepr.2025.05.003_bib64) 2020; 384 Huang (10.1016/j.aiepr.2025.05.003_bib23) 2022; 228 Chen (10.1016/j.aiepr.2025.05.003_bib47) 2024 Rao (10.1016/j.aiepr.2025.05.003_bib65) 2016; 138 Zhang (10.1016/j.aiepr.2025.05.003_bib44) 2021; 31 Yang (10.1016/j.aiepr.2025.05.003_bib24) 2020; 2 Huang (10.1016/j.aiepr.2025.05.003_bib43) 2021; 14 Liu (10.1016/j.aiepr.2025.05.003_bib50) 2017; 53 Yang (10.1016/j.aiepr.2025.05.003_bib1) 2020; 11 Kang (10.1016/j.aiepr.2025.05.003_bib39) 2018; 30 Mei (10.1016/j.aiepr.2025.05.003_bib22) 2016; 37 Peng (10.1016/j.aiepr.2025.05.003_bib20) 2023; 4 Pan (10.1016/j.aiepr.2025.05.003_bib5) 2025; 353 Sun (10.1016/j.aiepr.2025.05.003_bib48) 2018; 12 Jung (10.1016/j.aiepr.2025.05.003_bib16) 2024; 15 Wang (10.1016/j.aiepr.2025.05.003_bib61) 2024; 124 Yang (10.1016/j.aiepr.2025.05.003_bib9) 2020; 570 Li (10.1016/j.aiepr.2025.05.003_bib38) 2016; 8 Zhu (10.1016/j.aiepr.2025.05.003_bib10) 2024; 40 Karas (10.1016/j.aiepr.2025.05.003_bib26) 2020; 10 Davidson (10.1016/j.aiepr.2025.05.003_bib40) 1952; 74 Liu (10.1016/j.aiepr.2025.05.003_bib42) 2018; 57 Guo (10.1016/j.aiepr.2025.05.003_bib59) 2020; 11 Sun (10.1016/j.aiepr.2025.05.003_bib58) 2024; 36 Li (10.1016/j.aiepr.2025.05.003_bib15) 2024; 36 Feng (10.1016/j.aiepr.2025.05.003_bib29) 2019; 58 Shi (10.1016/j.aiepr.2025.05.003_bib17) 2024; 34 Wu (10.1016/j.aiepr.2025.05.003_bib21) 2023; 66 Glavatskikh (10.1016/j.aiepr.2025.05.003_bib27) 2016; 35 Yang (10.1016/j.aiepr.2025.05.003_bib14) 2024; 6 Xu (10.1016/j.aiepr.2025.05.003_bib46) 2023; 35 Jiang (10.1016/j.aiepr.2025.05.003_bib6) 2022; 435 Wang (10.1016/j.aiepr.2025.05.003_bib30) 2017; 12 Yu (10.1016/j.aiepr.2025.05.003_bib35) 2021; 3 Li (10.1016/j.aiepr.2025.05.003_bib45) 2024; 136 Xiang (10.1016/j.aiepr.2025.05.003_bib52) 2017; 108 Yang (10.1016/j.aiepr.2025.05.003_bib13) 2023; 56 Bai (10.1016/j.aiepr.2025.05.003_bib55) 2021; 223 Wang (10.1016/j.aiepr.2025.05.003_bib56) 2019; 7 Wang (10.1016/j.aiepr.2025.05.003_bib36) 2010; 463 Chen (10.1016/j.aiepr.2025.05.003_bib60) 2022; 38 Zuo (10.1016/j.aiepr.2025.05.003_bib11) 2021; 447 Köhler (10.1016/j.aiepr.2025.05.003_bib3) 2020; 7 Xiong (10.1016/j.aiepr.2025.05.003_bib63) 2020; 6 |
References_xml | – volume: 28 start-page: 8277 year: 2016 ident: bib53 article-title: A stiff and healable polymer based on dynamic-covalent boroxine bonds publication-title: Adv. Mater. – volume: 40 year: 2024 ident: bib10 article-title: Tough and self-healing linear polydimethylsiloxane elastomer with multiple hydrogen bonds for high-performance piezoresistive pressure sensor publication-title: Appl. Mater. Today. – volume: 436 year: 2022 ident: bib41 article-title: A room temperature self-healing and thermally reprocessable cross-linked elastomer with unprecedented mechanical properties for ablation-resistant applications publication-title: Chem. Eng. J. – volume: 35 start-page: 2300937 year: 2023 ident: bib46 article-title: Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure publication-title: Adv. Mater. – volume: 387 year: 2020 ident: bib33 article-title: Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers publication-title: Chem. Eng. J. – volume: 8 year: 2020 ident: bib32 article-title: A stretchable and self-healable organosilicon conductive nanocomposite for a reliable and sensitive strain sensor publication-title: J. Mater. Chem. C. – volume: 38 start-page: 1194 year: 2022 ident: bib60 article-title: Design of robust self-healing silicone elastomers based on multiple H-bonding and dynamic covalent bond publication-title: Langmuir – volume: 34 year: 2024 ident: bib17 article-title: Octopi tentacles-inspired architecture enables self-healing conductive rapid-photo-responsive materials for soft multifunctional actuators publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1 year: 2024 ident: bib62 article-title: Resilient, environment tolerant and biocompatible electroluminescent devices with enhanced luminance based on compliant and self-adhesive electrodes publication-title: Npj. Flex. Electron. – volume: 7 start-page: 4108 year: 2020 ident: bib3 article-title: Industrial synthesis of reactive silicones: reaction mechanisms and processes publication-title: Org. Chem. Front. – volume: 35 start-page: 2413362 year: 2025 ident: bib7 article-title: Pottery-inspired flexible fire-shielding ceramifiable silicone foams for exceptional long-term thermal protection publication-title: Adv. Funct. Mater. – volume: 3 start-page: 2667 year: 2021 ident: bib35 article-title: Self-Healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds publication-title: ACS Appl. Polym. Mater. – volume: 10 start-page: 219 year: 2019 ident: bib31 article-title: Controlling silicone networks using dithioacetal crosslinks publication-title: Polym. Chem. – volume: 11 start-page: 3285 year: 2020 ident: bib1 article-title: Highly elastic, strong, and reprocessable cross-linked polyolefin elastomers enabled by boronic ester bonds publication-title: Polym. Chem. – volume: 56 start-page: 9766 year: 2023 ident: bib13 article-title: Functional and environmental friendly polyimine elastomer based on the dynamic covalent network for a flexible strain sensor publication-title: Macromolecules – volume: 36 year: 2024 ident: bib58 article-title: A versatile microporous design toward toughened yet softened self-healing materials publication-title: Adv. Mater. – volume: 55 start-page: 903 year: 2017 ident: bib2 article-title: Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by “Salt-Forming Vulcanization” publication-title: J. Polym. Sci. Polym. Chem. – year: 2025 ident: bib19 article-title: Crack-resistant and self-healable passive radiative cooling silicone compounds publication-title: Adv. Mater. – volume: 30 start-page: 1706846 year: 2018 ident: bib25 article-title: Tough and water-Insensitive self-healing elastomer for robust electronic skin publication-title: Adv. Mater. – volume: 42 year: 2021 ident: bib18 article-title: Mechanically strong, autonomous self-healing, and fully recyclable silicone coordination elastomers with unique photoluminescent properties publication-title: Macromol. Rapid Commun. – volume: 295 year: 2025 ident: bib28 article-title: High-temperature resistant and reprocessable silicone elastomer composites via tuning bonding interactions for efficient and healable thermal management publication-title: Compos. B Eng. – volume: 492 start-page: 152183 year: 2024 ident: bib12 article-title: Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation publication-title: Chem. Eng. J. – volume: 136 year: 2024 ident: bib45 article-title: Ultra-fast-healing glassy hyperbranched plastics capable of restoring 26.4 MPa tensile strength within one minute at room temperature publication-title: Angew. Chem. Int. Ed. – volume: 10 year: 2020 ident: bib26 article-title: Hydrogen bond design principles publication-title: Wires. Comput. Mol. Sci. – start-page: 2406102 year: 2024 ident: bib47 article-title: Chemical-physical synergistic assembly of mxene/cnt nanocoatings in silicone foams for reliable piezoresistive sensing in harsh environments publication-title: Small – volume: 4 start-page: 982 year: 2016 ident: bib57 article-title: A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer publication-title: J. Mater. Chem. B – volume: 463 start-page: 339 year: 2010 ident: bib36 article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder publication-title: Nature – volume: 66 start-page: 4489 year: 2023 ident: bib21 article-title: A novel shear-stiffening supramolecular material derived from diboron structure publication-title: Sci. China. Mater. – volume: 31 year: 2021 ident: bib44 article-title: Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality publication-title: Adv. Funct. Mater. – volume: 2 start-page: 5630 year: 2020 ident: bib24 article-title: Highly stretchable, self-healable, and adhesive Polyurethane elastomers based on boronic ester bonds publication-title: ACS Appl. Polym. Mater. – volume: 36 start-page: 2306350 year: 2024 ident: bib15 article-title: Self-healing hydrogel bioelectronics publication-title: Adv. Mater. – volume: 37 start-page: 1667 year: 2016 ident: bib22 article-title: A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π–π interactions publication-title: Macromol. Rapid. Commun. – volume: 435 year: 2022 ident: bib6 article-title: Recent advances in UV/thermal curing silicone polymers publication-title: Chem. Eng. J. – volume: 58 start-page: 1212 year: 2019 ident: bib29 article-title: Multifunctional vitrimer-like polydimethylsiloxane (pdms): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond publication-title: Ind. Eng. Chem. Res. – volume: 238 year: 2022 ident: bib34 article-title: Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study publication-title: Compos. B. Eng. – volume: 573 start-page: 105 year: 2020 ident: bib49 article-title: Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics publication-title: J. Colloid. Interface. Sci. – volume: 18 start-page: 22021 year: 2024 end-page: 22033 ident: bib4 article-title: Rational design of oil resistant and electrically conductive fluorosilicone rubber foam nanocomposite for sensitive detectability in complex solvent environments publication-title: ACS Nano – volume: 7 start-page: 4876 year: 2019 ident: bib56 article-title: Preparation, characterization and properties of intrinsic self-healing elastomers publication-title: J. Mater. Chem. B. – volume: 55 year: 2016 ident: bib51 article-title: Control of imine exchange kinetics with Photoswitches to modulate self-healing in polysiloxane networks by light Illumination publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 6020 year: 2016 ident: bib65 article-title: Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 339 year: 2017 ident: bib52 article-title: A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer publication-title: Polymer – volume: 108 start-page: 399 year: 2018 ident: bib54 article-title: A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction publication-title: Eur. Polym. J. – volume: 570 start-page: 1 year: 2020 ident: bib9 article-title: Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor publication-title: J. Colloid. Interface. Sci. – volume: 7 start-page: 825 year: 2012 ident: bib37 article-title: An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications publication-title: Nat. Nanotech. – volume: 124 start-page: 109500 year: 2024 ident: bib61 article-title: Atmospheric moisture-digesting zwitterionic skin for non-drying and self-adhesive multifunctional electronics publication-title: Nano. Energy. – volume: 14 start-page: 3636 year: 2021 ident: bib43 article-title: Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process publication-title: Nano. Res. – volume: 12 start-page: 6147 year: 2018 ident: bib48 article-title: Self-Healable, stretchable, transparent triboelectric nanogenerators as soft power sources publication-title: ACS Nano – volume: 11 start-page: 2037 year: 2020 ident: bib59 article-title: Universally autonomous self-healing elastomer with high stretchability publication-title: Nat. Commun. – volume: 6 start-page: 905 year: 2024 ident: bib14 article-title: Self-healing and degradable polycaprolactone-based polyurethane elastomer for flexible stretchable strain sensors publication-title: ACS Appl. Polym. Mater. – volume: 12 start-page: 1122 year: 2017 ident: bib30 article-title: Inside cover: Catalytic systems for the cross-linking of organosilicon polymers publication-title: Chem. Asian. J. – volume: 57 year: 2018 ident: bib42 article-title: Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing publication-title: Angew. Chem. Int. Ed. – volume: 384 year: 2020 ident: bib64 article-title: Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network publication-title: Chem. Eng. J. – volume: 74 start-page: 1515 year: 1952 ident: bib40 article-title: The occurrence of anhydrides in the pyrolysis of monocarboxylic acids1 publication-title: J. Am. Chem. Soc. – volume: 228 year: 2022 ident: bib23 article-title: Boronic ester bonds crosslinked vitrimer elastomers with mechanical robustness, shape memory, self-healing and recyclability properties publication-title: Compos. Sci. Technol. – volume: 223 year: 2021 ident: bib55 article-title: Mechanically strong, healable, and reprocessable conductive carbon black/silicone elastomer nanocomposites based on dynamic imine bonds and sacrificial coordination bonds publication-title: Compos. B. Eng. – volume: 15 start-page: 9763 year: 2024 ident: bib16 article-title: Self-healing electronic skin with high fracture strength and toughness publication-title: Nat. Commun. – volume: 447 year: 2021 ident: bib11 article-title: Understanding the significant role of Si-O-Si bonds: organosilicon materials as powerful platforms for bioimaging publication-title: Coord. Chem. Rev. – volume: 30 start-page: 1706846 year: 2018 ident: bib39 article-title: Tough and water-insensitive self-healing elastomer for robust electronic skin publication-title: Adv. Mater. – volume: 53 start-page: 12088 year: 2017 ident: bib50 article-title: A stretchable polysiloxane elastomer with self-healing capacity at room temperature and solvatochromic properties publication-title: Chem. Commun. – volume: 46 start-page: 2400698 year: 2025 ident: bib8 article-title: Facile and efficient synthesis of fluorosilicone polymers by using an optimized gradient ring-opening reaction publication-title: Macromol. Rapid. Commun. – volume: 35 start-page: 629 year: 2016 ident: bib27 article-title: Predictive models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds publication-title: Mol. Inform. – volume: 8 start-page: 618 year: 2016 ident: bib38 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nat. Chem. – volume: 6 year: 2020 ident: bib63 article-title: Self-healable sticky porous elastomer for gas-solid interacted power generation publication-title: Sci. Adv. – volume: 4 start-page: 323 year: 2023 ident: bib20 article-title: High-performance self-healing polymers publication-title: Acc. Mater. Res. – volume: 353 start-page: 128485 year: 2025 ident: bib5 article-title: Hydrophobic silicone modified membranes for efficient oil/water separation: synthesis, fabrication and application publication-title: Sep. Purif. Technol. – volume: 11 start-page: 3285 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib1 article-title: Highly elastic, strong, and reprocessable cross-linked polyolefin elastomers enabled by boronic ester bonds publication-title: Polym. Chem. doi: 10.1039/D0PY00235F – volume: 228 year: 2022 ident: 10.1016/j.aiepr.2025.05.003_bib23 article-title: Boronic ester bonds crosslinked vitrimer elastomers with mechanical robustness, shape memory, self-healing and recyclability properties publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109621 – volume: 3 start-page: 2667 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib35 article-title: Self-Healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00236 – volume: 53 start-page: 12088 year: 2017 ident: 10.1016/j.aiepr.2025.05.003_bib50 article-title: A stretchable polysiloxane elastomer with self-healing capacity at room temperature and solvatochromic properties publication-title: Chem. Commun. doi: 10.1039/C7CC06126A – volume: 2 start-page: 5630 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib24 article-title: Highly stretchable, self-healable, and adhesive Polyurethane elastomers based on boronic ester bonds publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c00941 – volume: 12 start-page: 1122 year: 2017 ident: 10.1016/j.aiepr.2025.05.003_bib30 article-title: Inside cover: Catalytic systems for the cross-linking of organosilicon polymers publication-title: Chem. Asian. J. doi: 10.1002/asia.201700541 – volume: 11 start-page: 2037 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib59 article-title: Universally autonomous self-healing elastomer with high stretchability publication-title: Nat. Commun. doi: 10.1038/s41467-020-15949-8 – volume: 8 start-page: 618 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib38 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nat. Chem. doi: 10.1038/nchem.2492 – volume: 34 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib17 article-title: Octopi tentacles-inspired architecture enables self-healing conductive rapid-photo-responsive materials for soft multifunctional actuators publication-title: Adv. Funct. Mater. – volume: 10 start-page: 219 year: 2019 ident: 10.1016/j.aiepr.2025.05.003_bib31 article-title: Controlling silicone networks using dithioacetal crosslinks publication-title: Polym. Chem. doi: 10.1039/C8PY01352G – volume: 4 start-page: 323 year: 2023 ident: 10.1016/j.aiepr.2025.05.003_bib20 article-title: High-performance self-healing polymers publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00174 – volume: 38 start-page: 1194 year: 2022 ident: 10.1016/j.aiepr.2025.05.003_bib60 article-title: Design of robust self-healing silicone elastomers based on multiple H-bonding and dynamic covalent bond publication-title: Langmuir doi: 10.1021/acs.langmuir.1c02953 – volume: 31 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib44 article-title: Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality publication-title: Adv. Funct. Mater. – volume: 7 start-page: 825 year: 2012 ident: 10.1016/j.aiepr.2025.05.003_bib37 article-title: An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.192 – volume: 8 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib32 article-title: A stretchable and self-healable organosilicon conductive nanocomposite for a reliable and sensitive strain sensor publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC04719H – volume: 447 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib11 article-title: Understanding the significant role of Si-O-Si bonds: organosilicon materials as powerful platforms for bioimaging publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214166 – volume: 353 start-page: 128485 year: 2025 ident: 10.1016/j.aiepr.2025.05.003_bib5 article-title: Hydrophobic silicone modified membranes for efficient oil/water separation: synthesis, fabrication and application publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.128485 – volume: 36 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib58 article-title: A versatile microporous design toward toughened yet softened self-healing materials publication-title: Adv. Mater. doi: 10.1002/adma.202410650 – volume: 28 start-page: 8277 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib53 article-title: A stiff and healable polymer based on dynamic-covalent boroxine bonds publication-title: Adv. Mater. doi: 10.1002/adma.201602332 – volume: 6 start-page: 905 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib14 article-title: Self-healing and degradable polycaprolactone-based polyurethane elastomer for flexible stretchable strain sensors publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.3c02476 – year: 2025 ident: 10.1016/j.aiepr.2025.05.003_bib19 article-title: Crack-resistant and self-healable passive radiative cooling silicone compounds publication-title: Adv. Mater. – volume: 4 start-page: 982 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib57 article-title: A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02036K – volume: 35 start-page: 2413362 year: 2025 ident: 10.1016/j.aiepr.2025.05.003_bib7 article-title: Pottery-inspired flexible fire-shielding ceramifiable silicone foams for exceptional long-term thermal protection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202413362 – volume: 15 start-page: 9763 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib16 article-title: Self-healing electronic skin with high fracture strength and toughness publication-title: Nat. Commun. doi: 10.1038/s41467-024-53957-0 – volume: 36 start-page: 2306350 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib15 article-title: Self-healing hydrogel bioelectronics publication-title: Adv. Mater. doi: 10.1002/adma.202306350 – volume: 10 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib26 article-title: Hydrogen bond design principles publication-title: Wires. Comput. Mol. Sci. doi: 10.1002/wcms.1477 – volume: 30 start-page: 1706846 year: 2018 ident: 10.1016/j.aiepr.2025.05.003_bib39 article-title: Tough and water-insensitive self-healing elastomer for robust electronic skin publication-title: Adv. Mater. doi: 10.1002/adma.201706846 – volume: 46 start-page: 2400698 year: 2025 ident: 10.1016/j.aiepr.2025.05.003_bib8 article-title: Facile and efficient synthesis of fluorosilicone polymers by using an optimized gradient ring-opening reaction publication-title: Macromol. Rapid. Commun. doi: 10.1002/marc.202400698 – volume: 14 start-page: 3636 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib43 article-title: Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process publication-title: Nano. Res. doi: 10.1007/s12274-021-3390-3 – volume: 570 start-page: 1 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib9 article-title: Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor publication-title: J. Colloid. Interface. Sci. doi: 10.1016/j.jcis.2020.02.107 – volume: 387 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib33 article-title: Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124142 – volume: 295 year: 2025 ident: 10.1016/j.aiepr.2025.05.003_bib28 article-title: High-temperature resistant and reprocessable silicone elastomer composites via tuning bonding interactions for efficient and healable thermal management publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2025.112205 – volume: 55 start-page: 903 year: 2017 ident: 10.1016/j.aiepr.2025.05.003_bib2 article-title: Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by “Salt-Forming Vulcanization” publication-title: J. Polym. Sci. Polym. Chem. doi: 10.1002/pola.28450 – volume: 124 start-page: 109500 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib61 article-title: Atmospheric moisture-digesting zwitterionic skin for non-drying and self-adhesive multifunctional electronics publication-title: Nano. Energy. doi: 10.1016/j.nanoen.2024.109500 – volume: 138 start-page: 6020 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib65 article-title: Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02428 – volume: 55 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib51 article-title: Control of imine exchange kinetics with Photoswitches to modulate self-healing in polysiloxane networks by light Illumination publication-title: Angew. Chem. Int. Ed. – volume: 108 start-page: 339 year: 2017 ident: 10.1016/j.aiepr.2025.05.003_bib52 article-title: A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer publication-title: Polymer doi: 10.1016/j.polymer.2016.12.006 – volume: 56 start-page: 9766 year: 2023 ident: 10.1016/j.aiepr.2025.05.003_bib13 article-title: Functional and environmental friendly polyimine elastomer based on the dynamic covalent network for a flexible strain sensor publication-title: Macromolecules doi: 10.1021/acs.macromol.3c02025 – volume: 108 start-page: 399 year: 2018 ident: 10.1016/j.aiepr.2025.05.003_bib54 article-title: A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.09.021 – volume: 40 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib10 article-title: Tough and self-healing linear polydimethylsiloxane elastomer with multiple hydrogen bonds for high-performance piezoresistive pressure sensor publication-title: Appl. Mater. Today. – volume: 136 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib45 article-title: Ultra-fast-healing glassy hyperbranched plastics capable of restoring 26.4 MPa tensile strength within one minute at room temperature publication-title: Angew. Chem. Int. Ed. – volume: 573 start-page: 105 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib49 article-title: Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics publication-title: J. Colloid. Interface. Sci. doi: 10.1016/j.jcis.2020.03.125 – volume: 6 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib63 article-title: Self-healable sticky porous elastomer for gas-solid interacted power generation publication-title: Sci. Adv. doi: 10.1126/sciadv.abb4246 – volume: 37 start-page: 1667 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib22 article-title: A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π–π interactions publication-title: Macromol. Rapid. Commun. doi: 10.1002/marc.201600428 – volume: 223 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib55 article-title: Mechanically strong, healable, and reprocessable conductive carbon black/silicone elastomer nanocomposites based on dynamic imine bonds and sacrificial coordination bonds publication-title: Compos. B. Eng. doi: 10.1016/j.compositesb.2021.109123 – volume: 30 start-page: 1706846 year: 2018 ident: 10.1016/j.aiepr.2025.05.003_bib25 article-title: Tough and water-Insensitive self-healing elastomer for robust electronic skin publication-title: Adv. Mater. doi: 10.1002/adma.201706846 – volume: 7 start-page: 4876 year: 2019 ident: 10.1016/j.aiepr.2025.05.003_bib56 article-title: Preparation, characterization and properties of intrinsic self-healing elastomers publication-title: J. Mater. Chem. B. doi: 10.1039/C9TB00831D – volume: 436 year: 2022 ident: 10.1016/j.aiepr.2025.05.003_bib41 article-title: A room temperature self-healing and thermally reprocessable cross-linked elastomer with unprecedented mechanical properties for ablation-resistant applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135156 – volume: 42 year: 2021 ident: 10.1016/j.aiepr.2025.05.003_bib18 article-title: Mechanically strong, autonomous self-healing, and fully recyclable silicone coordination elastomers with unique photoluminescent properties publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202100519 – volume: 18 start-page: 22021 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib4 article-title: Rational design of oil resistant and electrically conductive fluorosilicone rubber foam nanocomposite for sensitive detectability in complex solvent environments publication-title: ACS Nano doi: 10.1021/acsnano.4c04135 – volume: 66 start-page: 4489 year: 2023 ident: 10.1016/j.aiepr.2025.05.003_bib21 article-title: A novel shear-stiffening supramolecular material derived from diboron structure publication-title: Sci. China. Mater. doi: 10.1007/s40843-023-2581-x – volume: 238 year: 2022 ident: 10.1016/j.aiepr.2025.05.003_bib34 article-title: Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative study publication-title: Compos. B. Eng. doi: 10.1016/j.compositesb.2022.109907 – start-page: 2406102 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib47 article-title: Chemical-physical synergistic assembly of mxene/cnt nanocoatings in silicone foams for reliable piezoresistive sensing in harsh environments publication-title: Small doi: 10.1002/smll.202406102 – volume: 463 start-page: 339 year: 2010 ident: 10.1016/j.aiepr.2025.05.003_bib36 article-title: High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder publication-title: Nature doi: 10.1038/nature08693 – volume: 74 start-page: 1515 year: 1952 ident: 10.1016/j.aiepr.2025.05.003_bib40 article-title: The occurrence of anhydrides in the pyrolysis of monocarboxylic acids1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01126a048 – volume: 384 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib64 article-title: Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123242 – volume: 35 start-page: 629 year: 2016 ident: 10.1016/j.aiepr.2025.05.003_bib27 article-title: Predictive models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds publication-title: Mol. Inform. doi: 10.1002/minf.201600070 – volume: 492 start-page: 152183 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib12 article-title: Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152183 – volume: 435 year: 2022 ident: 10.1016/j.aiepr.2025.05.003_bib6 article-title: Recent advances in UV/thermal curing silicone polymers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134843 – volume: 35 start-page: 2300937 year: 2023 ident: 10.1016/j.aiepr.2025.05.003_bib46 article-title: Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure publication-title: Adv. Mater. doi: 10.1002/adma.202300937 – volume: 12 start-page: 6147 year: 2018 ident: 10.1016/j.aiepr.2025.05.003_bib48 article-title: Self-Healable, stretchable, transparent triboelectric nanogenerators as soft power sources publication-title: ACS Nano doi: 10.1021/acsnano.8b02479 – volume: 58 start-page: 1212 year: 2019 ident: 10.1016/j.aiepr.2025.05.003_bib29 article-title: Multifunctional vitrimer-like polydimethylsiloxane (pdms): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05309 – volume: 57 year: 2018 ident: 10.1016/j.aiepr.2025.05.003_bib42 article-title: Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1 year: 2024 ident: 10.1016/j.aiepr.2025.05.003_bib62 article-title: Resilient, environment tolerant and biocompatible electroluminescent devices with enhanced luminance based on compliant and self-adhesive electrodes publication-title: Npj. Flex. Electron. doi: 10.1038/s41528-024-00322-2 – volume: 7 start-page: 4108 year: 2020 ident: 10.1016/j.aiepr.2025.05.003_bib3 article-title: Industrial synthesis of reactive silicones: reaction mechanisms and processes publication-title: Org. Chem. Front. doi: 10.1039/D0QO01075H |
SSID | ssj0002856883 |
Score | 2.2959971 |
Snippet | Silicone elastomers with wide-temperature stability and excellent mechanical flexibility have attracted considerable interest in both academic and industrial... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 422 |
SubjectTerms | Dynamic networks Mechanical flexibility Self-adhesion Self-healing Silicone elastomer |
Title | Mechanically strong, stretchable and self-healable silicone elastomers with designed dynamic networks for exceptional self-adhesion under harsh conditions |
URI | https://dx.doi.org/10.1016/j.aiepr.2025.05.003 https://doaj.org/article/4f6e98b965dd4037b3f490ceaa65e2ab |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-0wEA7iShfi9YFHr5KFS4tpm6bp8iqKCLpScFfymHiOHKp4jnD9K_5aZ5JWutKNq0Iok5BvyDyY-YaxY8gR1oDKC0oKClDoHfQ2g7oWRrvaSUWNwje36upeXj9UD6NRX1QTluiB08WdyqCg0bZRlfdSlLUtg2yEA2NUBYWx9PqizRsFU08xZVQprcuBZigWdJkZvBADaFFFrs5hTFZviiJj_8gijazM5Sbb6N1D_i8d6w9bgW6LrY9IA7fZxw1Qty5d7vydLyiV_XhCXwKAGqG46TxfwDxk5AXGlcVsjoh3wAGd5eUz5ao5ZWC5jwUc4LlPk-l5l8rCFxydWQ7_-6IXPFIUaPwUKL3GqfXslU8xKp5yFOxT4dcOu7-8uDu_yvoJC5krlVpmRrqidoXVUhqtjG4KZQMIq5TzhTaVrm2O94hhsst1yG1uhNM55E4b5Uv0fHbZaoen32O8wV-CQWwAQ05RSh2sKxodKhWcMUJM2Mlw2e1LItJohwqzpzZi0xI2raiIr3TCzgiQr1-JBTsuoG60vW60P-nGhKkBzrZ3KJKjgKJm3-2-_xu7H7A1Eplqe_-y1eXrGxyiB7O0R1FZPwE8BfP_ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+strong%2C+stretchable+and+self-healable+silicone+elastomers+with+designed+dynamic+networks+for+exceptional+self-adhesion+under+harsh+conditions&rft.jtitle=Advanced+industrial+and+engineering+polymer+research&rft.au=Shuai-Chi+Liu&rft.au=Yu-Tong+Li&rft.au=Yu-Qing+Qin&rft.au=Ling+Yang&rft.date=2025-07-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2542-5048&rft.volume=8&rft.issue=3&rft.spage=422&rft.epage=432&rft_id=info:doi/10.1016%2Fj.aiepr.2025.05.003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4f6e98b965dd4037b3f490ceaa65e2ab |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-5048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-5048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-5048&client=summon |