The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchest...
Saved in:
Published in | Critical reviews in biochemistry and molecular biology Vol. 58; no. 1; pp. 81 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
02.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles. |
---|---|
AbstractList | The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles. The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles. The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles. |
Author | Appanna, Vasu D. Legendre, Felix MacLean, Alex |
Author_xml | – sequence: 1 givenname: Alex surname: MacLean fullname: MacLean, Alex organization: School of Natural Sciences, Laurentian University – sequence: 2 givenname: Felix surname: Legendre fullname: Legendre, Felix organization: School of Natural Sciences, Laurentian University – sequence: 3 givenname: Vasu D. surname: Appanna fullname: Appanna, Vasu D. organization: School of Natural Sciences, Laurentian University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37125817$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtv1DAQgC3Uir74CSAfyyGL7Txsw6XVipdUqZftDcmaOGNhcOJiO4L99yTaLQcOcJo5fN9o9F2QkylOSMhLzjacKfaGs4ZpUauNYKLeCMG4btpn5Jy3ja6k1Opk2RemWqEzcpHzN8Z4J1X7nJzVkotWcXlOvuy-Ii3JW0h9_LUP3lKwfqDXu-3ta2r3NuBbCnSEEBD6gHTEAn1cuQnLz5i-0xKpjfNUMFGLIcwBEs0lYc5X5NRByPjiOC_Jw4f3u-2n6u7-4-ft7V1l664rlXa96hpd6062PbbQaoWuZtIJ1gjLuqG3CJLpXiinOt46qa3QoJniemANry_J9eHuY4o_ZszFjD6vv8CEcc5GKKYEb1jXLOirIzr3Iw7mMfkR0t48FVmA9gDYFHNO6P4gnJm1vHkqb9by5lh-8d795VlfoPg4lQQ-_Ne-Odh-cjGNsIQNgymwDzG5BJP12dT_PvEbYEiaSA |
CitedBy_id | crossref_primary_10_1016_j_lwt_2024_116716 crossref_primary_10_1021_acsabm_4c00595 crossref_primary_10_1021_acsestwater_4c00817 crossref_primary_10_3390_jcm13237206 crossref_primary_10_1016_j_envpol_2025_125725 crossref_primary_10_1016_j_postharvbio_2025_113483 crossref_primary_10_3389_fcimb_2024_1482919 crossref_primary_10_3390_biology14010083 crossref_primary_10_1016_j_scitotenv_2024_170393 crossref_primary_10_3389_fmicb_2025_1546912 crossref_primary_10_1016_j_jenvman_2023_119471 crossref_primary_10_1016_j_cej_2025_160403 crossref_primary_10_3390_microorganisms13010193 crossref_primary_10_1016_j_jhazmat_2024_133596 crossref_primary_10_3389_fmicb_2024_1369244 crossref_primary_10_3389_fmicb_2023_1268701 crossref_primary_10_1007_s11064_024_04205_w crossref_primary_10_1016_j_jeud_2024_100077 crossref_primary_10_3390_ani14162318 crossref_primary_10_3390_ijms25179528 crossref_primary_10_3390_md23010049 crossref_primary_10_1186_s40104_024_01079_4 crossref_primary_10_1016_j_snb_2025_137303 crossref_primary_10_1093_jambio_lxae189 crossref_primary_10_1016_j_isci_2024_111731 crossref_primary_10_1007_s12010_024_05004_3 crossref_primary_10_1016_j_envpol_2024_124188 crossref_primary_10_1021_acs_jafc_3c09321 crossref_primary_10_1016_j_plaphy_2024_109231 crossref_primary_10_1021_acs_jafc_4c02641 crossref_primary_10_1016_j_bioadv_2025_214192 crossref_primary_10_1016_j_resmic_2024_104230 crossref_primary_10_3390_foods13111593 crossref_primary_10_1016_j_amolm_2024_100034 crossref_primary_10_1002_ptr_8298 crossref_primary_10_1002_ece3_70251 crossref_primary_10_1021_acs_est_4c12617 crossref_primary_10_1016_j_toxrep_2024_101691 crossref_primary_10_3390_fermentation10010065 crossref_primary_10_1590_1413_7054202448002624 crossref_primary_10_1016_j_lwt_2025_117394 |
Cites_doi | 10.1038/nrmicro3032 10.1177/2042018820938240 10.1089/cell.2013.0049 10.3389/fmicb.2017.01424 10.1111/plb.12542 10.1016/j.biochi.2008.10.014 10.1016/S0162-0134(01)00307-5 10.1016/j.cmet.2015.01.008 10.1016/S0304-4165(02)00444-0 10.1007/s10482-010-9538-x 10.1371/journal.pgen.1002013 10.1155/2018/2568038 10.3389/fpls.2017.00172 10.1111/j.1462-2920.2010.02200.x 10.1128/AEM.02702-07 10.1016/S0162-0134(99)00120-8 10.1016/j.cell.2007.06.049 10.1038/s41579-021-00583-y 10.1099/jmm.0.001139 10.1016/j.jbiotec.2013.07.002 10.1002/jobm.200800007 10.1128/JB.00555-07 10.1128/JB.00046-09 10.1186/s12934-019-1230-x 10.1089/ars.2017.7216 10.1111/j.1574-6968.1995.tb07753.x 10.1016/j.bbagen.2014.09.028 10.1016/0304-4165(84)90150-8 10.3390/ijerph14121504 10.1007/BF01106775 10.1007/s00284-014-0751-0 10.3389/fpls.2017.01377 10.1371/journal.pone.0000690 10.1038/s41467-019-13668-3 10.1016/j.micres.2014.12.001 10.1016/j.jbbm.2005.07.005 10.3389/fmicb.2019.01929 10.3389/fpls.2020.552969 10.3389/fcell.2015.00040 10.1016/j.jbc.2022.102838 10.1186/s12870-020-02788-4 10.1038/s12276-020-00504-8 10.1111/pce.12682 10.1007/s00792-008-0150-1 10.1111/jipb.12690 10.1089/ars.2007.1672 10.1016/S0065-2911(08)60165-4 10.1128/JB.00099-08 10.1007/s10482-019-01372-7 10.1146/annurev-nutr-080508-141119 10.1021/ic0512072 10.1016/j.redox.2020.101674 10.1016/j.abb.2016.07.011 10.3389/fpls.2017.01767 10.3390/cells8050384 10.3390/antiox11030560 10.1007/s40502-020-00553-1 10.1016/j.addr.2009.03.012 10.1093/oxfordjournals.pcp.a029266 10.1016/j.micres.2021.126865 10.1007/s00284-003-4100-y 10.1104/pp.108.127472 10.1046/j.1365-3040.2002.00754.x 10.1002/etc.5620120707 10.1155/2013/219840 10.1104/pp.96.3.737 10.1080/10715762.2018.1457217 10.1007/s12011-017-1119-7 10.1007/978-1-4614-1533-6_144 10.1016/j.enzmictec.2016.01.007 10.1016/S0176-1617(11)80672-3 10.1371/journal.ppat.1003893 10.1007/s10482-015-0629-6 10.1104/pp.103.3.685 10.1371/journal.pone.0002682 10.1007/s11274-020-02900-8 10.1007/s10534-006-9024-0 10.1016/j.bbrc.2004.03.157 10.1111/j.1574-6968.1992.tb05272.x 10.21638/spbu03.2018.103 10.1007/978-94-017-1435-8_10 10.1016/j.biotechadv.2012.11.008 10.1016/j.toxlet.2011.03.019 10.1186/s12934-015-0238-0 10.1371/journal.pone.0007344 10.1016/j.redox.2015.11.010 10.1016/j.bbabio.2016.03.012 10.1007/s10482-017-0829-3 10.1111/jam.12497 10.4161/psb.21949 10.1016/S0944-5013(97)80029-8 10.1111/jam.13509 10.1111/j.1365-3040.2005.01476.x 10.1016/j.metabol.2021.154733 10.1016/j.chembiol.2016.12.015 10.1074/jbc.M411979200 10.1016/j.jbiotec.2015.01.029 10.1016/S0899-9007(02)00825-0 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/10409238.2023.2201945 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1549-7798 |
EndPage | 97 |
ExternalDocumentID | 37125817 10_1080_10409238_2023_2201945 2201945 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 00X 03L 0BK 0R~ 29F 30N 36B 4.4 5GY 5RE 6J9 A8Z AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABLKL ABPAQ ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACPRK ACTIO ACUHS ADCVX ADGTB ADRBQ ADXPE AEISY AENEX AEOZL AEPSL AEYOC AEYQI AFKVX AGDLA AHDZW AHMBA AIAGR AIJEM AJWEG AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BABNJ BLEHA CCCUG COF CS3 DGEBU DKSSO DU5 EAP EBC EBD EBS EDH EMB EMK EMOBN EPL EST ESTFP ESX F5P H13 HZ~ H~9 IH2 KRBQP KWAYT KYCEM LJTGL M4Z O9- P2P RNANH ROSJB RTWRZ RWL SV3 TAE TBQAZ TDBHL TFDNU TFL TFT TFW TQWBC TTHFI TUROJ TUS V1S VQA ZGOLN ~1N AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION .GJ 0VX 34G 39C 3V. 53G 5VS 7X7 88A 88E 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ AAGME AALIY AAOAP AAPXX ABEFU ABFMO ABJCF ABTAA ABUWG ACBBU ACDHJ ACQMU ACZPZ ADBBV ADGTR ADOPC AFDYB AFFNX AFKRA AI. APNXG AURDB AZQEC BBNVY BENPR BFWEY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU CGR CUY CVF CWRZV D1I D1J DWQXO ECM EIF EJD FYUFA GNUQQ HCIFZ HGUVV HH5 HMCUK JEPSP KB. LK8 M0L M1P M2P M44 M7P MVM NPM NUSFT OHT OWHGL PCLFJ PDBOC PQQKQ PROAC PSQYO RRB S0X UHS UKHRP VH1 XJT ZGI ZXP ~KM 7X8 TASJS |
ID | FETCH-LOGICAL-c366t-9fb864939675be5a598ef307f2042c06dbcea709b28f8615f79c29a90819d0413 |
ISSN | 1040-9238 1549-7798 |
IngestDate | Mon Jul 21 09:21:49 EDT 2025 Wed Feb 19 02:23:59 EST 2025 Tue Jul 01 02:07:15 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Dec 25 09:04:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NADPH NADH keto-acids TCA cycle metabolic reprogramming cellular stress |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c366t-9fb864939675be5a598ef307f2042c06dbcea709b28f8615f79c29a90819d0413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 37125817 |
PQID | 2808214064 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_37125817 crossref_citationtrail_10_1080_10409238_2023_2201945 informaworld_taylorfrancis_310_1080_10409238_2023_2201945 proquest_miscellaneous_2808214064 crossref_primary_10_1080_10409238_2023_2201945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-02 |
PublicationDateYYYYMMDD | 2023-01-02 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Critical reviews in biochemistry and molecular biology |
PublicationTitleAlternate | Crit Rev Biochem Mol Biol |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0072 CIT0074 CIT0073 CIT0076 CIT0075 CIT0078 CIT0111 CIT0077 CIT0070 Lemire J (CIT0054) 2010 CIT0113 CIT0079 CIT0112 CIT0115 CIT0117 CIT0116 CIT0118 CIT0083 CIT0082 CIT0085 CIT0084 CIT0086 CIT0088 CIT0081 CIT0080 CIT0003 CIT0002 Duruibe JO (CIT0033) 2007; 2 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0012 CIT0011 CIT0099 CIT0090 CIT0092 Appanna VD (CIT0013) 1998; 93 CIT0091 CIT0014 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 Lemire J (CIT0056) 2010; 309 CIT0022 Zhao RZ (CIT0114) 2019; 44 CIT0025 CIT0024 CIT0027 CIT0028 CIT0030 Masindi V (CIT0071) 2018; 6 CIT0031 CIT0034 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0042 CIT0045 CIT0044 CIT0046 CIT0049 CIT0048 CIT0050 CIT0052 CIT0051 CIT0053 CIT0058 CIT0057 Lemire J (CIT0055) 2010; 6 CIT0059 CIT0060 CIT0063 CIT0062 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 CIT0109 CIT0069 CIT0068 CIT0104 CIT0103 CIT0106 CIT0108 |
References_xml | – ident: CIT0046 doi: 10.1038/nrmicro3032 – ident: CIT0060 doi: 10.1177/2042018820938240 – ident: CIT0118 doi: 10.1089/cell.2013.0049 – volume: 2 start-page: 112 issue: 5 year: 2007 ident: CIT0033 publication-title: Inter J Phys Sci – ident: CIT0080 doi: 10.3389/fmicb.2017.01424 – ident: CIT0085 doi: 10.1111/plb.12542 – ident: CIT0069 doi: 10.1016/j.biochi.2008.10.014 – ident: CIT0038 doi: 10.1016/S0162-0134(01)00307-5 – ident: CIT0084 doi: 10.1016/j.cmet.2015.01.008 – ident: CIT0039 doi: 10.1016/S0304-4165(02)00444-0 – ident: CIT0068 doi: 10.1007/s10482-010-9538-x – ident: CIT0077 doi: 10.1371/journal.pgen.1002013 – ident: CIT0045 doi: 10.1155/2018/2568038 – ident: CIT0072 doi: 10.3389/fpls.2017.00172 – volume: 44 start-page: 3 issue: 1 year: 2019 ident: CIT0114 publication-title: Int J Mol Med – volume: 6 start-page: 1384 year: 2010 ident: CIT0055 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02200.x – ident: CIT0027 doi: 10.1128/AEM.02702-07 – ident: CIT0037 doi: 10.1016/S0162-0134(99)00120-8 – ident: CIT0048 doi: 10.1016/j.cell.2007.06.049 – ident: CIT0062 doi: 10.1038/s41579-021-00583-y – ident: CIT0064 doi: 10.1099/jmm.0.001139 – ident: CIT0024 doi: 10.1016/j.jbiotec.2013.07.002 – ident: CIT0053 doi: 10.1002/jobm.200800007 – ident: CIT0099 doi: 10.1128/JB.00555-07 – ident: CIT0097 doi: 10.1128/JB.00046-09 – ident: CIT0115 doi: 10.1186/s12934-019-1230-x – ident: CIT0109 doi: 10.1089/ars.2017.7216 – volume: 6 start-page: e04691 year: 2018 ident: CIT0071 publication-title: Heavy Metals – ident: CIT0011 doi: 10.1111/j.1574-6968.1995.tb07753.x – ident: CIT0117 doi: 10.1016/j.bbagen.2014.09.028 – ident: CIT0116 doi: 10.1016/0304-4165(84)90150-8 – ident: CIT0081 doi: 10.3390/ijerph14121504 – ident: CIT0083 doi: 10.1007/BF01106775 – ident: CIT0091 doi: 10.1007/s00284-014-0751-0 – ident: CIT0049 doi: 10.3389/fpls.2017.01377 – ident: CIT0066 doi: 10.1371/journal.pone.0000690 – ident: CIT0070 doi: 10.1038/s41467-019-13668-3 – ident: CIT0005 doi: 10.1016/j.micres.2014.12.001 – volume: 93 start-page: 147 issue: 376 year: 1998 ident: CIT0013 publication-title: Microbios – ident: CIT0096 doi: 10.1016/j.jbbm.2005.07.005 – ident: CIT0008 doi: 10.3389/fmicb.2019.01929 – ident: CIT0031 doi: 10.3389/fpls.2020.552969 – ident: CIT0016 doi: 10.3389/fcell.2015.00040 – volume: 309 start-page: 170 issue: 2 year: 2010 ident: CIT0056 publication-title: FEMS Microbiol Lett – ident: CIT0015 doi: 10.1016/j.jbc.2022.102838 – ident: CIT0059 doi: 10.1186/s12870-020-02788-4 – ident: CIT0111 doi: 10.1038/s12276-020-00504-8 – ident: CIT0086 doi: 10.1111/pce.12682 – ident: CIT0067 doi: 10.1007/s00792-008-0150-1 – ident: CIT0113 doi: 10.1111/jipb.12690 – ident: CIT0112 doi: 10.1089/ars.2007.1672 – ident: CIT0035 doi: 10.1016/S0065-2911(08)60165-4 – ident: CIT0028 doi: 10.1128/JB.00099-08 – ident: CIT0050 doi: 10.1007/s10482-019-01372-7 – ident: CIT0036 doi: 10.1146/annurev-nutr-080508-141119 – ident: CIT0044 doi: 10.1021/ic0512072 – ident: CIT0079 doi: 10.1016/j.redox.2020.101674 – ident: CIT0009 doi: 10.1016/j.abb.2016.07.011 – ident: CIT0025 doi: 10.3389/fpls.2017.01767 – ident: CIT0100 doi: 10.3390/cells8050384 – ident: CIT0052 doi: 10.3390/antiox11030560 – ident: CIT0022 doi: 10.1007/s40502-020-00553-1 – ident: CIT0093 doi: 10.1016/j.addr.2009.03.012 – ident: CIT0063 doi: 10.1093/oxfordjournals.pcp.a029266 – ident: CIT0065 doi: 10.1016/j.micres.2021.126865 – ident: CIT0014 doi: 10.1007/s00284-003-4100-y – ident: CIT0103 doi: 10.1104/pp.108.127472 – ident: CIT0094 doi: 10.1046/j.1365-3040.2002.00754.x – ident: CIT0034 doi: 10.1002/etc.5620120707 – ident: CIT0092 doi: 10.1155/2013/219840 – ident: CIT0075 doi: 10.1104/pp.96.3.737 – ident: CIT0076 doi: 10.1080/10715762.2018.1457217 – ident: CIT0020 doi: 10.1007/s12011-017-1119-7 – ident: CIT0018 doi: 10.1007/978-1-4614-1533-6_144 – ident: CIT0007 doi: 10.1016/j.enzmictec.2016.01.007 – ident: CIT0021 doi: 10.1016/S0176-1617(11)80672-3 – ident: CIT0090 doi: 10.1371/journal.ppat.1003893 – ident: CIT0104 doi: 10.1007/s10482-015-0629-6 – ident: CIT0030 doi: 10.1104/pp.103.3.685 – ident: CIT0095 doi: 10.1371/journal.pone.0002682 – ident: CIT0051 doi: 10.1007/s11274-020-02900-8 – ident: CIT0023 doi: 10.1007/s10534-006-9024-0 – ident: CIT0040 doi: 10.1016/j.bbrc.2004.03.157 – ident: CIT0002 doi: 10.1111/j.1574-6968.1992.tb05272.x – ident: CIT0082 doi: 10.21638/spbu03.2018.103 – ident: CIT0010 doi: 10.1007/978-94-017-1435-8_10 – ident: CIT0017 doi: 10.1016/j.biotechadv.2012.11.008 – ident: CIT0057 doi: 10.1016/j.toxlet.2011.03.019 – ident: CIT0042 doi: 10.1186/s12934-015-0238-0 – ident: CIT0098 doi: 10.1371/journal.pone.0007344 – ident: CIT0088 doi: 10.1016/j.redox.2015.11.010 – ident: CIT0106 doi: 10.1016/j.bbabio.2016.03.012 – ident: CIT0003 doi: 10.1007/s10482-017-0829-3 – ident: CIT0004 doi: 10.1111/jam.12497 – ident: CIT0041 doi: 10.4161/psb.21949 – ident: CIT0012 doi: 10.1016/S0944-5013(97)80029-8 – ident: CIT0058 doi: 10.1111/jam.13509 – ident: CIT0078 doi: 10.1111/j.1365-3040.2005.01476.x – ident: CIT0019 doi: 10.1016/j.metabol.2021.154733 – start-page: 177 volume-title: Current research, technology and education topics in applied microbiology and microbial biotechnology year: 2010 ident: CIT0054 – ident: CIT0073 doi: 10.1016/j.chembiol.2016.12.015 – ident: CIT0074 doi: 10.1074/jbc.M411979200 – ident: CIT0006 doi: 10.1016/j.jbiotec.2015.01.029 – ident: CIT0108 doi: 10.1016/S0899-9007(02)00825-0 |
SSID | ssj0016785 |
Score | 2.5876696 |
SecondaryResourceType | review_article |
Snippet | The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Adenosine Triphosphate - metabolism cellular stress Citric Acid Cycle Humans keto-acids Metabolic Networks and Pathways metabolic reprogramming NADH NADPH Reactive Oxygen Species - metabolism TCA cycle Tricarboxylic Acids |
Title | The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress |
URI | https://www.tandfonline.com/doi/abs/10.1080/10409238.2023.2201945 https://www.ncbi.nlm.nih.gov/pubmed/37125817 https://www.proquest.com/docview/2808214064 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK98ILAsalGyAjIQSqUhLnUpu3amOqEPDUwYSQIttxpEprirpUWvk7_FHOsZ0sZYMxXqKqrR0n58vxd07OhZAXYZHxUGL0DJNJkKhEBZKFcZCVwJ5B-xVFidnIHz9l0-Pk_Ul60uv97EQtrWs10j-uzCv5H6nCdyBXzJK9gWTbSeEL-AzyhSNIGI7_LGOssC9Xanm-wXLVUs-tV2B2MEF7X29ghMtnXmDTFJsntTA1SB7_XbkYcOSftmeEWQ3RkW8jU10SSZe7tl0RfAVTdJWoOXbcci3j7HuIRdNud-jLO3Vc3h-M87ZiUs1FIBBcXeEc4UfmdN7-APRYVi5h7bM8Ww8PR10HBYutg6Ljs4wwaBF4pFOzxuvZRACxdw2oG0Wc8kuAc1rVNXXx-7ML572k-V2oJJ4LTzXChYwYsBvhqlVuV9r-bQds4xIjXzC1mSbHaXI_zS2yw8AWYX2yM5kefv3SvqyC_T51RS_cdTaJYjx8c-V6tijQVoHcP5s5lu7M7pI73k6hEwe6e6Rnqvtkd1LJernY0JfURg5bAe-Sb4BDuoVDijikrwCFr6nF4FsqaYtA2iKQegTSekk9AmmDQOoQ-IAcH72bHUwD37Uj0HGW1YEoFc8SEQswRZVJZSq4KWEnKRnsDzrMCqWNHIdCMV5y4NPlWGgmpEBuWoTAqR6SfrWszGNC46iAUWkRaoWVJDLJlVaiiJnKEm4iPSBJcyNz7UvaY2eV0_yvghyQUTvsu6vpct0A0ZVSXltnWuk63-TxNWOfNyLN4WnEeygrs1yf5YwD_Y6AUCcD8sjJul1OPAbDg0fjvZsudZ_cvngGn5B-vVqbp0Cba_XMw_YXYHS29g |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaemgvfdHHUtq6UlW1h0ReJ3FsbitUtG1hT4vEoZLlp4Rgs9WSPcCvZyZOVlAJceCUQzKOH-N52DPfEPKVeSGZwegZbsqstKXNDGdFJiJYzyD9vI-YjXw0E9Pj8vdJdXIjFwbDKtGHjgkoopPVuLnxMHoIiYMneCWga3Ks_Z1z0GGqrB6TJ5USNVYxKNhsc5MAwrhKiAQsQ5ohi-euZm7pp1vopXfboJ0uOnhB3DCKFIJylq9bm7ur_wAeHzbMl-R5b6rSSeKtV-RRaF6T7UkDbvrikn6jXfBodyq_Tf4Cu1EE-zcrC506P3XUuFNPv8_3Jz-ou4QG9qihC6zcgsladBFaYD_8rkmB6LRd0q5wRVhRvE3A8FiaMlnekOODn_P9adYXbshcIUSbqWilKFUBy1HZUJlKyRBBmEQOIsIx4a0LpmbKchklmFSxVo4ro9A88QzU6luy1Syb8J7QYuyBqvLMWQQTEEZaZ5UvuBWlDGM3IuWwXNr1qOZYXONcj3vw02EWNc6i7mdxRPIN2b8E63EfgbrJC7rtzlNiKn6ii3tovwyMo2Hz4hyaJizXF5pLsMDAxRXliLxLHLXpTlGD7SnH9c4D_vyZPJ3Ojw714a_Znw_kGb7qjo_4LtlqV-vwEQyq1n7qdsw1BfIOVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLr0JZoGAkhOCQyOs4XpvbqrAqrxWHVuKAZPkpVXSz1TZ7aH89M3GyaitVPfSUQzJOPBnPw575hpD3LEjFLGbPcCsK4YQrLGdVIRN4z6D9QkhYjfxrLvcPxfc_9ZBNeNqnVWIMnTJQRKercXGfhDRkxMEVghIwNSW2_i45mDAt6rvknkTwcKziYPPNQQLo4joDErACaYYinuuGuWSeLoGXXu-CdqZo9oi4YRI5A-VfuW5d6c-v4DveapaPycPeUaXTLFlPyJ3YPCXb0waC9MUZ_UC71NFuT36b_AVhowj1b1cOvun4yFPrjwL9eLA3_UT9GQzwmVq6wL4tWKpFF7EF4cPnmpyGTtsl7dpWxBXFswRMjqW5juUZOZx9PdjbL_q2DYWvpGwLnZySQlcaYhEXa1trFROoksRBQXgmg_PRTph2XCUFDlWaaM-11eicBAZG9TnZapZNfEFoNQ5AVQfmHUIJSKucdzpU3Emh4tiPiBj-lvE9pjm21jg24x76dOCiQS6anosjUm7ITjKox00E-qIomLbbTUm59YmpbqB9N8iNgaWLPLRNXK5PDVfgf0GAK8WI7GSB2nxONQHPU40nL2_x5rfk_u8vM_Pz2_zHK_IA73R7R_w12WpX67gL3lTr3nTr5T-UAwz6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+tricarboxylic+acid+%28TCA%29+cycle%3A+a+malleable+metabolic+network+to+counter+cellular+stress&rft.jtitle=Critical+reviews+in+biochemistry+and+molecular+biology&rft.au=MacLean%2C+Alex&rft.au=Legendre%2C+Felix&rft.au=Appanna%2C+Vasu+D.&rft.date=2023-01-02&rft.issn=1040-9238&rft.eissn=1549-7798&rft.volume=58&rft.issue=1&rft.spage=81&rft.epage=97&rft_id=info:doi/10.1080%2F10409238.2023.2201945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10409238_2023_2201945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-9238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-9238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-9238&client=summon |