The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress

The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchest...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in biochemistry and molecular biology Vol. 58; no. 1; pp. 81 - 97
Main Authors MacLean, Alex, Legendre, Felix, Appanna, Vasu D.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
AbstractList The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Author Appanna, Vasu D.
Legendre, Felix
MacLean, Alex
Author_xml – sequence: 1
  givenname: Alex
  surname: MacLean
  fullname: MacLean, Alex
  organization: School of Natural Sciences, Laurentian University
– sequence: 2
  givenname: Felix
  surname: Legendre
  fullname: Legendre, Felix
  organization: School of Natural Sciences, Laurentian University
– sequence: 3
  givenname: Vasu D.
  surname: Appanna
  fullname: Appanna, Vasu D.
  organization: School of Natural Sciences, Laurentian University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37125817$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtv1DAQgC3Uir74CSAfyyGL7Txsw6XVipdUqZftDcmaOGNhcOJiO4L99yTaLQcOcJo5fN9o9F2QkylOSMhLzjacKfaGs4ZpUauNYKLeCMG4btpn5Jy3ja6k1Opk2RemWqEzcpHzN8Z4J1X7nJzVkotWcXlOvuy-Ii3JW0h9_LUP3lKwfqDXu-3ta2r3NuBbCnSEEBD6gHTEAn1cuQnLz5i-0xKpjfNUMFGLIcwBEs0lYc5X5NRByPjiOC_Jw4f3u-2n6u7-4-ft7V1l664rlXa96hpd6062PbbQaoWuZtIJ1gjLuqG3CJLpXiinOt46qa3QoJniemANry_J9eHuY4o_ZszFjD6vv8CEcc5GKKYEb1jXLOirIzr3Iw7mMfkR0t48FVmA9gDYFHNO6P4gnJm1vHkqb9by5lh-8d795VlfoPg4lQQ-_Ne-Odh-cjGNsIQNgymwDzG5BJP12dT_PvEbYEiaSA
CitedBy_id crossref_primary_10_1016_j_lwt_2024_116716
crossref_primary_10_1021_acsabm_4c00595
crossref_primary_10_1021_acsestwater_4c00817
crossref_primary_10_3390_jcm13237206
crossref_primary_10_1016_j_envpol_2025_125725
crossref_primary_10_1016_j_postharvbio_2025_113483
crossref_primary_10_3389_fcimb_2024_1482919
crossref_primary_10_3390_biology14010083
crossref_primary_10_1016_j_scitotenv_2024_170393
crossref_primary_10_3389_fmicb_2025_1546912
crossref_primary_10_1016_j_jenvman_2023_119471
crossref_primary_10_1016_j_cej_2025_160403
crossref_primary_10_3390_microorganisms13010193
crossref_primary_10_1016_j_jhazmat_2024_133596
crossref_primary_10_3389_fmicb_2024_1369244
crossref_primary_10_3389_fmicb_2023_1268701
crossref_primary_10_1007_s11064_024_04205_w
crossref_primary_10_1016_j_jeud_2024_100077
crossref_primary_10_3390_ani14162318
crossref_primary_10_3390_ijms25179528
crossref_primary_10_3390_md23010049
crossref_primary_10_1186_s40104_024_01079_4
crossref_primary_10_1016_j_snb_2025_137303
crossref_primary_10_1093_jambio_lxae189
crossref_primary_10_1016_j_isci_2024_111731
crossref_primary_10_1007_s12010_024_05004_3
crossref_primary_10_1016_j_envpol_2024_124188
crossref_primary_10_1021_acs_jafc_3c09321
crossref_primary_10_1016_j_plaphy_2024_109231
crossref_primary_10_1021_acs_jafc_4c02641
crossref_primary_10_1016_j_bioadv_2025_214192
crossref_primary_10_1016_j_resmic_2024_104230
crossref_primary_10_3390_foods13111593
crossref_primary_10_1016_j_amolm_2024_100034
crossref_primary_10_1002_ptr_8298
crossref_primary_10_1002_ece3_70251
crossref_primary_10_1021_acs_est_4c12617
crossref_primary_10_1016_j_toxrep_2024_101691
crossref_primary_10_3390_fermentation10010065
crossref_primary_10_1590_1413_7054202448002624
crossref_primary_10_1016_j_lwt_2025_117394
Cites_doi 10.1038/nrmicro3032
10.1177/2042018820938240
10.1089/cell.2013.0049
10.3389/fmicb.2017.01424
10.1111/plb.12542
10.1016/j.biochi.2008.10.014
10.1016/S0162-0134(01)00307-5
10.1016/j.cmet.2015.01.008
10.1016/S0304-4165(02)00444-0
10.1007/s10482-010-9538-x
10.1371/journal.pgen.1002013
10.1155/2018/2568038
10.3389/fpls.2017.00172
10.1111/j.1462-2920.2010.02200.x
10.1128/AEM.02702-07
10.1016/S0162-0134(99)00120-8
10.1016/j.cell.2007.06.049
10.1038/s41579-021-00583-y
10.1099/jmm.0.001139
10.1016/j.jbiotec.2013.07.002
10.1002/jobm.200800007
10.1128/JB.00555-07
10.1128/JB.00046-09
10.1186/s12934-019-1230-x
10.1089/ars.2017.7216
10.1111/j.1574-6968.1995.tb07753.x
10.1016/j.bbagen.2014.09.028
10.1016/0304-4165(84)90150-8
10.3390/ijerph14121504
10.1007/BF01106775
10.1007/s00284-014-0751-0
10.3389/fpls.2017.01377
10.1371/journal.pone.0000690
10.1038/s41467-019-13668-3
10.1016/j.micres.2014.12.001
10.1016/j.jbbm.2005.07.005
10.3389/fmicb.2019.01929
10.3389/fpls.2020.552969
10.3389/fcell.2015.00040
10.1016/j.jbc.2022.102838
10.1186/s12870-020-02788-4
10.1038/s12276-020-00504-8
10.1111/pce.12682
10.1007/s00792-008-0150-1
10.1111/jipb.12690
10.1089/ars.2007.1672
10.1016/S0065-2911(08)60165-4
10.1128/JB.00099-08
10.1007/s10482-019-01372-7
10.1146/annurev-nutr-080508-141119
10.1021/ic0512072
10.1016/j.redox.2020.101674
10.1016/j.abb.2016.07.011
10.3389/fpls.2017.01767
10.3390/cells8050384
10.3390/antiox11030560
10.1007/s40502-020-00553-1
10.1016/j.addr.2009.03.012
10.1093/oxfordjournals.pcp.a029266
10.1016/j.micres.2021.126865
10.1007/s00284-003-4100-y
10.1104/pp.108.127472
10.1046/j.1365-3040.2002.00754.x
10.1002/etc.5620120707
10.1155/2013/219840
10.1104/pp.96.3.737
10.1080/10715762.2018.1457217
10.1007/s12011-017-1119-7
10.1007/978-1-4614-1533-6_144
10.1016/j.enzmictec.2016.01.007
10.1016/S0176-1617(11)80672-3
10.1371/journal.ppat.1003893
10.1007/s10482-015-0629-6
10.1104/pp.103.3.685
10.1371/journal.pone.0002682
10.1007/s11274-020-02900-8
10.1007/s10534-006-9024-0
10.1016/j.bbrc.2004.03.157
10.1111/j.1574-6968.1992.tb05272.x
10.21638/spbu03.2018.103
10.1007/978-94-017-1435-8_10
10.1016/j.biotechadv.2012.11.008
10.1016/j.toxlet.2011.03.019
10.1186/s12934-015-0238-0
10.1371/journal.pone.0007344
10.1016/j.redox.2015.11.010
10.1016/j.bbabio.2016.03.012
10.1007/s10482-017-0829-3
10.1111/jam.12497
10.4161/psb.21949
10.1016/S0944-5013(97)80029-8
10.1111/jam.13509
10.1111/j.1365-3040.2005.01476.x
10.1016/j.metabol.2021.154733
10.1016/j.chembiol.2016.12.015
10.1074/jbc.M411979200
10.1016/j.jbiotec.2015.01.029
10.1016/S0899-9007(02)00825-0
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/10409238.2023.2201945
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1549-7798
EndPage 97
ExternalDocumentID 37125817
10_1080_10409238_2023_2201945
2201945
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
00X
03L
0BK
0R~
29F
30N
36B
4.4
5GY
5RE
6J9
A8Z
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABLKL
ABPAQ
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ACUHS
ADCVX
ADGTB
ADRBQ
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AEYQI
AFKVX
AGDLA
AHDZW
AHMBA
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BABNJ
BLEHA
CCCUG
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBS
EDH
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
F5P
H13
HZ~
H~9
IH2
KRBQP
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
RNANH
ROSJB
RTWRZ
RWL
SV3
TAE
TBQAZ
TDBHL
TFDNU
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TUS
V1S
VQA
ZGOLN
~1N
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
.GJ
0VX
34G
39C
3V.
53G
5VS
7X7
88A
88E
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
AAGME
AALIY
AAOAP
AAPXX
ABEFU
ABFMO
ABJCF
ABTAA
ABUWG
ACBBU
ACDHJ
ACQMU
ACZPZ
ADBBV
ADGTR
ADOPC
AFDYB
AFFNX
AFKRA
AI.
APNXG
AURDB
AZQEC
BBNVY
BENPR
BFWEY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
CGR
CUY
CVF
CWRZV
D1I
D1J
DWQXO
ECM
EIF
EJD
FYUFA
GNUQQ
HCIFZ
HGUVV
HH5
HMCUK
JEPSP
KB.
LK8
M0L
M1P
M2P
M44
M7P
MVM
NPM
NUSFT
OHT
OWHGL
PCLFJ
PDBOC
PQQKQ
PROAC
PSQYO
RRB
S0X
UHS
UKHRP
VH1
XJT
ZGI
ZXP
~KM
7X8
TASJS
ID FETCH-LOGICAL-c366t-9fb864939675be5a598ef307f2042c06dbcea709b28f8615f79c29a90819d0413
ISSN 1040-9238
1549-7798
IngestDate Mon Jul 21 09:21:49 EDT 2025
Wed Feb 19 02:23:59 EST 2025
Tue Jul 01 02:07:15 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Dec 25 09:04:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NADPH
NADH
keto-acids
TCA cycle
metabolic reprogramming
cellular stress
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c366t-9fb864939675be5a598ef307f2042c06dbcea709b28f8615f79c29a90819d0413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 37125817
PQID 2808214064
PQPubID 23479
PageCount 17
ParticipantIDs pubmed_primary_37125817
crossref_citationtrail_10_1080_10409238_2023_2201945
informaworld_taylorfrancis_310_1080_10409238_2023_2201945
proquest_miscellaneous_2808214064
crossref_primary_10_1080_10409238_2023_2201945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-02
PublicationDateYYYYMMDD 2023-01-02
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Critical reviews in biochemistry and molecular biology
PublicationTitleAlternate Crit Rev Biochem Mol Biol
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
CIT0074
CIT0073
CIT0076
CIT0075
CIT0078
CIT0111
CIT0077
CIT0070
Lemire J (CIT0054) 2010
CIT0113
CIT0079
CIT0112
CIT0115
CIT0117
CIT0116
CIT0118
CIT0083
CIT0082
CIT0085
CIT0084
CIT0086
CIT0088
CIT0081
CIT0080
CIT0003
CIT0002
Duruibe JO (CIT0033) 2007; 2
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0094
CIT0093
CIT0096
CIT0095
CIT0010
CIT0098
CIT0097
CIT0012
CIT0011
CIT0099
CIT0090
CIT0092
Appanna VD (CIT0013) 1998; 93
CIT0091
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
Lemire J (CIT0056) 2010; 309
CIT0022
Zhao RZ (CIT0114) 2019; 44
CIT0025
CIT0024
CIT0027
CIT0028
CIT0030
Masindi V (CIT0071) 2018; 6
CIT0031
CIT0034
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0042
CIT0045
CIT0044
CIT0046
CIT0049
CIT0048
CIT0050
CIT0052
CIT0051
CIT0053
CIT0058
CIT0057
Lemire J (CIT0055) 2010; 6
CIT0059
CIT0060
CIT0063
CIT0062
CIT0065
CIT0064
CIT0067
CIT0100
CIT0066
CIT0109
CIT0069
CIT0068
CIT0104
CIT0103
CIT0106
CIT0108
References_xml – ident: CIT0046
  doi: 10.1038/nrmicro3032
– ident: CIT0060
  doi: 10.1177/2042018820938240
– ident: CIT0118
  doi: 10.1089/cell.2013.0049
– volume: 2
  start-page: 112
  issue: 5
  year: 2007
  ident: CIT0033
  publication-title: Inter J Phys Sci
– ident: CIT0080
  doi: 10.3389/fmicb.2017.01424
– ident: CIT0085
  doi: 10.1111/plb.12542
– ident: CIT0069
  doi: 10.1016/j.biochi.2008.10.014
– ident: CIT0038
  doi: 10.1016/S0162-0134(01)00307-5
– ident: CIT0084
  doi: 10.1016/j.cmet.2015.01.008
– ident: CIT0039
  doi: 10.1016/S0304-4165(02)00444-0
– ident: CIT0068
  doi: 10.1007/s10482-010-9538-x
– ident: CIT0077
  doi: 10.1371/journal.pgen.1002013
– ident: CIT0045
  doi: 10.1155/2018/2568038
– ident: CIT0072
  doi: 10.3389/fpls.2017.00172
– volume: 44
  start-page: 3
  issue: 1
  year: 2019
  ident: CIT0114
  publication-title: Int J Mol Med
– volume: 6
  start-page: 1384
  year: 2010
  ident: CIT0055
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02200.x
– ident: CIT0027
  doi: 10.1128/AEM.02702-07
– ident: CIT0037
  doi: 10.1016/S0162-0134(99)00120-8
– ident: CIT0048
  doi: 10.1016/j.cell.2007.06.049
– ident: CIT0062
  doi: 10.1038/s41579-021-00583-y
– ident: CIT0064
  doi: 10.1099/jmm.0.001139
– ident: CIT0024
  doi: 10.1016/j.jbiotec.2013.07.002
– ident: CIT0053
  doi: 10.1002/jobm.200800007
– ident: CIT0099
  doi: 10.1128/JB.00555-07
– ident: CIT0097
  doi: 10.1128/JB.00046-09
– ident: CIT0115
  doi: 10.1186/s12934-019-1230-x
– ident: CIT0109
  doi: 10.1089/ars.2017.7216
– volume: 6
  start-page: e04691
  year: 2018
  ident: CIT0071
  publication-title: Heavy Metals
– ident: CIT0011
  doi: 10.1111/j.1574-6968.1995.tb07753.x
– ident: CIT0117
  doi: 10.1016/j.bbagen.2014.09.028
– ident: CIT0116
  doi: 10.1016/0304-4165(84)90150-8
– ident: CIT0081
  doi: 10.3390/ijerph14121504
– ident: CIT0083
  doi: 10.1007/BF01106775
– ident: CIT0091
  doi: 10.1007/s00284-014-0751-0
– ident: CIT0049
  doi: 10.3389/fpls.2017.01377
– ident: CIT0066
  doi: 10.1371/journal.pone.0000690
– ident: CIT0070
  doi: 10.1038/s41467-019-13668-3
– ident: CIT0005
  doi: 10.1016/j.micres.2014.12.001
– volume: 93
  start-page: 147
  issue: 376
  year: 1998
  ident: CIT0013
  publication-title: Microbios
– ident: CIT0096
  doi: 10.1016/j.jbbm.2005.07.005
– ident: CIT0008
  doi: 10.3389/fmicb.2019.01929
– ident: CIT0031
  doi: 10.3389/fpls.2020.552969
– ident: CIT0016
  doi: 10.3389/fcell.2015.00040
– volume: 309
  start-page: 170
  issue: 2
  year: 2010
  ident: CIT0056
  publication-title: FEMS Microbiol Lett
– ident: CIT0015
  doi: 10.1016/j.jbc.2022.102838
– ident: CIT0059
  doi: 10.1186/s12870-020-02788-4
– ident: CIT0111
  doi: 10.1038/s12276-020-00504-8
– ident: CIT0086
  doi: 10.1111/pce.12682
– ident: CIT0067
  doi: 10.1007/s00792-008-0150-1
– ident: CIT0113
  doi: 10.1111/jipb.12690
– ident: CIT0112
  doi: 10.1089/ars.2007.1672
– ident: CIT0035
  doi: 10.1016/S0065-2911(08)60165-4
– ident: CIT0028
  doi: 10.1128/JB.00099-08
– ident: CIT0050
  doi: 10.1007/s10482-019-01372-7
– ident: CIT0036
  doi: 10.1146/annurev-nutr-080508-141119
– ident: CIT0044
  doi: 10.1021/ic0512072
– ident: CIT0079
  doi: 10.1016/j.redox.2020.101674
– ident: CIT0009
  doi: 10.1016/j.abb.2016.07.011
– ident: CIT0025
  doi: 10.3389/fpls.2017.01767
– ident: CIT0100
  doi: 10.3390/cells8050384
– ident: CIT0052
  doi: 10.3390/antiox11030560
– ident: CIT0022
  doi: 10.1007/s40502-020-00553-1
– ident: CIT0093
  doi: 10.1016/j.addr.2009.03.012
– ident: CIT0063
  doi: 10.1093/oxfordjournals.pcp.a029266
– ident: CIT0065
  doi: 10.1016/j.micres.2021.126865
– ident: CIT0014
  doi: 10.1007/s00284-003-4100-y
– ident: CIT0103
  doi: 10.1104/pp.108.127472
– ident: CIT0094
  doi: 10.1046/j.1365-3040.2002.00754.x
– ident: CIT0034
  doi: 10.1002/etc.5620120707
– ident: CIT0092
  doi: 10.1155/2013/219840
– ident: CIT0075
  doi: 10.1104/pp.96.3.737
– ident: CIT0076
  doi: 10.1080/10715762.2018.1457217
– ident: CIT0020
  doi: 10.1007/s12011-017-1119-7
– ident: CIT0018
  doi: 10.1007/978-1-4614-1533-6_144
– ident: CIT0007
  doi: 10.1016/j.enzmictec.2016.01.007
– ident: CIT0021
  doi: 10.1016/S0176-1617(11)80672-3
– ident: CIT0090
  doi: 10.1371/journal.ppat.1003893
– ident: CIT0104
  doi: 10.1007/s10482-015-0629-6
– ident: CIT0030
  doi: 10.1104/pp.103.3.685
– ident: CIT0095
  doi: 10.1371/journal.pone.0002682
– ident: CIT0051
  doi: 10.1007/s11274-020-02900-8
– ident: CIT0023
  doi: 10.1007/s10534-006-9024-0
– ident: CIT0040
  doi: 10.1016/j.bbrc.2004.03.157
– ident: CIT0002
  doi: 10.1111/j.1574-6968.1992.tb05272.x
– ident: CIT0082
  doi: 10.21638/spbu03.2018.103
– ident: CIT0010
  doi: 10.1007/978-94-017-1435-8_10
– ident: CIT0017
  doi: 10.1016/j.biotechadv.2012.11.008
– ident: CIT0057
  doi: 10.1016/j.toxlet.2011.03.019
– ident: CIT0042
  doi: 10.1186/s12934-015-0238-0
– ident: CIT0098
  doi: 10.1371/journal.pone.0007344
– ident: CIT0088
  doi: 10.1016/j.redox.2015.11.010
– ident: CIT0106
  doi: 10.1016/j.bbabio.2016.03.012
– ident: CIT0003
  doi: 10.1007/s10482-017-0829-3
– ident: CIT0004
  doi: 10.1111/jam.12497
– ident: CIT0041
  doi: 10.4161/psb.21949
– ident: CIT0012
  doi: 10.1016/S0944-5013(97)80029-8
– ident: CIT0058
  doi: 10.1111/jam.13509
– ident: CIT0078
  doi: 10.1111/j.1365-3040.2005.01476.x
– ident: CIT0019
  doi: 10.1016/j.metabol.2021.154733
– start-page: 177
  volume-title: Current research, technology and education topics in applied microbiology and microbial biotechnology
  year: 2010
  ident: CIT0054
– ident: CIT0073
  doi: 10.1016/j.chembiol.2016.12.015
– ident: CIT0074
  doi: 10.1074/jbc.M411979200
– ident: CIT0006
  doi: 10.1016/j.jbiotec.2015.01.029
– ident: CIT0108
  doi: 10.1016/S0899-9007(02)00825-0
SSID ssj0016785
Score 2.5876696
SecondaryResourceType review_article
Snippet The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Adenosine Triphosphate - metabolism
cellular stress
Citric Acid Cycle
Humans
keto-acids
Metabolic Networks and Pathways
metabolic reprogramming
NADH
NADPH
Reactive Oxygen Species - metabolism
TCA cycle
Tricarboxylic Acids
Title The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress
URI https://www.tandfonline.com/doi/abs/10.1080/10409238.2023.2201945
https://www.ncbi.nlm.nih.gov/pubmed/37125817
https://www.proquest.com/docview/2808214064
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK98ILAsalGyAjIQSqUhLnUpu3amOqEPDUwYSQIttxpEprirpUWvk7_FHOsZ0sZYMxXqKqrR0n58vxd07OhZAXYZHxUGL0DJNJkKhEBZKFcZCVwJ5B-xVFidnIHz9l0-Pk_Ul60uv97EQtrWs10j-uzCv5H6nCdyBXzJK9gWTbSeEL-AzyhSNIGI7_LGOssC9Xanm-wXLVUs-tV2B2MEF7X29ghMtnXmDTFJsntTA1SB7_XbkYcOSftmeEWQ3RkW8jU10SSZe7tl0RfAVTdJWoOXbcci3j7HuIRdNud-jLO3Vc3h-M87ZiUs1FIBBcXeEc4UfmdN7-APRYVi5h7bM8Ww8PR10HBYutg6Ljs4wwaBF4pFOzxuvZRACxdw2oG0Wc8kuAc1rVNXXx-7ML572k-V2oJJ4LTzXChYwYsBvhqlVuV9r-bQds4xIjXzC1mSbHaXI_zS2yw8AWYX2yM5kefv3SvqyC_T51RS_cdTaJYjx8c-V6tijQVoHcP5s5lu7M7pI73k6hEwe6e6Rnqvtkd1LJernY0JfURg5bAe-Sb4BDuoVDijikrwCFr6nF4FsqaYtA2iKQegTSekk9AmmDQOoQ-IAcH72bHUwD37Uj0HGW1YEoFc8SEQswRZVJZSq4KWEnKRnsDzrMCqWNHIdCMV5y4NPlWGgmpEBuWoTAqR6SfrWszGNC46iAUWkRaoWVJDLJlVaiiJnKEm4iPSBJcyNz7UvaY2eV0_yvghyQUTvsu6vpct0A0ZVSXltnWuk63-TxNWOfNyLN4WnEeygrs1yf5YwD_Y6AUCcD8sjJul1OPAbDg0fjvZsudZ_cvngGn5B-vVqbp0Cba_XMw_YXYHS29g
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaemgvfdHHUtq6UlW1h0ReJ3FsbitUtG1hT4vEoZLlp4Rgs9WSPcCvZyZOVlAJceCUQzKOH-N52DPfEPKVeSGZwegZbsqstKXNDGdFJiJYzyD9vI-YjXw0E9Pj8vdJdXIjFwbDKtGHjgkoopPVuLnxMHoIiYMneCWga3Ks_Z1z0GGqrB6TJ5USNVYxKNhsc5MAwrhKiAQsQ5ohi-euZm7pp1vopXfboJ0uOnhB3DCKFIJylq9bm7ur_wAeHzbMl-R5b6rSSeKtV-RRaF6T7UkDbvrikn6jXfBodyq_Tf4Cu1EE-zcrC506P3XUuFNPv8_3Jz-ou4QG9qihC6zcgsladBFaYD_8rkmB6LRd0q5wRVhRvE3A8FiaMlnekOODn_P9adYXbshcIUSbqWilKFUBy1HZUJlKyRBBmEQOIsIx4a0LpmbKchklmFSxVo4ro9A88QzU6luy1Syb8J7QYuyBqvLMWQQTEEZaZ5UvuBWlDGM3IuWwXNr1qOZYXONcj3vw02EWNc6i7mdxRPIN2b8E63EfgbrJC7rtzlNiKn6ii3tovwyMo2Hz4hyaJizXF5pLsMDAxRXliLxLHLXpTlGD7SnH9c4D_vyZPJ3Ojw714a_Znw_kGb7qjo_4LtlqV-vwEQyq1n7qdsw1BfIOVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLr0JZoGAkhOCQyOs4XpvbqrAqrxWHVuKAZPkpVXSz1TZ7aH89M3GyaitVPfSUQzJOPBnPw575hpD3LEjFLGbPcCsK4YQrLGdVIRN4z6D9QkhYjfxrLvcPxfc_9ZBNeNqnVWIMnTJQRKercXGfhDRkxMEVghIwNSW2_i45mDAt6rvknkTwcKziYPPNQQLo4joDErACaYYinuuGuWSeLoGXXu-CdqZo9oi4YRI5A-VfuW5d6c-v4DveapaPycPeUaXTLFlPyJ3YPCXb0waC9MUZ_UC71NFuT36b_AVhowj1b1cOvun4yFPrjwL9eLA3_UT9GQzwmVq6wL4tWKpFF7EF4cPnmpyGTtsl7dpWxBXFswRMjqW5juUZOZx9PdjbL_q2DYWvpGwLnZySQlcaYhEXa1trFROoksRBQXgmg_PRTph2XCUFDlWaaM-11eicBAZG9TnZapZNfEFoNQ5AVQfmHUIJSKucdzpU3Emh4tiPiBj-lvE9pjm21jg24x76dOCiQS6anosjUm7ITjKox00E-qIomLbbTUm59YmpbqB9N8iNgaWLPLRNXK5PDVfgf0GAK8WI7GSB2nxONQHPU40nL2_x5rfk_u8vM_Pz2_zHK_IA73R7R_w12WpX67gL3lTr3nTr5T-UAwz6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+tricarboxylic+acid+%28TCA%29+cycle%3A+a+malleable+metabolic+network+to+counter+cellular+stress&rft.jtitle=Critical+reviews+in+biochemistry+and+molecular+biology&rft.au=MacLean%2C+Alex&rft.au=Legendre%2C+Felix&rft.au=Appanna%2C+Vasu+D.&rft.date=2023-01-02&rft.issn=1040-9238&rft.eissn=1549-7798&rft.volume=58&rft.issue=1&rft.spage=81&rft.epage=97&rft_id=info:doi/10.1080%2F10409238.2023.2201945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10409238_2023_2201945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-9238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-9238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-9238&client=summon