A review on hydronic asphalt pavement for energy harvesting and snow melting

Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a seri...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 48; pp. 624 - 634
Main Authors Pan, Pan, Wu, Shaopeng, Xiao, Yue, Liu, Gang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications.
AbstractList Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications.
Author Liu, Gang
Wu, Shaopeng
Xiao, Yue
Pan, Pan
Author_xml – sequence: 1
  givenname: Pan
  surname: Pan
  fullname: Pan, Pan
– sequence: 2
  givenname: Shaopeng
  surname: Wu
  fullname: Wu, Shaopeng
– sequence: 3
  givenname: Yue
  surname: Xiao
  fullname: Xiao, Yue
  email: xiaoy@whut.edu.cn
– sequence: 4
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
BookMark eNp9kMtqwzAQRUVJoWnaH-hKP2B3ZNmyBd2E0BcEumnXQpbGiYIjB0kk5O9rk666yGqGYc6Fe-7JzA8eCXlikDNg4nmXh4ghL4BVOZQ5FPKGzFlTywyEhNm4c1FmwAt2R-5j3MH42NR8TtZLGvDo8EQHT7dnGwbvDNXxsNV9ogd9xD36RLshUPQYNme61eGIMTm_odpbGv1wonvsp8MDue10H_Hxby7Iz9vr9-ojW3-9f66W68xwIVImjbC2rruqBm2sLaFshG6hBFsbEK3V1jSyFayqW8mZrKyBjktetsArxhjnC1Jcck0YYgzYqUNwex3OioGafKidmnyoyYeCUo0-Rqj5BxmXdHKDT0G7_jr6ckFxLDXKCioah96gdQFNUnZw1_BfCn5-4Q
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2019_117345
crossref_primary_10_1016_j_conbuildmat_2022_130213
crossref_primary_10_2139_ssrn_4749982
crossref_primary_10_1016_j_conbuildmat_2018_05_097
crossref_primary_10_1016_j_conbuildmat_2021_124292
crossref_primary_10_1016_j_jclepro_2021_128278
crossref_primary_10_1016_j_conbuildmat_2017_09_020
crossref_primary_10_1016_j_conbuildmat_2020_118694
crossref_primary_10_3390_ma12142322
crossref_primary_10_1016_j_enconman_2019_01_035
crossref_primary_10_1016_j_conbuildmat_2017_08_102
crossref_primary_10_4028_www_scientific_net_KEM_815_188
crossref_primary_10_1016_j_applthermaleng_2019_114818
crossref_primary_10_1016_j_compositesb_2022_109867
crossref_primary_10_3390_su131810129
crossref_primary_10_1016_j_geothermics_2024_103244
crossref_primary_10_1016_j_conbuildmat_2021_123892
crossref_primary_10_3390_su11184906
crossref_primary_10_3390_atmos15040462
crossref_primary_10_1016_j_coldregions_2019_01_014
crossref_primary_10_1016_j_solener_2020_02_021
crossref_primary_10_1080_09276440_2024_2310925
crossref_primary_10_1051_matecconf_202440003007
crossref_primary_10_1155_2022_7372053
crossref_primary_10_1002_er_4350
crossref_primary_10_1039_D1GC02597J
crossref_primary_10_3390_ma12233916
crossref_primary_10_1007_s13369_022_07390_4
crossref_primary_10_3390_polym14132615
crossref_primary_10_1016_j_conbuildmat_2018_12_174
crossref_primary_10_1016_j_cscm_2022_e01706
crossref_primary_10_1016_j_conbuildmat_2019_117470
crossref_primary_10_1088_1757_899X_493_1_012163
crossref_primary_10_1016_j_conbuildmat_2025_140645
crossref_primary_10_1007_s13369_022_07447_4
crossref_primary_10_1016_j_jtte_2022_12_001
crossref_primary_10_1016_j_ijthermalsci_2023_108181
crossref_primary_10_1080_10298436_2017_1408271
crossref_primary_10_1680_jemmr_16_00009
crossref_primary_10_1016_j_gete_2021_100253
crossref_primary_10_1016_j_seta_2020_100635
crossref_primary_10_1016_j_conbuildmat_2023_133790
crossref_primary_10_1016_j_trd_2023_103750
crossref_primary_10_1080_10298436_2023_2286455
crossref_primary_10_1088_1755_1315_1026_1_012040
crossref_primary_10_5301_jabfm_5000304
crossref_primary_10_1007_s41062_023_01050_8
crossref_primary_10_1016_j_conbuildmat_2024_135452
crossref_primary_10_1016_j_jclepro_2022_132158
crossref_primary_10_1016_j_coldregions_2024_104182
crossref_primary_10_1016_j_conbuildmat_2023_133433
crossref_primary_10_2478_rtuect_2022_0078
crossref_primary_10_3390_ma12244130
crossref_primary_10_1016_j_conbuildmat_2017_02_135
crossref_primary_10_1007_s10706_020_01613_x
crossref_primary_10_3390_en12112078
crossref_primary_10_1007_s12205_021_2197_9
crossref_primary_10_1080_14680629_2025_2473959
crossref_primary_10_1080_01694243_2018_1462948
crossref_primary_10_1016_j_conbuildmat_2025_140556
crossref_primary_10_1061__ASCE_MT_1943_5533_0003446
crossref_primary_10_5301_jabfm_5000307
crossref_primary_10_1002_nsg_12044
crossref_primary_10_1088_1757_899X_527_1_012049
crossref_primary_10_1617_s11527_025_02595_z
crossref_primary_10_1016_j_promfg_2020_03_062
crossref_primary_10_1016_j_apenergy_2022_118908
crossref_primary_10_1016_j_conbuildmat_2024_135102
crossref_primary_10_17798_bitlisfen_1024032
crossref_primary_10_3390_polym16101379
crossref_primary_10_3390_ma14092170
crossref_primary_10_1016_j_jtte_2021_02_001
crossref_primary_10_1007_s11771_020_4467_y
crossref_primary_10_1016_j_conbuildmat_2017_10_068
crossref_primary_10_1016_j_jclepro_2022_131078
crossref_primary_10_3389_fmats_2020_00257
crossref_primary_10_1016_j_apenergy_2019_114388
crossref_primary_10_1016_j_gete_2021_100271
crossref_primary_10_1016_j_solmat_2020_110706
crossref_primary_10_1016_j_renene_2020_10_087
crossref_primary_10_1080_14680629_2018_1525418
crossref_primary_10_1016_j_conbuildmat_2022_129385
crossref_primary_10_1016_j_trpro_2023_11_633
crossref_primary_10_2139_ssrn_4159301
crossref_primary_10_3390_ma16020549
crossref_primary_10_1016_j_renene_2024_120711
crossref_primary_10_3390_su141710974
crossref_primary_10_1016_j_conbuildmat_2017_10_117
crossref_primary_10_1016_j_enconman_2019_03_008
crossref_primary_10_3390_ma16010175
crossref_primary_10_3390_ma12071122
crossref_primary_10_1016_j_jclepro_2025_144738
crossref_primary_10_1061__ASCE_MT_1943_5533_0002024
crossref_primary_10_3390_ma13092169
crossref_primary_10_1016_j_jclepro_2018_11_115
crossref_primary_10_1016_j_molliq_2017_05_154
crossref_primary_10_3390_pr12112603
crossref_primary_10_1016_j_coldregions_2019_102806
crossref_primary_10_3390_ma15020679
crossref_primary_10_1016_j_conbuildmat_2019_03_052
crossref_primary_10_1016_j_dibe_2023_100259
crossref_primary_10_3390_app7040397
crossref_primary_10_1016_j_est_2025_115769
crossref_primary_10_3389_fchem_2022_1073473
crossref_primary_10_1016_j_conbuildmat_2024_137587
crossref_primary_10_1007_s40996_022_00929_3
crossref_primary_10_1016_j_renene_2023_04_083
crossref_primary_10_1016_j_conbuildmat_2021_122637
crossref_primary_10_1016_j_solener_2020_04_003
crossref_primary_10_1016_j_trpro_2016_05_286
crossref_primary_10_3390_ma14040869
crossref_primary_10_1016_j_apenergy_2023_122362
crossref_primary_10_1016_j_conbuildmat_2020_118429
crossref_primary_10_1016_j_solener_2021_02_030
crossref_primary_10_1016_j_rser_2021_111712
crossref_primary_10_1016_j_conbuildmat_2023_134562
crossref_primary_10_1016_j_conbuildmat_2020_121951
crossref_primary_10_1061_JMCEE7_MTENG_15983
crossref_primary_10_1016_j_conbuildmat_2017_08_009
crossref_primary_10_3390_su15032680
crossref_primary_10_1016_j_cscm_2018_02_003
crossref_primary_10_1016_j_jclepro_2022_135586
crossref_primary_10_1186_s43065_022_00054_5
crossref_primary_10_1016_j_jclepro_2018_08_315
crossref_primary_10_1007_s42452_020_2314_2
crossref_primary_10_1016_j_conbuildmat_2019_08_044
crossref_primary_10_1016_j_csite_2024_104365
crossref_primary_10_1016_j_conbuildmat_2021_125010
crossref_primary_10_3390_en16083338
crossref_primary_10_1016_j_conbuildmat_2022_129478
crossref_primary_10_1016_j_scs_2018_05_014
crossref_primary_10_1016_j_solmat_2024_113008
crossref_primary_10_3390_en11123443
crossref_primary_10_1016_j_conbuildmat_2024_137328
crossref_primary_10_3390_ma14102585
crossref_primary_10_1016_j_apsusc_2024_161022
crossref_primary_10_1080_14680629_2024_2315080
crossref_primary_10_1016_j_conbuildmat_2017_04_034
crossref_primary_10_1016_j_conbuildmat_2019_117370
crossref_primary_10_1515_nanoph_2020_0472
crossref_primary_10_1016_j_apenergy_2020_116287
crossref_primary_10_1016_j_renene_2019_08_107
crossref_primary_10_1016_j_apenergy_2019_113808
crossref_primary_10_1520_JTE20190162
crossref_primary_10_1016_j_rser_2021_111171
crossref_primary_10_1016_j_conbuildmat_2021_124213
crossref_primary_10_1016_j_jclepro_2022_133070
crossref_primary_10_1016_j_conbuildmat_2018_03_080
crossref_primary_10_1016_j_conbuildmat_2020_118849
crossref_primary_10_1016_j_rser_2015_07_177
crossref_primary_10_1016_j_apenergy_2023_122020
crossref_primary_10_3390_ma11081392
crossref_primary_10_1061__ASCE_MT_1943_5533_0003140
crossref_primary_10_1007_s00202_024_02379_8
crossref_primary_10_1080_10298436_2021_1931198
crossref_primary_10_3390_ma12050741
crossref_primary_10_1016_j_conbuildmat_2018_02_151
crossref_primary_10_1061__ASCE_MT_1943_5533_0003266
crossref_primary_10_1061__ASCE_MT_1943_5533_0004113
crossref_primary_10_1016_j_solener_2017_10_086
crossref_primary_10_1016_j_conbuildmat_2018_11_094
crossref_primary_10_1016_j_conbuildmat_2017_12_159
crossref_primary_10_1016_j_jclepro_2020_125338
crossref_primary_10_1177_03611981241275555
crossref_primary_10_1155_2017_9595239
crossref_primary_10_1016_j_jclepro_2018_09_223
crossref_primary_10_1016_j_apenergy_2023_121067
crossref_primary_10_1016_j_conbuildmat_2017_07_037
crossref_primary_10_1007_s11356_022_22295_3
crossref_primary_10_1061__ASCE_CR_1943_5495_0000288
crossref_primary_10_3390_en13246633
crossref_primary_10_1177_03611981211004175
crossref_primary_10_1061__ASCE_MT_1943_5533_0004125
crossref_primary_10_1061__ASCE_MT_1943_5533_0002868
crossref_primary_10_1016_j_applthermaleng_2016_11_007
crossref_primary_10_1016_j_applthermaleng_2017_05_033
crossref_primary_10_1155_2019_2190627
crossref_primary_10_1155_2021_7423113
crossref_primary_10_1155_2021_4689062
crossref_primary_10_1016_j_applthermaleng_2020_116074
crossref_primary_10_1016_j_applthermaleng_2017_01_002
crossref_primary_10_1016_j_apenergy_2017_12_125
crossref_primary_10_1016_j_conbuildmat_2024_139776
crossref_primary_10_1016_j_apenergy_2020_116077
crossref_primary_10_1061__ASCE_MT_1943_5533_0004702
crossref_primary_10_1016_j_jclepro_2019_02_058
crossref_primary_10_1016_j_fuel_2020_119403
crossref_primary_10_1520_JTE20190179
crossref_primary_10_1080_19397038_2021_1924892
crossref_primary_10_3390_app8122360
crossref_primary_10_1016_j_coldregions_2021_103417
crossref_primary_10_1016_j_jclepro_2020_121197
crossref_primary_10_1016_j_renene_2021_05_063
crossref_primary_10_1016_j_conbuildmat_2022_127094
crossref_primary_10_1016_j_conbuildmat_2020_118987
crossref_primary_10_3390_ma10060574
crossref_primary_10_1016_j_conbuildmat_2020_121343
crossref_primary_10_1038_s41467_021_23634_7
crossref_primary_10_1016_j_renene_2021_06_010
crossref_primary_10_1080_14680629_2018_1564352
crossref_primary_10_1016_j_conbuildmat_2018_10_009
crossref_primary_10_1177_03611981241273118
crossref_primary_10_3390_ma13020426
crossref_primary_10_1016_j_est_2024_110737
crossref_primary_10_1016_j_conbuildmat_2022_127245
crossref_primary_10_3390_su15021166
crossref_primary_10_1155_2019_8172494
crossref_primary_10_1016_j_heliyon_2019_e02359
crossref_primary_10_1016_j_apenergy_2019_03_033
crossref_primary_10_1016_j_cscm_2022_e01639
crossref_primary_10_1016_j_jclepro_2018_01_222
crossref_primary_10_1016_j_conbuildmat_2020_119229
crossref_primary_10_3390_ma11060892
crossref_primary_10_1016_j_conbuildmat_2018_10_193
crossref_primary_10_2478_cee_2018_0013
crossref_primary_10_1016_j_jreng_2023_10_001
crossref_primary_10_1016_j_coldregions_2019_03_007
crossref_primary_10_1061__ASCE_MT_1943_5533_0003879
crossref_primary_10_3390_ma11050747
crossref_primary_10_1016_j_coldregions_2021_103231
crossref_primary_10_1016_j_apenergy_2022_119977
crossref_primary_10_1016_j_trpro_2016_05_336
crossref_primary_10_3390_ma12081201
crossref_primary_10_1016_j_conbuildmat_2020_121884
crossref_primary_10_1016_j_conbuildmat_2018_09_050
crossref_primary_10_1016_j_conbuildmat_2021_125749
crossref_primary_10_1007_s42947_022_00164_z
crossref_primary_10_1016_j_applthermaleng_2021_117400
crossref_primary_10_1016_j_scitotenv_2021_150289
crossref_primary_10_1016_j_jtte_2018_08_001
crossref_primary_10_1016_j_coldregions_2017_10_006
crossref_primary_10_1016_j_conbuildmat_2023_132777
crossref_primary_10_1016_j_applthermaleng_2016_06_138
crossref_primary_10_1016_j_applthermaleng_2020_115508
crossref_primary_10_3390_ma11122488
crossref_primary_10_3390_nano13152248
crossref_primary_10_1016_j_conbuildmat_2024_138362
crossref_primary_10_1016_j_dibe_2021_100051
crossref_primary_10_3390_polym14173651
crossref_primary_10_1016_j_conbuildmat_2021_125875
crossref_primary_10_3390_app12031196
crossref_primary_10_1016_j_conbuildmat_2016_10_018
crossref_primary_10_1016_j_scs_2018_08_021
crossref_primary_10_1016_j_conbuildmat_2019_02_094
crossref_primary_10_3390_ma10030218
crossref_primary_10_1016_j_conbuildmat_2019_03_308
crossref_primary_10_1016_j_applthermaleng_2017_10_050
crossref_primary_10_1016_j_conbuildmat_2017_12_014
crossref_primary_10_1088_1757_899X_182_1_012042
crossref_primary_10_1080_19397038_2019_1688890
crossref_primary_10_1617_s11527_021_01628_7
crossref_primary_10_3390_ma11081325
crossref_primary_10_1080_14680629_2018_1447505
crossref_primary_10_3390_ma13184103
crossref_primary_10_1680_jemmr_16_00035
crossref_primary_10_1016_j_est_2024_114202
crossref_primary_10_1080_10298436_2022_2077941
crossref_primary_10_1007_s10853_023_08212_0
crossref_primary_10_1016_j_applthermaleng_2017_07_127
crossref_primary_10_1088_1757_899X_182_1_012041
crossref_primary_10_1016_j_conbuildmat_2020_118380
Cites_doi 10.1016/j.energy.2013.02.057
10.1061/(ASCE)0899-1561(2005)17:4(465)
10.1016/j.applthermaleng.2006.07.029
10.1016/j.solmat.2011.07.013
10.1016/j.applthermaleng.2006.06.017
10.1088/0031-8949/2010/T139/014046
10.1061/(ASCE)0899-1561(2005)17:1(72)
10.1016/j.apenergy.2012.08.050
10.1080/19397038.2010.550336
10.1080/19397030903121950
10.1016/j.enbuild.2012.01.023
10.3141/1778-17
10.1007/BF01133567
10.3141/1919-11
10.1016/j.resconrec.2011.06.004
10.1016/j.buildenv.2010.06.014
10.1088/0031-8949/2010/T139/014041
10.1016/S0038-092X(02)00014-2
10.1016/j.rser.2013.06.037
10.1016/j.rser.2013.05.047
10.1016/j.rser.2010.07.019
10.1016/j.polymdegradstab.2012.07.032
10.1016/S0306-2619(97)00033-0
10.1017/S1350482701004091
10.1016/j.applthermaleng.2011.01.028
10.1016/j.rser.2013.05.035
10.1016/j.energy.2012.08.018
10.1016/j.enconman.2009.12.032
10.1016/S1364-0321(99)00011-8
10.1016/j.rser.2011.07.117
10.1016/j.solener.2010.09.008
10.1016/j.apenergy.2014.01.006
10.1088/0964-1726/22/9/095024
10.1109/ICCEP.2007.384243
10.1016/j.rser.2011.04.032
10.1080/19397038.2011.574742
10.1016/j.rser.2013.08.090
10.1016/j.energy.2006.10.017
10.1016/j.envpol.2005.07.013
10.1109/ICT.2006.331237
10.1016/j.rser.2008.09.012
10.1061/(ASCE)MT.1943-5533.0000357
10.1023/A:1013895215558
10.1016/j.enconman.2007.12.008
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2015.04.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
EndPage 634
ExternalDocumentID 10_1016_j_rser_2015_04_029
S1364032115002993
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-9c6dd77f570acdd40486ab040d7c06bdadc89b6157b93195dc0f3934b03511133
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Tue Jul 01 01:56:36 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Fri Feb 23 02:19:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar energy collector
Renewable energy
Snow melting
Hydronic asphalt pavement (HAP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-9c6dd77f570acdd40486ab040d7c06bdadc89b6157b93195dc0f3934b03511133
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_rser_2015_04_029
crossref_citationtrail_10_1016_j_rser_2015_04_029
elsevier_sciencedirect_doi_10_1016_j_rser_2015_04_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
2015-08-00
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Andriopoulou S A review on energy harvesting from roads: KTH; 2012.
Eggen G, Vangsnes G. Heat pump for district cooling and heating at Oslo Airport, Gardermoen. In: Proceedings of the eighth IEA heat pump conference. Las Vegas, Nev; 2005.
Xiang, Wang, Shi, Zhang (bib24) 2013; 22
Grasselli U, Schirone L, Bellucci P. Infrastructures integration of photovoltaic power. In: Proceedings of the international conference on clean electrical power, IEEE; 2007. p. 397–400.
Wang, Wu, Chen, Zhang (bib81) 2010; 2010
Hasebe M, Kamikawa Y, Meiarashi S. Thermoelectric generators using solar thermal energy in heated road pavement. In: Proceedings of the 25th international conference on thermoelectrics, IEEE; 2006. p. 697–700.
Rees, Spitler, Xiao (bib74) 2002; 108
Weijers, de Groot (bib21) 2007
Boyd TL. New Snow Melt Projects in Klamath Falls, OR. Industrial Uses of Geothermal Energy; 2003:12.
van Vliet MRA, van Gurp CAPM, de Bondt AH, van Bijsterveld WT. Structural viablity of shallow depth hollow systems in airfield pavements. In: Proceedings of the first European airport pavement workshop. Amsterdam, Netherlands May; 2005.
Ramsey JW, Hewett MJ, Kuehn TH, Petersen SD. SYMPOSIUM PAPERS-Ch-99-17-Snow Melting: System Assessment-Updated Design Guidelines for Snow Melting Systems. ASHRAE Transactions – American Society of Heating Refrigerating Airconditioning Engineers; 1999;105, p. 1055–68.
Liu (bib73) 2005
Huber (bib58) 1994
Bilgen, Richard (bib43) 2002; 72
Gao, Huang, Li, Liu, Yan (bib45) 2010; 84
Wendel IL. Paving and solar energy system and method. Google Patents; 1979.
Chiasson (bib72) 1999
Gustavsson, Bogren, Green (bib16) 2001; 8
Ragnarsson A. Utilization of geothermal energy in Iceland. In: Proceedings of the international geothermal conference; 2003. p. 39–45.
Dincer (bib1) 2000; 4
Thompson, Dempsey, Hill, Vogel (bib57) 1987; 549
Santamouris (bib20) 2013; 26
Wang, Zhao, Chen (bib90) 2008; 49
Invisible heating system.
Chen, Mallick, Bhowmick (bib80) 2009; 78
Long, Li, Wang, Jia (bib4) 2013; 26
Bobes-Jesus, Pascual-Muñoz, Castro-Fresno, Rodriguez-Hernandez (bib26) 2013; 102
Price, Probert (bib8) 1997; 57
Yuan, Kang, Yu, Hu (bib2) 2011; 15
IEA (bib3) 2011
Fukusako (bib63) 1990; 11
García, Partl (bib27) 2014; 119
Leal, Miller (bib70) 1972; 78
Sanzo, Hecnar (bib30) 2006; 140
Chen, Wu, Zhang, Wang (bib85) 2010; T139
Gao, Li, Yu, Spitler, Yan (bib5) 2009; 13
Loomans M, Oversloot H, de Bondt A, Jansen R, van Rij H. Design tool for the thermal energy potential of asphalt pavements. In: Proceedings of the eighth international IBPSA conference. Eindhoven, Netherlands; 2003.
Mallick RB, Chen B-L, Bhowmick S. Reduction of urban heat island effect through harvest of heat energy from asphalt pavements. In: Proceedings of the second international conference on countermeasures to urban heat Islands effect, September Berkeley, CA; 2009.
Ooms International Holding.
.
Wu, Chen, Zhang (bib82) 2011; 31
Lund (bib12) 2007; 32
Sakka, Santamouris, Livada, Nicol, Wilson (bib18) 2012; 49
Morita K, Tago M. Operational characteristics of the Gaia snow-melting system in Ninohe, Iwate, Japan. In: Proceedings of the world geothermal congress; 2000. p. 3511–16.
Barber ES. Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin; 1957.
Liu, Rees, Spitler (bib75) 2007; 27
Chapman (bib67) 1952; 49
Zwarycz K Snow melting and heating systems based on geothermal heat pumps at Goleniow airport. Poland, Geothermal Training Programme, The United Nations University, Reports; 2002.
Van Bijsterveld WT, de Bondt AH. Structural aspects of asphalt pavement heating and cooling systems. In: Proceedings of the third international symposium on 3D finite element modeling, design & research. Amsterdam, The Netherlands; 2002.
Chen, Wu, Wang, Zhang (bib34) 2011; 95
Kleerekoper, van Esch, Salcedo (bib17) 2012; 64
Yavuzturk, Ksaibati, Chiasson (bib59) 2005; 17
Wu S, Wang H, Chen M. Numerical simulation of melting snow on hydronically heated asphalt layer. In: Proceedings of the building and environment-science and technology conference. Nanjing, China. p. 223–228.
Novotech I.. Raodway Power System: Technical Analysis for Thermal Energy Generation; 2008.
Mallick, Chen, Bhowmick (bib78) 2011; 5
Mercure, Salas (bib13) 2012; 46
Chapman, Katunich (bib33) 1956; 62
Bahaj (bib7) 2011; 15
Löfgren (bib29) 2001; 130
Hall, Dehdezi, Dawson, Grenfell, Isola (bib65) 2011; 24
Liu, Rees, Spitler (bib76) 2007; 27
Giridharan, Lau, Ganesan (bib19) 2005; 37
Hazami, Kooli, Lazâar, Farhat, Belghith (bib42) 2010; 51
Alosi AC. Concrete solar collectors. Google Patents; 1979.
Synnefa, Karlessi, Gaitani, Santamouris, Assimakopoulos, Papakatsikas (bib83) 2011; 46
Luca, Mrawira (bib62) 2005; 17
Siva Reddy, Kaushik, Ranjan, Tyagi (bib9) 2013; 27
Eugster WJ, Schatzmann J. Harnessing solar energy for winter road clearing on heavily loaded expressways. In: Proceedings of the new challenges for winter road service XIth international winter road congress; 2002.
Wang, Wang, Gong, Guo (bib6) 2014; 29
Minsk LD Heated Bridge Technology: Report on ISTEA Sec. 6005 Program; 1999.
Tongyan, Yang, Zhaoyang (bib15) 2012; 97
Solaimanian, Kennedy (bib64) 1993; 1417
Mallick, Chen, Bhowmick (bib47) 2009; 2
Zooneweg system.
Chen (bib87) 2011
Sawin JL Renewables 2013 global status report; 2013.
Kilkis (bib68) 1994; 100
Hernández-Escobedo, Manzano-Agugliaro, Zapata-Sierra (bib10) 2010; 14
Winnerway system.
Inter-seasonal heat transfer.
Li (bib86) 2008
Schnurr, Rogers (bib71) 1970; 76
Gui, Phelan, Kaloush, Golden (bib84) 2007; 19
Incropera, Lavine, DeWitt (bib66) 2011
Van Bijsterveld, Houben, Scarpas, Molenaar (bib28) 2001; 1778
Christison J, Anderson K. The response of asphalt pavements to low temperature climatic environments. In: Proceedings of the third international conference on the structural design of asphalt pavements. Grosvenor House, Park Lane, London, England, September 11–15; 1972.
Mallick, Carelli, Albano, Bhowmick, Veeraragavan (bib92) 2011; 4
de Bondt A, Jansen R. Generation and Saving of Energy via Asphalt Pavement Surfaces. Ooms Avenhorm holding bv The Netherlands; 2006.
Wang (bib61) 2010
Mallick RB, Chen B-L, Bhowmick S, Hulen M. Capturing solar energy from asphalt pavements. In: Proceedings of the international symposium on asphalt pavements and environment. International Society For Asphalt Pavements, Zurich, Switzerland; 2008.
Singh (bib14) 2013; 53
Nixon WA Improved cutting edges for ice removal; 1993.
Minhoto, Pais, Pereira, Picado-Santos (bib60) 2005; 1919
Gao (10.1016/j.rser.2015.04.029_bib45) 2010; 84
Kilkis (10.1016/j.rser.2015.04.029_bib68) 1994; 100
10.1016/j.rser.2015.04.029_bib56
Liu (10.1016/j.rser.2015.04.029_bib73) 2005
10.1016/j.rser.2015.04.029_bib11
10.1016/j.rser.2015.04.029_bib55
10.1016/j.rser.2015.04.029_bib54
10.1016/j.rser.2015.04.029_bib53
10.1016/j.rser.2015.04.029_bib52
Giridharan (10.1016/j.rser.2015.04.029_bib19) 2005; 37
10.1016/j.rser.2015.04.029_bib51
10.1016/j.rser.2015.04.029_bib50
Chapman (10.1016/j.rser.2015.04.029_bib33) 1956; 62
Minhoto (10.1016/j.rser.2015.04.029_bib60) 2005; 1919
Tongyan (10.1016/j.rser.2015.04.029_bib15) 2012; 97
Rees (10.1016/j.rser.2015.04.029_bib74) 2002; 108
Wu (10.1016/j.rser.2015.04.029_bib82) 2011; 31
Xiang (10.1016/j.rser.2015.04.029_bib24) 2013; 22
Bilgen (10.1016/j.rser.2015.04.029_bib43) 2002; 72
Hernández-Escobedo (10.1016/j.rser.2015.04.029_bib10) 2010; 14
Hall (10.1016/j.rser.2015.04.029_bib65) 2011; 24
Chapman (10.1016/j.rser.2015.04.029_bib67) 1952; 49
Chiasson (10.1016/j.rser.2015.04.029_bib72) 1999
Gui (10.1016/j.rser.2015.04.029_bib84) 2007; 19
Solaimanian (10.1016/j.rser.2015.04.029_bib64) 1993; 1417
10.1016/j.rser.2015.04.029_bib91
Bobes-Jesus (10.1016/j.rser.2015.04.029_bib26) 2013; 102
Long (10.1016/j.rser.2015.04.029_bib4) 2013; 26
Bahaj (10.1016/j.rser.2015.04.029_bib7) 2011; 15
Siva Reddy (10.1016/j.rser.2015.04.029_bib9) 2013; 27
10.1016/j.rser.2015.04.029_bib23
Chen (10.1016/j.rser.2015.04.029_bib80) 2009; 78
10.1016/j.rser.2015.04.029_bib22
Dincer (10.1016/j.rser.2015.04.029_bib1) 2000; 4
Lund (10.1016/j.rser.2015.04.029_bib12) 2007; 32
Sakka (10.1016/j.rser.2015.04.029_bib18) 2012; 49
Mallick (10.1016/j.rser.2015.04.029_bib78) 2011; 5
Wang (10.1016/j.rser.2015.04.029_bib90) 2008; 49
Chen (10.1016/j.rser.2015.04.029_bib87) 2011
Li (10.1016/j.rser.2015.04.029_bib86) 2008
Yuan (10.1016/j.rser.2015.04.029_bib2) 2011; 15
García (10.1016/j.rser.2015.04.029_bib27) 2014; 119
10.1016/j.rser.2015.04.029_bib25
Huber (10.1016/j.rser.2015.04.029_bib58) 1994
10.1016/j.rser.2015.04.029_bib69
Mallick (10.1016/j.rser.2015.04.029_bib47) 2009; 2
Van Bijsterveld (10.1016/j.rser.2015.04.029_bib28) 2001; 1778
Yavuzturk (10.1016/j.rser.2015.04.029_bib59) 2005; 17
Leal (10.1016/j.rser.2015.04.029_bib70) 1972; 78
Gustavsson (10.1016/j.rser.2015.04.029_bib16) 2001; 8
10.1016/j.rser.2015.04.029_bib35
Schnurr (10.1016/j.rser.2015.04.029_bib71) 1970; 76
10.1016/j.rser.2015.04.029_bib79
IEA (10.1016/j.rser.2015.04.029_bib3) 2011
10.1016/j.rser.2015.04.029_bib77
10.1016/j.rser.2015.04.029_bib32
10.1016/j.rser.2015.04.029_bib31
Singh (10.1016/j.rser.2015.04.029_bib14) 2013; 53
Santamouris (10.1016/j.rser.2015.04.029_bib20) 2013; 26
Synnefa (10.1016/j.rser.2015.04.029_bib83) 2011; 46
Chen (10.1016/j.rser.2015.04.029_bib34) 2011; 95
Incropera (10.1016/j.rser.2015.04.029_bib66) 2011
10.1016/j.rser.2015.04.029_bib39
Chen (10.1016/j.rser.2015.04.029_bib85) 2010; T139
10.1016/j.rser.2015.04.029_bib38
10.1016/j.rser.2015.04.029_bib37
Thompson (10.1016/j.rser.2015.04.029_bib57) 1987; 549
Liu (10.1016/j.rser.2015.04.029_bib76) 2007; 27
10.1016/j.rser.2015.04.029_bib36
Hazami (10.1016/j.rser.2015.04.029_bib42) 2010; 51
Löfgren (10.1016/j.rser.2015.04.029_bib29) 2001; 130
Fukusako (10.1016/j.rser.2015.04.029_bib63) 1990; 11
Mercure (10.1016/j.rser.2015.04.029_bib13) 2012; 46
Sanzo (10.1016/j.rser.2015.04.029_bib30) 2006; 140
10.1016/j.rser.2015.04.029_bib46
10.1016/j.rser.2015.04.029_bib89
10.1016/j.rser.2015.04.029_bib44
10.1016/j.rser.2015.04.029_bib88
Weijers (10.1016/j.rser.2015.04.029_bib21) 2007
10.1016/j.rser.2015.04.029_bib41
Wang (10.1016/j.rser.2015.04.029_bib61) 2010
10.1016/j.rser.2015.04.029_bib40
Luca (10.1016/j.rser.2015.04.029_bib62) 2005; 17
10.1016/j.rser.2015.04.029_bib49
10.1016/j.rser.2015.04.029_bib48
Gao (10.1016/j.rser.2015.04.029_bib5) 2009; 13
Wang (10.1016/j.rser.2015.04.029_bib6) 2014; 29
Liu (10.1016/j.rser.2015.04.029_bib75) 2007; 27
Kleerekoper (10.1016/j.rser.2015.04.029_bib17) 2012; 64
Price (10.1016/j.rser.2015.04.029_bib8) 1997; 57
Wang (10.1016/j.rser.2015.04.029_bib81) 2010; 2010
Mallick (10.1016/j.rser.2015.04.029_bib92) 2011; 4
References_xml – volume: 49
  start-page: 96
  year: 1952
  end-page: 102
  ident: bib67
  article-title: Design of snow melting systems
  publication-title: Heat Vent
– volume: T139
  start-page: 014046
  year: 2010
  ident: bib85
  article-title: Effects of conductive fillers on temperature distribution of asphalt pavements
  publication-title: Phys Scr
– volume: 31
  start-page: 1582
  year: 2011
  end-page: 1587
  ident: bib82
  article-title: Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs
  publication-title: Appl Therm Eng
– volume: 49
  start-page: 69
  year: 2012
  end-page: 77
  ident: bib18
  article-title: On the thermal performance of low income housing during heat waves
  publication-title: Energy Build
– volume: 24
  start-page: 32
  year: 2011
  end-page: 47
  ident: bib65
  article-title: Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions
  publication-title: J Mater Civ Eng
– reference: de Bondt A, Jansen R. Generation and Saving of Energy via Asphalt Pavement Surfaces. Ooms Avenhorm holding bv The Netherlands; 2006.
– reference: Hasebe M, Kamikawa Y, Meiarashi S. Thermoelectric generators using solar thermal energy in heated road pavement. In: Proceedings of the 25th international conference on thermoelectrics, IEEE; 2006. p. 697–700.
– reference: Grasselli U, Schirone L, Bellucci P. Infrastructures integration of photovoltaic power. In: Proceedings of the international conference on clean electrical power, IEEE; 2007. p. 397–400.
– volume: 72
  start-page: 405
  year: 2002
  end-page: 413
  ident: bib43
  article-title: Horizontal concrete slabs as passive solar collectors
  publication-title: Sol Energy
– reference: Ooms International Holding.
– reference: Alosi AC. Concrete solar collectors. Google Patents; 1979.
– year: 2011
  ident: bib3
  article-title: World energy outlook 2011
– reference: Ragnarsson A. Utilization of geothermal energy in Iceland. In: Proceedings of the international geothermal conference; 2003. p. 39–45.
– volume: 13
  start-page: 1383
  year: 2009
  end-page: 1394
  ident: bib5
  article-title: Review of development from GSHP to UTES in China and other countries
  publication-title: Renew Sustain Energy Rev
– reference: Andriopoulou S A review on energy harvesting from roads: KTH; 2012.
– volume: 46
  start-page: 38
  year: 2011
  end-page: 44
  ident: bib83
  article-title: Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate
  publication-title: Build Environ
– volume: 15
  start-page: 3399
  year: 2011
  end-page: 3416
  ident: bib7
  article-title: Generating electricity from the oceans
  publication-title: Renew Sustain Energy Rev
– reference: Christison J, Anderson K. The response of asphalt pavements to low temperature climatic environments. In: Proceedings of the third international conference on the structural design of asphalt pavements. Grosvenor House, Park Lane, London, England, September 11–15; 1972.
– volume: 32
  start-page: 912
  year: 2007
  end-page: 919
  ident: bib12
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
– volume: 119
  start-page: 431
  year: 2014
  end-page: 437
  ident: bib27
  article-title: How to transform an asphalt concrete pavement into a solar turbine
  publication-title: Appl Energy
– reference: Novotech I.. Raodway Power System: Technical Analysis for Thermal Energy Generation; 2008.
– reference: Mallick RB, Chen B-L, Bhowmick S. Reduction of urban heat island effect through harvest of heat energy from asphalt pavements. In: Proceedings of the second international conference on countermeasures to urban heat Islands effect, September Berkeley, CA; 2009.
– volume: 17
  start-page: 465
  year: 2005
  end-page: 475
  ident: bib59
  article-title: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach
  publication-title: J Mater Civ Eng
– volume: 108
  start-page: 406
  year: 2002
  end-page: 423
  ident: bib74
  article-title: Transient analysis of snow-melting system performance
  publication-title: ASHRAE Trans
– volume: 62
  start-page: 359
  year: 1956
  ident: bib33
  article-title: Heat requirements of snow melting systems
  publication-title: ASHAE Trans
– volume: 29
  start-page: 573
  year: 2014
  end-page: 588
  ident: bib6
  article-title: The intensification technologies to water electrolysis for hydrogen production – a review
  publication-title: Renew Sustain Energy Rev
– volume: 78
  start-page: 61
  year: 1972
  end-page: 66
  ident: bib70
  article-title: An analysis of the transient temperature distribution in pavement heating installations
  publication-title: ASHRAE Trans
– volume: 64
  start-page: 30
  year: 2012
  end-page: 38
  ident: bib17
  article-title: How to make a city climate-proof, addressing the urban heat island effect
  publication-title: Resour Conserv Recycl
– volume: 102
  start-page: 962
  year: 2013
  end-page: 970
  ident: bib26
  article-title: Asphalt solar collectors: a literature review
  publication-title: Appl Energy
– year: 1994
  ident: bib58
  publication-title: Weather database for the SUPERPAVE (trademark) mix design system, SHRP-A-648A
– volume: 78
  start-page: 209
  year: 2009
  end-page: 248
  ident: bib80
  article-title: A laboratory study on reduction of heat island effect of pavements
  publication-title: J Assoc Asph Paving Technol
– volume: 49
  start-page: 1538
  year: 2008
  end-page: 1546
  ident: bib90
  article-title: Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water
  publication-title: Energy Convers Manag
– reference: Mallick RB, Chen B-L, Bhowmick S, Hulen M. Capturing solar energy from asphalt pavements. In: Proceedings of the international symposium on asphalt pavements and environment. International Society For Asphalt Pavements, Zurich, Switzerland; 2008.
– reference: Van Bijsterveld WT, de Bondt AH. Structural aspects of asphalt pavement heating and cooling systems. In: Proceedings of the third international symposium on 3D finite element modeling, design & research. Amsterdam, The Netherlands; 2002.
– volume: 95
  start-page: 3241
  year: 2011
  end-page: 3250
  ident: bib34
  article-title: Study of ice and snow melting process on conductive asphalt solar collector
  publication-title: Sol Energy Mater Sol Cells
– reference: Sawin JL Renewables 2013 global status report; 2013.
– reference: Invisible heating system.
– year: 2005
  ident: bib73
  article-title: Development and experimental validation of simulation of hydronic snow melting systems for bridges
– volume: 14
  start-page: 2830
  year: 2010
  end-page: 2840
  ident: bib10
  article-title: The wind power of Mexico
  publication-title: Renew Sustain Energy Rev
– volume: 8
  start-page: 481
  year: 2001
  end-page: 489
  ident: bib16
  article-title: Road climate in cities: a study of the Stockholm Area, South-East Sweden
  publication-title: Meteorol Appl
– year: 2011
  ident: bib87
  article-title: Research on snow melting and solar energy collection for thermal conductive asphalt pavement
– volume: 76
  start-page: 257
  year: 1970
  end-page: 263
  ident: bib71
  article-title: Heat transfer design data for optimization of snow melting systems
  publication-title: ASHRAE Trans
– volume: 17
  start-page: 72
  year: 2005
  end-page: 79
  ident: bib62
  article-title: New measurement of thermal properties of superpave asphalt concrete
  publication-title: J Mater Civ Eng
– volume: 140
  start-page: 247
  year: 2006
  end-page: 256
  ident: bib30
  article-title: Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)
  publication-title: Environ Pollut
– volume: 46
  start-page: 322
  year: 2012
  end-page: 336
  ident: bib13
  article-title: An assessement of global energy resource economic potentials
  publication-title: Energy
– volume: 100
  start-page: 434
  year: 1994
  end-page: 441
  ident: bib68
  article-title: Design of embedded snow-melting systems: part 2, heat transfer in the slab- a simplified model
  publication-title: ASHRAE Trans
– volume: 26
  start-page: 224
  year: 2013
  end-page: 240
  ident: bib20
  article-title: Using cool pavements as a mitigation strategy to fight urban heat island – a review of the actual developments
  publication-title: Renew Sustain Energy Rev
– reference: Winnerway system.
– volume: 57
  start-page: 175
  year: 1997
  end-page: 251
  ident: bib8
  article-title: Harnessing hydropower: a practical guide
  publication-title: Appl Energy
– reference: Ramsey JW, Hewett MJ, Kuehn TH, Petersen SD. SYMPOSIUM PAPERS-Ch-99-17-Snow Melting: System Assessment-Updated Design Guidelines for Snow Melting Systems. ASHRAE Transactions – American Society of Heating Refrigerating Airconditioning Engineers; 1999;105, p. 1055–68.
– volume: 5
  start-page: 159
  year: 2011
  end-page: 169
  ident: bib78
  article-title: Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment
  publication-title: Int J Sustain Eng
– volume: 26
  start-page: 344
  year: 2013
  end-page: 352
  ident: bib4
  article-title: Biomass resources and their bioenergy potential estimation: a review
  publication-title: Renew Sustain Energy Rev
– reference: van Vliet MRA, van Gurp CAPM, de Bondt AH, van Bijsterveld WT. Structural viablity of shallow depth hollow systems in airfield pavements. In: Proceedings of the first European airport pavement workshop. Amsterdam, Netherlands May; 2005.
– reference: Eggen G, Vangsnes G. Heat pump for district cooling and heating at Oslo Airport, Gardermoen. In: Proceedings of the eighth IEA heat pump conference. Las Vegas, Nev; 2005.
– volume: 53
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib14
  article-title: Solar power generation by PV (photovoltaic) technology: a review
  publication-title: Energy
– reference: Zooneweg system.
– year: 2010
  ident: bib61
  article-title: Analysis on optimization design and viscoelastic response of conductive asphalt pavement using snowmelt
– volume: 2010
  start-page: 014041
  year: 2010
  ident: bib81
  article-title: Numerical simulation on the thermal response of heat-conducting asphalt pavements
  publication-title: Phys Scr
– reference: Minsk LD Heated Bridge Technology: Report on ISTEA Sec. 6005 Program; 1999.
– reference: Barber ES. Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin; 1957.
– volume: 19
  start-page: 683
  year: 2007
  end-page: 690
  ident: bib84
  article-title: Impact of pavement thermophysical properties on surface temperatures
  publication-title: J MaterCiv Eng
– volume: 1919
  start-page: 96
  year: 2005
  end-page: 110
  ident: bib60
  article-title: Predicting asphalt pavement temperature with a three-dimensional finite element method
  publication-title: Transp Res Rec: J Transp Res Board
– volume: 27
  start-page: 1115
  year: 2007
  end-page: 1124
  ident: bib75
  article-title: Modeling snow melting on heated pavement surfaces. Part I: model development
  publication-title: Appl Therm Eng
– reference: Nixon WA Improved cutting edges for ice removal; 1993.
– volume: 37
  start-page: 964
  year: 2005
  end-page: 971
  ident: bib19
  article-title: Nocturnal heat island effect in urban residential developments of Hong Kong
  publication-title: EnergyBuild
– reference: Boyd TL. New Snow Melt Projects in Klamath Falls, OR. Industrial Uses of Geothermal Energy; 2003:12.
– volume: 2
  start-page: 214
  year: 2009
  end-page: 228
  ident: bib47
  article-title: Harvesting energy from asphalt pavements and reducing the heat island effect
  publication-title: Int J Sustain Eng
– volume: 1417
  start-page: 1
  year: 1993
  end-page: 11
  ident: bib64
  article-title: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation
  publication-title: Transp Res Rec
– volume: 130
  start-page: 863
  year: 2001
  end-page: 868
  ident: bib29
  article-title: The chemical effects of deicing salt on soil and stream water of five catchments in Southeast Sweden
  publication-title: Water Air Soil Pollut
– reference: Morita K, Tago M. Operational characteristics of the Gaia snow-melting system in Ninohe, Iwate, Japan. In: Proceedings of the world geothermal congress; 2000. p. 3511–16.
– reference: Loomans M, Oversloot H, de Bondt A, Jansen R, van Rij H. Design tool for the thermal energy potential of asphalt pavements. In: Proceedings of the eighth international IBPSA conference. Eindhoven, Netherlands; 2003.
– volume: 22
  start-page: 095024
  year: 2013
  ident: bib24
  article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements
  publication-title: Smart Mater Struct
– volume: 51
  start-page: 1210
  year: 2010
  end-page: 1218
  ident: bib42
  article-title: Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix
  publication-title: Energy Convers Manag
– volume: 4
  start-page: 164
  year: 2011
  end-page: 171
  ident: bib92
  article-title: Evaluation of the potential of harvesting heat energy from asphalt pavements
  publication-title: Int J Sustain Eng
– volume: 27
  start-page: 258
  year: 2013
  end-page: 273
  ident: bib9
  article-title: State-of-the-art of solar thermal power plants – a review
  publication-title: Renew Sustain Energy Rev
– volume: 4
  start-page: 157
  year: 2000
  end-page: 175
  ident: bib1
  article-title: Renewable energy and sustainable development: a crucial review
  publication-title: Renew Sustain Energy Rev
– reference: Inter-seasonal heat transfer.
– reference: Wu S, Wang H, Chen M. Numerical simulation of melting snow on hydronically heated asphalt layer. In: Proceedings of the building and environment-science and technology conference. Nanjing, China. p. 223–228.
– year: 2011
  ident: bib66
  article-title: Fundamentals of heat and mass transfer
– volume: 15
  start-page: 4334
  year: 2011
  end-page: 4347
  ident: bib2
  article-title: Energy conservation and emissions reduction in China – progress and prospective
  publication-title: Renew Sustain Energy Rev
– reference: .
– reference: Eugster WJ, Schatzmann J. Harnessing solar energy for winter road clearing on heavily loaded expressways. In: Proceedings of the new challenges for winter road service XIth international winter road congress; 2002.
– volume: 11
  start-page: 353
  year: 1990
  end-page: 372
  ident: bib63
  article-title: Thermophysical properties of ice, snow, and sea ice
  publication-title: Int J Thermophys
– reference: Wendel IL. Paving and solar energy system and method. Google Patents; 1979.
– year: 2007
  ident: bib21
  article-title: Energiewinning uit weginfrastructuur
– reference: Zwarycz K Snow melting and heating systems based on geothermal heat pumps at Goleniow airport. Poland, Geothermal Training Programme, The United Nations University, Reports; 2002.
– volume: 549
  start-page: 39
  year: 1987
  end-page: 46
  ident: bib57
  article-title: Characterizing temperature effects for pavement analysis and design
  publication-title: Transp Res Rec
– volume: 27
  start-page: 1125
  year: 2007
  end-page: 1131
  ident: bib76
  article-title: Modeling snow melting on heated pavement surfaces. Part II: experimental validation
  publication-title: Appl Therm Eng
– volume: 1778
  start-page: 140
  year: 2001
  end-page: 148
  ident: bib28
  article-title: Using pavement as solar collector: effect on pavement temperature and structural response
  publication-title: Transp Res Rec: J Transp Res Board
– volume: 84
  start-page: 2096
  year: 2010
  end-page: 2102
  ident: bib45
  article-title: Experimental study of slab solar collection on the hydronic system of road
  publication-title: Sol Energy
– volume: 97
  start-page: 2331
  year: 2012
  end-page: 2339
  ident: bib15
  article-title: Development of an atomistic-based chemophysical environment for modelling asphalt oxidation
  publication-title: Polym Degrad Stab
– year: 1999
  ident: bib72
  article-title: Advances in modeling of ground-source heat pump systems
– year: 2008
  ident: bib86
  article-title: Properties investigation of thermal conductive asphalt mixture
– year: 2008
  ident: 10.1016/j.rser.2015.04.029_bib86
– volume: 53
  start-page: 1
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib14
  article-title: Solar power generation by PV (photovoltaic) technology: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.057
– ident: 10.1016/j.rser.2015.04.029_bib49
– volume: 17
  start-page: 465
  year: 2005
  ident: 10.1016/j.rser.2015.04.029_bib59
  article-title: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2005)17:4(465)
– volume: 27
  start-page: 1125
  year: 2007
  ident: 10.1016/j.rser.2015.04.029_bib76
  article-title: Modeling snow melting on heated pavement surfaces. Part II: experimental validation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.07.029
– volume: 95
  start-page: 3241
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib34
  article-title: Study of ice and snow melting process on conductive asphalt solar collector
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2011.07.013
– ident: 10.1016/j.rser.2015.04.029_bib41
– ident: 10.1016/j.rser.2015.04.029_bib22
– volume: 27
  start-page: 1115
  year: 2007
  ident: 10.1016/j.rser.2015.04.029_bib75
  article-title: Modeling snow melting on heated pavement surfaces. Part I: model development
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.06.017
– ident: 10.1016/j.rser.2015.04.029_bib35
– volume: T139
  start-page: 014046
  year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib85
  article-title: Effects of conductive fillers on temperature distribution of asphalt pavements
  publication-title: Phys Scr
  doi: 10.1088/0031-8949/2010/T139/014046
– volume: 17
  start-page: 72
  year: 2005
  ident: 10.1016/j.rser.2015.04.029_bib62
  article-title: New measurement of thermal properties of superpave asphalt concrete
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2005)17:1(72)
– volume: 102
  start-page: 962
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib26
  article-title: Asphalt solar collectors: a literature review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.050
– volume: 4
  start-page: 164
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib92
  article-title: Evaluation of the potential of harvesting heat energy from asphalt pavements
  publication-title: Int J Sustain Eng
  doi: 10.1080/19397038.2010.550336
– volume: 62
  start-page: 359
  year: 1956
  ident: 10.1016/j.rser.2015.04.029_bib33
  article-title: Heat requirements of snow melting systems
  publication-title: ASHAE Trans
– ident: 10.1016/j.rser.2015.04.029_bib54
– volume: 2
  start-page: 214
  year: 2009
  ident: 10.1016/j.rser.2015.04.029_bib47
  article-title: Harvesting energy from asphalt pavements and reducing the heat island effect
  publication-title: Int J Sustain Eng
  doi: 10.1080/19397030903121950
– year: 2007
  ident: 10.1016/j.rser.2015.04.029_bib21
– ident: 10.1016/j.rser.2015.04.029_bib39
– volume: 49
  start-page: 69
  year: 2012
  ident: 10.1016/j.rser.2015.04.029_bib18
  article-title: On the thermal performance of low income housing during heat waves
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.01.023
– volume: 1778
  start-page: 140
  year: 2001
  ident: 10.1016/j.rser.2015.04.029_bib28
  article-title: Using pavement as solar collector: effect on pavement temperature and structural response
  publication-title: Transp Res Rec: J Transp Res Board
  doi: 10.3141/1778-17
– ident: 10.1016/j.rser.2015.04.029_bib50
– ident: 10.1016/j.rser.2015.04.029_bib31
– ident: 10.1016/j.rser.2015.04.029_bib46
– volume: 11
  start-page: 353
  year: 1990
  ident: 10.1016/j.rser.2015.04.029_bib63
  article-title: Thermophysical properties of ice, snow, and sea ice
  publication-title: Int J Thermophys
  doi: 10.1007/BF01133567
– volume: 78
  start-page: 61
  year: 1972
  ident: 10.1016/j.rser.2015.04.029_bib70
  article-title: An analysis of the transient temperature distribution in pavement heating installations
  publication-title: ASHRAE Trans
– ident: 10.1016/j.rser.2015.04.029_bib77
– volume: 1919
  start-page: 96
  year: 2005
  ident: 10.1016/j.rser.2015.04.029_bib60
  article-title: Predicting asphalt pavement temperature with a three-dimensional finite element method
  publication-title: Transp Res Rec: J Transp Res Board
  doi: 10.3141/1919-11
– volume: 64
  start-page: 30
  year: 2012
  ident: 10.1016/j.rser.2015.04.029_bib17
  article-title: How to make a city climate-proof, addressing the urban heat island effect
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2011.06.004
– volume: 549
  start-page: 39
  year: 1987
  ident: 10.1016/j.rser.2015.04.029_bib57
  article-title: Characterizing temperature effects for pavement analysis and design
  publication-title: Transp Res Rec
– volume: 100
  start-page: 434
  year: 1994
  ident: 10.1016/j.rser.2015.04.029_bib68
  article-title: Design of embedded snow-melting systems: part 2, heat transfer in the slab- a simplified model
  publication-title: ASHRAE Trans
– volume: 108
  start-page: 406
  year: 2002
  ident: 10.1016/j.rser.2015.04.029_bib74
  article-title: Transient analysis of snow-melting system performance
  publication-title: ASHRAE Trans
– ident: 10.1016/j.rser.2015.04.029_bib11
– volume: 46
  start-page: 38
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib83
  article-title: Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2010.06.014
– ident: 10.1016/j.rser.2015.04.029_bib36
– volume: 76
  start-page: 257
  year: 1970
  ident: 10.1016/j.rser.2015.04.029_bib71
  article-title: Heat transfer design data for optimization of snow melting systems
  publication-title: ASHRAE Trans
– volume: 2010
  start-page: 014041
  year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib81
  article-title: Numerical simulation on the thermal response of heat-conducting asphalt pavements
  publication-title: Phys Scr
  doi: 10.1088/0031-8949/2010/T139/014041
– volume: 72
  start-page: 405
  year: 2002
  ident: 10.1016/j.rser.2015.04.029_bib43
  article-title: Horizontal concrete slabs as passive solar collectors
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(02)00014-2
– ident: 10.1016/j.rser.2015.04.029_bib88
– ident: 10.1016/j.rser.2015.04.029_bib91
– volume: 27
  start-page: 258
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib9
  article-title: State-of-the-art of solar thermal power plants – a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.06.037
– volume: 26
  start-page: 224
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib20
  article-title: Using cool pavements as a mitigation strategy to fight urban heat island – a review of the actual developments
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.05.047
– ident: 10.1016/j.rser.2015.04.029_bib53
– volume: 14
  start-page: 2830
  year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib10
  article-title: The wind power of Mexico
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.07.019
– ident: 10.1016/j.rser.2015.04.029_bib32
– volume: 97
  start-page: 2331
  year: 2012
  ident: 10.1016/j.rser.2015.04.029_bib15
  article-title: Development of an atomistic-based chemophysical environment for modelling asphalt oxidation
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2012.07.032
– volume: 57
  start-page: 175
  year: 1997
  ident: 10.1016/j.rser.2015.04.029_bib8
  article-title: Harnessing hydropower: a practical guide
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(97)00033-0
– volume: 1417
  start-page: 1
  year: 1993
  ident: 10.1016/j.rser.2015.04.029_bib64
  article-title: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation
  publication-title: Transp Res Rec
– volume: 49
  start-page: 96
  year: 1952
  ident: 10.1016/j.rser.2015.04.029_bib67
  article-title: Design of snow melting systems
  publication-title: Heat Vent
– volume: 8
  start-page: 481
  year: 2001
  ident: 10.1016/j.rser.2015.04.029_bib16
  article-title: Road climate in cities: a study of the Stockholm Area, South-East Sweden
  publication-title: Meteorol Appl
  doi: 10.1017/S1350482701004091
– volume: 31
  start-page: 1582
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib82
  article-title: Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.01.028
– volume: 26
  start-page: 344
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib4
  article-title: Biomass resources and their bioenergy potential estimation: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.05.035
– year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib87
– volume: 46
  start-page: 322
  year: 2012
  ident: 10.1016/j.rser.2015.04.029_bib13
  article-title: An assessement of global energy resource economic potentials
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.018
– volume: 51
  start-page: 1210
  year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib42
  article-title: Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.12.032
– volume: 19
  start-page: 683
  year: 2007
  ident: 10.1016/j.rser.2015.04.029_bib84
  article-title: Impact of pavement thermophysical properties on surface temperatures
  publication-title: J MaterCiv Eng
– ident: 10.1016/j.rser.2015.04.029_bib37
– volume: 4
  start-page: 157
  year: 2000
  ident: 10.1016/j.rser.2015.04.029_bib1
  article-title: Renewable energy and sustainable development: a crucial review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/S1364-0321(99)00011-8
– volume: 15
  start-page: 4334
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib2
  article-title: Energy conservation and emissions reduction in China – progress and prospective
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.117
– volume: 84
  start-page: 2096
  year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib45
  article-title: Experimental study of slab solar collection on the hydronic system of road
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.09.008
– ident: 10.1016/j.rser.2015.04.029_bib56
– volume: 119
  start-page: 431
  year: 2014
  ident: 10.1016/j.rser.2015.04.029_bib27
  article-title: How to transform an asphalt concrete pavement into a solar turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.006
– year: 2005
  ident: 10.1016/j.rser.2015.04.029_bib73
– ident: 10.1016/j.rser.2015.04.029_bib79
– ident: 10.1016/j.rser.2015.04.029_bib89
– ident: 10.1016/j.rser.2015.04.029_bib52
– year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib66
– volume: 22
  start-page: 095024
  year: 2013
  ident: 10.1016/j.rser.2015.04.029_bib24
  article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/22/9/095024
– ident: 10.1016/j.rser.2015.04.029_bib25
  doi: 10.1109/ICCEP.2007.384243
– year: 2010
  ident: 10.1016/j.rser.2015.04.029_bib61
– ident: 10.1016/j.rser.2015.04.029_bib48
– volume: 15
  start-page: 3399
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib7
  article-title: Generating electricity from the oceans
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.04.032
– ident: 10.1016/j.rser.2015.04.029_bib69
– volume: 5
  start-page: 159
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib78
  article-title: Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment
  publication-title: Int J Sustain Eng
  doi: 10.1080/19397038.2011.574742
– ident: 10.1016/j.rser.2015.04.029_bib44
– volume: 29
  start-page: 573
  year: 2014
  ident: 10.1016/j.rser.2015.04.029_bib6
  article-title: The intensification technologies to water electrolysis for hydrogen production – a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.090
– volume: 32
  start-page: 912
  year: 2007
  ident: 10.1016/j.rser.2015.04.029_bib12
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
  doi: 10.1016/j.energy.2006.10.017
– year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib3
– volume: 140
  start-page: 247
  year: 2006
  ident: 10.1016/j.rser.2015.04.029_bib30
  article-title: Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.07.013
– ident: 10.1016/j.rser.2015.04.029_bib40
– ident: 10.1016/j.rser.2015.04.029_bib23
  doi: 10.1109/ICT.2006.331237
– volume: 13
  start-page: 1383
  year: 2009
  ident: 10.1016/j.rser.2015.04.029_bib5
  article-title: Review of development from GSHP to UTES in China and other countries
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.09.012
– ident: 10.1016/j.rser.2015.04.029_bib38
– volume: 24
  start-page: 32
  year: 2011
  ident: 10.1016/j.rser.2015.04.029_bib65
  article-title: Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0000357
– volume: 130
  start-page: 863
  year: 2001
  ident: 10.1016/j.rser.2015.04.029_bib29
  article-title: The chemical effects of deicing salt on soil and stream water of five catchments in Southeast Sweden
  publication-title: Water Air Soil Pollut
  doi: 10.1023/A:1013895215558
– year: 1994
  ident: 10.1016/j.rser.2015.04.029_bib58
– volume: 49
  start-page: 1538
  year: 2008
  ident: 10.1016/j.rser.2015.04.029_bib90
  article-title: Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2007.12.008
– ident: 10.1016/j.rser.2015.04.029_bib55
– volume: 78
  start-page: 209
  year: 2009
  ident: 10.1016/j.rser.2015.04.029_bib80
  article-title: A laboratory study on reduction of heat island effect of pavements
  publication-title: J Assoc Asph Paving Technol
– ident: 10.1016/j.rser.2015.04.029_bib51
– year: 1999
  ident: 10.1016/j.rser.2015.04.029_bib72
– volume: 37
  start-page: 964
  year: 2005
  ident: 10.1016/j.rser.2015.04.029_bib19
  article-title: Nocturnal heat island effect in urban residential developments of Hong Kong
  publication-title: EnergyBuild
SSID ssj0015873
Score 2.598334
SecondaryResourceType review_article
Snippet Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 624
SubjectTerms Hydronic asphalt pavement (HAP)
Renewable energy
Snow melting
Solar energy collector
Title A review on hydronic asphalt pavement for energy harvesting and snow melting
URI https://dx.doi.org/10.1016/j.rser.2015.04.029
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMGb1GVrkrbHMRxT5xB1sFvIR-smsytbRbz4t5uXtmOCePBUEvKgvOS9_JL33i8IXcBVQihjZi1NGY_KgHuRNMozkkq7gnzVbkM18v2Q90f0dszGNdStamEgrbL0_YVPd9667GmW2mxm02nzqeVzSvw2QBpinSowflIawCq_-lqlebRY6KLMMNiD0WXhTJHjtbDTDOldzNGdOpj5y-a0tuH0dtB2iRRxp_iZXVSL0z20tcYfuI8GHVyUnuB5iiefxvHcYrnMIAiOM-m4wHNscSmOXY0fnsiF49VIX7BMDV6m8w_8Fs-g4wCNetfP3b5XPo_gaZ_z3Is0NyYIEhYQqY2hQJ4nlTVKE2jClZFGh5GyiCVQkTU0ZjRJ_MinygUP7dn0ENXTeRofIZzokEh7ODQ8MVSFMoz9UFsspq0k3FQdo1alF6FL7nB4wmImqiSxVwG6FKBLQaggIHO5kskK5ow_R7NK3eLH_Avr2v-QO_mn3CnahFaRyneG6vniPT638CJXDbd-Gmij030cPMD35q4__AYAmNDX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGIAB8RRvPMCEQtPEcZKBAfFQoaULrcRm_Eh4CNKqDUIs_Cn-IHdOUoGEOiB1dXKSc_5yd7bvviPkAI8SIpkE8Kcp4zAZcieWRjlGMgkI8pXnYTXyTYc3e-z6Lrirka-qFgbTKkvbX9h0a63LkXqpzfrg6al-2_A5c30PQxoXjGrVwbqVfLzDvm10cnUOi3zoeZcX3bOmU7YWcLTPee7EmhsThmkQulIbw5B4TioAtAm1y5WRRkexAm8fqhhAGhjtpn7sM2Uv3hp4Cgp2f5aBucC2Ccef47ySRhDZa22cnYPTKyt1iqSyIeAK88kCy69q49o_vOEPD3e5RBbL0JSeFl-_TGpJtkIWfhAWrpL2KS1qXWg_o48fxhLrUjka4K07HUhLPp5TCIRpYosK6aMcWiKP7IHKzNBR1n-nr8kLDqyR3lSUtk5msn6WbBCa6siVsBs1PDVMRTJK_EhD8KdBEo_GNkmj0ovQJVk59sx4EVVW2rNAXQrUpXCZcFHmaCwzKKg6Jr4dVOoWvwAnwJdMkNv6p9w-mWt2b9qifdVpbZN5fFLkEe6QmXz4luxCbJOrPYslSu6nDd5veCMKQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+hydronic+asphalt+pavement+for+energy+harvesting+and+snow+melting&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Pan%2C+Pan&rft.au=Wu%2C+Shaopeng&rft.au=Xiao%2C+Yue&rft.au=Liu%2C+Gang&rft.date=2015-08-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=48&rft.spage=624&rft.epage=634&rft_id=info:doi/10.1016%2Fj.rser.2015.04.029&rft.externalDocID=S1364032115002993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon