A review on hydronic asphalt pavement for energy harvesting and snow melting
Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a seri...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 48; pp. 624 - 634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications. |
---|---|
AbstractList | Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications. |
Author | Liu, Gang Wu, Shaopeng Xiao, Yue Pan, Pan |
Author_xml | – sequence: 1 givenname: Pan surname: Pan fullname: Pan, Pan – sequence: 2 givenname: Shaopeng surname: Wu fullname: Wu, Shaopeng – sequence: 3 givenname: Yue surname: Xiao fullname: Xiao, Yue email: xiaoy@whut.edu.cn – sequence: 4 givenname: Gang surname: Liu fullname: Liu, Gang |
BookMark | eNp9kMtqwzAQRUVJoWnaH-hKP2B3ZNmyBd2E0BcEumnXQpbGiYIjB0kk5O9rk666yGqGYc6Fe-7JzA8eCXlikDNg4nmXh4ghL4BVOZQ5FPKGzFlTywyEhNm4c1FmwAt2R-5j3MH42NR8TtZLGvDo8EQHT7dnGwbvDNXxsNV9ogd9xD36RLshUPQYNme61eGIMTm_odpbGv1wonvsp8MDue10H_Hxby7Iz9vr9-ojW3-9f66W68xwIVImjbC2rruqBm2sLaFshG6hBFsbEK3V1jSyFayqW8mZrKyBjktetsArxhjnC1Jcck0YYgzYqUNwex3OioGafKidmnyoyYeCUo0-Rqj5BxmXdHKDT0G7_jr6ckFxLDXKCioah96gdQFNUnZw1_BfCn5-4Q |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2019_117345 crossref_primary_10_1016_j_conbuildmat_2022_130213 crossref_primary_10_2139_ssrn_4749982 crossref_primary_10_1016_j_conbuildmat_2018_05_097 crossref_primary_10_1016_j_conbuildmat_2021_124292 crossref_primary_10_1016_j_jclepro_2021_128278 crossref_primary_10_1016_j_conbuildmat_2017_09_020 crossref_primary_10_1016_j_conbuildmat_2020_118694 crossref_primary_10_3390_ma12142322 crossref_primary_10_1016_j_enconman_2019_01_035 crossref_primary_10_1016_j_conbuildmat_2017_08_102 crossref_primary_10_4028_www_scientific_net_KEM_815_188 crossref_primary_10_1016_j_applthermaleng_2019_114818 crossref_primary_10_1016_j_compositesb_2022_109867 crossref_primary_10_3390_su131810129 crossref_primary_10_1016_j_geothermics_2024_103244 crossref_primary_10_1016_j_conbuildmat_2021_123892 crossref_primary_10_3390_su11184906 crossref_primary_10_3390_atmos15040462 crossref_primary_10_1016_j_coldregions_2019_01_014 crossref_primary_10_1016_j_solener_2020_02_021 crossref_primary_10_1080_09276440_2024_2310925 crossref_primary_10_1051_matecconf_202440003007 crossref_primary_10_1155_2022_7372053 crossref_primary_10_1002_er_4350 crossref_primary_10_1039_D1GC02597J crossref_primary_10_3390_ma12233916 crossref_primary_10_1007_s13369_022_07390_4 crossref_primary_10_3390_polym14132615 crossref_primary_10_1016_j_conbuildmat_2018_12_174 crossref_primary_10_1016_j_cscm_2022_e01706 crossref_primary_10_1016_j_conbuildmat_2019_117470 crossref_primary_10_1088_1757_899X_493_1_012163 crossref_primary_10_1016_j_conbuildmat_2025_140645 crossref_primary_10_1007_s13369_022_07447_4 crossref_primary_10_1016_j_jtte_2022_12_001 crossref_primary_10_1016_j_ijthermalsci_2023_108181 crossref_primary_10_1080_10298436_2017_1408271 crossref_primary_10_1680_jemmr_16_00009 crossref_primary_10_1016_j_gete_2021_100253 crossref_primary_10_1016_j_seta_2020_100635 crossref_primary_10_1016_j_conbuildmat_2023_133790 crossref_primary_10_1016_j_trd_2023_103750 crossref_primary_10_1080_10298436_2023_2286455 crossref_primary_10_1088_1755_1315_1026_1_012040 crossref_primary_10_5301_jabfm_5000304 crossref_primary_10_1007_s41062_023_01050_8 crossref_primary_10_1016_j_conbuildmat_2024_135452 crossref_primary_10_1016_j_jclepro_2022_132158 crossref_primary_10_1016_j_coldregions_2024_104182 crossref_primary_10_1016_j_conbuildmat_2023_133433 crossref_primary_10_2478_rtuect_2022_0078 crossref_primary_10_3390_ma12244130 crossref_primary_10_1016_j_conbuildmat_2017_02_135 crossref_primary_10_1007_s10706_020_01613_x crossref_primary_10_3390_en12112078 crossref_primary_10_1007_s12205_021_2197_9 crossref_primary_10_1080_14680629_2025_2473959 crossref_primary_10_1080_01694243_2018_1462948 crossref_primary_10_1016_j_conbuildmat_2025_140556 crossref_primary_10_1061__ASCE_MT_1943_5533_0003446 crossref_primary_10_5301_jabfm_5000307 crossref_primary_10_1002_nsg_12044 crossref_primary_10_1088_1757_899X_527_1_012049 crossref_primary_10_1617_s11527_025_02595_z crossref_primary_10_1016_j_promfg_2020_03_062 crossref_primary_10_1016_j_apenergy_2022_118908 crossref_primary_10_1016_j_conbuildmat_2024_135102 crossref_primary_10_17798_bitlisfen_1024032 crossref_primary_10_3390_polym16101379 crossref_primary_10_3390_ma14092170 crossref_primary_10_1016_j_jtte_2021_02_001 crossref_primary_10_1007_s11771_020_4467_y crossref_primary_10_1016_j_conbuildmat_2017_10_068 crossref_primary_10_1016_j_jclepro_2022_131078 crossref_primary_10_3389_fmats_2020_00257 crossref_primary_10_1016_j_apenergy_2019_114388 crossref_primary_10_1016_j_gete_2021_100271 crossref_primary_10_1016_j_solmat_2020_110706 crossref_primary_10_1016_j_renene_2020_10_087 crossref_primary_10_1080_14680629_2018_1525418 crossref_primary_10_1016_j_conbuildmat_2022_129385 crossref_primary_10_1016_j_trpro_2023_11_633 crossref_primary_10_2139_ssrn_4159301 crossref_primary_10_3390_ma16020549 crossref_primary_10_1016_j_renene_2024_120711 crossref_primary_10_3390_su141710974 crossref_primary_10_1016_j_conbuildmat_2017_10_117 crossref_primary_10_1016_j_enconman_2019_03_008 crossref_primary_10_3390_ma16010175 crossref_primary_10_3390_ma12071122 crossref_primary_10_1016_j_jclepro_2025_144738 crossref_primary_10_1061__ASCE_MT_1943_5533_0002024 crossref_primary_10_3390_ma13092169 crossref_primary_10_1016_j_jclepro_2018_11_115 crossref_primary_10_1016_j_molliq_2017_05_154 crossref_primary_10_3390_pr12112603 crossref_primary_10_1016_j_coldregions_2019_102806 crossref_primary_10_3390_ma15020679 crossref_primary_10_1016_j_conbuildmat_2019_03_052 crossref_primary_10_1016_j_dibe_2023_100259 crossref_primary_10_3390_app7040397 crossref_primary_10_1016_j_est_2025_115769 crossref_primary_10_3389_fchem_2022_1073473 crossref_primary_10_1016_j_conbuildmat_2024_137587 crossref_primary_10_1007_s40996_022_00929_3 crossref_primary_10_1016_j_renene_2023_04_083 crossref_primary_10_1016_j_conbuildmat_2021_122637 crossref_primary_10_1016_j_solener_2020_04_003 crossref_primary_10_1016_j_trpro_2016_05_286 crossref_primary_10_3390_ma14040869 crossref_primary_10_1016_j_apenergy_2023_122362 crossref_primary_10_1016_j_conbuildmat_2020_118429 crossref_primary_10_1016_j_solener_2021_02_030 crossref_primary_10_1016_j_rser_2021_111712 crossref_primary_10_1016_j_conbuildmat_2023_134562 crossref_primary_10_1016_j_conbuildmat_2020_121951 crossref_primary_10_1061_JMCEE7_MTENG_15983 crossref_primary_10_1016_j_conbuildmat_2017_08_009 crossref_primary_10_3390_su15032680 crossref_primary_10_1016_j_cscm_2018_02_003 crossref_primary_10_1016_j_jclepro_2022_135586 crossref_primary_10_1186_s43065_022_00054_5 crossref_primary_10_1016_j_jclepro_2018_08_315 crossref_primary_10_1007_s42452_020_2314_2 crossref_primary_10_1016_j_conbuildmat_2019_08_044 crossref_primary_10_1016_j_csite_2024_104365 crossref_primary_10_1016_j_conbuildmat_2021_125010 crossref_primary_10_3390_en16083338 crossref_primary_10_1016_j_conbuildmat_2022_129478 crossref_primary_10_1016_j_scs_2018_05_014 crossref_primary_10_1016_j_solmat_2024_113008 crossref_primary_10_3390_en11123443 crossref_primary_10_1016_j_conbuildmat_2024_137328 crossref_primary_10_3390_ma14102585 crossref_primary_10_1016_j_apsusc_2024_161022 crossref_primary_10_1080_14680629_2024_2315080 crossref_primary_10_1016_j_conbuildmat_2017_04_034 crossref_primary_10_1016_j_conbuildmat_2019_117370 crossref_primary_10_1515_nanoph_2020_0472 crossref_primary_10_1016_j_apenergy_2020_116287 crossref_primary_10_1016_j_renene_2019_08_107 crossref_primary_10_1016_j_apenergy_2019_113808 crossref_primary_10_1520_JTE20190162 crossref_primary_10_1016_j_rser_2021_111171 crossref_primary_10_1016_j_conbuildmat_2021_124213 crossref_primary_10_1016_j_jclepro_2022_133070 crossref_primary_10_1016_j_conbuildmat_2018_03_080 crossref_primary_10_1016_j_conbuildmat_2020_118849 crossref_primary_10_1016_j_rser_2015_07_177 crossref_primary_10_1016_j_apenergy_2023_122020 crossref_primary_10_3390_ma11081392 crossref_primary_10_1061__ASCE_MT_1943_5533_0003140 crossref_primary_10_1007_s00202_024_02379_8 crossref_primary_10_1080_10298436_2021_1931198 crossref_primary_10_3390_ma12050741 crossref_primary_10_1016_j_conbuildmat_2018_02_151 crossref_primary_10_1061__ASCE_MT_1943_5533_0003266 crossref_primary_10_1061__ASCE_MT_1943_5533_0004113 crossref_primary_10_1016_j_solener_2017_10_086 crossref_primary_10_1016_j_conbuildmat_2018_11_094 crossref_primary_10_1016_j_conbuildmat_2017_12_159 crossref_primary_10_1016_j_jclepro_2020_125338 crossref_primary_10_1177_03611981241275555 crossref_primary_10_1155_2017_9595239 crossref_primary_10_1016_j_jclepro_2018_09_223 crossref_primary_10_1016_j_apenergy_2023_121067 crossref_primary_10_1016_j_conbuildmat_2017_07_037 crossref_primary_10_1007_s11356_022_22295_3 crossref_primary_10_1061__ASCE_CR_1943_5495_0000288 crossref_primary_10_3390_en13246633 crossref_primary_10_1177_03611981211004175 crossref_primary_10_1061__ASCE_MT_1943_5533_0004125 crossref_primary_10_1061__ASCE_MT_1943_5533_0002868 crossref_primary_10_1016_j_applthermaleng_2016_11_007 crossref_primary_10_1016_j_applthermaleng_2017_05_033 crossref_primary_10_1155_2019_2190627 crossref_primary_10_1155_2021_7423113 crossref_primary_10_1155_2021_4689062 crossref_primary_10_1016_j_applthermaleng_2020_116074 crossref_primary_10_1016_j_applthermaleng_2017_01_002 crossref_primary_10_1016_j_apenergy_2017_12_125 crossref_primary_10_1016_j_conbuildmat_2024_139776 crossref_primary_10_1016_j_apenergy_2020_116077 crossref_primary_10_1061__ASCE_MT_1943_5533_0004702 crossref_primary_10_1016_j_jclepro_2019_02_058 crossref_primary_10_1016_j_fuel_2020_119403 crossref_primary_10_1520_JTE20190179 crossref_primary_10_1080_19397038_2021_1924892 crossref_primary_10_3390_app8122360 crossref_primary_10_1016_j_coldregions_2021_103417 crossref_primary_10_1016_j_jclepro_2020_121197 crossref_primary_10_1016_j_renene_2021_05_063 crossref_primary_10_1016_j_conbuildmat_2022_127094 crossref_primary_10_1016_j_conbuildmat_2020_118987 crossref_primary_10_3390_ma10060574 crossref_primary_10_1016_j_conbuildmat_2020_121343 crossref_primary_10_1038_s41467_021_23634_7 crossref_primary_10_1016_j_renene_2021_06_010 crossref_primary_10_1080_14680629_2018_1564352 crossref_primary_10_1016_j_conbuildmat_2018_10_009 crossref_primary_10_1177_03611981241273118 crossref_primary_10_3390_ma13020426 crossref_primary_10_1016_j_est_2024_110737 crossref_primary_10_1016_j_conbuildmat_2022_127245 crossref_primary_10_3390_su15021166 crossref_primary_10_1155_2019_8172494 crossref_primary_10_1016_j_heliyon_2019_e02359 crossref_primary_10_1016_j_apenergy_2019_03_033 crossref_primary_10_1016_j_cscm_2022_e01639 crossref_primary_10_1016_j_jclepro_2018_01_222 crossref_primary_10_1016_j_conbuildmat_2020_119229 crossref_primary_10_3390_ma11060892 crossref_primary_10_1016_j_conbuildmat_2018_10_193 crossref_primary_10_2478_cee_2018_0013 crossref_primary_10_1016_j_jreng_2023_10_001 crossref_primary_10_1016_j_coldregions_2019_03_007 crossref_primary_10_1061__ASCE_MT_1943_5533_0003879 crossref_primary_10_3390_ma11050747 crossref_primary_10_1016_j_coldregions_2021_103231 crossref_primary_10_1016_j_apenergy_2022_119977 crossref_primary_10_1016_j_trpro_2016_05_336 crossref_primary_10_3390_ma12081201 crossref_primary_10_1016_j_conbuildmat_2020_121884 crossref_primary_10_1016_j_conbuildmat_2018_09_050 crossref_primary_10_1016_j_conbuildmat_2021_125749 crossref_primary_10_1007_s42947_022_00164_z crossref_primary_10_1016_j_applthermaleng_2021_117400 crossref_primary_10_1016_j_scitotenv_2021_150289 crossref_primary_10_1016_j_jtte_2018_08_001 crossref_primary_10_1016_j_coldregions_2017_10_006 crossref_primary_10_1016_j_conbuildmat_2023_132777 crossref_primary_10_1016_j_applthermaleng_2016_06_138 crossref_primary_10_1016_j_applthermaleng_2020_115508 crossref_primary_10_3390_ma11122488 crossref_primary_10_3390_nano13152248 crossref_primary_10_1016_j_conbuildmat_2024_138362 crossref_primary_10_1016_j_dibe_2021_100051 crossref_primary_10_3390_polym14173651 crossref_primary_10_1016_j_conbuildmat_2021_125875 crossref_primary_10_3390_app12031196 crossref_primary_10_1016_j_conbuildmat_2016_10_018 crossref_primary_10_1016_j_scs_2018_08_021 crossref_primary_10_1016_j_conbuildmat_2019_02_094 crossref_primary_10_3390_ma10030218 crossref_primary_10_1016_j_conbuildmat_2019_03_308 crossref_primary_10_1016_j_applthermaleng_2017_10_050 crossref_primary_10_1016_j_conbuildmat_2017_12_014 crossref_primary_10_1088_1757_899X_182_1_012042 crossref_primary_10_1080_19397038_2019_1688890 crossref_primary_10_1617_s11527_021_01628_7 crossref_primary_10_3390_ma11081325 crossref_primary_10_1080_14680629_2018_1447505 crossref_primary_10_3390_ma13184103 crossref_primary_10_1680_jemmr_16_00035 crossref_primary_10_1016_j_est_2024_114202 crossref_primary_10_1080_10298436_2022_2077941 crossref_primary_10_1007_s10853_023_08212_0 crossref_primary_10_1016_j_applthermaleng_2017_07_127 crossref_primary_10_1088_1757_899X_182_1_012041 crossref_primary_10_1016_j_conbuildmat_2020_118380 |
Cites_doi | 10.1016/j.energy.2013.02.057 10.1061/(ASCE)0899-1561(2005)17:4(465) 10.1016/j.applthermaleng.2006.07.029 10.1016/j.solmat.2011.07.013 10.1016/j.applthermaleng.2006.06.017 10.1088/0031-8949/2010/T139/014046 10.1061/(ASCE)0899-1561(2005)17:1(72) 10.1016/j.apenergy.2012.08.050 10.1080/19397038.2010.550336 10.1080/19397030903121950 10.1016/j.enbuild.2012.01.023 10.3141/1778-17 10.1007/BF01133567 10.3141/1919-11 10.1016/j.resconrec.2011.06.004 10.1016/j.buildenv.2010.06.014 10.1088/0031-8949/2010/T139/014041 10.1016/S0038-092X(02)00014-2 10.1016/j.rser.2013.06.037 10.1016/j.rser.2013.05.047 10.1016/j.rser.2010.07.019 10.1016/j.polymdegradstab.2012.07.032 10.1016/S0306-2619(97)00033-0 10.1017/S1350482701004091 10.1016/j.applthermaleng.2011.01.028 10.1016/j.rser.2013.05.035 10.1016/j.energy.2012.08.018 10.1016/j.enconman.2009.12.032 10.1016/S1364-0321(99)00011-8 10.1016/j.rser.2011.07.117 10.1016/j.solener.2010.09.008 10.1016/j.apenergy.2014.01.006 10.1088/0964-1726/22/9/095024 10.1109/ICCEP.2007.384243 10.1016/j.rser.2011.04.032 10.1080/19397038.2011.574742 10.1016/j.rser.2013.08.090 10.1016/j.energy.2006.10.017 10.1016/j.envpol.2005.07.013 10.1109/ICT.2006.331237 10.1016/j.rser.2008.09.012 10.1061/(ASCE)MT.1943-5533.0000357 10.1023/A:1013895215558 10.1016/j.enconman.2007.12.008 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2015.04.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
EndPage | 634 |
ExternalDocumentID | 10_1016_j_rser_2015_04_029 S1364032115002993 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-9c6dd77f570acdd40486ab040d7c06bdadc89b6157b93195dc0f3934b03511133 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Tue Jul 01 01:56:36 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Fri Feb 23 02:19:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar energy collector Renewable energy Snow melting Hydronic asphalt pavement (HAP) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-9c6dd77f570acdd40486ab040d7c06bdadc89b6157b93195dc0f3934b03511133 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_rser_2015_04_029 crossref_citationtrail_10_1016_j_rser_2015_04_029 elsevier_sciencedirect_doi_10_1016_j_rser_2015_04_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 2015-08-00 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Andriopoulou S A review on energy harvesting from roads: KTH; 2012. Eggen G, Vangsnes G. Heat pump for district cooling and heating at Oslo Airport, Gardermoen. In: Proceedings of the eighth IEA heat pump conference. Las Vegas, Nev; 2005. Xiang, Wang, Shi, Zhang (bib24) 2013; 22 Grasselli U, Schirone L, Bellucci P. Infrastructures integration of photovoltaic power. In: Proceedings of the international conference on clean electrical power, IEEE; 2007. p. 397–400. Wang, Wu, Chen, Zhang (bib81) 2010; 2010 Hasebe M, Kamikawa Y, Meiarashi S. Thermoelectric generators using solar thermal energy in heated road pavement. In: Proceedings of the 25th international conference on thermoelectrics, IEEE; 2006. p. 697–700. Rees, Spitler, Xiao (bib74) 2002; 108 Weijers, de Groot (bib21) 2007 Boyd TL. New Snow Melt Projects in Klamath Falls, OR. Industrial Uses of Geothermal Energy; 2003:12. van Vliet MRA, van Gurp CAPM, de Bondt AH, van Bijsterveld WT. Structural viablity of shallow depth hollow systems in airfield pavements. In: Proceedings of the first European airport pavement workshop. Amsterdam, Netherlands May; 2005. Ramsey JW, Hewett MJ, Kuehn TH, Petersen SD. SYMPOSIUM PAPERS-Ch-99-17-Snow Melting: System Assessment-Updated Design Guidelines for Snow Melting Systems. ASHRAE Transactions – American Society of Heating Refrigerating Airconditioning Engineers; 1999;105, p. 1055–68. Liu (bib73) 2005 Huber (bib58) 1994 Bilgen, Richard (bib43) 2002; 72 Gao, Huang, Li, Liu, Yan (bib45) 2010; 84 Wendel IL. Paving and solar energy system and method. Google Patents; 1979. Chiasson (bib72) 1999 Gustavsson, Bogren, Green (bib16) 2001; 8 Ragnarsson A. Utilization of geothermal energy in Iceland. In: Proceedings of the international geothermal conference; 2003. p. 39–45. Dincer (bib1) 2000; 4 Thompson, Dempsey, Hill, Vogel (bib57) 1987; 549 Santamouris (bib20) 2013; 26 Wang, Zhao, Chen (bib90) 2008; 49 Invisible heating system. Chen, Mallick, Bhowmick (bib80) 2009; 78 Long, Li, Wang, Jia (bib4) 2013; 26 Bobes-Jesus, Pascual-Muñoz, Castro-Fresno, Rodriguez-Hernandez (bib26) 2013; 102 Price, Probert (bib8) 1997; 57 Yuan, Kang, Yu, Hu (bib2) 2011; 15 IEA (bib3) 2011 Fukusako (bib63) 1990; 11 García, Partl (bib27) 2014; 119 Leal, Miller (bib70) 1972; 78 Sanzo, Hecnar (bib30) 2006; 140 Chen, Wu, Zhang, Wang (bib85) 2010; T139 Gao, Li, Yu, Spitler, Yan (bib5) 2009; 13 Loomans M, Oversloot H, de Bondt A, Jansen R, van Rij H. Design tool for the thermal energy potential of asphalt pavements. In: Proceedings of the eighth international IBPSA conference. Eindhoven, Netherlands; 2003. Mallick RB, Chen B-L, Bhowmick S. Reduction of urban heat island effect through harvest of heat energy from asphalt pavements. In: Proceedings of the second international conference on countermeasures to urban heat Islands effect, September Berkeley, CA; 2009. Ooms International Holding. . Wu, Chen, Zhang (bib82) 2011; 31 Lund (bib12) 2007; 32 Sakka, Santamouris, Livada, Nicol, Wilson (bib18) 2012; 49 Morita K, Tago M. Operational characteristics of the Gaia snow-melting system in Ninohe, Iwate, Japan. In: Proceedings of the world geothermal congress; 2000. p. 3511–16. Barber ES. Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin; 1957. Liu, Rees, Spitler (bib75) 2007; 27 Chapman (bib67) 1952; 49 Zwarycz K Snow melting and heating systems based on geothermal heat pumps at Goleniow airport. Poland, Geothermal Training Programme, The United Nations University, Reports; 2002. Van Bijsterveld WT, de Bondt AH. Structural aspects of asphalt pavement heating and cooling systems. In: Proceedings of the third international symposium on 3D finite element modeling, design & research. Amsterdam, The Netherlands; 2002. Chen, Wu, Wang, Zhang (bib34) 2011; 95 Kleerekoper, van Esch, Salcedo (bib17) 2012; 64 Yavuzturk, Ksaibati, Chiasson (bib59) 2005; 17 Wu S, Wang H, Chen M. Numerical simulation of melting snow on hydronically heated asphalt layer. In: Proceedings of the building and environment-science and technology conference. Nanjing, China. p. 223–228. Novotech I.. Raodway Power System: Technical Analysis for Thermal Energy Generation; 2008. Mallick, Chen, Bhowmick (bib78) 2011; 5 Mercure, Salas (bib13) 2012; 46 Chapman, Katunich (bib33) 1956; 62 Bahaj (bib7) 2011; 15 Löfgren (bib29) 2001; 130 Hall, Dehdezi, Dawson, Grenfell, Isola (bib65) 2011; 24 Liu, Rees, Spitler (bib76) 2007; 27 Giridharan, Lau, Ganesan (bib19) 2005; 37 Hazami, Kooli, Lazâar, Farhat, Belghith (bib42) 2010; 51 Alosi AC. Concrete solar collectors. Google Patents; 1979. Synnefa, Karlessi, Gaitani, Santamouris, Assimakopoulos, Papakatsikas (bib83) 2011; 46 Luca, Mrawira (bib62) 2005; 17 Siva Reddy, Kaushik, Ranjan, Tyagi (bib9) 2013; 27 Eugster WJ, Schatzmann J. Harnessing solar energy for winter road clearing on heavily loaded expressways. In: Proceedings of the new challenges for winter road service XIth international winter road congress; 2002. Wang, Wang, Gong, Guo (bib6) 2014; 29 Minsk LD Heated Bridge Technology: Report on ISTEA Sec. 6005 Program; 1999. Tongyan, Yang, Zhaoyang (bib15) 2012; 97 Solaimanian, Kennedy (bib64) 1993; 1417 Mallick, Chen, Bhowmick (bib47) 2009; 2 Zooneweg system. Chen (bib87) 2011 Sawin JL Renewables 2013 global status report; 2013. Kilkis (bib68) 1994; 100 Hernández-Escobedo, Manzano-Agugliaro, Zapata-Sierra (bib10) 2010; 14 Winnerway system. Inter-seasonal heat transfer. Li (bib86) 2008 Schnurr, Rogers (bib71) 1970; 76 Gui, Phelan, Kaloush, Golden (bib84) 2007; 19 Incropera, Lavine, DeWitt (bib66) 2011 Van Bijsterveld, Houben, Scarpas, Molenaar (bib28) 2001; 1778 Christison J, Anderson K. The response of asphalt pavements to low temperature climatic environments. In: Proceedings of the third international conference on the structural design of asphalt pavements. Grosvenor House, Park Lane, London, England, September 11–15; 1972. Mallick, Carelli, Albano, Bhowmick, Veeraragavan (bib92) 2011; 4 de Bondt A, Jansen R. Generation and Saving of Energy via Asphalt Pavement Surfaces. Ooms Avenhorm holding bv The Netherlands; 2006. Wang (bib61) 2010 Mallick RB, Chen B-L, Bhowmick S, Hulen M. Capturing solar energy from asphalt pavements. In: Proceedings of the international symposium on asphalt pavements and environment. International Society For Asphalt Pavements, Zurich, Switzerland; 2008. Singh (bib14) 2013; 53 Nixon WA Improved cutting edges for ice removal; 1993. Minhoto, Pais, Pereira, Picado-Santos (bib60) 2005; 1919 Gao (10.1016/j.rser.2015.04.029_bib45) 2010; 84 Kilkis (10.1016/j.rser.2015.04.029_bib68) 1994; 100 10.1016/j.rser.2015.04.029_bib56 Liu (10.1016/j.rser.2015.04.029_bib73) 2005 10.1016/j.rser.2015.04.029_bib11 10.1016/j.rser.2015.04.029_bib55 10.1016/j.rser.2015.04.029_bib54 10.1016/j.rser.2015.04.029_bib53 10.1016/j.rser.2015.04.029_bib52 Giridharan (10.1016/j.rser.2015.04.029_bib19) 2005; 37 10.1016/j.rser.2015.04.029_bib51 10.1016/j.rser.2015.04.029_bib50 Chapman (10.1016/j.rser.2015.04.029_bib33) 1956; 62 Minhoto (10.1016/j.rser.2015.04.029_bib60) 2005; 1919 Tongyan (10.1016/j.rser.2015.04.029_bib15) 2012; 97 Rees (10.1016/j.rser.2015.04.029_bib74) 2002; 108 Wu (10.1016/j.rser.2015.04.029_bib82) 2011; 31 Xiang (10.1016/j.rser.2015.04.029_bib24) 2013; 22 Bilgen (10.1016/j.rser.2015.04.029_bib43) 2002; 72 Hernández-Escobedo (10.1016/j.rser.2015.04.029_bib10) 2010; 14 Hall (10.1016/j.rser.2015.04.029_bib65) 2011; 24 Chapman (10.1016/j.rser.2015.04.029_bib67) 1952; 49 Chiasson (10.1016/j.rser.2015.04.029_bib72) 1999 Gui (10.1016/j.rser.2015.04.029_bib84) 2007; 19 Solaimanian (10.1016/j.rser.2015.04.029_bib64) 1993; 1417 10.1016/j.rser.2015.04.029_bib91 Bobes-Jesus (10.1016/j.rser.2015.04.029_bib26) 2013; 102 Long (10.1016/j.rser.2015.04.029_bib4) 2013; 26 Bahaj (10.1016/j.rser.2015.04.029_bib7) 2011; 15 Siva Reddy (10.1016/j.rser.2015.04.029_bib9) 2013; 27 10.1016/j.rser.2015.04.029_bib23 Chen (10.1016/j.rser.2015.04.029_bib80) 2009; 78 10.1016/j.rser.2015.04.029_bib22 Dincer (10.1016/j.rser.2015.04.029_bib1) 2000; 4 Lund (10.1016/j.rser.2015.04.029_bib12) 2007; 32 Sakka (10.1016/j.rser.2015.04.029_bib18) 2012; 49 Mallick (10.1016/j.rser.2015.04.029_bib78) 2011; 5 Wang (10.1016/j.rser.2015.04.029_bib90) 2008; 49 Chen (10.1016/j.rser.2015.04.029_bib87) 2011 Li (10.1016/j.rser.2015.04.029_bib86) 2008 Yuan (10.1016/j.rser.2015.04.029_bib2) 2011; 15 García (10.1016/j.rser.2015.04.029_bib27) 2014; 119 10.1016/j.rser.2015.04.029_bib25 Huber (10.1016/j.rser.2015.04.029_bib58) 1994 10.1016/j.rser.2015.04.029_bib69 Mallick (10.1016/j.rser.2015.04.029_bib47) 2009; 2 Van Bijsterveld (10.1016/j.rser.2015.04.029_bib28) 2001; 1778 Yavuzturk (10.1016/j.rser.2015.04.029_bib59) 2005; 17 Leal (10.1016/j.rser.2015.04.029_bib70) 1972; 78 Gustavsson (10.1016/j.rser.2015.04.029_bib16) 2001; 8 10.1016/j.rser.2015.04.029_bib35 Schnurr (10.1016/j.rser.2015.04.029_bib71) 1970; 76 10.1016/j.rser.2015.04.029_bib79 IEA (10.1016/j.rser.2015.04.029_bib3) 2011 10.1016/j.rser.2015.04.029_bib77 10.1016/j.rser.2015.04.029_bib32 10.1016/j.rser.2015.04.029_bib31 Singh (10.1016/j.rser.2015.04.029_bib14) 2013; 53 Santamouris (10.1016/j.rser.2015.04.029_bib20) 2013; 26 Synnefa (10.1016/j.rser.2015.04.029_bib83) 2011; 46 Chen (10.1016/j.rser.2015.04.029_bib34) 2011; 95 Incropera (10.1016/j.rser.2015.04.029_bib66) 2011 10.1016/j.rser.2015.04.029_bib39 Chen (10.1016/j.rser.2015.04.029_bib85) 2010; T139 10.1016/j.rser.2015.04.029_bib38 10.1016/j.rser.2015.04.029_bib37 Thompson (10.1016/j.rser.2015.04.029_bib57) 1987; 549 Liu (10.1016/j.rser.2015.04.029_bib76) 2007; 27 10.1016/j.rser.2015.04.029_bib36 Hazami (10.1016/j.rser.2015.04.029_bib42) 2010; 51 Löfgren (10.1016/j.rser.2015.04.029_bib29) 2001; 130 Fukusako (10.1016/j.rser.2015.04.029_bib63) 1990; 11 Mercure (10.1016/j.rser.2015.04.029_bib13) 2012; 46 Sanzo (10.1016/j.rser.2015.04.029_bib30) 2006; 140 10.1016/j.rser.2015.04.029_bib46 10.1016/j.rser.2015.04.029_bib89 10.1016/j.rser.2015.04.029_bib44 10.1016/j.rser.2015.04.029_bib88 Weijers (10.1016/j.rser.2015.04.029_bib21) 2007 10.1016/j.rser.2015.04.029_bib41 Wang (10.1016/j.rser.2015.04.029_bib61) 2010 10.1016/j.rser.2015.04.029_bib40 Luca (10.1016/j.rser.2015.04.029_bib62) 2005; 17 10.1016/j.rser.2015.04.029_bib49 10.1016/j.rser.2015.04.029_bib48 Gao (10.1016/j.rser.2015.04.029_bib5) 2009; 13 Wang (10.1016/j.rser.2015.04.029_bib6) 2014; 29 Liu (10.1016/j.rser.2015.04.029_bib75) 2007; 27 Kleerekoper (10.1016/j.rser.2015.04.029_bib17) 2012; 64 Price (10.1016/j.rser.2015.04.029_bib8) 1997; 57 Wang (10.1016/j.rser.2015.04.029_bib81) 2010; 2010 Mallick (10.1016/j.rser.2015.04.029_bib92) 2011; 4 |
References_xml | – volume: 49 start-page: 96 year: 1952 end-page: 102 ident: bib67 article-title: Design of snow melting systems publication-title: Heat Vent – volume: T139 start-page: 014046 year: 2010 ident: bib85 article-title: Effects of conductive fillers on temperature distribution of asphalt pavements publication-title: Phys Scr – volume: 31 start-page: 1582 year: 2011 end-page: 1587 ident: bib82 article-title: Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs publication-title: Appl Therm Eng – volume: 49 start-page: 69 year: 2012 end-page: 77 ident: bib18 article-title: On the thermal performance of low income housing during heat waves publication-title: Energy Build – volume: 24 start-page: 32 year: 2011 end-page: 47 ident: bib65 article-title: Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions publication-title: J Mater Civ Eng – reference: de Bondt A, Jansen R. Generation and Saving of Energy via Asphalt Pavement Surfaces. Ooms Avenhorm holding bv The Netherlands; 2006. – reference: Hasebe M, Kamikawa Y, Meiarashi S. Thermoelectric generators using solar thermal energy in heated road pavement. In: Proceedings of the 25th international conference on thermoelectrics, IEEE; 2006. p. 697–700. – reference: Grasselli U, Schirone L, Bellucci P. Infrastructures integration of photovoltaic power. In: Proceedings of the international conference on clean electrical power, IEEE; 2007. p. 397–400. – volume: 72 start-page: 405 year: 2002 end-page: 413 ident: bib43 article-title: Horizontal concrete slabs as passive solar collectors publication-title: Sol Energy – reference: Ooms International Holding. – reference: Alosi AC. Concrete solar collectors. Google Patents; 1979. – year: 2011 ident: bib3 article-title: World energy outlook 2011 – reference: Ragnarsson A. Utilization of geothermal energy in Iceland. In: Proceedings of the international geothermal conference; 2003. p. 39–45. – volume: 13 start-page: 1383 year: 2009 end-page: 1394 ident: bib5 article-title: Review of development from GSHP to UTES in China and other countries publication-title: Renew Sustain Energy Rev – reference: Andriopoulou S A review on energy harvesting from roads: KTH; 2012. – volume: 46 start-page: 38 year: 2011 end-page: 44 ident: bib83 article-title: Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate publication-title: Build Environ – volume: 15 start-page: 3399 year: 2011 end-page: 3416 ident: bib7 article-title: Generating electricity from the oceans publication-title: Renew Sustain Energy Rev – reference: Christison J, Anderson K. The response of asphalt pavements to low temperature climatic environments. In: Proceedings of the third international conference on the structural design of asphalt pavements. Grosvenor House, Park Lane, London, England, September 11–15; 1972. – volume: 32 start-page: 912 year: 2007 end-page: 919 ident: bib12 article-title: Renewable energy strategies for sustainable development publication-title: Energy – volume: 119 start-page: 431 year: 2014 end-page: 437 ident: bib27 article-title: How to transform an asphalt concrete pavement into a solar turbine publication-title: Appl Energy – reference: Novotech I.. Raodway Power System: Technical Analysis for Thermal Energy Generation; 2008. – reference: Mallick RB, Chen B-L, Bhowmick S. Reduction of urban heat island effect through harvest of heat energy from asphalt pavements. In: Proceedings of the second international conference on countermeasures to urban heat Islands effect, September Berkeley, CA; 2009. – volume: 17 start-page: 465 year: 2005 end-page: 475 ident: bib59 article-title: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach publication-title: J Mater Civ Eng – volume: 108 start-page: 406 year: 2002 end-page: 423 ident: bib74 article-title: Transient analysis of snow-melting system performance publication-title: ASHRAE Trans – volume: 62 start-page: 359 year: 1956 ident: bib33 article-title: Heat requirements of snow melting systems publication-title: ASHAE Trans – volume: 29 start-page: 573 year: 2014 end-page: 588 ident: bib6 article-title: The intensification technologies to water electrolysis for hydrogen production – a review publication-title: Renew Sustain Energy Rev – volume: 78 start-page: 61 year: 1972 end-page: 66 ident: bib70 article-title: An analysis of the transient temperature distribution in pavement heating installations publication-title: ASHRAE Trans – volume: 64 start-page: 30 year: 2012 end-page: 38 ident: bib17 article-title: How to make a city climate-proof, addressing the urban heat island effect publication-title: Resour Conserv Recycl – volume: 102 start-page: 962 year: 2013 end-page: 970 ident: bib26 article-title: Asphalt solar collectors: a literature review publication-title: Appl Energy – year: 1994 ident: bib58 publication-title: Weather database for the SUPERPAVE (trademark) mix design system, SHRP-A-648A – volume: 78 start-page: 209 year: 2009 end-page: 248 ident: bib80 article-title: A laboratory study on reduction of heat island effect of pavements publication-title: J Assoc Asph Paving Technol – volume: 49 start-page: 1538 year: 2008 end-page: 1546 ident: bib90 article-title: Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water publication-title: Energy Convers Manag – reference: Mallick RB, Chen B-L, Bhowmick S, Hulen M. Capturing solar energy from asphalt pavements. In: Proceedings of the international symposium on asphalt pavements and environment. International Society For Asphalt Pavements, Zurich, Switzerland; 2008. – reference: Van Bijsterveld WT, de Bondt AH. Structural aspects of asphalt pavement heating and cooling systems. In: Proceedings of the third international symposium on 3D finite element modeling, design & research. Amsterdam, The Netherlands; 2002. – volume: 95 start-page: 3241 year: 2011 end-page: 3250 ident: bib34 article-title: Study of ice and snow melting process on conductive asphalt solar collector publication-title: Sol Energy Mater Sol Cells – reference: Sawin JL Renewables 2013 global status report; 2013. – reference: Invisible heating system. – year: 2005 ident: bib73 article-title: Development and experimental validation of simulation of hydronic snow melting systems for bridges – volume: 14 start-page: 2830 year: 2010 end-page: 2840 ident: bib10 article-title: The wind power of Mexico publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 481 year: 2001 end-page: 489 ident: bib16 article-title: Road climate in cities: a study of the Stockholm Area, South-East Sweden publication-title: Meteorol Appl – year: 2011 ident: bib87 article-title: Research on snow melting and solar energy collection for thermal conductive asphalt pavement – volume: 76 start-page: 257 year: 1970 end-page: 263 ident: bib71 article-title: Heat transfer design data for optimization of snow melting systems publication-title: ASHRAE Trans – volume: 17 start-page: 72 year: 2005 end-page: 79 ident: bib62 article-title: New measurement of thermal properties of superpave asphalt concrete publication-title: J Mater Civ Eng – volume: 140 start-page: 247 year: 2006 end-page: 256 ident: bib30 article-title: Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica) publication-title: Environ Pollut – volume: 46 start-page: 322 year: 2012 end-page: 336 ident: bib13 article-title: An assessement of global energy resource economic potentials publication-title: Energy – volume: 100 start-page: 434 year: 1994 end-page: 441 ident: bib68 article-title: Design of embedded snow-melting systems: part 2, heat transfer in the slab- a simplified model publication-title: ASHRAE Trans – volume: 26 start-page: 224 year: 2013 end-page: 240 ident: bib20 article-title: Using cool pavements as a mitigation strategy to fight urban heat island – a review of the actual developments publication-title: Renew Sustain Energy Rev – reference: Winnerway system. – volume: 57 start-page: 175 year: 1997 end-page: 251 ident: bib8 article-title: Harnessing hydropower: a practical guide publication-title: Appl Energy – reference: Ramsey JW, Hewett MJ, Kuehn TH, Petersen SD. SYMPOSIUM PAPERS-Ch-99-17-Snow Melting: System Assessment-Updated Design Guidelines for Snow Melting Systems. ASHRAE Transactions – American Society of Heating Refrigerating Airconditioning Engineers; 1999;105, p. 1055–68. – volume: 5 start-page: 159 year: 2011 end-page: 169 ident: bib78 article-title: Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment publication-title: Int J Sustain Eng – volume: 26 start-page: 344 year: 2013 end-page: 352 ident: bib4 article-title: Biomass resources and their bioenergy potential estimation: a review publication-title: Renew Sustain Energy Rev – reference: van Vliet MRA, van Gurp CAPM, de Bondt AH, van Bijsterveld WT. Structural viablity of shallow depth hollow systems in airfield pavements. In: Proceedings of the first European airport pavement workshop. Amsterdam, Netherlands May; 2005. – reference: Eggen G, Vangsnes G. Heat pump for district cooling and heating at Oslo Airport, Gardermoen. In: Proceedings of the eighth IEA heat pump conference. Las Vegas, Nev; 2005. – volume: 53 start-page: 1 year: 2013 end-page: 13 ident: bib14 article-title: Solar power generation by PV (photovoltaic) technology: a review publication-title: Energy – reference: Zooneweg system. – year: 2010 ident: bib61 article-title: Analysis on optimization design and viscoelastic response of conductive asphalt pavement using snowmelt – volume: 2010 start-page: 014041 year: 2010 ident: bib81 article-title: Numerical simulation on the thermal response of heat-conducting asphalt pavements publication-title: Phys Scr – reference: Minsk LD Heated Bridge Technology: Report on ISTEA Sec. 6005 Program; 1999. – reference: Barber ES. Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin; 1957. – volume: 19 start-page: 683 year: 2007 end-page: 690 ident: bib84 article-title: Impact of pavement thermophysical properties on surface temperatures publication-title: J MaterCiv Eng – volume: 1919 start-page: 96 year: 2005 end-page: 110 ident: bib60 article-title: Predicting asphalt pavement temperature with a three-dimensional finite element method publication-title: Transp Res Rec: J Transp Res Board – volume: 27 start-page: 1115 year: 2007 end-page: 1124 ident: bib75 article-title: Modeling snow melting on heated pavement surfaces. Part I: model development publication-title: Appl Therm Eng – reference: Nixon WA Improved cutting edges for ice removal; 1993. – volume: 37 start-page: 964 year: 2005 end-page: 971 ident: bib19 article-title: Nocturnal heat island effect in urban residential developments of Hong Kong publication-title: EnergyBuild – reference: Boyd TL. New Snow Melt Projects in Klamath Falls, OR. Industrial Uses of Geothermal Energy; 2003:12. – volume: 2 start-page: 214 year: 2009 end-page: 228 ident: bib47 article-title: Harvesting energy from asphalt pavements and reducing the heat island effect publication-title: Int J Sustain Eng – volume: 1417 start-page: 1 year: 1993 end-page: 11 ident: bib64 article-title: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation publication-title: Transp Res Rec – volume: 130 start-page: 863 year: 2001 end-page: 868 ident: bib29 article-title: The chemical effects of deicing salt on soil and stream water of five catchments in Southeast Sweden publication-title: Water Air Soil Pollut – reference: Morita K, Tago M. Operational characteristics of the Gaia snow-melting system in Ninohe, Iwate, Japan. In: Proceedings of the world geothermal congress; 2000. p. 3511–16. – reference: Loomans M, Oversloot H, de Bondt A, Jansen R, van Rij H. Design tool for the thermal energy potential of asphalt pavements. In: Proceedings of the eighth international IBPSA conference. Eindhoven, Netherlands; 2003. – volume: 22 start-page: 095024 year: 2013 ident: bib24 article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements publication-title: Smart Mater Struct – volume: 51 start-page: 1210 year: 2010 end-page: 1218 ident: bib42 article-title: Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix publication-title: Energy Convers Manag – volume: 4 start-page: 164 year: 2011 end-page: 171 ident: bib92 article-title: Evaluation of the potential of harvesting heat energy from asphalt pavements publication-title: Int J Sustain Eng – volume: 27 start-page: 258 year: 2013 end-page: 273 ident: bib9 article-title: State-of-the-art of solar thermal power plants – a review publication-title: Renew Sustain Energy Rev – volume: 4 start-page: 157 year: 2000 end-page: 175 ident: bib1 article-title: Renewable energy and sustainable development: a crucial review publication-title: Renew Sustain Energy Rev – reference: Inter-seasonal heat transfer. – reference: Wu S, Wang H, Chen M. Numerical simulation of melting snow on hydronically heated asphalt layer. In: Proceedings of the building and environment-science and technology conference. Nanjing, China. p. 223–228. – year: 2011 ident: bib66 article-title: Fundamentals of heat and mass transfer – volume: 15 start-page: 4334 year: 2011 end-page: 4347 ident: bib2 article-title: Energy conservation and emissions reduction in China – progress and prospective publication-title: Renew Sustain Energy Rev – reference: . – reference: Eugster WJ, Schatzmann J. Harnessing solar energy for winter road clearing on heavily loaded expressways. In: Proceedings of the new challenges for winter road service XIth international winter road congress; 2002. – volume: 11 start-page: 353 year: 1990 end-page: 372 ident: bib63 article-title: Thermophysical properties of ice, snow, and sea ice publication-title: Int J Thermophys – reference: Wendel IL. Paving and solar energy system and method. Google Patents; 1979. – year: 2007 ident: bib21 article-title: Energiewinning uit weginfrastructuur – reference: Zwarycz K Snow melting and heating systems based on geothermal heat pumps at Goleniow airport. Poland, Geothermal Training Programme, The United Nations University, Reports; 2002. – volume: 549 start-page: 39 year: 1987 end-page: 46 ident: bib57 article-title: Characterizing temperature effects for pavement analysis and design publication-title: Transp Res Rec – volume: 27 start-page: 1125 year: 2007 end-page: 1131 ident: bib76 article-title: Modeling snow melting on heated pavement surfaces. Part II: experimental validation publication-title: Appl Therm Eng – volume: 1778 start-page: 140 year: 2001 end-page: 148 ident: bib28 article-title: Using pavement as solar collector: effect on pavement temperature and structural response publication-title: Transp Res Rec: J Transp Res Board – volume: 84 start-page: 2096 year: 2010 end-page: 2102 ident: bib45 article-title: Experimental study of slab solar collection on the hydronic system of road publication-title: Sol Energy – volume: 97 start-page: 2331 year: 2012 end-page: 2339 ident: bib15 article-title: Development of an atomistic-based chemophysical environment for modelling asphalt oxidation publication-title: Polym Degrad Stab – year: 1999 ident: bib72 article-title: Advances in modeling of ground-source heat pump systems – year: 2008 ident: bib86 article-title: Properties investigation of thermal conductive asphalt mixture – year: 2008 ident: 10.1016/j.rser.2015.04.029_bib86 – volume: 53 start-page: 1 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib14 article-title: Solar power generation by PV (photovoltaic) technology: a review publication-title: Energy doi: 10.1016/j.energy.2013.02.057 – ident: 10.1016/j.rser.2015.04.029_bib49 – volume: 17 start-page: 465 year: 2005 ident: 10.1016/j.rser.2015.04.029_bib59 article-title: Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2005)17:4(465) – volume: 27 start-page: 1125 year: 2007 ident: 10.1016/j.rser.2015.04.029_bib76 article-title: Modeling snow melting on heated pavement surfaces. Part II: experimental validation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.07.029 – volume: 95 start-page: 3241 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib34 article-title: Study of ice and snow melting process on conductive asphalt solar collector publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2011.07.013 – ident: 10.1016/j.rser.2015.04.029_bib41 – ident: 10.1016/j.rser.2015.04.029_bib22 – volume: 27 start-page: 1115 year: 2007 ident: 10.1016/j.rser.2015.04.029_bib75 article-title: Modeling snow melting on heated pavement surfaces. Part I: model development publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.06.017 – ident: 10.1016/j.rser.2015.04.029_bib35 – volume: T139 start-page: 014046 year: 2010 ident: 10.1016/j.rser.2015.04.029_bib85 article-title: Effects of conductive fillers on temperature distribution of asphalt pavements publication-title: Phys Scr doi: 10.1088/0031-8949/2010/T139/014046 – volume: 17 start-page: 72 year: 2005 ident: 10.1016/j.rser.2015.04.029_bib62 article-title: New measurement of thermal properties of superpave asphalt concrete publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2005)17:1(72) – volume: 102 start-page: 962 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib26 article-title: Asphalt solar collectors: a literature review publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.050 – volume: 4 start-page: 164 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib92 article-title: Evaluation of the potential of harvesting heat energy from asphalt pavements publication-title: Int J Sustain Eng doi: 10.1080/19397038.2010.550336 – volume: 62 start-page: 359 year: 1956 ident: 10.1016/j.rser.2015.04.029_bib33 article-title: Heat requirements of snow melting systems publication-title: ASHAE Trans – ident: 10.1016/j.rser.2015.04.029_bib54 – volume: 2 start-page: 214 year: 2009 ident: 10.1016/j.rser.2015.04.029_bib47 article-title: Harvesting energy from asphalt pavements and reducing the heat island effect publication-title: Int J Sustain Eng doi: 10.1080/19397030903121950 – year: 2007 ident: 10.1016/j.rser.2015.04.029_bib21 – ident: 10.1016/j.rser.2015.04.029_bib39 – volume: 49 start-page: 69 year: 2012 ident: 10.1016/j.rser.2015.04.029_bib18 article-title: On the thermal performance of low income housing during heat waves publication-title: Energy Build doi: 10.1016/j.enbuild.2012.01.023 – volume: 1778 start-page: 140 year: 2001 ident: 10.1016/j.rser.2015.04.029_bib28 article-title: Using pavement as solar collector: effect on pavement temperature and structural response publication-title: Transp Res Rec: J Transp Res Board doi: 10.3141/1778-17 – ident: 10.1016/j.rser.2015.04.029_bib50 – ident: 10.1016/j.rser.2015.04.029_bib31 – ident: 10.1016/j.rser.2015.04.029_bib46 – volume: 11 start-page: 353 year: 1990 ident: 10.1016/j.rser.2015.04.029_bib63 article-title: Thermophysical properties of ice, snow, and sea ice publication-title: Int J Thermophys doi: 10.1007/BF01133567 – volume: 78 start-page: 61 year: 1972 ident: 10.1016/j.rser.2015.04.029_bib70 article-title: An analysis of the transient temperature distribution in pavement heating installations publication-title: ASHRAE Trans – ident: 10.1016/j.rser.2015.04.029_bib77 – volume: 1919 start-page: 96 year: 2005 ident: 10.1016/j.rser.2015.04.029_bib60 article-title: Predicting asphalt pavement temperature with a three-dimensional finite element method publication-title: Transp Res Rec: J Transp Res Board doi: 10.3141/1919-11 – volume: 64 start-page: 30 year: 2012 ident: 10.1016/j.rser.2015.04.029_bib17 article-title: How to make a city climate-proof, addressing the urban heat island effect publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2011.06.004 – volume: 549 start-page: 39 year: 1987 ident: 10.1016/j.rser.2015.04.029_bib57 article-title: Characterizing temperature effects for pavement analysis and design publication-title: Transp Res Rec – volume: 100 start-page: 434 year: 1994 ident: 10.1016/j.rser.2015.04.029_bib68 article-title: Design of embedded snow-melting systems: part 2, heat transfer in the slab- a simplified model publication-title: ASHRAE Trans – volume: 108 start-page: 406 year: 2002 ident: 10.1016/j.rser.2015.04.029_bib74 article-title: Transient analysis of snow-melting system performance publication-title: ASHRAE Trans – ident: 10.1016/j.rser.2015.04.029_bib11 – volume: 46 start-page: 38 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib83 article-title: Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate publication-title: Build Environ doi: 10.1016/j.buildenv.2010.06.014 – ident: 10.1016/j.rser.2015.04.029_bib36 – volume: 76 start-page: 257 year: 1970 ident: 10.1016/j.rser.2015.04.029_bib71 article-title: Heat transfer design data for optimization of snow melting systems publication-title: ASHRAE Trans – volume: 2010 start-page: 014041 year: 2010 ident: 10.1016/j.rser.2015.04.029_bib81 article-title: Numerical simulation on the thermal response of heat-conducting asphalt pavements publication-title: Phys Scr doi: 10.1088/0031-8949/2010/T139/014041 – volume: 72 start-page: 405 year: 2002 ident: 10.1016/j.rser.2015.04.029_bib43 article-title: Horizontal concrete slabs as passive solar collectors publication-title: Sol Energy doi: 10.1016/S0038-092X(02)00014-2 – ident: 10.1016/j.rser.2015.04.029_bib88 – ident: 10.1016/j.rser.2015.04.029_bib91 – volume: 27 start-page: 258 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib9 article-title: State-of-the-art of solar thermal power plants – a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.06.037 – volume: 26 start-page: 224 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib20 article-title: Using cool pavements as a mitigation strategy to fight urban heat island – a review of the actual developments publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.05.047 – ident: 10.1016/j.rser.2015.04.029_bib53 – volume: 14 start-page: 2830 year: 2010 ident: 10.1016/j.rser.2015.04.029_bib10 article-title: The wind power of Mexico publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.07.019 – ident: 10.1016/j.rser.2015.04.029_bib32 – volume: 97 start-page: 2331 year: 2012 ident: 10.1016/j.rser.2015.04.029_bib15 article-title: Development of an atomistic-based chemophysical environment for modelling asphalt oxidation publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2012.07.032 – volume: 57 start-page: 175 year: 1997 ident: 10.1016/j.rser.2015.04.029_bib8 article-title: Harnessing hydropower: a practical guide publication-title: Appl Energy doi: 10.1016/S0306-2619(97)00033-0 – volume: 1417 start-page: 1 year: 1993 ident: 10.1016/j.rser.2015.04.029_bib64 article-title: Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation publication-title: Transp Res Rec – volume: 49 start-page: 96 year: 1952 ident: 10.1016/j.rser.2015.04.029_bib67 article-title: Design of snow melting systems publication-title: Heat Vent – volume: 8 start-page: 481 year: 2001 ident: 10.1016/j.rser.2015.04.029_bib16 article-title: Road climate in cities: a study of the Stockholm Area, South-East Sweden publication-title: Meteorol Appl doi: 10.1017/S1350482701004091 – volume: 31 start-page: 1582 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib82 article-title: Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.01.028 – volume: 26 start-page: 344 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib4 article-title: Biomass resources and their bioenergy potential estimation: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.05.035 – year: 2011 ident: 10.1016/j.rser.2015.04.029_bib87 – volume: 46 start-page: 322 year: 2012 ident: 10.1016/j.rser.2015.04.029_bib13 article-title: An assessement of global energy resource economic potentials publication-title: Energy doi: 10.1016/j.energy.2012.08.018 – volume: 51 start-page: 1210 year: 2010 ident: 10.1016/j.rser.2015.04.029_bib42 article-title: Energetic and exergetic performances of an economical and available integrated solar storage collector based on concrete matrix publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.12.032 – volume: 19 start-page: 683 year: 2007 ident: 10.1016/j.rser.2015.04.029_bib84 article-title: Impact of pavement thermophysical properties on surface temperatures publication-title: J MaterCiv Eng – ident: 10.1016/j.rser.2015.04.029_bib37 – volume: 4 start-page: 157 year: 2000 ident: 10.1016/j.rser.2015.04.029_bib1 article-title: Renewable energy and sustainable development: a crucial review publication-title: Renew Sustain Energy Rev doi: 10.1016/S1364-0321(99)00011-8 – volume: 15 start-page: 4334 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib2 article-title: Energy conservation and emissions reduction in China – progress and prospective publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.117 – volume: 84 start-page: 2096 year: 2010 ident: 10.1016/j.rser.2015.04.029_bib45 article-title: Experimental study of slab solar collection on the hydronic system of road publication-title: Sol Energy doi: 10.1016/j.solener.2010.09.008 – ident: 10.1016/j.rser.2015.04.029_bib56 – volume: 119 start-page: 431 year: 2014 ident: 10.1016/j.rser.2015.04.029_bib27 article-title: How to transform an asphalt concrete pavement into a solar turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.006 – year: 2005 ident: 10.1016/j.rser.2015.04.029_bib73 – ident: 10.1016/j.rser.2015.04.029_bib79 – ident: 10.1016/j.rser.2015.04.029_bib89 – ident: 10.1016/j.rser.2015.04.029_bib52 – year: 2011 ident: 10.1016/j.rser.2015.04.029_bib66 – volume: 22 start-page: 095024 year: 2013 ident: 10.1016/j.rser.2015.04.029_bib24 article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements publication-title: Smart Mater Struct doi: 10.1088/0964-1726/22/9/095024 – ident: 10.1016/j.rser.2015.04.029_bib25 doi: 10.1109/ICCEP.2007.384243 – year: 2010 ident: 10.1016/j.rser.2015.04.029_bib61 – ident: 10.1016/j.rser.2015.04.029_bib48 – volume: 15 start-page: 3399 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib7 article-title: Generating electricity from the oceans publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.04.032 – ident: 10.1016/j.rser.2015.04.029_bib69 – volume: 5 start-page: 159 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib78 article-title: Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment publication-title: Int J Sustain Eng doi: 10.1080/19397038.2011.574742 – ident: 10.1016/j.rser.2015.04.029_bib44 – volume: 29 start-page: 573 year: 2014 ident: 10.1016/j.rser.2015.04.029_bib6 article-title: The intensification technologies to water electrolysis for hydrogen production – a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.090 – volume: 32 start-page: 912 year: 2007 ident: 10.1016/j.rser.2015.04.029_bib12 article-title: Renewable energy strategies for sustainable development publication-title: Energy doi: 10.1016/j.energy.2006.10.017 – year: 2011 ident: 10.1016/j.rser.2015.04.029_bib3 – volume: 140 start-page: 247 year: 2006 ident: 10.1016/j.rser.2015.04.029_bib30 article-title: Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica) publication-title: Environ Pollut doi: 10.1016/j.envpol.2005.07.013 – ident: 10.1016/j.rser.2015.04.029_bib40 – ident: 10.1016/j.rser.2015.04.029_bib23 doi: 10.1109/ICT.2006.331237 – volume: 13 start-page: 1383 year: 2009 ident: 10.1016/j.rser.2015.04.029_bib5 article-title: Review of development from GSHP to UTES in China and other countries publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.09.012 – ident: 10.1016/j.rser.2015.04.029_bib38 – volume: 24 start-page: 32 year: 2011 ident: 10.1016/j.rser.2015.04.029_bib65 article-title: Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0000357 – volume: 130 start-page: 863 year: 2001 ident: 10.1016/j.rser.2015.04.029_bib29 article-title: The chemical effects of deicing salt on soil and stream water of five catchments in Southeast Sweden publication-title: Water Air Soil Pollut doi: 10.1023/A:1013895215558 – year: 1994 ident: 10.1016/j.rser.2015.04.029_bib58 – volume: 49 start-page: 1538 year: 2008 ident: 10.1016/j.rser.2015.04.029_bib90 article-title: Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2007.12.008 – ident: 10.1016/j.rser.2015.04.029_bib55 – volume: 78 start-page: 209 year: 2009 ident: 10.1016/j.rser.2015.04.029_bib80 article-title: A laboratory study on reduction of heat island effect of pavements publication-title: J Assoc Asph Paving Technol – ident: 10.1016/j.rser.2015.04.029_bib51 – year: 1999 ident: 10.1016/j.rser.2015.04.029_bib72 – volume: 37 start-page: 964 year: 2005 ident: 10.1016/j.rser.2015.04.029_bib19 article-title: Nocturnal heat island effect in urban residential developments of Hong Kong publication-title: EnergyBuild |
SSID | ssj0015873 |
Score | 2.598334 |
SecondaryResourceType | review_article |
Snippet | Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 624 |
SubjectTerms | Hydronic asphalt pavement (HAP) Renewable energy Snow melting Solar energy collector |
Title | A review on hydronic asphalt pavement for energy harvesting and snow melting |
URI | https://dx.doi.org/10.1016/j.rser.2015.04.029 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMGb1GVrkrbHMRxT5xB1sFvIR-smsytbRbz4t5uXtmOCePBUEvKgvOS9_JL33i8IXcBVQihjZi1NGY_KgHuRNMozkkq7gnzVbkM18v2Q90f0dszGNdStamEgrbL0_YVPd9667GmW2mxm02nzqeVzSvw2QBpinSowflIawCq_-lqlebRY6KLMMNiD0WXhTJHjtbDTDOldzNGdOpj5y-a0tuH0dtB2iRRxp_iZXVSL0z20tcYfuI8GHVyUnuB5iiefxvHcYrnMIAiOM-m4wHNscSmOXY0fnsiF49VIX7BMDV6m8w_8Fs-g4wCNetfP3b5XPo_gaZ_z3Is0NyYIEhYQqY2hQJ4nlTVKE2jClZFGh5GyiCVQkTU0ZjRJ_MinygUP7dn0ENXTeRofIZzokEh7ODQ8MVSFMoz9UFsspq0k3FQdo1alF6FL7nB4wmImqiSxVwG6FKBLQaggIHO5kskK5ow_R7NK3eLH_Avr2v-QO_mn3CnahFaRyneG6vniPT638CJXDbd-Gmij030cPMD35q4__AYAmNDX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGIAB8RRvPMCEQtPEcZKBAfFQoaULrcRm_Eh4CNKqDUIs_Cn-IHdOUoGEOiB1dXKSc_5yd7bvviPkAI8SIpkE8Kcp4zAZcieWRjlGMgkI8pXnYTXyTYc3e-z6Lrirka-qFgbTKkvbX9h0a63LkXqpzfrg6al-2_A5c30PQxoXjGrVwbqVfLzDvm10cnUOi3zoeZcX3bOmU7YWcLTPee7EmhsThmkQulIbw5B4TioAtAm1y5WRRkexAm8fqhhAGhjtpn7sM2Uv3hp4Cgp2f5aBucC2Ccef47ySRhDZa22cnYPTKyt1iqSyIeAK88kCy69q49o_vOEPD3e5RBbL0JSeFl-_TGpJtkIWfhAWrpL2KS1qXWg_o48fxhLrUjka4K07HUhLPp5TCIRpYosK6aMcWiKP7IHKzNBR1n-nr8kLDqyR3lSUtk5msn6WbBCa6siVsBs1PDVMRTJK_EhD8KdBEo_GNkmj0ovQJVk59sx4EVVW2rNAXQrUpXCZcFHmaCwzKKg6Jr4dVOoWvwAnwJdMkNv6p9w-mWt2b9qifdVpbZN5fFLkEe6QmXz4luxCbJOrPYslSu6nDd5veCMKQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+hydronic+asphalt+pavement+for+energy+harvesting+and+snow+melting&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Pan%2C+Pan&rft.au=Wu%2C+Shaopeng&rft.au=Xiao%2C+Yue&rft.au=Liu%2C+Gang&rft.date=2015-08-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=48&rft.spage=624&rft.epage=634&rft_id=info:doi/10.1016%2Fj.rser.2015.04.029&rft.externalDocID=S1364032115002993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |