Unveiling the Unobservable: Causal Inference on Multiple Derived Outcomes

In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchic...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 119; no. 547; pp. 2178 - 2189
Main Authors Qiu, Yumou, Sun, Jiarui, Zhou, Xiao-Hua
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.07.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method. Supplementary materials for this article are available online.
AbstractList In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method. Supplementary materials for this article are available online.
In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method. Supplementary materials for this article are available online.
Author Qiu, Yumou
Zhou, Xiao-Hua
Sun, Jiarui
Author_xml – sequence: 1
  givenname: Yumou
  orcidid: 0000-0003-4846-1263
  surname: Qiu
  fullname: Qiu, Yumou
  organization: School of Mathematical Sciences and Center for Statistical Science, Peking University
– sequence: 2
  givenname: Jiarui
  surname: Sun
  fullname: Sun, Jiarui
  organization: School of Mathematical Sciences, Peking University
– sequence: 3
  givenname: Xiao-Hua
  orcidid: 0000-0001-7935-1222
  surname: Zhou
  fullname: Zhou, Xiao-Hua
  organization: Beijing International Center for Mathematical Research and Department of Biostatistics, Peking University
BookMark eNp9kEtPwzAQhC1UJNrCT0CKxIVLih91HpxA5VWpqJdW4mY5zhpSuXaxk6L-exJSLhzYy16-mdmdERpYZwGhS4InBGf4BpOEkinPJxRTNqGUU8L4CRoSztKYptO3ARp2TNxBZ2gUwga3k2bZEM3Xdg-Vqex7VH9AtLauCOD3sjBwG81kE6SJ5laDB6sgcjZ6bUxd7QxED-CrPZTRsqmV20I4R6damgAXxz1Gq6fH1ewlXiyf57P7RaxYktRxXlAgaU50e5HOeJIxKFIJST7VqsBFyUuVa6o54JJMC0xLDbyUmjFFacJzNkbXve3Ou88GQi22VVBgjLTgmiBY93XWRvEWvfqDblzjbXtcS2HOs6Q35D2lvAvBgxY7X22lPwiCRdev-O1XdP2KY7-t7q7XVVY7v5VfzptS1PJgnNdeWlX9xPxn8Q1ttoLf
Cites_doi 10.1016/j.neuron.2007.10.038
10.1093/biomet/70.1.41
10.1214/aos/1176344064
10.1093/biostatistics/kxy076
10.1192/bjo.2019.102
10.1002/9781118900772.etrds0160
10.3389/fnhum.2014.00349
10.1198/016214506000000339
10.1093/biomet/asp033
10.1198/jasa.2009.0126
10.3982/QE1744
10.1111/1468-0262.00442
10.1214/14-AOS1221
10.1037/h0037350
10.1016/j.neuroimage.2005.12.057
10.1111/j.1541-0420.2005.00377.x
10.1002/brb3.878
10.1111/j.2517-6161.1996.tb02080.x
10.2202/1544-6115.1042
10.1214/009053606000000281
10.1214/009053604000000283
10.1017/CBO9781139025751
10.1002/sim.6607
10.1080/01621459.2014.999157
10.1111/1467-9868.00144
10.1093/aje/kwq439
10.2202/1544-6115.1041
10.1038/s41598-020-60702-2
10.1093/scan/nsw027
10.1038/s41467-022-31053-5
10.1214/13-AOS1161
10.1016/j.neuron.2013.06.027
10.1111/j.2517-6161.1995.tb02031.x
10.1080/01621459.2021.1917417
ContentType Journal Article
Copyright 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023
– notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2023.2252135
DatabaseName Taylor & Francis Open Access
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 2189
ExternalDocumentID 10_1080_01621459_2023_2252135
2252135
Genre Method
GrantInformation_xml – fundername: Novo Nordisk A/S
– fundername: National Natural Science Foundation of China
  grantid: 12026606
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0901400
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
0YH
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
8BJ
FQK
JBE
K9.
TASJS
7S9
AMVHM
L.6
ID FETCH-LOGICAL-c366t-9b2e1791f016f85683eb7ae694fcb0bd5dc9f2f5e0d14b02dfe5daf33c226593
IEDL.DBID 0YH
ISSN 0162-1459
1537-274X
IngestDate Fri Jul 11 00:37:43 EDT 2025
Mon Aug 04 12:40:41 EDT 2025
Tue Jul 01 02:39:35 EDT 2025
Wed Dec 25 09:06:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 547
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-9b2e1791f016f85683eb7ae694fcb0bd5dc9f2f5e0d14b02dfe5daf33c226593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4846-1263
0000-0001-7935-1222
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2252135
PQID 3105586659
PQPubID 41715
PageCount 12
ParticipantIDs crossref_primary_10_1080_01621459_2023_2252135
proquest_journals_3105586659
informaworld_taylorfrancis_310_1080_01621459_2023_2252135
proquest_miscellaneous_3153783665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-02
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
Craddock C. (e_1_3_4_14_1) 2013; 7
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_3_1
  doi: 10.1016/j.neuron.2007.10.038
– ident: e_1_3_4_29_1
  doi: 10.1093/biomet/70.1.41
– ident: e_1_3_4_31_1
  doi: 10.1214/aos/1176344064
– ident: e_1_3_4_27_1
  doi: 10.1093/biostatistics/kxy076
– ident: e_1_3_4_32_1
  doi: 10.1192/bjo.2019.102
– ident: e_1_3_4_15_1
  doi: 10.1002/9781118900772.etrds0160
– ident: e_1_3_4_21_1
  doi: 10.3389/fnhum.2014.00349
– ident: e_1_3_4_18_1
  doi: 10.1198/016214506000000339
– ident: e_1_3_4_12_1
  doi: 10.1093/biomet/asp033
– ident: e_1_3_4_26_1
  doi: 10.1198/jasa.2009.0126
– ident: e_1_3_4_9_1
  doi: 10.3982/QE1744
– ident: e_1_3_4_19_1
  doi: 10.1111/1468-0262.00442
– ident: e_1_3_4_34_1
  doi: 10.1214/14-AOS1221
– ident: e_1_3_4_30_1
  doi: 10.1037/h0037350
– volume: 7
  start-page: 27
  year: 2013
  ident: e_1_3_4_14_1
  article-title: “The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives,”
  publication-title: Frontiers in Neuroinformatics
– ident: e_1_3_4_23_1
  doi: 10.1016/j.neuroimage.2005.12.057
– ident: e_1_3_4_5_1
  doi: 10.1111/j.1541-0420.2005.00377.x
– ident: e_1_3_4_7_1
  doi: 10.1002/brb3.878
– ident: e_1_3_4_33_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_4_36_1
  doi: 10.2202/1544-6115.1042
– ident: e_1_3_4_24_1
  doi: 10.1214/009053606000000281
– ident: e_1_3_4_17_1
  doi: 10.1214/009053604000000283
– ident: e_1_3_4_20_1
  doi: 10.1017/CBO9781139025751
– ident: e_1_3_4_4_1
  doi: 10.1002/sim.6607
– ident: e_1_3_4_11_1
  doi: 10.1080/01621459.2014.999157
– ident: e_1_3_4_10_1
  doi: 10.1111/1467-9868.00144
– ident: e_1_3_4_16_1
  doi: 10.1093/aje/kwq439
– ident: e_1_3_4_35_1
  doi: 10.2202/1544-6115.1041
– ident: e_1_3_4_22_1
  doi: 10.1038/s41598-020-60702-2
– ident: e_1_3_4_2_1
  doi: 10.1093/scan/nsw027
– ident: e_1_3_4_8_1
  doi: 10.1038/s41467-022-31053-5
– ident: e_1_3_4_13_1
  doi: 10.1214/13-AOS1161
– ident: e_1_3_4_25_1
  doi: 10.1016/j.neuron.2013.06.027
– ident: e_1_3_4_6_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_4_28_1
  doi: 10.1080/01621459.2021.1917417
SSID ssj0000788
Score 2.4526265
Snippet In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2178
SubjectTerms Autism
brain
Brain functional connectivity
case studies
Causal inference
Correlation
drug therapy
Drugs
fMRI data
Functional connectivity
Functional magnetic resonance imaging
High dimensionality
Inference
Multiple testing procedure
Parameter estimation
Parameter identification
Propensity
Statistics
Weighting
Title Unveiling the Unobservable: Causal Inference on Multiple Derived Outcomes
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2252135
https://www.proquest.com/docview/3105586659
https://www.proquest.com/docview/3153783665
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L7uInzidEsFrZ9t8rPEm07EJm5cN9FSSJgFBOrHt_n5f0lYdIh68FEr70vbl5eWX9L3fQ-iKikwmCZHBUEWOVJvwQEaaBBTcJaBZJZkv2jeb88mSPjyxNpqwaMIq3Rra1kQR3le7wS1V0UbEXQNKcfzaLs0kJgMwyDgibBvtxM5awaTD58mXMx760pNOJHAybRLPb81sTE8b5KU_nLWfgcZ7aLeBjvi27ut9tGXyA9R1aLEmWz5E02W-Ni8uwRwDrsPLfKX8pqt6NTd4JKsCxKdthh9e5XjWhBPiOzDEtdH4sSpBF6Y4Qovx_WI0CZpaCUFGOC8DoWLjmEYtfJVNGE-IUUNpuKA2U6HSTGfCxpaZUEdUhbG2hmlpCckAfzFBjlEnX-XmBGEKUz50nOHWCgqrjSSxGlq3ABx5nBHRQ4NWQ-lbzYiRRi3RaKPS1Kk0bVTaQ-K7HtPSb0XYum5ISv6Q7bdKT5vB5UUYczx98C6Xn5dhWLh_HTI3q8rdw4hLUOHs9B-PP0NdOKU-PDfuo075XplzACGluvBmBkcSzj8AllnQog
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG58HPTi27i6ak28ggulhXozq2ZX3fWym3gjFNrEaMC44MFf70wBnzEePJcpQzudfi0z3xByHMg0iSKWOKHykFSbCSfxMuYE4C4BzaqE26J9o7EYTIOrO373KRcGwyrxDG1qogjrq3Fx42V0GxJ3AjAFCbYxz8RnLlik7zE-Txa5FCFWMWC98Yc3Dm3tSRRxUKbN4vmtmy_70xf20h_e2m5Bl6skbZWvI08e3KpUbvr6jdfxf1-3RlYahErPapNaJ3M63yDLCEprTudNMpzmL_oe89gpwEc6zQtl73bVoz6l_aSagfiwTSSkRU5HTdQiPQd7f9EZva1KUErPtsjk8mLSHzhNSQYnZUKUjlS-RkJTA0qaiIuIaRUmWsjApKqnMp6l0viG617mBarnZ0bzLDGMpQDzuGTbZCEvcr1DaADIAuxDC2NkAIeaKDIZ9G4Anwo_ZbJD3HYe4qeaeCP2Wj7TZoRiHKG4GaEOkZ9nKy7tjYepy5PE7A_Zbju1cbOGrQjnSAcIuhy9N8Pqw18qSa6LCp_hDPNgBN_9x-sPydJgMrqJb4bj6z2yDE2BjQj2u2ShfK70PuCeUh1Yw34DGnrzPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SIgLb8RgQJC4dqxNk7Xc0GDagA0Om8StappEQqB2Yi0Hfj122vIU4rBz6tRNHOdLan8m5NQPkzgIWOx0pIuk2kw4sauY44O7BDQrY26L9g1Hoj_xrx94HU04q8Iq8QxtSqII66txcU-VqSPizgClIL82ppl4rAUG6bmML5JlgeThmMXRHn06444tPYkiDsrUSTx_dfNte_pGXvrLWdsdqLdOZK17GXjy1Cpy2UreftA6zvVxG2Stwqf0ojSoTbKg0y2yipC0ZHTeJoNJ-qofMYudAnikkzST9mZXPutz2o2LGYgP6jRCmqV0WMUs0kuw9let6F2Rg056tkPGvatxt-9UBRmchAmRO6H0NNKZGlDSBFwETMtOrEXom0S2peIqCY1nuG4r15dtTxnNVWwYSwDk8ZDtkqU0S_UeoT7gCrAOLYwJfTjSBIFR0LsBdCq8hIUN0qqnIZqWtBuRW7OZViMU4QhF1Qg1SPh1sqLc3neYsjhJxP6RbdYzG1Ur2IpwjmSAoMvJRzOsPfyhEqc6K_AZzjALRvD9OV5_TFbuL3vR7WB0c0BWocW34cBekyzlL4U-BNCTyyNr1u8cGPHj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+Unobservable%3A+Causal+Inference+on+Multiple+Derived+Outcomes&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Qiu%2C+Yumou&rft.au=Sun%2C+Jiarui&rft.au=Zhou%2C+Xiao-Hua&rft.date=2024-07-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=119&rft.issue=547&rft.spage=2178&rft.epage=2189&rft_id=info:doi/10.1080%2F01621459.2023.2252135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2023_2252135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon