Unveiling the Unobservable: Causal Inference on Multiple Derived Outcomes
In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchic...
Saved in:
Published in | Journal of the American Statistical Association Vol. 119; no. 547; pp. 2178 - 2189 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.07.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method.
Supplementary materials
for this article are available online. In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can be estimated based on data from each subject. In this article, we propose a general framework for conducting causal inference in a hierarchical data generation setting. The identifiability of causal parameters of interest is shown under a condition on the biasedness of subject level estimates and an ignorability condition on the treatment assignment. Estimation of the treatment effects is constructed by inverse propensity score weighting on the estimated subject level parameters. A multiple testing procedure able to control the false discovery proportion is proposed to identify the nonzero treatment effects. Theoretical results are developed to investigate the proposed procedure, and numerical simulations are carried out to evaluate its empirical performance. A case study of medication effects on brain functional connectivity of patients with Autism spectrum disorder (ASD) using fMRI data is conducted to demonstrate the utility of the proposed method. Supplementary materials for this article are available online. |
Author | Qiu, Yumou Zhou, Xiao-Hua Sun, Jiarui |
Author_xml | – sequence: 1 givenname: Yumou orcidid: 0000-0003-4846-1263 surname: Qiu fullname: Qiu, Yumou organization: School of Mathematical Sciences and Center for Statistical Science, Peking University – sequence: 2 givenname: Jiarui surname: Sun fullname: Sun, Jiarui organization: School of Mathematical Sciences, Peking University – sequence: 3 givenname: Xiao-Hua orcidid: 0000-0001-7935-1222 surname: Zhou fullname: Zhou, Xiao-Hua organization: Beijing International Center for Mathematical Research and Department of Biostatistics, Peking University |
BookMark | eNp9kEtPwzAQhC1UJNrCT0CKxIVLih91HpxA5VWpqJdW4mY5zhpSuXaxk6L-exJSLhzYy16-mdmdERpYZwGhS4InBGf4BpOEkinPJxRTNqGUU8L4CRoSztKYptO3ARp2TNxBZ2gUwga3k2bZEM3Xdg-Vqex7VH9AtLauCOD3sjBwG81kE6SJ5laDB6sgcjZ6bUxd7QxED-CrPZTRsqmV20I4R6damgAXxz1Gq6fH1ewlXiyf57P7RaxYktRxXlAgaU50e5HOeJIxKFIJST7VqsBFyUuVa6o54JJMC0xLDbyUmjFFacJzNkbXve3Ou88GQi22VVBgjLTgmiBY93XWRvEWvfqDblzjbXtcS2HOs6Q35D2lvAvBgxY7X22lPwiCRdev-O1XdP2KY7-t7q7XVVY7v5VfzptS1PJgnNdeWlX9xPxn8Q1ttoLf |
Cites_doi | 10.1016/j.neuron.2007.10.038 10.1093/biomet/70.1.41 10.1214/aos/1176344064 10.1093/biostatistics/kxy076 10.1192/bjo.2019.102 10.1002/9781118900772.etrds0160 10.3389/fnhum.2014.00349 10.1198/016214506000000339 10.1093/biomet/asp033 10.1198/jasa.2009.0126 10.3982/QE1744 10.1111/1468-0262.00442 10.1214/14-AOS1221 10.1037/h0037350 10.1016/j.neuroimage.2005.12.057 10.1111/j.1541-0420.2005.00377.x 10.1002/brb3.878 10.1111/j.2517-6161.1996.tb02080.x 10.2202/1544-6115.1042 10.1214/009053606000000281 10.1214/009053604000000283 10.1017/CBO9781139025751 10.1002/sim.6607 10.1080/01621459.2014.999157 10.1111/1467-9868.00144 10.1093/aje/kwq439 10.2202/1544-6115.1041 10.1038/s41598-020-60702-2 10.1093/scan/nsw027 10.1038/s41467-022-31053-5 10.1214/13-AOS1161 10.1016/j.neuron.2013.06.027 10.1111/j.2517-6161.1995.tb02031.x 10.1080/01621459.2021.1917417 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2023.2252135 |
DatabaseName | Taylor & Francis Open Access CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 2189 |
ExternalDocumentID | 10_1080_01621459_2023_2252135 2252135 |
Genre | Method |
GrantInformation_xml | – fundername: Novo Nordisk A/S – fundername: National Natural Science Foundation of China grantid: 12026606 – fundername: National Key Research and Development Program of China grantid: 2021YFF0901400 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 0YH 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 8BJ FQK JBE K9. TASJS 7S9 AMVHM L.6 |
ID | FETCH-LOGICAL-c366t-9b2e1791f016f85683eb7ae694fcb0bd5dc9f2f5e0d14b02dfe5daf33c226593 |
IEDL.DBID | 0YH |
ISSN | 0162-1459 1537-274X |
IngestDate | Fri Jul 11 00:37:43 EDT 2025 Mon Aug 04 12:40:41 EDT 2025 Tue Jul 01 02:39:35 EDT 2025 Wed Dec 25 09:06:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 547 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-9b2e1791f016f85683eb7ae694fcb0bd5dc9f2f5e0d14b02dfe5daf33c226593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4846-1263 0000-0001-7935-1222 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2252135 |
PQID | 3105586659 |
PQPubID | 41715 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_01621459_2023_2252135 proquest_journals_3105586659 informaworld_taylorfrancis_310_1080_01621459_2023_2252135 proquest_miscellaneous_3153783665 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-02 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 Craddock C. (e_1_3_4_14_1) 2013; 7 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_3_1 doi: 10.1016/j.neuron.2007.10.038 – ident: e_1_3_4_29_1 doi: 10.1093/biomet/70.1.41 – ident: e_1_3_4_31_1 doi: 10.1214/aos/1176344064 – ident: e_1_3_4_27_1 doi: 10.1093/biostatistics/kxy076 – ident: e_1_3_4_32_1 doi: 10.1192/bjo.2019.102 – ident: e_1_3_4_15_1 doi: 10.1002/9781118900772.etrds0160 – ident: e_1_3_4_21_1 doi: 10.3389/fnhum.2014.00349 – ident: e_1_3_4_18_1 doi: 10.1198/016214506000000339 – ident: e_1_3_4_12_1 doi: 10.1093/biomet/asp033 – ident: e_1_3_4_26_1 doi: 10.1198/jasa.2009.0126 – ident: e_1_3_4_9_1 doi: 10.3982/QE1744 – ident: e_1_3_4_19_1 doi: 10.1111/1468-0262.00442 – ident: e_1_3_4_34_1 doi: 10.1214/14-AOS1221 – ident: e_1_3_4_30_1 doi: 10.1037/h0037350 – volume: 7 start-page: 27 year: 2013 ident: e_1_3_4_14_1 article-title: “The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives,” publication-title: Frontiers in Neuroinformatics – ident: e_1_3_4_23_1 doi: 10.1016/j.neuroimage.2005.12.057 – ident: e_1_3_4_5_1 doi: 10.1111/j.1541-0420.2005.00377.x – ident: e_1_3_4_7_1 doi: 10.1002/brb3.878 – ident: e_1_3_4_33_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_4_36_1 doi: 10.2202/1544-6115.1042 – ident: e_1_3_4_24_1 doi: 10.1214/009053606000000281 – ident: e_1_3_4_17_1 doi: 10.1214/009053604000000283 – ident: e_1_3_4_20_1 doi: 10.1017/CBO9781139025751 – ident: e_1_3_4_4_1 doi: 10.1002/sim.6607 – ident: e_1_3_4_11_1 doi: 10.1080/01621459.2014.999157 – ident: e_1_3_4_10_1 doi: 10.1111/1467-9868.00144 – ident: e_1_3_4_16_1 doi: 10.1093/aje/kwq439 – ident: e_1_3_4_35_1 doi: 10.2202/1544-6115.1041 – ident: e_1_3_4_22_1 doi: 10.1038/s41598-020-60702-2 – ident: e_1_3_4_2_1 doi: 10.1093/scan/nsw027 – ident: e_1_3_4_8_1 doi: 10.1038/s41467-022-31053-5 – ident: e_1_3_4_13_1 doi: 10.1214/13-AOS1161 – ident: e_1_3_4_25_1 doi: 10.1016/j.neuron.2013.06.027 – ident: e_1_3_4_6_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_4_28_1 doi: 10.1080/01621459.2021.1917417 |
SSID | ssj0000788 |
Score | 2.4526265 |
Snippet | In many applications, the interest is in treatment effects on random quantities of subjects, where those random quantities are not directly observable but can... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2178 |
SubjectTerms | Autism brain Brain functional connectivity case studies Causal inference Correlation drug therapy Drugs fMRI data Functional connectivity Functional magnetic resonance imaging High dimensionality Inference Multiple testing procedure Parameter estimation Parameter identification Propensity Statistics Weighting |
Title | Unveiling the Unobservable: Causal Inference on Multiple Derived Outcomes |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2252135 https://www.proquest.com/docview/3105586659 https://www.proquest.com/docview/3153783665 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L7uInzidEsFrZ9t8rPEm07EJm5cN9FSSJgFBOrHt_n5f0lYdIh68FEr70vbl5eWX9L3fQ-iKikwmCZHBUEWOVJvwQEaaBBTcJaBZJZkv2jeb88mSPjyxNpqwaMIq3Rra1kQR3le7wS1V0UbEXQNKcfzaLs0kJgMwyDgibBvtxM5awaTD58mXMx760pNOJHAybRLPb81sTE8b5KU_nLWfgcZ7aLeBjvi27ut9tGXyA9R1aLEmWz5E02W-Ni8uwRwDrsPLfKX8pqt6NTd4JKsCxKdthh9e5XjWhBPiOzDEtdH4sSpBF6Y4Qovx_WI0CZpaCUFGOC8DoWLjmEYtfJVNGE-IUUNpuKA2U6HSTGfCxpaZUEdUhbG2hmlpCckAfzFBjlEnX-XmBGEKUz50nOHWCgqrjSSxGlq3ABx5nBHRQ4NWQ-lbzYiRRi3RaKPS1Kk0bVTaQ-K7HtPSb0XYum5ISv6Q7bdKT5vB5UUYczx98C6Xn5dhWLh_HTI3q8rdw4hLUOHs9B-PP0NdOKU-PDfuo075XplzACGluvBmBkcSzj8AllnQog |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG58HPTi27i6ak28ggulhXozq2ZX3fWym3gjFNrEaMC44MFf70wBnzEePJcpQzudfi0z3xByHMg0iSKWOKHykFSbCSfxMuYE4C4BzaqE26J9o7EYTIOrO373KRcGwyrxDG1qogjrq3Fx42V0GxJ3AjAFCbYxz8RnLlik7zE-Txa5FCFWMWC98Yc3Dm3tSRRxUKbN4vmtmy_70xf20h_e2m5Bl6skbZWvI08e3KpUbvr6jdfxf1-3RlYahErPapNaJ3M63yDLCEprTudNMpzmL_oe89gpwEc6zQtl73bVoz6l_aSagfiwTSSkRU5HTdQiPQd7f9EZva1KUErPtsjk8mLSHzhNSQYnZUKUjlS-RkJTA0qaiIuIaRUmWsjApKqnMp6l0viG617mBarnZ0bzLDGMpQDzuGTbZCEvcr1DaADIAuxDC2NkAIeaKDIZ9G4Anwo_ZbJD3HYe4qeaeCP2Wj7TZoRiHKG4GaEOkZ9nKy7tjYepy5PE7A_Zbju1cbOGrQjnSAcIuhy9N8Pqw18qSa6LCp_hDPNgBN_9x-sPydJgMrqJb4bj6z2yDE2BjQj2u2ShfK70PuCeUh1Yw34DGnrzPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SIgLb8RgQJC4dqxNk7Xc0GDagA0Om8StappEQqB2Yi0Hfj122vIU4rBz6tRNHOdLan8m5NQPkzgIWOx0pIuk2kw4sauY44O7BDQrY26L9g1Hoj_xrx94HU04q8Iq8QxtSqII66txcU-VqSPizgClIL82ppl4rAUG6bmML5JlgeThmMXRHn06444tPYkiDsrUSTx_dfNte_pGXvrLWdsdqLdOZK17GXjy1Cpy2UreftA6zvVxG2Stwqf0ojSoTbKg0y2yipC0ZHTeJoNJ-qofMYudAnikkzST9mZXPutz2o2LGYgP6jRCmqV0WMUs0kuw9let6F2Rg056tkPGvatxt-9UBRmchAmRO6H0NNKZGlDSBFwETMtOrEXom0S2peIqCY1nuG4r15dtTxnNVWwYSwDk8ZDtkqU0S_UeoT7gCrAOLYwJfTjSBIFR0LsBdCq8hIUN0qqnIZqWtBuRW7OZViMU4QhF1Qg1SPh1sqLc3neYsjhJxP6RbdYzG1Ur2IpwjmSAoMvJRzOsPfyhEqc6K_AZzjALRvD9OV5_TFbuL3vR7WB0c0BWocW34cBekyzlL4U-BNCTyyNr1u8cGPHj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+Unobservable%3A+Causal+Inference+on+Multiple+Derived+Outcomes&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Qiu%2C+Yumou&rft.au=Sun%2C+Jiarui&rft.au=Zhou%2C+Xiao-Hua&rft.date=2024-07-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=119&rft.issue=547&rft.spage=2178&rft.epage=2189&rft_id=info:doi/10.1080%2F01621459.2023.2252135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2023_2252135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |