Simple synthesis of rice husk hollow carbon-coated flower ZnO for the anode in a high performance lithium-ion battery
In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the ano...
Saved in:
Published in | The Journal of physics and chemistry of solids Vol. 145; p. 109540 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the anode in lithium-ion batteries and it exhibited excellent electrochemical performance and cycling stability due to its special microstructure. In the ZnO/RHC composite, the sheet structure comprising zinc oxide was coated on the biomass carbon layer of the hollow spherical structure to form numerous conductive networks, thereby improving the electrochemical properties of the ZnO/RHC. The composite provided a reversible specific capacity of 1002.5 mA h g−1 after 160 cycles at 0.2C, which is higher than the theoretical specific capacity of zinc oxide (978 mA h g−1). This material may facilitate the efficient and simple preparation of high performance lithium-ion battery anode materials.
A simple hydrothermal method was used to prepare flower-like zinc oxide, which was further combined with biomass hollow carbon derived from rice husk under hydrothermal conditions to obtain ZnO/RHC composite material. When the ZnO/RHC composite was used as anode for lithium-ion batterie, it has exhibited excellent electrochemical performance and cycling stability due to its special micro-structure. [Display omitted]
•Simple hydrothermal method used to prepare flower-like zinc oxide.•Flower-like ZnO combined with rice husk-derived hollow carbon to obtain ZnO/RHC.•ZnO/RHC obtained good electrochemical performance as anode in lithium-ion battery. |
---|---|
AbstractList | In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the anode in lithium-ion batteries and it exhibited excellent electrochemical performance and cycling stability due to its special microstructure. In the ZnO/RHC composite, the sheet structure comprising zinc oxide was coated on the biomass carbon layer of the hollow spherical structure to form numerous conductive networks, thereby improving the electrochemical properties of the ZnO/RHC. The composite provided a reversible specific capacity of 1002.5 mA h g−1 after 160 cycles at 0.2C, which is higher than the theoretical specific capacity of zinc oxide (978 mA h g−1). This material may facilitate the efficient and simple preparation of high performance lithium-ion battery anode materials.
A simple hydrothermal method was used to prepare flower-like zinc oxide, which was further combined with biomass hollow carbon derived from rice husk under hydrothermal conditions to obtain ZnO/RHC composite material. When the ZnO/RHC composite was used as anode for lithium-ion batterie, it has exhibited excellent electrochemical performance and cycling stability due to its special micro-structure. [Display omitted]
•Simple hydrothermal method used to prepare flower-like zinc oxide.•Flower-like ZnO combined with rice husk-derived hollow carbon to obtain ZnO/RHC.•ZnO/RHC obtained good electrochemical performance as anode in lithium-ion battery. |
ArticleNumber | 109540 |
Author | Huang, Yan Li, Yi Wang, Xiaofeng Liu, Weiping Liang, Ce Yu, Kaifeng |
Author_xml | – sequence: 1 givenname: Yi surname: Li fullname: Li, Yi organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China – sequence: 2 givenname: Yan surname: Huang fullname: Huang, Yan organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China – sequence: 3 givenname: Xiaofeng surname: Wang fullname: Wang, Xiaofeng organization: The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, China – sequence: 4 givenname: Weiping surname: Liu fullname: Liu, Weiping organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130025, China – sequence: 5 givenname: Kaifeng surname: Yu fullname: Yu, Kaifeng email: yukf@jlu.edu.cn organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China – sequence: 6 givenname: Ce surname: Liang fullname: Liang, Ce email: liangce@jlu.edu.cn organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China |
BookMark | eNp9kMtOwzAQRS0EEm3hB1j5B1LsvCOxQRUvqVIXwIaNNbEnxCGxI9sF9e9JVFYsuhrpjs7VzFmSc2MNEnLD2Zoznt92626Ufh2zeA6qLGVnZMHLooriLEvOyYKxOI6SvCouydL7jjGW8YovyP5VD2OP1B9MaNFrT21DnZZI273_oq3te_tDJbjamkhaCKhoM0Xo6IfZ0cY6OnEUjFVItaFAW_3Z0hHdtBrATEW9Dq3eD5G2htYQArrDFblooPd4_TdX5P3x4W3zHG13Ty-b-20kkzwPUQWpKuu6ZHWalIopWaVcMQ5p0eQFNnGMStVNIgFUnRcFVJCXmGZJzaBKZMaSFYmPvdJZ7x02YnR6AHcQnIlZnOjELE7M4sRR3ASV_yCpA4Tp_OBA96fRuyOK01PfGp3wUuMkQWmHMghl9Sn8F_AUjhc |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_163148 crossref_primary_10_1021_acsami_1c09798 crossref_primary_10_1088_1361_6528_ac08bb crossref_primary_10_1007_s13399_021_02089_2 crossref_primary_10_1002_gch2_202300112 crossref_primary_10_1016_j_rser_2024_114973 crossref_primary_10_1007_s11581_024_05655_6 crossref_primary_10_1002_asia_202001358 crossref_primary_10_1016_j_cej_2024_157787 crossref_primary_10_1039_D3GC04332K crossref_primary_10_1115_1_4051420 crossref_primary_10_1016_j_electacta_2023_141904 crossref_primary_10_1021_acs_energyfuels_4c03971 crossref_primary_10_1016_j_jcis_2022_04_103 crossref_primary_10_1021_acs_energyfuels_1c01269 crossref_primary_10_1007_s41742_023_00512_2 crossref_primary_10_1002_adfm_202208349 crossref_primary_10_1016_j_mseb_2022_115656 crossref_primary_10_1002_smll_202306712 crossref_primary_10_3390_nano12020215 |
Cites_doi | 10.1016/j.jallcom.2017.11.125 10.1039/c1ce06163a 10.1021/am401779p 10.1016/j.jallcom.2016.10.110 10.1021/am400020n 10.1016/j.cej.2015.02.077 10.1016/j.jpowsour.2018.03.047 10.1016/j.jallcom.2017.06.099 10.1016/j.electacta.2008.11.019 10.1021/am5027055 10.1021/jp900427c 10.1149/1.2400609 10.1016/j.jallcom.2011.06.114 10.1016/j.electacta.2010.05.017 10.1016/j.electacta.2014.10.131 10.1016/j.jallcom.2013.06.147 10.1002/adma.201405222 10.1021/acsami.6b13113 10.1021/cm900395k 10.1016/j.electacta.2015.11.045 10.1016/j.jpowsour.2015.06.135 10.1016/j.matlet.2014.02.012 10.1016/j.materresbull.2018.01.052 10.1016/j.electacta.2014.02.003 10.1016/j.matlet.2014.02.021 10.1039/C4NR02576H 10.1016/j.carbon.2016.11.039 10.1016/j.jallcom.2018.01.191 10.1016/j.jpowsour.2015.03.124 10.1016/j.jssc.2012.06.032 10.1016/j.electacta.2016.12.187 10.1002/ente.201700397 10.1016/j.apsusc.2019.04.081 10.1016/j.apsusc.2017.08.229 10.1021/am505352p |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpcs.2020.109540 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1879-2553 |
ExternalDocumentID | 10_1016_j_jpcs_2020_109540 S0022369719320943 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 3O- 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K TN5 TWZ UQL WH7 WUQ XOL XPP XSW YQT YYP ZCG ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c366t-9a4d8bb80b438d0dc941d01a47f67ef22eddbf3caadb677a9a68e453b0a93c503 |
IEDL.DBID | .~1 |
ISSN | 0022-3697 |
IngestDate | Thu Apr 24 23:12:31 EDT 2025 Tue Jul 01 02:39:58 EDT 2025 Fri Feb 23 02:47:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anode material Composite Flower zinc oxide Biomass carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-9a4d8bb80b438d0dc941d01a47f67ef22eddbf3caadb677a9a68e453b0a93c503 |
ParticipantIDs | crossref_primary_10_1016_j_jpcs_2020_109540 crossref_citationtrail_10_1016_j_jpcs_2020_109540 elsevier_sciencedirect_doi_10_1016_j_jpcs_2020_109540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | The Journal of physics and chemistry of solids |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shen, Mu, Chen, Wu, Wu (bib1) 2013; 5 Liu, Zhang, Xing, Wang, Lin, Wei, Lei (bib23) 2014; 150 Yang, Cui, Lin, Han, Chen, Zhu, Li, Yang, Zhu, Xu (bib5) 2019; 484 Ling, Li, Wen (bib38) 2018; 427 Liu, Li, Ding, Jiang, Hu, Ji, Chi, Zhu, Huang (bib34) 2009; 113 Xiao, Zhang, Wang, Xing, Lin, Wei, Wang (bib22) 2016; 189 Wang, Xing, Xu, Zhang (bib40) 2014; 6 Zhou, Zhang, Liu, Peng, Li (bib24) 2015; 285 Mao, Wang, Wu, Xie, Ma, Chen (bib4) 2018; 6 Huang, Guo, Wu, Zhang (bib26) 2014; 22 Wang, Pan, Cheng, Zhao, Yin (bib12) 2009; 54 Li, Yue, Chen (bib36) 2019; 784 Liu, Li, Ding, Jiang, Hu, Ji, Chi, Zhu, Huang (bib13) 2009; 113 Wang, Pan, Cheng, Zhao, Yin (bib19) 2009; 549 Wu, Qin, Pan (bib29) 2011; 509 Song, Chen, Wu, Fu, Zhou, Chen, Wang (bib28) 2017; 694 Ning, Xie, Zhao, Liu, Tian, Wang, Wu (bib33) 2017; 722 Wang, Guo, Cui, Ma, Cao (bib14) 2018; 101 Zhang, Wu, Chen, Liu, Zhang, Zheng (bib8) 2012; 14 Peng, Liu, Liu, Li, Wu, Wu (bib3) 2015; 271 Li, Yang, Xu, Huang, Yang, Xiao, Ren, Shen, Han (bib39) 2013; 577 Pan, Qin, Liu, Wang (bib32) 2010; 55 Liu, Shi, Li, Yu, Zhang, Ullah, Yang, Li, Zhu, Xu (bib9) 2018; 387 Tu, Yang, Song, Wang (bib11) 2017; 9 Ning, Xie, Zhao, Liu, Tian, Wang, Wu (bib27) 2017; 722 Xiao, Zhang, Wang, Xing, Lin, Wei, Wang (bib6) 2016; 189 Zhang, Tu, Yuan, Huang, Chen, Mao (bib18) 2007; 154 Ahmad, Shi, Sun, Shen, Zhu (bib30) 2012; 196 Yu, Li, Qi, Liang (bib20) 2017; 2 Xie, Lin, Ma, Zeng, Yang, Huang, Wang, Peng (bib10) 2017; 226 Ramu, Anbarasan, Ramesh, Aravindan, Ponnusamy, Muthamizhchelvan, Yaakob (bib21) 2014; 122 Xie, Ma, Zeng, Zhang, Wang, Yue, Peng (bib31) 2014; 6 Teng, Mo, Yuan, Xue, Zhao (bib15) 2018; 744 Jayaraman, Reddy, Suresh Kumar, Mani, Damian, Ramakrishna, Chowdari (bib25) 2013; 5 Kose, Karaal, Akbulut (bib7) 2015; 295 Yang, Liu, Huang, Liu, Bian, Ling, Liu, Wang, Zheng (bib16) 2018; 735 Xie, Zhang, Wu, Wu, Liu, Yue, Yang, Peng (bib37) 2014; 125 Yu, Wang, Wang, Chun, Shi (bib35) 2014; 6 Zhang, Hou, Zhang, Zeng, Yan, Cheng, Duan (bib41) 2015; 27 Sun, Gao, Wu, Liu, Wang, Pi, Lu (bib2) 2017; 113 Pan, Wang, Zhao, Wu, Zhang, Wang, Zheng (bib17) 2009; 21 Ramu (10.1016/j.jpcs.2020.109540_bib21) 2014; 122 Ning (10.1016/j.jpcs.2020.109540_bib33) 2017; 722 Mao (10.1016/j.jpcs.2020.109540_bib4) 2018; 6 Ning (10.1016/j.jpcs.2020.109540_bib27) 2017; 722 Tu (10.1016/j.jpcs.2020.109540_bib11) 2017; 9 Xie (10.1016/j.jpcs.2020.109540_bib37) 2014; 125 Li (10.1016/j.jpcs.2020.109540_bib36) 2019; 784 Liu (10.1016/j.jpcs.2020.109540_bib13) 2009; 113 Li (10.1016/j.jpcs.2020.109540_bib39) 2013; 577 Liu (10.1016/j.jpcs.2020.109540_bib23) 2014; 150 Xiao (10.1016/j.jpcs.2020.109540_bib6) 2016; 189 Pan (10.1016/j.jpcs.2020.109540_bib17) 2009; 21 Wu (10.1016/j.jpcs.2020.109540_bib29) 2011; 509 Wang (10.1016/j.jpcs.2020.109540_bib40) 2014; 6 Yang (10.1016/j.jpcs.2020.109540_bib16) 2018; 735 Yang (10.1016/j.jpcs.2020.109540_bib5) 2019; 484 Zhang (10.1016/j.jpcs.2020.109540_bib8) 2012; 14 Zhang (10.1016/j.jpcs.2020.109540_bib41) 2015; 27 Teng (10.1016/j.jpcs.2020.109540_bib15) 2018; 744 Yu (10.1016/j.jpcs.2020.109540_bib20) 2017; 2 Pan (10.1016/j.jpcs.2020.109540_bib32) 2010; 55 Wang (10.1016/j.jpcs.2020.109540_bib12) 2009; 54 Wang (10.1016/j.jpcs.2020.109540_bib19) 2009; 549 Jayaraman (10.1016/j.jpcs.2020.109540_bib25) 2013; 5 Liu (10.1016/j.jpcs.2020.109540_bib34) 2009; 113 Shen (10.1016/j.jpcs.2020.109540_bib1) 2013; 5 Liu (10.1016/j.jpcs.2020.109540_bib9) 2018; 387 Zhang (10.1016/j.jpcs.2020.109540_bib18) 2007; 154 Ling (10.1016/j.jpcs.2020.109540_bib38) 2018; 427 Song (10.1016/j.jpcs.2020.109540_bib28) 2017; 694 Yu (10.1016/j.jpcs.2020.109540_bib35) 2014; 6 Xie (10.1016/j.jpcs.2020.109540_bib10) 2017; 226 Ahmad (10.1016/j.jpcs.2020.109540_bib30) 2012; 196 Xiao (10.1016/j.jpcs.2020.109540_bib22) 2016; 189 Kose (10.1016/j.jpcs.2020.109540_bib7) 2015; 295 Peng (10.1016/j.jpcs.2020.109540_bib3) 2015; 271 Wang (10.1016/j.jpcs.2020.109540_bib14) 2018; 101 Zhou (10.1016/j.jpcs.2020.109540_bib24) 2015; 285 Xie (10.1016/j.jpcs.2020.109540_bib31) 2014; 6 Sun (10.1016/j.jpcs.2020.109540_bib2) 2017; 113 Huang (10.1016/j.jpcs.2020.109540_bib26) 2014; 22 |
References_xml | – volume: 427 start-page: 281 year: 2018 end-page: 287 ident: bib38 article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties publication-title: Appl. Surf. Sci. – volume: 113 start-page: 5336 year: 2009 end-page: 5339 ident: bib13 article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability publication-title: J. Phys. Chem. C – volume: 5 start-page: 9957 year: 2013 end-page: 9963 ident: bib25 article-title: Morphologically robust NiFe publication-title: ACS Appl. Mater. Interfaces – volume: 484 start-page: 726 year: 2019 end-page: 731 ident: bib5 article-title: Surface modification of graphite by ion implantation for promoting the electrochemical property in Li-ion batteries publication-title: Appl. Surf. Sci. – volume: 122 start-page: 230 year: 2014 end-page: 233 ident: bib21 article-title: Synthesis of dumbbell shaped ZnO crystals using one-pot hydrothermal method and their characterisations publication-title: Mater. Lett. – volume: 271 start-page: 173 year: 2015 end-page: 179 ident: bib3 article-title: Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery publication-title: Chem. Eng. J. – volume: 196 start-page: 326 year: 2012 end-page: 331 ident: bib30 article-title: SnO2/ZnO composite structure for the lithium-ion battery electrode publication-title: J. Solid State Chem. – volume: 113 start-page: 5336 year: 2009 end-page: 5339 ident: bib34 article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability publication-title: J. Phys. Chem. C – volume: 5 start-page: 3118 year: 2013 end-page: 3125 ident: bib1 article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 113 start-page: 46 year: 2017 end-page: 54 ident: bib2 article-title: Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries publication-title: Carbon – volume: 14 start-page: 1775 year: 2012 ident: bib8 article-title: Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties publication-title: CrystEngComm – volume: 744 start-page: 712 year: 2018 end-page: 720 ident: bib15 article-title: Amorphous carbon-coated ZnO porous nanosheets: facile fabrication and application in lithium- and sodium-ion batteries publication-title: J. Alloys Compd. – volume: 226 start-page: 79 year: 2017 end-page: 88 ident: bib10 article-title: Synthesis of ZnO-Cu-C yolk-shell hybrid microspheres with enhanced electrochemical properties for lithium ion battery anodes publication-title: Electrochim. Acta – volume: 285 start-page: 406 year: 2015 end-page: 412 ident: bib24 article-title: Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons publication-title: J. Power Sources – volume: 6 start-page: 19895 year: 2014 end-page: 19904 ident: bib31 article-title: Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 439 year: 2017 end-page: 446 ident: bib11 article-title: Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode publication-title: ACS Appl. Mater. Interfaces – volume: 154 start-page: A65 year: 2007 end-page: A69 ident: bib18 article-title: Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries publication-title: J. Electrochem. Soc. – volume: 6 start-page: 11419 year: 2014 end-page: 11424 ident: bib35 article-title: An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition publication-title: Nanoscale – volume: 150 start-page: 75 year: 2014 end-page: 82 ident: bib23 article-title: Facile synthesis of hierarchical mesoporous Cu publication-title: Electrochim. Acta – volume: 189 start-page: 245 year: 2016 end-page: 251 ident: bib22 article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery publication-title: Electrochim. Acta – volume: 735 start-page: 1079 year: 2018 end-page: 1087 ident: bib16 article-title: In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries publication-title: J. Alloys Compd. – volume: 722 start-page: 716 year: 2017 end-page: 720 ident: bib27 article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries publication-title: J. Alloys Compd. – volume: 22 start-page: 82 year: 2014 end-page: 85 ident: bib26 article-title: Mesoporous ZnO nanosheets for lithium ion batteries publication-title: Mater. Lett. – volume: 694 start-page: 1246 year: 2017 end-page: 1253 ident: bib28 article-title: Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium ion batteries publication-title: J. Alloys Compd. – volume: 2 start-page: 3627 year: 2017 end-page: 3632 ident: bib20 article-title: Cellulose-derived hollow carbonaceous nanospheres from rice husks as anode for lithium-ion batteries with enhanced reversible capacity and cyclic performance publication-title: Chemistry Select – volume: 125 start-page: 659 year: 2014 end-page: 665 ident: bib37 article-title: Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries publication-title: Electrochim. Acta – volume: 54 start-page: 2851 year: 2009 end-page: 2855 ident: bib12 article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries publication-title: Electrochim. Acta – volume: 27 start-page: 2400 year: 2015 end-page: 2405 ident: bib41 article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode publication-title: Adv. Mater. – volume: 387 start-page: 64 year: 2018 end-page: 71 ident: bib9 article-title: Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes publication-title: J. Power Sources – volume: 101 start-page: 305 year: 2018 end-page: 310 ident: bib14 article-title: Controllable synthesis of CNT@ZnO composites with enhanced electrochemical properties for lithium-ion battery publication-title: Mater. Res. Bull. – volume: 784 start-page: 800 year: 2019 end-page: 806 ident: bib36 article-title: Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium ion batteries – volume: 509 start-page: 9207 year: 2011 end-page: 9213 ident: bib29 article-title: Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries publication-title: J. Alloys Compd. – volume: 55 start-page: 5780 year: 2010 end-page: 5785 ident: bib32 article-title: Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries publication-title: Electrochim. Acta – volume: 295 start-page: 235 year: 2015 end-page: 245 ident: bib7 article-title: A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method publication-title: J. Power Sources – volume: 722 start-page: 716 year: 2017 end-page: 720 ident: bib33 article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries publication-title: J. Alloys Compd. – volume: 6 start-page: 188 year: 2018 end-page: 195 ident: bib4 article-title: Continuous carbon hollow shell with zinc oxide nanoparticles embedded as an anode material with excellent lithium storage capability publication-title: Energy Technol. – volume: 577 start-page: 663 year: 2013 end-page: 668 ident: bib39 article-title: Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries publication-title: J. Alloys Compd. – volume: 21 start-page: 3136 year: 2009 end-page: 3142 ident: bib17 article-title: Li storage properties of disordered graphene nanosheets publication-title: Chem. Mater. – volume: 6 start-page: 12713 year: 2014 end-page: 12718 ident: bib40 article-title: MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 189 start-page: 245 year: 2016 end-page: 251 ident: bib6 article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery publication-title: Electrochim. Acta – volume: 549 start-page: 2851 year: 2009 end-page: 2855 ident: bib19 article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries – volume: 735 start-page: 1079 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib16 article-title: In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.11.125 – volume: 784 start-page: 800 year: 2019 ident: 10.1016/j.jpcs.2020.109540_bib36 article-title: Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium ion batteries – volume: 14 start-page: 1775 year: 2012 ident: 10.1016/j.jpcs.2020.109540_bib8 article-title: Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties publication-title: CrystEngComm doi: 10.1039/c1ce06163a – volume: 5 start-page: 9957 year: 2013 ident: 10.1016/j.jpcs.2020.109540_bib25 article-title: Morphologically robust NiFe2O4 nanofibers as high capacity li-ion battery anode material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401779p – volume: 694 start-page: 1246 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib28 article-title: Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.110 – volume: 5 start-page: 3118 year: 2013 ident: 10.1016/j.jpcs.2020.109540_bib1 article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400020n – volume: 271 start-page: 173 year: 2015 ident: 10.1016/j.jpcs.2020.109540_bib3 article-title: Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.077 – volume: 387 start-page: 64 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib9 article-title: Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.047 – volume: 722 start-page: 716 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib33 article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.099 – volume: 54 start-page: 2851 year: 2009 ident: 10.1016/j.jpcs.2020.109540_bib12 article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.11.019 – volume: 6 start-page: 12713 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib40 article-title: MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5027055 – volume: 113 start-page: 5336 year: 2009 ident: 10.1016/j.jpcs.2020.109540_bib13 article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability publication-title: J. Phys. Chem. C doi: 10.1021/jp900427c – volume: 154 start-page: A65 issue: 2 year: 2007 ident: 10.1016/j.jpcs.2020.109540_bib18 article-title: Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.2400609 – volume: 509 start-page: 9207 year: 2011 ident: 10.1016/j.jpcs.2020.109540_bib29 article-title: Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.06.114 – volume: 55 start-page: 5780 year: 2010 ident: 10.1016/j.jpcs.2020.109540_bib32 article-title: Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.05.017 – volume: 150 start-page: 75 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib23 article-title: Facile synthesis of hierarchical mesoporous CuxCo3-xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.131 – volume: 577 start-page: 663 year: 2013 ident: 10.1016/j.jpcs.2020.109540_bib39 article-title: Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.06.147 – volume: 722 start-page: 716 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib27 article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.099 – volume: 27 start-page: 2400 year: 2015 ident: 10.1016/j.jpcs.2020.109540_bib41 article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode publication-title: Adv. Mater. doi: 10.1002/adma.201405222 – volume: 9 start-page: 439 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib11 article-title: Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13113 – volume: 21 start-page: 3136 year: 2009 ident: 10.1016/j.jpcs.2020.109540_bib17 article-title: Li storage properties of disordered graphene nanosheets publication-title: Chem. Mater. doi: 10.1021/cm900395k – volume: 113 start-page: 5336 year: 2009 ident: 10.1016/j.jpcs.2020.109540_bib34 article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability publication-title: J. Phys. Chem. C doi: 10.1021/jp900427c – volume: 189 start-page: 245 year: 2016 ident: 10.1016/j.jpcs.2020.109540_bib22 article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.045 – volume: 295 start-page: 235 year: 2015 ident: 10.1016/j.jpcs.2020.109540_bib7 article-title: A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.135 – volume: 22 start-page: 82 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib26 article-title: Mesoporous ZnO nanosheets for lithium ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.02.012 – volume: 101 start-page: 305 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib14 article-title: Controllable synthesis of CNT@ZnO composites with enhanced electrochemical properties for lithium-ion battery publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.01.052 – volume: 125 start-page: 659 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib37 article-title: Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.003 – volume: 122 start-page: 230 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib21 article-title: Synthesis of dumbbell shaped ZnO crystals using one-pot hydrothermal method and their characterisations publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.02.021 – volume: 6 start-page: 11419 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib35 article-title: An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition publication-title: Nanoscale doi: 10.1039/C4NR02576H – volume: 113 start-page: 46 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib2 article-title: Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2016.11.039 – volume: 2 start-page: 3627 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib20 article-title: Cellulose-derived hollow carbonaceous nanospheres from rice husks as anode for lithium-ion batteries with enhanced reversible capacity and cyclic performance publication-title: Chemistry Select – volume: 744 start-page: 712 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib15 article-title: Amorphous carbon-coated ZnO porous nanosheets: facile fabrication and application in lithium- and sodium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.191 – volume: 285 start-page: 406 year: 2015 ident: 10.1016/j.jpcs.2020.109540_bib24 article-title: Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.124 – volume: 196 start-page: 326 year: 2012 ident: 10.1016/j.jpcs.2020.109540_bib30 article-title: SnO2/ZnO composite structure for the lithium-ion battery electrode publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.06.032 – volume: 226 start-page: 79 year: 2017 ident: 10.1016/j.jpcs.2020.109540_bib10 article-title: Synthesis of ZnO-Cu-C yolk-shell hybrid microspheres with enhanced electrochemical properties for lithium ion battery anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.187 – volume: 6 start-page: 188 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib4 article-title: Continuous carbon hollow shell with zinc oxide nanoparticles embedded as an anode material with excellent lithium storage capability publication-title: Energy Technol. doi: 10.1002/ente.201700397 – volume: 549 start-page: 2851 issue: 10 year: 2009 ident: 10.1016/j.jpcs.2020.109540_bib19 article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries – volume: 484 start-page: 726 year: 2019 ident: 10.1016/j.jpcs.2020.109540_bib5 article-title: Surface modification of graphite by ion implantation for promoting the electrochemical property in Li-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.081 – volume: 427 start-page: 281 year: 2018 ident: 10.1016/j.jpcs.2020.109540_bib38 article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.229 – volume: 189 start-page: 245 year: 2016 ident: 10.1016/j.jpcs.2020.109540_bib6 article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.045 – volume: 6 start-page: 19895 year: 2014 ident: 10.1016/j.jpcs.2020.109540_bib31 article-title: Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505352p |
SSID | ssj0005191 |
Score | 2.429294 |
Snippet | In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109540 |
SubjectTerms | Anode material Biomass carbon Composite Flower zinc oxide |
Title | Simple synthesis of rice husk hollow carbon-coated flower ZnO for the anode in a high performance lithium-ion battery |
URI | https://dx.doi.org/10.1016/j.jpcs.2020.109540 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IT6wv5uBNYvPYbJJjKUpVqActiJewj4RGa1JMi3jxtzuTh1YQDx4TdmCZGWa-hG--Yew0FAqBvOSWVpFrceUIS4lAWZH0XdK3IphAbIuhGIz49YP_sMT67SwM0Sqb2l_X9KpaN2-6jTe70yyjGV9sbSIKCIIQP44m2HlAWX7-sUDzcJqtecRax9PN4EzN8XqaapLsditVpeoHyG_NaaHhXG6yjQYpQq--zBZbSvJtttZvF7Rts9WKvanLHTa_y0jkF8r3HPFcmZVQpEBqQTCel8-ABW5SvIGWr6rILV0gvDSQTmg_Gjzmt4C4FdAOZF6YBLIcJJCKMUy_hwoA0fo4m79YGEZQlSbn-y4bXV7c9wdWs0_B0p4QM_Q_N6FSoa24Fxrb6Ig7xnYkD1IRJKnrJsao1NNSGoxXICMpwoT7nrJl5Gnf9vbYcl7kyT4D200dqcPQlwhpZIRfWTZPU-1FfmgLLFwd5rSOjHUjNk47LyZxyyp7isn5MTk_rp3fYWdfNtNaauPP034bn_hHwsTYC_6wO_in3SFbp6eax3fElmev8-QY8chMnVQJd8JWelc3g-EnQf7e7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS91QEB3sk6IbsbbFz3YW3ZVgPm5ukqU8lGe1r4sqSDfhfiQYfSYP8x7iv3cmuVELxUW3SQ6EmcvMSThzBuBbKjUReSU8o7PQEzqQnpaJ9jIVh-xvxTSB1RZTObkUP67iqxUYD7MwLKt0tb-v6V21dlcOXTQP51XFM77U2mSWMAVhfdw7WGV3qngEq0enZ5Ppi9IjcIvzWLhOADc708u8buaGXbvDzlip-wfyr_70quecbMKGI4t41L_PB1gp6i1YGw872rbgfSfgNO1HWP6u2OcX28eaKF1btdiUyIZBeL1sb5Fq3Kx5QKPudVN7piGGabGc8Yo0_FP_QqKuSDhUdWMLrGpUyEbGOH-ZK0Ai7NfV8s6jTKLubDkfP8HlyfHFeOK5lQqeiaRcUAqETbVOfS2i1PrWZCKwfqBEUsqkKMOwsFaXkVHKUsoSlSmZFiKOtK-yyMR-9BlGdVMX24B-WAbKpGmsiNWojD60fFGWJsri1JdUu3YgGAKZG-c3zmsvZvkgLLvJOfg5Bz_vg78D358x895t482n4yE_-V9nJqd28AZu9z9xX2FtcvHzPD8_nZ7twTrf6WV9-zBa3C-LA6InC_3FHb8n7zLhnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+synthesis+of+rice+husk+hollow+carbon-coated+flower+ZnO+for+the+anode+in+a+high+performance+lithium-ion+battery&rft.jtitle=The+Journal+of+physics+and+chemistry+of+solids&rft.au=Li%2C+Yi&rft.au=Huang%2C+Yan&rft.au=Wang%2C+Xiaofeng&rft.au=Liu%2C+Weiping&rft.date=2020-10-01&rft.issn=0022-3697&rft.volume=145&rft.spage=109540&rft_id=info:doi/10.1016%2Fj.jpcs.2020.109540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpcs_2020_109540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3697&client=summon |