Simple synthesis of rice husk hollow carbon-coated flower ZnO for the anode in a high performance lithium-ion battery

In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the ano...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physics and chemistry of solids Vol. 145; p. 109540
Main Authors Li, Yi, Huang, Yan, Wang, Xiaofeng, Liu, Weiping, Yu, Kaifeng, Liang, Ce
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the anode in lithium-ion batteries and it exhibited excellent electrochemical performance and cycling stability due to its special microstructure. In the ZnO/RHC composite, the sheet structure comprising zinc oxide was coated on the biomass carbon layer of the hollow spherical structure to form numerous conductive networks, thereby improving the electrochemical properties of the ZnO/RHC. The composite provided a reversible specific capacity of 1002.5 mA h g−1 after 160 cycles at 0.2C, which is higher than the theoretical specific capacity of zinc oxide (978 mA h g−1). This material may facilitate the efficient and simple preparation of high performance lithium-ion battery anode materials. A simple hydrothermal method was used to prepare flower-like zinc oxide, which was further combined with biomass hollow carbon derived from rice husk under hydrothermal conditions to obtain ZnO/RHC composite material. When the ZnO/RHC composite was used as anode for lithium-ion batterie, it has exhibited excellent electrochemical performance and cycling stability due to its special micro-structure. [Display omitted] •Simple hydrothermal method used to prepare flower-like zinc oxide.•Flower-like ZnO combined with rice husk-derived hollow carbon to obtain ZnO/RHC.•ZnO/RHC obtained good electrochemical performance as anode in lithium-ion battery.
AbstractList In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice husk (rice hull cellulose, RHC) under hydrothermal conditions to obtain a ZnO/RHC composite material. The ZnO/RHC composite was used as the anode in lithium-ion batteries and it exhibited excellent electrochemical performance and cycling stability due to its special microstructure. In the ZnO/RHC composite, the sheet structure comprising zinc oxide was coated on the biomass carbon layer of the hollow spherical structure to form numerous conductive networks, thereby improving the electrochemical properties of the ZnO/RHC. The composite provided a reversible specific capacity of 1002.5 mA h g−1 after 160 cycles at 0.2C, which is higher than the theoretical specific capacity of zinc oxide (978 mA h g−1). This material may facilitate the efficient and simple preparation of high performance lithium-ion battery anode materials. A simple hydrothermal method was used to prepare flower-like zinc oxide, which was further combined with biomass hollow carbon derived from rice husk under hydrothermal conditions to obtain ZnO/RHC composite material. When the ZnO/RHC composite was used as anode for lithium-ion batterie, it has exhibited excellent electrochemical performance and cycling stability due to its special micro-structure. [Display omitted] •Simple hydrothermal method used to prepare flower-like zinc oxide.•Flower-like ZnO combined with rice husk-derived hollow carbon to obtain ZnO/RHC.•ZnO/RHC obtained good electrochemical performance as anode in lithium-ion battery.
ArticleNumber 109540
Author Huang, Yan
Li, Yi
Wang, Xiaofeng
Liu, Weiping
Liang, Ce
Yu, Kaifeng
Author_xml – sequence: 1
  givenname: Yi
  surname: Li
  fullname: Li, Yi
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
– sequence: 2
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
– sequence: 3
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  organization: The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, China
– sequence: 4
  givenname: Weiping
  surname: Liu
  fullname: Liu, Weiping
  organization: College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130025, China
– sequence: 5
  givenname: Kaifeng
  surname: Yu
  fullname: Yu, Kaifeng
  email: yukf@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
– sequence: 6
  givenname: Ce
  surname: Liang
  fullname: Liang, Ce
  email: liangce@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
BookMark eNp9kMtOwzAQRS0EEm3hB1j5B1LsvCOxQRUvqVIXwIaNNbEnxCGxI9sF9e9JVFYsuhrpjs7VzFmSc2MNEnLD2Zoznt92626Ufh2zeA6qLGVnZMHLooriLEvOyYKxOI6SvCouydL7jjGW8YovyP5VD2OP1B9MaNFrT21DnZZI273_oq3te_tDJbjamkhaCKhoM0Xo6IfZ0cY6OnEUjFVItaFAW_3Z0hHdtBrATEW9Dq3eD5G2htYQArrDFblooPd4_TdX5P3x4W3zHG13Ty-b-20kkzwPUQWpKuu6ZHWalIopWaVcMQ5p0eQFNnGMStVNIgFUnRcFVJCXmGZJzaBKZMaSFYmPvdJZ7x02YnR6AHcQnIlZnOjELE7M4sRR3ASV_yCpA4Tp_OBA96fRuyOK01PfGp3wUuMkQWmHMghl9Sn8F_AUjhc
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_163148
crossref_primary_10_1021_acsami_1c09798
crossref_primary_10_1088_1361_6528_ac08bb
crossref_primary_10_1007_s13399_021_02089_2
crossref_primary_10_1002_gch2_202300112
crossref_primary_10_1016_j_rser_2024_114973
crossref_primary_10_1007_s11581_024_05655_6
crossref_primary_10_1002_asia_202001358
crossref_primary_10_1016_j_cej_2024_157787
crossref_primary_10_1039_D3GC04332K
crossref_primary_10_1115_1_4051420
crossref_primary_10_1016_j_electacta_2023_141904
crossref_primary_10_1021_acs_energyfuels_4c03971
crossref_primary_10_1016_j_jcis_2022_04_103
crossref_primary_10_1021_acs_energyfuels_1c01269
crossref_primary_10_1007_s41742_023_00512_2
crossref_primary_10_1002_adfm_202208349
crossref_primary_10_1016_j_mseb_2022_115656
crossref_primary_10_1002_smll_202306712
crossref_primary_10_3390_nano12020215
Cites_doi 10.1016/j.jallcom.2017.11.125
10.1039/c1ce06163a
10.1021/am401779p
10.1016/j.jallcom.2016.10.110
10.1021/am400020n
10.1016/j.cej.2015.02.077
10.1016/j.jpowsour.2018.03.047
10.1016/j.jallcom.2017.06.099
10.1016/j.electacta.2008.11.019
10.1021/am5027055
10.1021/jp900427c
10.1149/1.2400609
10.1016/j.jallcom.2011.06.114
10.1016/j.electacta.2010.05.017
10.1016/j.electacta.2014.10.131
10.1016/j.jallcom.2013.06.147
10.1002/adma.201405222
10.1021/acsami.6b13113
10.1021/cm900395k
10.1016/j.electacta.2015.11.045
10.1016/j.jpowsour.2015.06.135
10.1016/j.matlet.2014.02.012
10.1016/j.materresbull.2018.01.052
10.1016/j.electacta.2014.02.003
10.1016/j.matlet.2014.02.021
10.1039/C4NR02576H
10.1016/j.carbon.2016.11.039
10.1016/j.jallcom.2018.01.191
10.1016/j.jpowsour.2015.03.124
10.1016/j.jssc.2012.06.032
10.1016/j.electacta.2016.12.187
10.1002/ente.201700397
10.1016/j.apsusc.2019.04.081
10.1016/j.apsusc.2017.08.229
10.1021/am505352p
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jpcs.2020.109540
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1879-2553
ExternalDocumentID 10_1016_j_jpcs_2020_109540
S0022369719320943
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
3O-
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TN5
TWZ
UQL
WH7
WUQ
XOL
XPP
XSW
YQT
YYP
ZCG
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c366t-9a4d8bb80b438d0dc941d01a47f67ef22eddbf3caadb677a9a68e453b0a93c503
IEDL.DBID .~1
ISSN 0022-3697
IngestDate Thu Apr 24 23:12:31 EDT 2025
Tue Jul 01 02:39:58 EDT 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anode material
Composite
Flower zinc oxide
Biomass carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-9a4d8bb80b438d0dc941d01a47f67ef22eddbf3caadb677a9a68e453b0a93c503
ParticipantIDs crossref_primary_10_1016_j_jpcs_2020_109540
crossref_citationtrail_10_1016_j_jpcs_2020_109540
elsevier_sciencedirect_doi_10_1016_j_jpcs_2020_109540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle The Journal of physics and chemistry of solids
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen, Mu, Chen, Wu, Wu (bib1) 2013; 5
Liu, Zhang, Xing, Wang, Lin, Wei, Lei (bib23) 2014; 150
Yang, Cui, Lin, Han, Chen, Zhu, Li, Yang, Zhu, Xu (bib5) 2019; 484
Ling, Li, Wen (bib38) 2018; 427
Liu, Li, Ding, Jiang, Hu, Ji, Chi, Zhu, Huang (bib34) 2009; 113
Xiao, Zhang, Wang, Xing, Lin, Wei, Wang (bib22) 2016; 189
Wang, Xing, Xu, Zhang (bib40) 2014; 6
Zhou, Zhang, Liu, Peng, Li (bib24) 2015; 285
Mao, Wang, Wu, Xie, Ma, Chen (bib4) 2018; 6
Huang, Guo, Wu, Zhang (bib26) 2014; 22
Wang, Pan, Cheng, Zhao, Yin (bib12) 2009; 54
Li, Yue, Chen (bib36) 2019; 784
Liu, Li, Ding, Jiang, Hu, Ji, Chi, Zhu, Huang (bib13) 2009; 113
Wang, Pan, Cheng, Zhao, Yin (bib19) 2009; 549
Wu, Qin, Pan (bib29) 2011; 509
Song, Chen, Wu, Fu, Zhou, Chen, Wang (bib28) 2017; 694
Ning, Xie, Zhao, Liu, Tian, Wang, Wu (bib33) 2017; 722
Wang, Guo, Cui, Ma, Cao (bib14) 2018; 101
Zhang, Wu, Chen, Liu, Zhang, Zheng (bib8) 2012; 14
Peng, Liu, Liu, Li, Wu, Wu (bib3) 2015; 271
Li, Yang, Xu, Huang, Yang, Xiao, Ren, Shen, Han (bib39) 2013; 577
Pan, Qin, Liu, Wang (bib32) 2010; 55
Liu, Shi, Li, Yu, Zhang, Ullah, Yang, Li, Zhu, Xu (bib9) 2018; 387
Tu, Yang, Song, Wang (bib11) 2017; 9
Ning, Xie, Zhao, Liu, Tian, Wang, Wu (bib27) 2017; 722
Xiao, Zhang, Wang, Xing, Lin, Wei, Wang (bib6) 2016; 189
Zhang, Tu, Yuan, Huang, Chen, Mao (bib18) 2007; 154
Ahmad, Shi, Sun, Shen, Zhu (bib30) 2012; 196
Yu, Li, Qi, Liang (bib20) 2017; 2
Xie, Lin, Ma, Zeng, Yang, Huang, Wang, Peng (bib10) 2017; 226
Ramu, Anbarasan, Ramesh, Aravindan, Ponnusamy, Muthamizhchelvan, Yaakob (bib21) 2014; 122
Xie, Ma, Zeng, Zhang, Wang, Yue, Peng (bib31) 2014; 6
Teng, Mo, Yuan, Xue, Zhao (bib15) 2018; 744
Jayaraman, Reddy, Suresh Kumar, Mani, Damian, Ramakrishna, Chowdari (bib25) 2013; 5
Kose, Karaal, Akbulut (bib7) 2015; 295
Yang, Liu, Huang, Liu, Bian, Ling, Liu, Wang, Zheng (bib16) 2018; 735
Xie, Zhang, Wu, Wu, Liu, Yue, Yang, Peng (bib37) 2014; 125
Yu, Wang, Wang, Chun, Shi (bib35) 2014; 6
Zhang, Hou, Zhang, Zeng, Yan, Cheng, Duan (bib41) 2015; 27
Sun, Gao, Wu, Liu, Wang, Pi, Lu (bib2) 2017; 113
Pan, Wang, Zhao, Wu, Zhang, Wang, Zheng (bib17) 2009; 21
Ramu (10.1016/j.jpcs.2020.109540_bib21) 2014; 122
Ning (10.1016/j.jpcs.2020.109540_bib33) 2017; 722
Mao (10.1016/j.jpcs.2020.109540_bib4) 2018; 6
Ning (10.1016/j.jpcs.2020.109540_bib27) 2017; 722
Tu (10.1016/j.jpcs.2020.109540_bib11) 2017; 9
Xie (10.1016/j.jpcs.2020.109540_bib37) 2014; 125
Li (10.1016/j.jpcs.2020.109540_bib36) 2019; 784
Liu (10.1016/j.jpcs.2020.109540_bib13) 2009; 113
Li (10.1016/j.jpcs.2020.109540_bib39) 2013; 577
Liu (10.1016/j.jpcs.2020.109540_bib23) 2014; 150
Xiao (10.1016/j.jpcs.2020.109540_bib6) 2016; 189
Pan (10.1016/j.jpcs.2020.109540_bib17) 2009; 21
Wu (10.1016/j.jpcs.2020.109540_bib29) 2011; 509
Wang (10.1016/j.jpcs.2020.109540_bib40) 2014; 6
Yang (10.1016/j.jpcs.2020.109540_bib16) 2018; 735
Yang (10.1016/j.jpcs.2020.109540_bib5) 2019; 484
Zhang (10.1016/j.jpcs.2020.109540_bib8) 2012; 14
Zhang (10.1016/j.jpcs.2020.109540_bib41) 2015; 27
Teng (10.1016/j.jpcs.2020.109540_bib15) 2018; 744
Yu (10.1016/j.jpcs.2020.109540_bib20) 2017; 2
Pan (10.1016/j.jpcs.2020.109540_bib32) 2010; 55
Wang (10.1016/j.jpcs.2020.109540_bib12) 2009; 54
Wang (10.1016/j.jpcs.2020.109540_bib19) 2009; 549
Jayaraman (10.1016/j.jpcs.2020.109540_bib25) 2013; 5
Liu (10.1016/j.jpcs.2020.109540_bib34) 2009; 113
Shen (10.1016/j.jpcs.2020.109540_bib1) 2013; 5
Liu (10.1016/j.jpcs.2020.109540_bib9) 2018; 387
Zhang (10.1016/j.jpcs.2020.109540_bib18) 2007; 154
Ling (10.1016/j.jpcs.2020.109540_bib38) 2018; 427
Song (10.1016/j.jpcs.2020.109540_bib28) 2017; 694
Yu (10.1016/j.jpcs.2020.109540_bib35) 2014; 6
Xie (10.1016/j.jpcs.2020.109540_bib10) 2017; 226
Ahmad (10.1016/j.jpcs.2020.109540_bib30) 2012; 196
Xiao (10.1016/j.jpcs.2020.109540_bib22) 2016; 189
Kose (10.1016/j.jpcs.2020.109540_bib7) 2015; 295
Peng (10.1016/j.jpcs.2020.109540_bib3) 2015; 271
Wang (10.1016/j.jpcs.2020.109540_bib14) 2018; 101
Zhou (10.1016/j.jpcs.2020.109540_bib24) 2015; 285
Xie (10.1016/j.jpcs.2020.109540_bib31) 2014; 6
Sun (10.1016/j.jpcs.2020.109540_bib2) 2017; 113
Huang (10.1016/j.jpcs.2020.109540_bib26) 2014; 22
References_xml – volume: 427
  start-page: 281
  year: 2018
  end-page: 287
  ident: bib38
  article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties
  publication-title: Appl. Surf. Sci.
– volume: 113
  start-page: 5336
  year: 2009
  end-page: 5339
  ident: bib13
  article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 9957
  year: 2013
  end-page: 9963
  ident: bib25
  article-title: Morphologically robust NiFe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 484
  start-page: 726
  year: 2019
  end-page: 731
  ident: bib5
  article-title: Surface modification of graphite by ion implantation for promoting the electrochemical property in Li-ion batteries
  publication-title: Appl. Surf. Sci.
– volume: 122
  start-page: 230
  year: 2014
  end-page: 233
  ident: bib21
  article-title: Synthesis of dumbbell shaped ZnO crystals using one-pot hydrothermal method and their characterisations
  publication-title: Mater. Lett.
– volume: 271
  start-page: 173
  year: 2015
  end-page: 179
  ident: bib3
  article-title: Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery
  publication-title: Chem. Eng. J.
– volume: 196
  start-page: 326
  year: 2012
  end-page: 331
  ident: bib30
  article-title: SnO2/ZnO composite structure for the lithium-ion battery electrode
  publication-title: J. Solid State Chem.
– volume: 113
  start-page: 5336
  year: 2009
  end-page: 5339
  ident: bib34
  article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 3118
  year: 2013
  end-page: 3125
  ident: bib1
  article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 113
  start-page: 46
  year: 2017
  end-page: 54
  ident: bib2
  article-title: Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries
  publication-title: Carbon
– volume: 14
  start-page: 1775
  year: 2012
  ident: bib8
  article-title: Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties
  publication-title: CrystEngComm
– volume: 744
  start-page: 712
  year: 2018
  end-page: 720
  ident: bib15
  article-title: Amorphous carbon-coated ZnO porous nanosheets: facile fabrication and application in lithium- and sodium-ion batteries
  publication-title: J. Alloys Compd.
– volume: 226
  start-page: 79
  year: 2017
  end-page: 88
  ident: bib10
  article-title: Synthesis of ZnO-Cu-C yolk-shell hybrid microspheres with enhanced electrochemical properties for lithium ion battery anodes
  publication-title: Electrochim. Acta
– volume: 285
  start-page: 406
  year: 2015
  end-page: 412
  ident: bib24
  article-title: Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons
  publication-title: J. Power Sources
– volume: 6
  start-page: 19895
  year: 2014
  end-page: 19904
  ident: bib31
  article-title: Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 439
  year: 2017
  end-page: 446
  ident: bib11
  article-title: Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode
  publication-title: ACS Appl. Mater. Interfaces
– volume: 154
  start-page: A65
  year: 2007
  end-page: A69
  ident: bib18
  article-title: Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 11419
  year: 2014
  end-page: 11424
  ident: bib35
  article-title: An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition
  publication-title: Nanoscale
– volume: 150
  start-page: 75
  year: 2014
  end-page: 82
  ident: bib23
  article-title: Facile synthesis of hierarchical mesoporous Cu
  publication-title: Electrochim. Acta
– volume: 189
  start-page: 245
  year: 2016
  end-page: 251
  ident: bib22
  article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery
  publication-title: Electrochim. Acta
– volume: 735
  start-page: 1079
  year: 2018
  end-page: 1087
  ident: bib16
  article-title: In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries
  publication-title: J. Alloys Compd.
– volume: 722
  start-page: 716
  year: 2017
  end-page: 720
  ident: bib27
  article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 82
  year: 2014
  end-page: 85
  ident: bib26
  article-title: Mesoporous ZnO nanosheets for lithium ion batteries
  publication-title: Mater. Lett.
– volume: 694
  start-page: 1246
  year: 2017
  end-page: 1253
  ident: bib28
  article-title: Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium ion batteries
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 3627
  year: 2017
  end-page: 3632
  ident: bib20
  article-title: Cellulose-derived hollow carbonaceous nanospheres from rice husks as anode for lithium-ion batteries with enhanced reversible capacity and cyclic performance
  publication-title: Chemistry Select
– volume: 125
  start-page: 659
  year: 2014
  end-page: 665
  ident: bib37
  article-title: Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 2851
  year: 2009
  end-page: 2855
  ident: bib12
  article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 2400
  year: 2015
  end-page: 2405
  ident: bib41
  article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode
  publication-title: Adv. Mater.
– volume: 387
  start-page: 64
  year: 2018
  end-page: 71
  ident: bib9
  article-title: Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes
  publication-title: J. Power Sources
– volume: 101
  start-page: 305
  year: 2018
  end-page: 310
  ident: bib14
  article-title: Controllable synthesis of CNT@ZnO composites with enhanced electrochemical properties for lithium-ion battery
  publication-title: Mater. Res. Bull.
– volume: 784
  start-page: 800
  year: 2019
  end-page: 806
  ident: bib36
  article-title: Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium ion batteries
– volume: 509
  start-page: 9207
  year: 2011
  end-page: 9213
  ident: bib29
  article-title: Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries
  publication-title: J. Alloys Compd.
– volume: 55
  start-page: 5780
  year: 2010
  end-page: 5785
  ident: bib32
  article-title: Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 295
  start-page: 235
  year: 2015
  end-page: 245
  ident: bib7
  article-title: A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method
  publication-title: J. Power Sources
– volume: 722
  start-page: 716
  year: 2017
  end-page: 720
  ident: bib33
  article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 188
  year: 2018
  end-page: 195
  ident: bib4
  article-title: Continuous carbon hollow shell with zinc oxide nanoparticles embedded as an anode material with excellent lithium storage capability
  publication-title: Energy Technol.
– volume: 577
  start-page: 663
  year: 2013
  end-page: 668
  ident: bib39
  article-title: Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries
  publication-title: J. Alloys Compd.
– volume: 21
  start-page: 3136
  year: 2009
  end-page: 3142
  ident: bib17
  article-title: Li storage properties of disordered graphene nanosheets
  publication-title: Chem. Mater.
– volume: 6
  start-page: 12713
  year: 2014
  end-page: 12718
  ident: bib40
  article-title: MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 189
  start-page: 245
  year: 2016
  end-page: 251
  ident: bib6
  article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery
  publication-title: Electrochim. Acta
– volume: 549
  start-page: 2851
  year: 2009
  end-page: 2855
  ident: bib19
  article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
– volume: 735
  start-page: 1079
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib16
  article-title: In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.11.125
– volume: 784
  start-page: 800
  year: 2019
  ident: 10.1016/j.jpcs.2020.109540_bib36
  article-title: Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium ion batteries
– volume: 14
  start-page: 1775
  year: 2012
  ident: 10.1016/j.jpcs.2020.109540_bib8
  article-title: Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties
  publication-title: CrystEngComm
  doi: 10.1039/c1ce06163a
– volume: 5
  start-page: 9957
  year: 2013
  ident: 10.1016/j.jpcs.2020.109540_bib25
  article-title: Morphologically robust NiFe2O4 nanofibers as high capacity li-ion battery anode material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401779p
– volume: 694
  start-page: 1246
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib28
  article-title: Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.110
– volume: 5
  start-page: 3118
  year: 2013
  ident: 10.1016/j.jpcs.2020.109540_bib1
  article-title: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400020n
– volume: 271
  start-page: 173
  year: 2015
  ident: 10.1016/j.jpcs.2020.109540_bib3
  article-title: Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.077
– volume: 387
  start-page: 64
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib9
  article-title: Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.047
– volume: 722
  start-page: 716
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib33
  article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.099
– volume: 54
  start-page: 2851
  year: 2009
  ident: 10.1016/j.jpcs.2020.109540_bib12
  article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.11.019
– volume: 6
  start-page: 12713
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib40
  article-title: MnO nanoparticles interdispersed in 3D porous carbon framework for high performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5027055
– volume: 113
  start-page: 5336
  year: 2009
  ident: 10.1016/j.jpcs.2020.109540_bib13
  article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp900427c
– volume: 154
  start-page: A65
  issue: 2
  year: 2007
  ident: 10.1016/j.jpcs.2020.109540_bib18
  article-title: Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2400609
– volume: 509
  start-page: 9207
  year: 2011
  ident: 10.1016/j.jpcs.2020.109540_bib29
  article-title: Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.06.114
– volume: 55
  start-page: 5780
  year: 2010
  ident: 10.1016/j.jpcs.2020.109540_bib32
  article-title: Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.05.017
– volume: 150
  start-page: 75
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib23
  article-title: Facile synthesis of hierarchical mesoporous CuxCo3-xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.10.131
– volume: 577
  start-page: 663
  year: 2013
  ident: 10.1016/j.jpcs.2020.109540_bib39
  article-title: Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.06.147
– volume: 722
  start-page: 716
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib27
  article-title: Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.099
– volume: 27
  start-page: 2400
  year: 2015
  ident: 10.1016/j.jpcs.2020.109540_bib41
  article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405222
– volume: 9
  start-page: 439
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib11
  article-title: Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13113
– volume: 21
  start-page: 3136
  year: 2009
  ident: 10.1016/j.jpcs.2020.109540_bib17
  article-title: Li storage properties of disordered graphene nanosheets
  publication-title: Chem. Mater.
  doi: 10.1021/cm900395k
– volume: 113
  start-page: 5336
  year: 2009
  ident: 10.1016/j.jpcs.2020.109540_bib34
  article-title: Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp900427c
– volume: 189
  start-page: 245
  year: 2016
  ident: 10.1016/j.jpcs.2020.109540_bib22
  article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.045
– volume: 295
  start-page: 235
  year: 2015
  ident: 10.1016/j.jpcs.2020.109540_bib7
  article-title: A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.135
– volume: 22
  start-page: 82
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib26
  article-title: Mesoporous ZnO nanosheets for lithium ion batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.02.012
– volume: 101
  start-page: 305
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib14
  article-title: Controllable synthesis of CNT@ZnO composites with enhanced electrochemical properties for lithium-ion battery
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.01.052
– volume: 125
  start-page: 659
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib37
  article-title: Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.003
– volume: 122
  start-page: 230
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib21
  article-title: Synthesis of dumbbell shaped ZnO crystals using one-pot hydrothermal method and their characterisations
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.02.021
– volume: 6
  start-page: 11419
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib35
  article-title: An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition
  publication-title: Nanoscale
  doi: 10.1039/C4NR02576H
– volume: 113
  start-page: 46
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib2
  article-title: Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.039
– volume: 2
  start-page: 3627
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib20
  article-title: Cellulose-derived hollow carbonaceous nanospheres from rice husks as anode for lithium-ion batteries with enhanced reversible capacity and cyclic performance
  publication-title: Chemistry Select
– volume: 744
  start-page: 712
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib15
  article-title: Amorphous carbon-coated ZnO porous nanosheets: facile fabrication and application in lithium- and sodium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.191
– volume: 285
  start-page: 406
  year: 2015
  ident: 10.1016/j.jpcs.2020.109540_bib24
  article-title: Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.124
– volume: 196
  start-page: 326
  year: 2012
  ident: 10.1016/j.jpcs.2020.109540_bib30
  article-title: SnO2/ZnO composite structure for the lithium-ion battery electrode
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2012.06.032
– volume: 226
  start-page: 79
  year: 2017
  ident: 10.1016/j.jpcs.2020.109540_bib10
  article-title: Synthesis of ZnO-Cu-C yolk-shell hybrid microspheres with enhanced electrochemical properties for lithium ion battery anodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.187
– volume: 6
  start-page: 188
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib4
  article-title: Continuous carbon hollow shell with zinc oxide nanoparticles embedded as an anode material with excellent lithium storage capability
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700397
– volume: 549
  start-page: 2851
  issue: 10
  year: 2009
  ident: 10.1016/j.jpcs.2020.109540_bib19
  article-title: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
– volume: 484
  start-page: 726
  year: 2019
  ident: 10.1016/j.jpcs.2020.109540_bib5
  article-title: Surface modification of graphite by ion implantation for promoting the electrochemical property in Li-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.081
– volume: 427
  start-page: 281
  year: 2018
  ident: 10.1016/j.jpcs.2020.109540_bib38
  article-title: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.229
– volume: 189
  start-page: 245
  year: 2016
  ident: 10.1016/j.jpcs.2020.109540_bib6
  article-title: ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.045
– volume: 6
  start-page: 19895
  year: 2014
  ident: 10.1016/j.jpcs.2020.109540_bib31
  article-title: Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505352p
SSID ssj0005191
Score 2.429294
Snippet In this study, a simple hydrothermal method was used to prepare flower-like zinc oxide, which was then combined with biomass hollow carbon derived from rice...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109540
SubjectTerms Anode material
Biomass carbon
Composite
Flower zinc oxide
Title Simple synthesis of rice husk hollow carbon-coated flower ZnO for the anode in a high performance lithium-ion battery
URI https://dx.doi.org/10.1016/j.jpcs.2020.109540
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IT6wv5uBNYvPYbJJjKUpVqActiJewj4RGa1JMi3jxtzuTh1YQDx4TdmCZGWa-hG--Yew0FAqBvOSWVpFrceUIS4lAWZH0XdK3IphAbIuhGIz49YP_sMT67SwM0Sqb2l_X9KpaN2-6jTe70yyjGV9sbSIKCIIQP44m2HlAWX7-sUDzcJqtecRax9PN4EzN8XqaapLsditVpeoHyG_NaaHhXG6yjQYpQq--zBZbSvJtttZvF7Rts9WKvanLHTa_y0jkF8r3HPFcmZVQpEBqQTCel8-ABW5SvIGWr6rILV0gvDSQTmg_Gjzmt4C4FdAOZF6YBLIcJJCKMUy_hwoA0fo4m79YGEZQlSbn-y4bXV7c9wdWs0_B0p4QM_Q_N6FSoa24Fxrb6Ig7xnYkD1IRJKnrJsao1NNSGoxXICMpwoT7nrJl5Gnf9vbYcl7kyT4D200dqcPQlwhpZIRfWTZPU-1FfmgLLFwd5rSOjHUjNk47LyZxyyp7isn5MTk_rp3fYWdfNtNaauPP034bn_hHwsTYC_6wO_in3SFbp6eax3fElmev8-QY8chMnVQJd8JWelc3g-EnQf7e7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS91QEB3sk6IbsbbFz3YW3ZVgPm5ukqU8lGe1r4sqSDfhfiQYfSYP8x7iv3cmuVELxUW3SQ6EmcvMSThzBuBbKjUReSU8o7PQEzqQnpaJ9jIVh-xvxTSB1RZTObkUP67iqxUYD7MwLKt0tb-v6V21dlcOXTQP51XFM77U2mSWMAVhfdw7WGV3qngEq0enZ5Ppi9IjcIvzWLhOADc708u8buaGXbvDzlip-wfyr_70quecbMKGI4t41L_PB1gp6i1YGw872rbgfSfgNO1HWP6u2OcX28eaKF1btdiUyIZBeL1sb5Fq3Kx5QKPudVN7piGGabGc8Yo0_FP_QqKuSDhUdWMLrGpUyEbGOH-ZK0Ai7NfV8s6jTKLubDkfP8HlyfHFeOK5lQqeiaRcUAqETbVOfS2i1PrWZCKwfqBEUsqkKMOwsFaXkVHKUsoSlSmZFiKOtK-yyMR-9BlGdVMX24B-WAbKpGmsiNWojD60fFGWJsri1JdUu3YgGAKZG-c3zmsvZvkgLLvJOfg5Bz_vg78D358x895t482n4yE_-V9nJqd28AZu9z9xX2FtcvHzPD8_nZ7twTrf6WV9-zBa3C-LA6InC_3FHb8n7zLhnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+synthesis+of+rice+husk+hollow+carbon-coated+flower+ZnO+for+the+anode+in+a+high+performance+lithium-ion+battery&rft.jtitle=The+Journal+of+physics+and+chemistry+of+solids&rft.au=Li%2C+Yi&rft.au=Huang%2C+Yan&rft.au=Wang%2C+Xiaofeng&rft.au=Liu%2C+Weiping&rft.date=2020-10-01&rft.issn=0022-3697&rft.volume=145&rft.spage=109540&rft_id=info:doi/10.1016%2Fj.jpcs.2020.109540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpcs_2020_109540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3697&client=summon